Barley Genetics and Improvement for Abiotic Stress Tolerance
MSU Barley Breeding, Genetics and Quality

Jamie Sherman Undergraduates
Hannah Turner Josh Wolfram
Greg Lutagen Chloe Smythrin
Sarah Olivo Brianna Bienusa

Graduate Students
Traci Hoogland Madison McChesney
Joe Jensen Erin Johnson
Jessica Williams Kaleb Murphy

http://www.montana.edu/barleybreeding
facebook @MSUBarleyMaltQualityLab
With thanks to cooperators

• Jim Berg
• Maryse Bourgault
• Phil Bruckner
• Pat Carr
• Chengci Chen
• Frankie Crutcher
• Jason Cook
• Jed Eberly
• Andreas Fischer
• Mike Giroux

• Ken Kephart
• Jennifer Lachowiec
• Peggy Lamb
• Derek Lewis
• Kevin McPhee
• Kent McVay
• Ron Ramsfield
• Luther Talbert
• Jessica Torrion
Abiotic Stress Resistance

- Root Development
 - Drought
 - Acid Soils
 - Salt
- Cold Tolerance
 - Winter
- Forage
- Malt Quality Stability
 - Buzz
 - Low protein and stable plumps
 - Preharvest Sprouting
 - Dormancy vs Speed of hydration
Barley pushing into more marginal environments.

- Production has moved west
- Montanans plant more barley acres than any state
- Important part of rotation to manage pests
- Many end-uses providing multiple markets for growers
- About 50% of total grain and 90% of feed exported as a commodity
- Value added - Malt, forage
Goal: Improve Barley to provide a benefit

<table>
<thead>
<tr>
<th>Breeding Goals</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>High yield, high quality malt or feed</td>
<td>90</td>
<td>87</td>
<td>29</td>
<td>39</td>
</tr>
<tr>
<td>Heirloom malt</td>
<td>75</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food</td>
<td>19</td>
<td>21</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Forage</td>
<td>12</td>
<td>12</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Lodging resistance</td>
<td>11</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FHB resistance</td>
<td>14</td>
<td>22</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>Extended grain-fill</td>
<td>31</td>
<td>12</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Spot form of Net blotch</td>
<td>3</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nematode Resistance</td>
<td>4</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Stripe Rust</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Beer Stalling</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acid tolerance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Season</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forage</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Feed</td>
<td></td>
<td></td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Malt</td>
<td></td>
<td></td>
<td></td>
<td>45</td>
</tr>
</tbody>
</table>
Diversity in root development

- Speed of root growth
- Lateral root development
- Changes in roots during development

Jessica Williams
Stages of root development

- 6 days
- 12 days
- 24 days
Rhizotron-underground view at maturity

Maryse Bourgault, NARC
<table>
<thead>
<tr>
<th>Line</th>
<th>Days from Planting to Sampling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Craft</td>
<td>142.30</td>
</tr>
<tr>
<td>MT090190 Low pro</td>
<td>125.68</td>
</tr>
<tr>
<td>MT100120 Low pro</td>
<td>141.63</td>
</tr>
<tr>
<td>ND19119 stay green</td>
<td>143.11</td>
</tr>
<tr>
<td>ND24260 stay green</td>
<td>124.57</td>
</tr>
<tr>
<td>MT16M00803 Craft/ND19119</td>
<td>155.59</td>
</tr>
<tr>
<td>MT16M00503 MT090190/ND19119</td>
<td>152.19</td>
</tr>
<tr>
<td>MT16M01404 MT100120/ND24260</td>
<td>129.56</td>
</tr>
</tbody>
</table>

![Graphs showing root length vs. days to sampling for different lines.](image-url)
Length of Roots
Acid/Normal
Sustainable barley - Winter
Winter barley more sustainable?

Advantages
• Rotational Tool
• Ground cover
• Take advantage of spring moisture
• Earlier harvest
• Higher yields

Problems
• Cold tolerance
• Adaptation to Montana
 • Heading date
 • Maturity date
• Quality issues
• Weed issues
No-Till Winter Survival
Sustainable Forages
Biomass
Quality

Traci Hoogland
Population – 260 Diverse lines from GRIN
+ 4 checks
Design - Augmented with replicated checks RCB (10 blocks)
Location – Post Farm, 2016 and 2017
Environments - Dry and Irrigated
Traits – Phenology, Yield, Quality
Longer grainfill improves quality

days_to_head effect plot

- ADF vs. days_to_head

days_to_soft effect plot

- ADF vs. days_to_soft
Can we increase biomass and improve quality?
Sustainable barley – Stable Malt Quality
Why Buzz?

Agronomic Strengths
- Low grain protein
- Stable plumps

Quality Strengths
- High Malt Extract
- Low DP value
- Low Beta glucan
- Faster hydration
- More stable quality

Tom Blake
Protein across dry and irrigated environments

Protein with increasing N

Speed of Hydration
Resistance to Preharvest Sprouting

Joe Jensen
Preharvest Sprouting – If sprouted already, won’t malt.
Hydration of endosperm
Malt Quality = Speed of Hydration
Dormancy vs Hydration (MT124128 X MT124148)

<table>
<thead>
<tr>
<th>MT124128X MT124148</th>
<th>Days after Harvest to Break Dormancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>146</td>
<td>40</td>
</tr>
<tr>
<td>95</td>
<td>33</td>
</tr>
<tr>
<td>Craft</td>
<td>18</td>
</tr>
<tr>
<td>113</td>
<td>3</td>
</tr>
<tr>
<td>Hockett</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>
Improving Barley Grower to Glass

Questions?

http://www.montana.edu/barleybreeding
facebook @MSUBarleyMaltQualityLab