TWENTY-THIRD ANNUAL REPORT

1971

Northwestern Agricultural Research Center of the Agricultural Experiment Station Montana State University

> Route 4 Kalispell, Montana

> > Prepared By

Vern R. Stewart Associate Agronomist & Superintendent

> Alvin J. Jarvi Assistant Agronomist

Contents of this report may not be published or reproduced in any form without prior consent of the research workers involved.

TABLE OF CONTENTS

Project No.	Page No.
	PUBLICATIONS and TALKS
750	ADMINISTRATION
	Activities
751	PHYSICAL PLANT
752	GENERAL FARM
	CLIMATOLOGY
754	WEED INVESTIGATIONS
	Chemical Control of Weeds in Sugar Beets
755	FORAGE INVESTIGATIONS
	Sainfoin Seeding Rate, Row Spacing & Competition
756	SMALL GRAINS INVESTIGATIONS
757	POTATO INVESTIGATIONS
	Potato Evaluation 146

PUBLICATIONS and TALKS 1971

- 1. Jarvi, A. J. 1971 Talk given at Creston School (January 6)
- Jarvi, A. J. 1971 Talk at the Western Montana County Agents Up-Dating Meeting in Missoula (February 8)
- 3. Jarvi, A. J. 1971 Talk, 7th Grade Conservation Day Tours (May 10,11 & 12)
- Jarvi, A. J. & R. F. Eslick, 1971 Linkage Studies of Shrunken Endosperm Mutants, (Barley Genetics Newsletter. Volume 1, pp 22-24)
- 5. Jarvi, A. J. & R. F. Eslick 1971 Shrunken Endosperm Mutants in Barley (Abstracts Western Society of Crop Science 1971 Annual Meeting pp 8)
- McNeal, F. H., V. R. Stewart, M. A. Berg and C. F. McGuire, Agronomic and quality characteristics of some glabrous and pubescent glumed spring wheat populations. (Can. J. Plant Sci 51:25-28, 1971)
- 7. McNeal, F. H., M. A. Berg, V. R. Stewart, & D. E. Baldridge, Agronomic Response of Three Height Levels of Spring Wheat, <u>Triticum aestivum</u> L., Compared at Different Levels, (Agronomy Journal)
- Stewart, Vern R. 1971 Weed Control in Sugar Beets (Talk given at the Sugar Beet Conference, Billings, January 19)
- 9. Stewart, Vern R. 1971 Performance Data on Cereal Crops (Talk at the Western Montana County Agents Up-Dating Meeting, Missoula, February 8)
- 10. Stewart, Vern R. 1971 Effect of ethrel, chemical growth regulator on the agronomic characteristics of spring wheat and barley, (Talk given for the Inter-regional Wheat Workers Conference, Stillwater, Okla., February 9-11)
- Stewart, Vern R. 1971 Recommended Varieties of Cereal Grains (KGVO-TV, Missoula, Montana, April 13)
- 12. Stewart, Vern R. 1971 Ways to control various pollution factors, (7th Grade Conservation Day Tour, May 10,11 & 12)

FISCAL PROJECT REPORT FOR 1971

ADMINISTRATION - 750

The primary purpose of the administration project is to provide general overseeing of research projects.

1971 was a legislative year and much confusion rained from the beginning of the year until the legislative budgets were finally settled, the end of June. It made planning a program very difficult for the crop year. We did lay out and establish a research program without the known facts of financing. Contracts for the staff were finally received the first part of July. Raises and incurrments for merit and cost of living were non-existant or nominal.

Personnel: Dr. Alvin Jarvi who joined the staff in 1970 submitted his resignation as a member of the staff on October 5, 1971. Dr. Jarvi will be going to work for the Ram Bar Seed Company, a division of Cargill, Phoenix, Arizona. We hope to see some of Al this coming summer when he will be returning to Montana to work on barley (hybrid barley) for this company. He will have some research plots located in Western Montana.

The two permanent employees we have, Mr. Paul Boss, the farm foreman and Mrs. Jeanette Calbick, secretary, continue to preform in their usual manner, being efficient and doing a creditable job.

We had five part time employees during the cropping season. Mr. Sig Jonasen, retired farmer from Eastern Montana, gave great help to our general overall program. He began April 12 and continued until October 8. Funds were budgeted for four Work Study students in 1971. Four students were hired. They were: Dale Mahugh, who is in his third year with us; Julie Ann Ruff, her first year; Donna Bennett, her first year; Sandy Taylor, also her first year. All these young people are students at Montana State University. Dale is majoring in Agri-business; Donna and Julie majoring in Chemistry and Sandy a major in elementry education. It would enhance the staff and work considerably if a full time technician was added to the present permanent staff. As long as we can secure the type of college students that we have secured the last three or four years, this does provide adequate summer staffing.

ACTIVI	TIES:
--------	-------

ACTIVIT	TES:			LOCATION
DAT	CE CE	ACTIVITY	STAFF	
	12	Talk at Creston School	Stewart	Creston Winnepeg, Canada Billings Billings
Feb.	8 9-11 9 17	Western Montana County Agents Up-Dating Meeting Inter-regional Wheat Workers Conference Agricultural Council Advisory Committee Meeting	Jarvi	Missoula Stillwater, Okla. Kalispell Polson
	22-23	Highwood Alkali Control District Workshop	Jarvi	Great Falls
Mar.	8-12	Annual Planning Conference	Stewart Jarvi Stewart	Bozeman Denver, Colo.
	15-19	Western Society of Weed Science	Stewart	
Apr.	13	TV Program Agricultural Council	Stewart Stewart	Missoula Kalispell
May	10-12	Conservation Day Tour	Stewart Jarvi	Rural Kalispell Station
	13 14	Tour with Creston Lower Grades Tour with Creston Upper Grades	Jarvi Stewart Jarvi	Station
June	8- 9 14-19 18 29	Meeting with Head, Plant Soil Science Dept. Western Section of Crop Science Tour, Biology class, Flathead High Schoo TV Program	Stewart Jarvi 1Stewart Jarvi	Bozeman Laramie, Wyo. Station Missoula
July	7- 9	Summer Staff Conference Harvest Winter Barley Composite	Stewart Jarvi Jarvi	Bozeman Havre
	15-16 20	Advisory Comm. Meeting and Field Day	Stewart Jarvi	Corvallis
Aug.	9-11	Barley Genetics Comm. of North American Research Workers	Jarvi	Bozeman
Sept.		Agricultural Research Center Assoc. Meeting	Stewart Jarvi	Lewistown
Nov.	9 11 12	Agricultural Council Potato Growers Seminar Staff Consultation	Stewart Stewart Stewart	Kalispell Deer Lodge Bozeman

ACTIVITIES (con't)

DA	TE	ACTIVITY	STAFF	LOCATION
Dec.	9-10 11-13	The state of the s	Stewart Stewart	Lewistown Bozeman
	15-16	conference with Dir. of Exp. Sta. & Sta Crop Quality Council Meeting	ff Stewart	Great Falls

VISITORS:

The following persons visited the station in 1971.

DAT	TE.	NAME	REPRESENTING	ADDRESS
Jan.	4	Don Siblerud	REA	Kalispell
		Walt Newgard	REA	Kalispell
	7	Roy Nugent	Farmer	Kalispell
	20	Art Shaw	MSU	Bozeman
		Howard Bowman	MSU	Bozeman
		Loren Wiesner	MSU	Bozeman
		Ashley Thornberg	MSU	Bozeman
	21	Merle Lyda	County Agent	Kalispell
		Garry Hewitt	County Agent	Libby
		Louis Fuller	SCS	Kalispell
		Don Hughes	ASC	Kalispell
	25	Sig Jonasen	Motel Operator	Kalispell
		Glen Roth	Farmer	Kalispell
	26	W. M. Fluegel	Elanco Products	Fresno, Calif.
		Lloyd Warner	Elanco Products	Boise, Idaho
		Karl Schrade	Farmer	Kalispell
		Don Schnaidt	Investor	Kalispell
Feb.	3	Gilbert Passmore	Equity Supply	Kalispell
Mar.	3	Clyde Pederson	Farmer	Kalispell
	22	Roy Nugent	Farmer	Kalispell
	23	Gene Dose	Sheepman	Whitefish
	24	Don Green	Land Clearing Firm	Kalispell
		Earl Wagner	Farmer	Kalispell
	26	Tom Little	Snow Line Tree Co.	Kalispell
		Clinton DeLong	Snow Line Tree Co.	Kalispell
		Mr. & Mrs. Duncan	Farmers	Kalispell
	29	Burton Isch	Farmer	Kalispell
	30	Ken Dunster	Amchem Products	Loveland, Colo.
		Don Graham	Western Agr. Res. Center	Corvallis
		Merle Lyda	County Agent	Kalispell
	31	Roy Nugent	Farmer	Kalispell
		Leo Evans	O'Neil Printers	Kalispell

VISITORS (con't):

DA'	TE	NAME	REPRESENTING	ADDRESS
Apr.	5	Don Green	Land Clearing Firm	Kalispell
		Roy Nugent	Farmer	Kalispell
		Leo Evans	O'Neil Printers	Kalispell
		Ken Cottrell	Bomar Office Supply	Kalispell
	6	Thad Wojciechowski	Extension Service	Missoula
	100	Paul Lynn	Farmer	Columbia Falls
		Delbert Martin	Farmer	Columbia Falls
	8	Chuck Carter	BASF	Bloomington, Minn.
		Bob Rasmussen	Extension Service	Bozeman
	12	Mr. & Mrs. C. W. Roath		Bigfork
	14	Mr. Downs	U.S. Weather Service	Helena
	23	Jack Warren	Chemagro Corp.	Yakima, Wash.
May	4	Mr. & Mrs. Everett Smyth	Chipman Chemicals	Walla Walla, Wash.
		Gene Sharp	MSU	Bozeman
		Allan Taylor	MSU	Bozeman
		Alfred Broemneman	MSU	Bozeman Columbia Falls
	7	Noble Dean	Bank of Columbia Falls	
	18	Jack Gordon	Equity Supply	Kalispell
	24	Don Mathre	MSU	Bozeman Valianell
		Harold Yeager	Farmer	Kalispell Kalispell
	0.5	Charles McKinley	Farmer	Kalispell
	25	George Hubbard	Farmer	Bozeman
	28	Marge Antonsen	Insurance Representative	Dozeman
June	15	Carl Johnson	Stauffer Chemical Co.	Billings
	23	Jack Warren	Chemagro Chemical Co.	Yakima, Wash.
	28	Dr. & Mrs. John Thomas	Stanford University	Stanford, Calif.
90	30	Harry McNeal	MSU	Bozeman
July	3	Dr. Dave Ried	USDA	Beltsville, Md.
		Dr. E. A. Hockett	USDA	Bozeman
	5	Jim Snell	Farmer	Kalispell
	6	Jerry Croissaut	Calif. State Polytech	Pomona, Calif.
	22	George R. Peterson	BIA	Ronan
		Charles A. Sampson	BIA	Ronan
		Rudy Shircek	FHA	Polson
		Ed Bratton	Extension Agent	Ronan
		Robert Hamel	ASC	Ronan
		Lee Marick	FHA	Polson
		Bill Pederson	FS	Bigfork
	26	Gretchen Thom	Student	Anaheim, Calif.
		Barbara Cugar	Student	Anaheim, Calif.
		Betty Thom	Teacher	Anaheim, Calif.
		Kevin Loogman	Student	Fullerton, Calif.
		Loren Wiesner	MSU	Bozeman
P	29	Howard Bowman	MSU	Bozeman
	20	Al Carleton	MSU Chamana Chaminal Co	Bozeman Valsima Wash
7	30	Jack Warren	Chemagro Chemical Co.	Yakima, Wash.

VISITORS (con't):

DATE	NAME	REPRESENTING	ADDRESS
Aug. 3	Dr. Jim Hoffman Jack Walters Joe Pender	USDA USDA Farmer	Pullman, Wash. Pullman, Wash. Sask., Canada
.4	Richard Alterberg Dee Morton	Farmer Farmer	Kalispell Kalispell
6	Bob Waters	MSU	Bozeman
	Muhammad Ashraf	MSU	Bozeman
11	John Dunse	MSU	Bozeman
13	Dr. Tom Ramage Dr. Gus Weibie	University of Arizona University of Idaho	Tuscon, Ariz. Aberdeen, Id.
19 20 24 25 31	Everett P. Smyth Herman Dunkin Roger Scott Charles Carter Don Siblerud	Chipman Chem. Farmer Geigy Chem. Co. BASF Chdm. Company REA	College Pl., Wash. Kalispell Twin Falls, Id. Bloomington, Minn Kalispell
Sept. 13 14 17 22	Tom Neidlinger John Heikins Charles Rhode Jim Hoffman Jack Walters Don Grhama	Rohm-Haas Farmer Supt. Agricultural Sta. USDA - ARS USDA - ARS Western Agr. Res. Center	Portland, Ore. Kalispell Pendleton, Ore. Pullman, Wash. Pullman, Wash. Corvallis
Oct. 5-8 20	John Dunse Francis P. Galli A. H. Andrews	MSU Farmer Farmer	Bozeman Sarona, Wis. Sarona, Wis.
Nov. 5 9 16 29	George Sedgwick Clyde Pederson Clyde Pederson Wes Roath	State Electrical Inspector Farmer Farmer Assoc. Agronomist-Emeritus	Kalispell Kalispell Kalispell Bigfork
Dec. 1	Jim Snell Clyde Pederson Lowell Wooden	Farmer Farmers Union	Kalispell Kalispell Kalispell

PHYSICAL PLANT - 751

In this project the changes or improvements made in the fiscal plant are listed. Probably the major improvement made on the station in 1971 was the replacing of the power service. Early in August we lost a couple of main line fuses. Talking with our power use man we found that we had an equivalent of 350 amp load. So with this thought in mind we undertook a complete renovation of our power service. We established a 400 amp loop and provided 100 amp service to each of the residences, to the shop and 100 amp service to the barn and the machine shed in one loop. A separate service of 60 amps was installed for the pump, so in event of a fire there will always be power to the pump. All of the service cables were placed underground and makes a much neater appearing research center now with all wires buried. The telephone lines were also buried at the same time.

A quarter of a mile fence was replaced on the station, right south of the forage building down beyond the irrigation pump. This fence consists of 39" woven wire with two barb wires. The fence is all steel post except for the wooden brace posts.

During the winter months we used the farm labor available to remove the old dryer. The rest room was remodeled and a hot water tank was installed. Cupboards that were removed from residence #2 when remodeling in 1970 were installed in the shop area where the dryer had been removed. This provides us a place to handle glassware, work herbicides and storage for chemicals and supplies.

A new overhead door, 9' x 10' was installed in the shop. It is a translucent plastic door. These doors have given good service in other buildings which were built in 1963. It seals up a little tighter than the sliding door we had previously and allows more light to enter in the shop.

GENERAL FARM - 752

This project is supporting project for all other research projects. In this report we will be including general farm activities and the purchases of all equipment.

New equipment in 1971 consisted of a new 504 IHC tractor, an IHC swather and an IHC cub cadet with a tiller and lawn mower. These were all leased. The only item that was new and not a renewal is the cub cadet with the tiller and mower. The attachments we use in our research work to till alleys and to cultivate various test plots. The mower is used for roadways and keeping the lawns in shape.

Needed on the research center is a new combine. The present combine was leased in 1961 and finally purchased in 1969. The machine is inefficient, does not do a good job of separating, and this is really the main objection to it. Plus the fact, it does have steering clutches which makes it very awkward to handle in the field and to drive in a straight line if it is being used to measure yields. This is one piece of equipment that should be purchased or a new one leased.

The irrigation pump was moved to keep it from tumbling into the creek because of erosion. The area where it was mounted had been undermined by water and the pump had been suspended. Prior to moving it we had a ditch dredged to give more depth for water storage. The pump was repaired. A new foot valve and aluminum suction line were the repairs made on the pump.

A new irrigation system is needed on the research center. The present system has been used when purchased some 22 years ago. A new system should be so designed to assist in or provide the following:

- 1. Efficient irrigation of research plots and general crops.
- 2. Be able to study water use and its management on farm crops.
- 3. Studies of water movement of fertilizers and pesticides.
- 4. Studies on underground water pollution from overhead irrigation.

CLIMATOLOGICAL DATA

Northwestern Agricultural Research Center Kalispell, Montana

Vern R. Stewart, Superintendent

A cooperative project between the United State Weather Service and the Northwestern Agricultural Research Center to secure weather data was established in March, 1949, with Mr. C. W. Roath as weather observer. Instruments were installed in February of 1949, with records starting March 1, 1949. These data are published monthly in the "Climatological Data", the official Weather Service publication. Included in the daily observations are the maximum and minimum temperatures, amount of snowfall, and the amount of snow on the ground. These observations are made at 8:00 A.M. each day. When first initiated the observations were made at 5:30 P.M. This change was made in July 1970.

In 1969 soil thermometers were installed as part of the weather instruments.

The presentation of this climtological data is somewhat different than in previous years. The data has been brought up to date. All the figures have been checked with the "Climatological Data". There are some small changes in figures as a result of some corrections. Some of the mistakes were made in recording and some were made in addition over the years.

Most of the data presented herein is presented by the crop year. This is done because the growing season for winter annuals begins in September. Some data is presented on a calendar year basis.

In the 1970-71 crop year we had a frost free period of 69 days. It is second shortest on record, the shortest being 57 days in 1949. The last killing frost occurred July 7, 1971 when it was just barely 32 degrees. There was not much crop injury on the station, but many fields of winter wheat were severely damaged. The first killing frost occurred September 14, 1971 when the temperature went down to 28 degrees Fahrenheit.

Precipitation was above average for the 1970-71 crop year. May moisture was above average, however July and August were slightly below the average. The total for the crop year was 18.82 inches. The mean for the period from 1949-71 is 19.33 inches.

The mean temperature for the crop year was 43.1 degrees which is .4 of a degree below the long time mean. The low for the crop season occurred December 24, 1970 and January 12, 1971, when -8 degrees was recorded. The high temperature was August 6th and 9th, 1971, when 96 degrees Fahrenheit was recorded. In table 1, is a summary of the climatic data for the year, September 1970 thru August 1971.

During the crop year several comments were made in the monthly reports on the weather. These in part are being included in this record.

September 1970: Weather was rather good, very cooperative in the harvest program. Frost occurred two days earlier than the average date. Precipitation was about average for September and there was good fall moisture for winter grain germination.

During the months of October, November and December, the author made no comments about weather conditions in the monthly report.

January 1971: There were five inches of snow on the ground the first part of January, by mid-month there was 19 inches and on January 31, the fields were bare. Temperatures ranged from -3 to 52 degrees.

February 1971: Mild winter conditions prevailed this month. There was no snow cover on the station, but there was six to eight inches on the winter wheat plots northwest of Kalispell.

March 1971: A typical March. Precipitation was a little below normal. There was considerable wind during the month, but no damage to crops, livestock or buildings.

April 1971: One of the dryer months. Only .58 of an inch of precipitation fell. The long time mean for April is 1.21 inches. Winter wheat was in excellent shape during this month.

May 1971: Statistics indicate that May was an average month over the 22 years of records at the research center. It was a month that allowed us to get our crops in on time and keep field work up to date. A great month.

June 1971: Temperatures for the month were much below normal and precipitation was 1.28 above normal. The cool temperatures caused very slow growth of corn. The cereal grains looked exceptionable except for some severe lodging in the winter wheat variety study.

July 1971: July could be discribed as being very cool with 32 degrees on July 7th, to very hot when it was 91 degrees on July 20th. Moisture was near normal based on the 22 year average.

August 1971: One of the warmest on record. There were 12 days in August when the temperature was over 90 degrees. There were 22 consecutive days when the temperature was above 85 degrees and it was above 83 degrees for all but 3 days of the month. The precipitation was just slightly below normal during the month.

Tables found in this report are as follows:

Table No.	Subject
1	Summary of climatological data 1970-71 crop year (Sept. to Aug.)
2	Summary of mean temperature data 1949-71 crop year (Sept. 1949 to August 31, 1971)
3	Summary of maximum temperature data 1949-71 crop year (Sept. 1949 to August 31, 1971)
4	Summary of minimum temperature data 1949-71 crop year (Sept. 1949 to August 31, 1971)
5	Summary of precipitation data 1949-71 crop year (Sept. 1949 to August 31, 1971)

Table No.	Subject
6	Precipitation by days, 1970-71 crop year
7	Frost free period 1950-71
8	Temperature extremes, 1950-71
9	Summary of mean temperature data 1950-71 calendar year
10	Summary of precipitation data 1950-71 calendar year

Table 8/. Summary of climatic data by months for the 1970-71 crop year (September to August) and averages for the period 1949-1971 at the Northwestern Agricultural Research Center, Kalispell, Montana.

					Mo	Month and Year	Year						Total or	
Item	Sept. 1970	0ct. 1970	Nov. 1970	Dec. 1970	Jan. 1971	Feb. 1971	Mar. 1971	Apr. 1971	May 1971	June 1971	July 1971	Aug. 1971	Growing Season	
Precipitation (inches)														
Current Year	1.79	1.38	1.75	.99	1.58	。77	°69	.58	2.45	4.42	1,31	1,11	18.82	
Ave. 1949 to 1970-71	1.55	1.53	1.51	1.63	1.70	1.10	1.00	1.22	2.08	3.14	1.32	1.55	19.33	
Mean Temperature (F) Current Year	48.7	40.1	ω Δ	26-2	26-4	9 9	ر بر بر	A 30 6	л 0	0	67 0	n 0	3	
Ave. 1949 to 1970-71	54.1	43.8	32.7	26.5	22.3	28.2	32.5	43.1	51.9	58.4	64.2	64.4	43.5	
Last killing frost in spring* 1971 Ave. 1949-71	pring*	July 7 May 29	July 7 (32) May 29											
First killing frost in fall* 1971	fall*	Sept	. 14 (28)	8)										
Ave. 1949-71		Sept												
Frost-free period		69 d	davs											
Ave. 1949-71		106 days	lays											
Maximum summer temperature	ure	96 F	9	August 6 & 9	9									
Minimum winter temperature	ure	1 8 1	on Dec	ember 2	4, 1970	& Janu	on December 24, 1970 & January 12,	1971						

In this summary 32 degrees is considered a killing frost.

Table 2 . Summary of temperature data at the Northwestern Agricultural Research Center on a crop year basis, September 1, 1949 thru August 31, 1971

				Averag	e temp	eratur	e by m	onth a	nd yea	r			_
					grees								x for
Year	Sept.	Oct.	Nov.	Dec.	-Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Years
1949-50	54.1	41.5	38.5	25.0	4.2	25.6	31.2	41.9	49.7	57.0	64.0	62.5	41.3
1950-51	53.8	45.9	31.5	29.5	20.2	27.7	27.0	42.1	50.0	54.2	64.7	60.4	42.3
1951-52	50.6	40.8	30.8	16.9	18.0	26.6	29.3	45.8	52.4	56.7	61.8	62.8	41.0
1952-53	56.0	45.5	30.4	27.6	36.0	32.9	37.2	41.2	49.5	54.6	64.3	63.1	44.9*
1953-54	56.1	46.2	37.0	31.3	21.1	31.2	29.6	40.8	52.5	54.9	63.4	60.1	43.7*
1954-55	52.9	41.5	38.8	28.8	25.7	22.1	24.5	39.1	47.7	58.8	62.7	62.2	42.1
1955-56	52.5	44.6	23.5	21.8	23.3	20.9	31.5	44.2	54.0	59.0	64.8	62.0	41.8
1956-57	55.2	44.1	30.9	28.5	10.2	23.4	33.3	43.7	55.6	59.7	65.4	62.4	42.7
1957-58	55.8	41.4	32.1	32.4	29.1	30.4	32.2	43.6	59.6	62.3	65.2	67.9	46.0*
1958-59	55.5	44.6	32.8	28.2	24.7	23.1	35.3	45.2	48.1	59.9	64.5	61.0	43.6*
1959-60	53.0	43.9	25.5	27.6	19.4	25.2	32.3	44.3	50.6	59.6	68.8	60.6	42.6
1960-61	55.0	45.2	34.4	24.9	27.8	37.0	38.3	42.0	52.6	64.7	66.2	67.8	46.3*
1961-62	49.6	42.3	28.2	23.6	17.4	25.7	30.9	47.2	51.5	58.6	62.1	62.1	41.6
1962-63	54.7	44.7	38.0	32.5	11.8	33.1	38.7	43.2	51.4	59.4	63.0	64.9	44.6*
1963-64	58.7	47.4	35.8	24.0	28.5	28.3	30.6	42.8	51.1	58.7	64.3	58.9	44.1*
1964-65	51.2	43.7	33.7	22.1	30.2	28.7	28.6	45.2	50.6	57.6	64.6	63.6	43.3
1965-66	46.4	47.6	35.0	28.8	26.3	27.7	34.5	42.9	54.3	56.0	64.5	61.7	43.8*
1966-67	59.3	43.4	33.4	30.2	31.0	33.2	32.9	40.6	52.2	59.4	66.1	67.2	45.7*
1967-68	61.0	45.9	33.8	25.1	23.3	32.8	41.2	42.0	49.8	59.0	64.6	61.3	45.0*
1968-69	53.8	42.9	33.4	19.9	13.1	24.0	29.6	47.1	53.9	58.8	62.3	63.6	41.9
1969-70	56.0	40.0	35.2	27.7	21.9	29.9	32.8	40.2	53.2	62.0	64.8	62.6	43.9*
1970-71	48.7	40.1	31.3	26.2	23.6	29.9	33.1	43.6	52.5	54.9	61.9	68.2	42.8
. , <u>x</u>	54.1	43.8	32.9	26.5	22.1	29.2	32.5	43.1	52.0	58.4	64.3	63.0	S. (8)
Mear	i tempe	rature	for a	ll yea	rs = 4	3.4							

^{*} Denotes years above average temperature.

Table 3 . Summary of temperature data obtained at the Northwestern Agricultural Research Center on a crop year basis, September 1, 1949 thru August 31, 1971.

			Averag	ge Max		empera				ar			
				_		Degree			-	T	77	A1100	x for
Year	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Years
1949-50	71.4	52.4	45.7	32.1	14.4	34.6	38.4	52.3	63.1	70.1	78.6	79.5	52.7
1950-51	70.9	55.8	38.2	36.3	28.7	36.6	37.3	57.9	63.2	66.6	82.4	77.0	54.2
1951 - 52	64.2	47.5	37.2	23.6	25.9	35.7	39.5	61.8	65.7	70.2	79.2	79.5	52.5
1952-53	73.4	62.6	40.6	33.2	41.3	39.1	46.8	51.5	62.5	66.8	83.3	79.5	56.7*
1953-54	72.3	61.0	45.6	36.7	29.1	38.4	40.0	51.0	67.2	67.0	80.1	74.4	55.2*
1954-55	66.4	53.4	45.9	34.9	31.8	31.2	33.9	48.1	60.5	74.7	76.9	82.4	53.3
1955-56	67.6	55.5	30.8	29.2	30.7	30.1	39.7	57.4	67.5	73.3	81.2	77.8	53.4
1956-57	71.0	53.7	37.6	35.5	19.0	33.2	43.3	55.3	70.2	72.4	82.1	80.0	54.4
1957-58	74.3	50.5	40.1	38.5	33.7	37.9	43.5	54.4	77.5	75.7	80.8	85.5	57.7*
1958-59	69.7	57.9	39.6	34.1	31.8	31.9	43.9	57.9	61.5	74.3	83.2	76.3	55.2*
1959-60	64.0	53.6	33.9	33.3	27.5	34.1	43.4	56.1	63.0	74.8	88.7	74.1	53.9
1960-61	72.1	57.8	41.1	29.8	35.0	43.1	48.2	51.6	65.3	82.0	83.7	86.3	58.0*
1961-62	62.3	53.3	35.1	30.4	26.0	33.4	40.5	60.7	62.7	74.2	79.2	77.5	52.9
1962-63	71.7	54.7	43.8	37.9	19.9	41.4	48.9	55.7	67.1	71.8	79.6	82.5	56.2*
1963-64	74.6	59.4	43.4	30.2	35.1	37.7	39.7	53.3	63.5	71.4	80.3	72.9	55.1*
1964-65	63.9	55.0	41.0	28.9	35.1	36.9	41.0	57.6	64.3	71.4	80.8	77.1	54.4
1965-66	57.5	61.1	42.6	35.4	31.8	35.3	45.4	54.8	69.8	69.1	81.2	78.4	55.2*
1966-67	74.9	55.1	41.1	35.8	36.7	40.9	41.3	52.6	66.0	73.3	84.8	87.2	57.5*
1967-68	78.9	55.8	41.3	30.8	31.5	40.8	52.6	54.2	63.4	72.2	82.7	75.7	56.6*
1968-69	65.9	53.1	40.6	27.3	20.8	32.5	40.9	59.5	68.7	72.0	78.9	83.0	53.6
1969-70	70.4	49.7	43.0	32.8	28.5	36.2	42.5	49.7	67.9	75.5	79.1	80.9	54.7
1970-71	62.5	52.2	40.0	34.1	30.6	38.6	41.6	56.2	66.4	67.3	78.0	87.5	54.6
x	69.1	55.1	40.4	32.8	29.3	36.3	42.4	55.0	65.8	72.1	81.1	79.8	
Mear	tempe	rature	for a	ll yea	rs = 5	4.9							

^{*} Denotes years above average.

Table 4. Summary of temperature data obtained at the Northwestern Agricultural Research Center on a crop year basis, September 1, 1949 thru August 31, 1971.

			Avera	ge Min						ears			
	G b	0-4	N	Dag				enheit	May	June	July	Aug.	x for Years
Year	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr. 31.5	36.3	43.9	49.4	45.5	30.2
1949-50	36.7	35.0	31.2	17.8	-6.0	16.6	23.9					43.7	30.2
1950-51	36.6	36.0	24.8	22.6	11.7	18.8	16.6	26.2	36.7	41.7	46.9		
1951-52	37.0	34.0	24.4	10.1	10.0	17.4	19.1	29.8	39.1	43.1	44.3	46.1	29.5
1952-53	38.6	28.3	20.2	21.9	30.6	26.7	27.5	30.9	36.5	42.3	45.3	46.7	33.0*
1953.54	39.8	31.4	28.4	25.9	13.1	24.0	19.2	30.6	37.7	42.8	46.7	45.7	32.1*
1954-55	39.3	29.5	31.6	22.7	19.5	13.0	15.0	30.0	34.9	42.8	48.5	42.0	30.7
1955-56	37.3	33.6	16.1	14.4	15.9	11.7	23.3	30.9	40.5	44.7	48.2	46.1	30.2
1956-57	39.4	34.4	24.2	21.5	1.4	13.6	23.2	32.0	40.9	47.0	48.7	44.8	30.9
1957-58	37.2	32.3	24.1	26.2	24.5	22.8	20.9	32.8	41.7	48.8	49.5	50.3	34.3*
1958-59	41.2	31.2	26.0	22.2	17.5	14.2	26.6	32.4	34.7	45.4	45.8	45.6	31.9
1959-60	42.0	34.1	17.0	21.8	11.2	16.3	21.1	32.4	38.1	44.3	48.8	47.0	31.2
1960-61	37.9	32.5	27.6	19.9	20.6	30.9	28.4	32.3	39.8	47.4	48.7	49.2	34.6*
1961-62	36.8	31.2	21.2	16.8	8.7	17.9	21.2	33.7	40.3	43.0	45.0	46.6	30.2
1962-63	37.6	34.6	32.2	27.1	3.7	24.7	28.4	30.6	35.7	47.0	46.4	46.9	32.9*
1963-64	42.7	35.3	28.1	17.7	21.8	18.9	21.4	32.2	38.6	46.0	48.3	44.9	33.0*
1964-65	38.4	32.3	26.4	15.3	25.3	20.4	16.2	32.7	36.9	43.8	48.4	50.0	32.2*
1965-66	35.2	34.0	27.4	22.1	20.8	20.0	23.6	30.9	38.7	42.8	47.7	45.0	32.4*
1966-67	43.6	31.7	25.6	24.6	25.3	25.5	24.5	28.6	38.4	45.4	47.4	47.2	34.0*
	43.1	35.9	26.3	19.4	15.0	24.8	29.7	29.8	36.1	45.7	46.4	46.8	33.3*
1967-68					5.4	15.4	18.2	34.6	39.0	45.5	45.7	43.5	30.0
1968-69	41.7	32.6	26.1	12.5			23.0	30.7	38.5	48.2	50.5	44.3	33.0*
1969-70	41.6	30.3	27.4	22.6	15.3	23.4			38.6	42.3	45.7	48.8	31.0
1970-71		27.9	22.5	18.3	16.5	21.0	24.8	31.0			47.4	46.2	3100
x	39.0	32.6	25.4	20.2	14.9	19.9	22.5	31.2	38.1	44.7	4/04	40.2	
Mea	n tempe	erature	for a	ıll yea	rs = 3	1.9					*1		

^{*} Denotes years above average.

Table 5 . Summary of precipitation records obtained at the Northwestern Agricultural Research Center on a crop year basis, September 1, 1949 thru August 31, 1971.

			To	tal Pr	ecipit	ation	in Inc	ches by	Month	& Yea	rs		Total For
Year	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug。	Years
1949-50	1.03	1.05	1.67	.92	2.62	1.13	2.31	.84	.15	3.90	3.12	.75	19.49*
1950-51	.52	2.30	1.16	2.48	.94	1.29	.62	2.32	3.77	2.26	1.03	2.86	21.55*
1951-52	1.49	5.62	1.01	3.31	1.03	.98	.97	. 17	1.32	3.95	.56	.69	21.10*
1952-53	. 13	.05	.60	.98	1.84	1.14	.98	2.07	2.00	3.31	T	1.62	14.72
1953-54	.71	.03	.87	1.30	2.65	.79	.83	.79	1.52	2.98	2.91	3.79	19.17
1954-55	1.09	.54	1.00	.43	1.00	1.31	.44	.82	1.18	1.86	3.08	-	12.75
1955-56	1.64	1.89	1.97	2.38	1.76	1.53	。87	1.28	1.06	4.20	2.13	3.21	23.92*
1956-57	1.16	1.10	.53	.96	1.47	1.14	.75	1.22	1.75	2.51	.52	.78	13.89
1957-58	.10	1.59	.96	1.76	1.56	2.67	.97	1.47	2.20	2.56	.84	.58	17.26
1958-59	1.99	1.16	2.90	2.77	1.95	1.33	.75	1.62	4.10	1.75	T	.91	21.23*
1959-60	4.22	3.36	4.32	.34	1.67	1.10	1.01	1.23	3.27	.69	. 13	2.43	23.77*
1960-61	.55	1.44	1.72	1.24	.65	1.46	1.96	2.26	4.02	1.45	.76	.64	18.15
1961-62	3.40	1.22	1.77	2.09	1.33	1.15	1.59	.96	2.59	1.15	.11	.72	18.08
1962-63	.58	1.85	1.31	.91	1.69	1.21	.85	1.07	.57	5.00	1.44	2.10	18.58
1963-64	1.46	.75	。95	1.70	1.46	.41	1.57	.87	3.33	3.86	3.01	1.64	21.01*
1964-65	2.27	.85	1.62	3.62	2.25	.64	.24	2.55	.81	2.30	1.15	4.74	23.04*
1965-66	1.72	.21	1.31	。55	1.42	.67	•53	.76	1.18	6.57	2.49	1.64	19.05
1966-67	.79	1.34	3.33	1.68	1.50	.62	1.27	.99	1.30	2.53	.02	.01	15.38
1967-63	.91	1.88	.62	1.16	.79	1.15	.68	.57	3.92	2.22	1.00	3.42	18.32
1968-69	4.51	2.39	1.59	3.12	3.05	.75	.69	1.39	1.19	5.21	.70	.09	24.68*
1969-70	1.54	1.90	.31	1.14	3.10	.89	1.49	.76	1.97	4.37	3.08	.44	20.99*
1970-71	1.79	1.38	1.75	。99	1.84	.77	。69	。58	2.45	4.42	1.31	1.11	19.08
x	1.53	1.54	2.77	1.63	1.71	1.10	1.00	1.21	2.08	3.13	2.45	1.55	
Mean	n preci	pitati	on for	all c	rop ye	ars =	19.33	inches					

^{*} Denotes years above average precipitation.

Table 6 . Precipitation by day for crop year September 1, 1970 thru August 31, 1971, Northwestern Agricultural Research Center, Kalispell, Montana.

Total Precipitation for Period = 19.08 inches

Date	Sept. 1970	Oct. 1970	Nov. 1970	Dec. 1970	Jan. 1971	Feb. 1971	Mar. 1971	Apr. 1971	May 1971	June 1971	July 1971	Aug. 1971
1	.20			。05	Т	Т	Т			Т		
2				T	.03	.11				.30	.34	
2				.06		.14	T			.05		.02
4	.10			T		T				。19	T	.08
5	.32			T	T	.07	\mathbf{T}		.02	.67		
6	\mathbf{T}	.22	.13	. 15	\mathbf{T}				.58	.08	.36	
7	.41		.02	T	。10				T	.06	.06	
8	.17	\mathbf{T}		T	.02		T			。90		
9	.10	.05	.14		.11				.08	.11	.06	
10		.42			.11	.12	.01		.02	T	.40	
11	\mathbf{T}			\mathbf{T}	.22	.22				.04	T	
12	T	.23	.21		.12	.06	.06			.04	.05	
13			.01		T	.01	T		T	.06		
14					\mathbf{T}		.18		.34	.33		
15				T	.07	\mathbf{T}			T	.03		
16			.01	.07	.02	T			.51	T		
17				.20	. 14				.30			
18			.08		T				.31			
19	.04	.03	T	.02	.20	T			.04	.04		
20	T	.02	.02		T				.10	.02		
21	. 13	.13	.05	. 10	T			.06	.08			
22	.01	.02	T	. 18	.04			T				
23	.30	.04	T	.01			.11	.08				.50
24	.01	.22	.36				.05	.07				
25		\mathbf{T}	.10	.05		.02	.05	T	\mathbf{T}			
26			.04		.25		. 19		T	.36		
27			.03	.06	.03			T		.01		
28			.41	T		.02		.30		T	.01	
29			。05	T			T	.07		1.12	.03	
30			.09	T	.08				.07	.05		.09
31				.04								.42
Total	1.79	1.38	1.75	.99	1.84	.77	.69	۰58	2.45	4.42	1.31	1.11

Table 7 . Frost free period at the Northwestern Agricultural Research Center from 1950 thru 1971.

	Date		Date		Freeze
Year	Last Freeze	Temperature	First Freeze	Temperature	Free Season
1950	June 10	32	Sept. 11	29	92
1951	June 1	29	Sept. 15	29	106
1952	June 14	32	Sept. 8	29	85
1953	May 23	32	Sept. 16	31	108
1954	May 29	31	Sept. 30	26	123
1955	May 25	28	Sept. 13	31	108
1956	May 3	26	Sept. 2	32	122
1957	May 23	30	Sept. 9	30	109
1958	May 14	31	Sept. 27	31	136
1959	June 11	32	Aug. 30	30	80
1960	June 18	32	Sept. 6	32	80
1961	May 6	32	Sept. 12	29	129
1962	May 30	32	Sept. 3	25	96
1963	May 22	28	Sept. 18	32	119
1964	May 25	26	Sept. 11	28	109
1965	June 7	30	Sept. 6	31	91
1966	May 18	26	Sept. 30	28	135
1967	May 26	28	Sept. 23	32	120
1968	May 20	32	Sept. 21	32	124
1969	June 13	28	Sept. 6	32	85
1970	May 11	32	Sept. 10	31	122
1971	July 7	32	Sept. 14	28	69
x for all Years	May 29	30	Sept. 13	29.9	107

Table 8 . Temperature extremes at the Northwestern Agricultural Research Center, Kalispell, Montana from 1950 thru 1971.

		Minimum	Max	imum
		Temperature		Temperature
Year	Date	Degrees F.	Date	Degrees F.
1950	Jan. 30	-40	Aug. 31	88
1951	Jan. 28	-25	Aug. 2	92
1952	Jan. 1	-14	Aug. 31	90
1953	Jan. 6	8	July 12	97
1954	Jan. 20	-32	July 6	90
1955	Mar. 5	-20	June 22	96
1956	Feb. 16	-25	July 22	90
1957	Jan. 26	-34	July 13	91
1958	Jan. 1	2	Aug. 11	94
1959	Nov. 16	-30	July 23	96
1960	Mar. 3	- 32	July 19	98
1961	Jan. 2	0	Aug. 4	100
1962	Jan. 21	-32	Aug. 16	92
1963	Jan. 30	-24	Aug. 9	94
1964	Dec. 17	-28	July 8	91
1965	Mar. 24	-10	July 31	89
1966	Mar. 4	- 7	Aug. 2,25	91
1967	Jan. 24	2	Aug. 19	95
1968	Jan. 21	-23	July 7	94
1969	Jan. 25	-13	Aug. 24	97
970	Jan. 15	-14	Aug. 21,25	92
971	Jan. 12	- 8	Aug. 6, 9	96

Table 9 . Summary of temperature records obtained at the Northwestern Agricultural Research Center, January 1950 thru December 1971.

Average Temperature by Month and Years													
						Degre		renhei					x for
Date	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Years
1950	4.2	25.6	31.2	41.9	49.7	57.0	64.0	62.5	53.8	45.9	31.5	29.5	41.4
1951	20.2	27.7	27.0	42.1	50.0	54.2	64.7	60.4	50.6	40.8	30.8	16.9	40.5
1952	18.0	26.6	29.3	45.8	52.4	56.7	61.8	62.8	56.0	45.5	30.4	27.6	42.7
1953	36.0	32.9	37.2	41.2	49.5	54.6	64.3	63.1	56.1	46.2	37.0	31.3	45.8*
1954	21.1	31.2	29.6	40.8	52.5	54.9	63.4	60.1	52.9	41.5	38.8	28.8	42.9
1955	25.7	22.1	24.5	39.1	47.7	58.8	62.7	62.2	52.5	44.6	23.5	21.8	40.4
1956	23.3	20.9	31.5	44.2	54.0	59.0	64.8	62.0	55.2	44.1	30.9	28.5	43.2
1957	10.2	23.4	33.3	43.7	55.6	59.7	65.4	62.4	55.8	41.4	32.1	32.4	42.8
1958	29.1	30.4	32.2	43.6	59.6	62.3	65.2	67.9	55.5	44.6	32.8	28.2	46.0*
1959	24.7	23.1	35.3	45.2	48.1	59.9	64.5	61.0	53.0	43.9	25.5	27.6	42.7
1960	19.4	25.2	32.3	44.3	50.6	59.6	68.8	60.6	55.0	45.2	34.4	24.9	43.3
1961	27.8	37.0	38.3	42.0	52.6	64.7	66.2	67.8	49.6	42.3	28.2	23.6	45.0*
1962	17.4	25.7	30.9	47.2	51.5	58.6	62.1	62.1	54.7	44.7	38.0	32.5	43.8*
1963	11.8	33.1	38.7	43.2	51.4	59.4	63.0	64.9	58.7	47.4	35.8	24.0	44.3*
1964	28.5	28.3	30.6	42.8	51.1	58.7	64.3	58.9	51.2	43.7	33.7	22.1	42.8
1965	30.2	28.7	28.6	45.2	50.6	57.6	64.6	63.6	46.4	47.6	35.0	28.8	43.9*
1966	26.3	27.7	34.5	42.9	54.3	56.0	64.5	61.7	59.3	43.4	33.4	30.2	44.5*
1967	31.0	33.2	32.9	40.6	52.2	59.4	66.1	67.2	61.0	45.9	33.8	25.1	45.7*
1968	23.3	32.8	41.2	42.0	49.8	59.0	64.6	61.3	53.8	42.9	33.4	19.9	43.7*
1969	13.1	24.0	29.6	47.1	53.9	58.8	62.3	63.6	56.0	40.0	35.2	27.7	42.6
1970	21.9	29.9	32.8	40.2	53.2	62.0	64.8	62.6	48.7	40.1	31.3	26.2	42.8
1971	23.6	29.9	33.2	43.6	52.5	54.9	61.9	68.2	49.5	40.4	34.1	22.0	42.8
ž	22.1	28.2	32.5	43.1	52.0	58.5	64.3	63.0	53.9	43.7	32.7	26.3	
Mean	n temp	eratur	e for	all ye	ars =	43.4							

^{*} Denotes years above average mean.

Table 10. Summary of precipitation records obtained at the Northwestern Agricultural Research Center, January 1950 thru December 1971.

			me t	al Dro		tion (Tnahoa) by N	onths &	Vears			Total for
Date	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug	Sept.	Oct.	Nov.	Dec.	Years
1950	2.62	1.13	2.31	.84	. 15	3.90	3.12	.75	.52	2.30	1.16	2.48	21.28*
1951	.94	1.29	.62	2.32	3.77	2.26	1.03	2.86	1.49	5.62	1.01	3.31	26.52*
1952	1.03	.98	.97	. 17	1.32	3.95	.56	.69	.13	.05	.60	.98	11.43
1953	1.84	1.14	۰98	2.07	2.00	3.31	T	1.62	.71	.03	.87	1.30	15.87
1954	2.65	.79	.83	.79	1.52	2.98	2.91	3.79	1.09	.54	1.00	.43	19.32
1955	1.00	1.31	.44	.82	1.18	1.86	3.08	-	1.64	1.89	1.97	2.38	17.57
1956	1.76	1.53	.87	1.28	1.06	4.20	2.13	3.21	1.16	1.10	.53	.96	19.79*
1957	1.47	1.14	.75	1.22	1.75	2.51	.52	.78	-10	1.59	.96	1.76	14.55
1958	1.56	2.67	.97	1.47	2.20	2.56	.84	.58	1.99	1.16	2.90	2.77	21.67*
1959	1.95	1.33	.75	1.62	4.10	1.75	T	.91	4.22	3.36	4.32	.34	24.65*
1960	1.67	1.10	1.01	1.23	3.27	.69	。13	2.43	。55	1.44	1.72	1.24	16.48
1961	.65	1.46	1.96	2.26	4.02	1.45	.76	.64	3.40	1.22	1.77	2.09	21.68*
1962	1.33	1.15	1.59	.96	2.59	1.15	.11	.72	.58	1.85	1.31	.91	14.25
1963	1.69	1.21	.85	1.07	.57	5.00	1.44	2.10	1.46	,75	.95	1.70	18.79
1964	1.46	.41	1.57	.87	3.33	3.86	3.01	1.64	2.27	.85	1.62	3.62	24.51*
1965	2.25	.64	.24	2.55	.81	2.30	1.15	4.74	1.72	.21	1.31	.55	18.47
1966	1.42	.67	.53	.76	1.18	6.57	2.49	1.64	.79	1.34	3.33	1.68	22.40*
1967	1.50	.62	1.27	.99	1.30	2.53	.02	.01	.91	1.88	.62	1.16	12.81
1968	.79	1.15	.68	.57	3.92	2.22	1.00	3.42	4.51	2.39	1.59	3.12	25.36*
1969	3.05	.75	.69	1.39	1.19	5.21	.70	.09	1.54	1.90	.31	1.14	17.96
1970	3.10	.89	1.49	.76	1.97	4.37	3.08	.44	1.79	1.38	1.75	.99	22.01*
1971	1.84	.77	.69	.58	2.45	4.42	1.31	1.11	.94	.87	1.70	1.62	18.30
x	1.71	1.10	1.00	1.31	2.08	3.14	1.34	1.55	1.52	1.53	1.51	1.66	
Mea	n annu	al pre	cipita	tion f	or 22	years	= 19.3	5					

^{*} Denotes years above average

TITLE:

Chemical control of weeds in sugar beets

PROJECT:

Weed Investigation MS 754

YEAR:

1971

PERSONNEL:

Leader - Vern R. Stewart

Cooperators - Don Baldridge, Glen Hartman, Chemical Company Research and Development Representatives, Great Western

and Holly Sugar Companies

LOCATION:

Homer Bailey farm, Corvallis, Montana

DURATION:

Unknown

OBJECTIVES:

1. To determine what herbicides will effectively control weeds in sugar beets.

 To measure the effect of herbicides on sugar beet yield and sugar percentage.

FUTURE PLANS:

Unknown

SIGNIFICANT FINDINGS:

The outstanding treatments this year, on an overall basis are, NC 8438 at 4 lbs/a and Cycloate at 4 lbs/a. Both treatments gave 80% or better weed control and farily high yields.

MATERIALS AND METHODS:

Two experiments were conducted in 1971. One in cooperation with Great Western Sugar Company to secure data for registration of the combination of cycloate and triallate. The second experiment consisted of herbicides used in various combinations and rates. The products used are given in Table 1. The rates and combinations are found in the tabulated data, Tables 2 thru 8.

Plots were 11 feet wide (6 rows spaced 22") and 40 feet long and replicated three times. Herbicides applied preplant were incorporated with a tandem disk and the plot was harrowed twice to make a firm seed bed. All the herbicides were applied broadcast in 39.3 gpa aqueous mixture.

Sugar beets were seeded April 29, one day following the application of the preplant incorporated herbicide.

Climatic conditions at time of herbicide applications follow in tabular form.

	Preplant incorporate	Post emergence
Application date Temperature Humidity Wind velocity Cloud cover Soil moisture	4/28/71 55 degrees F 50% Calm Partly Cloudy Good	5/24/71 70 degrees F 30% Calm Partly Cloudy Fair

Ks

1

Plant counts of weeds and sugar beets were made when the beets were in the four to six leaf stage, eight counts were made in each plot using a quadrant 3 x 48 inches, placed over the beet row. After population counts of beets and weeds were made the beets were thinned and cultivated by the grower in the usual manner, with exception of the weedy check. The beets in the weedy check were thinned, but no weeds were removed. Yield data and sugar percentages were obtained. Sugar analysis were made by Great Western Sugar Company.

The beets were topped with a mechanical topper, lifted with a mechanical lifter and then removed from the soil and weighed. The plot size was 73.3 square feet.

The predominate weed species occurring naturally in this study were: pigweed (Amaranthus retroflexus L.); lambsquarter (Chenopodium album L.); black nightshade (Solanum nigrum L.). The other weed species found were: pennycress (Thlaspi arvense L.); kochia (Kochia scoparia L.) and tumble mustard (Sisymbrium altissimum L.). A few grasses were noted but were not a factor in the study.

Using a scale of 0 to 10, an estimate of beet injury by herbicides was made. An injury rating of 0 means that the foliar growth of plants was identical to untreated plants and 10 means all beets treated were dead. One injury evaluation was made nine days following application of post emergence herbicides.

These data were analyzed using the analysis of variance technique. The percent of weed control and percent stand of weeds is based on the actual count of the plants.

RESULTS AND DISCUSSION:

Experiment I

The products used in this study were all preplant incorporated. Significant stand reduction of beets was noted in the untreated check. Beet stands were all higher in plots treated with herbicides. Overall weed control was not completely effective, ranging from 64% to 80%. The highest degree of control was obtained with Pre-beta II BW (6#) at 4.5 lbs/a. The Pre-beta products gave fair control of night-shade, good control of lambsquarter and red root pigweed. The data indicate no control of kochia, however the population of species was very light. Mustards were effectively controlled. Injury to sugar beets was most noticable on the plots treated with Pre Beta I BW (5#), however later in the season this injury was not visible.

Sugar beet yields, percent sucrose along with number of beets per 100' of row were all found to be non-significant when analyzed statistically. Tables 2 thru 7.

Experiment II

Complete raw data is found in Table 8, for sugar beet and weed counts, by species.

Post emergence application of SN 503 at .75 lbs/a and 1.00 lb/a and SN 504 at 1.00 lb/a and 1.5 lbs/a, caused significant reductions in beet stands. Reductions were also significant in the non-treated checks because of weed competition.

The foregoing treatments resulted in stand loss of 8 to 10% this season.

R-7465 at 1 lb/a did not give any control of nightshade. The combination of cycloate at 3 lbs/a and R-7465 at 5 lbs/a was not effective in the control of nightshade. The use of 3 lbs/a of cycloate alone gave excellent control of nightshade. Cycloate at 3 lbs/a and R-7465 at 1 lb/a gave good control of nightshade. All other products were good to fair in this species.

There were no significant differences in treatments in the control of lambsquarter. There was not a large natural population of this species.

Data obtained for pigweed control when analyzed statistically was found to be non-significant. It is noted however that cycloate at 3 and 4 lbs/a was not as effective as NC 8438 at 3 and 4 lbs/a. The combination of phenmedipham and pyrazon was less effective on this species than NC 8438 and SN 503.

Several compounds were extremely effective in the control of mustard. These data show NC 8438 at 3 lbs/a, the combination of NC 8438 plus pyrazon, cycloate 4 and 5 lbs/a and SN 503 and SN 504 as being extremely effective on mustard.

Kochia populations were quite low in the study and no real evaluation can be made of the treatments on this species.

Overall weed control on a percentage basis is given in Table 13. Seven treatments provide 90% or better weed control. In this grouping 97% control was obtained with a combination of NC 8438 at 3 lbs/a and pyrazon at 3.75 lbs/a. In the 80% group there were 8 treatments reaching or surpassing this level with 89% control being obtained from a combination of phenmedipham at 1 lb/a plus pyrazon at 2 lbs/a.

No differences were found in the number of beets per 100' of liner row at harvest time. Table 9.

Yield differences were found in this study due to treatment. The highest yield was secured from the cycloate treatment at 4 lbs/a and the lowest in the weedy check. Yield reductions were noted at the 1 lb/a rate of SN 503, and the combination of cycloate at 3 lbs/a and phenmedipham at .5 lb/a. Table 10.

As in previous years, sugar content was found to be non-significant. Table 11

Gross sugar production is directly related to yield, yield of beets and percent of sugar. Tables 10 and 12.

Crop injury rating is found in Table 13. SN 503 and 504 treatments resulted in the most damage to the small beet seedling. The greatest amount of injury was with 1 lb/a of SN 503 where a rating of 5 was recorded.

A summary of the application times provides us with some interesting facts.

Preplant incorporation resulted in the least injury, second best stand, the highest yield but only third on weed control of 75.2%. Post emergence had the highest injury rating, lowest beet stand, second on yields and second on weed control. The combination of preplant and post emergence gave the best weed control (90.5%), lowest yield and the least injury.

Ks VRS

Table 1 . Herbicides used in sugar beet studies.

Chemical Name	Common Name 1/	Trade Name	Company
2-ethoxy-2,3-dihydro-3,3-dimethyl- 5-benzofuranyl methanesulphonate	NC 8438	NC 8438	Fisons, Corporation Agricultural Chemicals
5-amino-4-chloro-2-phenyl-3(2H)- pyridazinone	pyrazon	Pyramin	BASF
S-ethyl N-ethylthiocyclohexane= carbamate	cycloate	Ro-Neet	Stauffer Chemical Co.
2-(Naphthoxy)- <u>N,N</u> -diethylpropion=	R 7465	Waylay	Stauffer Chemical Co.
Ethyl-m-hydroxycarbanilate car= banilate	EP 475	EP 475	NOR-AM Agricultural Products Inc.
methyl m-hydroxycarbanilate m- methylcarbanilate	phenmedipham	Betanal	NOR-AM Agricultural Products Inc.
See above for chemical identi- fication of these herbicides	phenmedipham + EP 475	SN 503 or SN 504	NOR-AM Agricultural Products Inc.
S-(2,3-dichloroally1)diiosopro= pylthiocarbamate	diallate	Avadex	Monsanto Company
S-propyl butylethylthiocarbamate	pebulate	Tillam	Stauffer Chemical Co.
S-(2,3,3-trichloroallyl)diisopro= pylthiocarbamate	triallate	Avadex BW	Monsanto Company

Common name as used in this report.

This mixture was formulated as equal parts of phenmedipham plus EP 475 (SN 503) and 2 parts of phenmedipham plus 1 part of EP 475 (SN 504).

Table 2 . Data from sugar beet herbicide study conducted on the Homer Bailey farm, Corvallis, Montana in 1971. Exp. I

Treatment					Pla	nt Cou	nts-1/		
	Rate		Sugar	Night-	Lambs-	Pig-			
Herbicide	#/A	Plot #	Beets	shade	quarter	Weed	Mustard	Kochia	Other
Pre-beta II (6#) 2/	3	1	145	12	1		1		
		9	125	8	1	1	177	1	
		15	110	6		1	3	===	
		Total	380	26	2	2	4	1	
		x	127	9	.7	.7		.3	
Pre-beta I (5#)	3	2	130	10		5			
120 2000 1 (0)	0	14	126	9		2			
		19	108	7	2	3	1		
		Total	364	26	2	10	. 1		
		x	121	9	.7	3	.3		
		Χ.	121	9	0 /	3	0.5		
Pre-beta II-BW(6#)	3	3	130	13		5	1		1
		10	136	8				1	
		20	93	9	1	2	1		
		Total	359	30	1	7	2	1	1
		x	120	10	.3	2	. 7	.3	٠3
Pre-beta II-BW(6#)	4.5	4	127	6	2	2			
		8	112	6	1		1		
		21	102	4		3			
		Total	341	16	3	5	1		
		x	114	5	1	2	.3		
Check	0	5	124	35	5	7	7 .	1	1
		12	105	27	1	10	4		
		18	68	10		9	11		
		Total	297	72	6	26	22	1	1
		x	99	26	2	9	7	.3	.3
Pre-beta I-BW(5#)	3	6	129	17	2	2			
Fie-Deta I-DW(3H)	5	13	117	7	_	3	1		
		17	111	12	1		1		
		Total	357	36	3	5	2		
		x	119	12	1	2	.7		
Pre-beta I-BW(5#)	4.5	7	132	7		1			
rie-Dera I-DW(J#)	400	11	116	12	1	6			
		16	106	9	_				
		Total	354	28	1	7			
			118	9	.3	2			
		x	110	9	٥٥	2			

^{1/} Eight counts made per plot with a quadrant 3 x 48 based on 8 sq. ft. per plot. 11 1 4.94**10.65** F value for treatment comparison 3.00**4.38** N.S. 5.049 2.86925 .7309 1.1919 .79518 S.E.X 3.67 2.45 15.5 8.845 N.S. L.S.D. 40.37 52.18 4.32 25.74 85.28 C.V. %

Table 3 . Number of sugar beets from forty linear feet of row at harvest time on the Homer Bailey farm, Corvallis, Montana in 1971. Exp. I

Treatment							
	Rate	N	umber o	f beets/p	plot		No. Beets/
Herbicide	#/A	I	II	III	Total	x	100' of row
Pre-beta II (6#) <u>1/</u>	3	50	44	50	144	48	120
Pre-beta I (5#)	3	52	53	48	153	51	128
Pre-beta II-BW(6#)	3	49	43	44	136	45	113
Pre-beta II-BW(6#)	4.5	38	41	46	125	42	105
Check	0	47	39	44	130	43	108
Pre-beta I-BW(5#)	3	46	51	47	144	48	120
Pre-beta I-BW(5#)	4.5	47	52	54	153	51	128
1/# active ingredient,	/gal.	-			ž		114
					F S.I	(.05) E.x V.%	2.00NS 6.3893 5.60

Table __4 . Yield of sugar beets treated with various herbicides grown on the Homer Bailey farm, Corvallis, Montana in 1971. Exp. I
Plot size 73.3 sq. ft. - randomized block design.

Treatment						
	Rate		Yield :		Yield	
Herbicide	#/A	I	II	III	Total	Tons/A
Pre-beta II (6#)1/	3	87.6	66.2	80.7	234.5	23.2
Pre-beta I (5#)	3	82.4	80.0	81.0	243.4	24.1
Pre-beta II-BW(6#)	3	90.8	66.1	74.9	231.8	23.0
Pre-beta II-BW(6#)	4.5	69.3	72.3	69.3	210.9	20.9
Check	0	84.0	82.7	79.1	245.8	24.4
Pre-beta I-BW(5#)	3	67.0	62.9	72.2	202.1	20.0
Pre-beta I-BW(5#)	4.5	68.0	82.2	71.3	221.5	21.9

1/ # active ingredient/gal.

x 22.5 F 1.70NS S.E.x 12.43979 C.V. % 5.53

1

28

Table 5 . Effect of herbicides on the sucrose content of sugar beets. Grown on the Homer Bailey farm, Corvallis, Montana in 1971. Exp. I

Treatment						
	Rate					
Herbicide	#/A	I	II	III	Total	x
Pre-beta II (6#) 1/	3	15.9	15.6	16.0	47.5	15.8
Pre-beta I (5#)	3	15.8	17.4	16.5	49.7	16.6
Pre-beta II-BW(6#)	3	16.1	16.9	15.6	48.6	16.2
Pre-beta II-BW(6#)	4.5	16.0	17.6	16.7	50.3	16.8
Check	0	15.9	16.2	16.0	48.1	16.0
Pre-beta I-BW(5#)	3	15.9	16.7	15.4	48.0	16.0
Pre-beta I-BW(5#)	4.5	16.5	15.1	16.8	48.4	16.1
1/ # active ingredien	t/gal.				x	16.2
					F (.05)	1.14NS
					S.E.x	. 16975
					C.V.%	1.05

Table 6 . Effect of herbicide on gross sugar production. Conducted on the Homer Bailey farm, Corvallis, Montana in 1971. Exp. I

Treatment						
	Rate		Sugar	Yield		
Herbicide	#6A	I	II	III	Total	Lbs/A
Pre-beta II (6#)1/	3	13.9	10.3	12.9	37.1	7349
Pre-beta I (5#)	3	13.0	13.9	13.4	40.3	7983
Pre-beta II-BW(6#)	3	14.6	11.2	11.7	37.5	7428
Pre-beta II-BW(6#)	4.5	11.1	12.7	11.6	35.4	7012
Check	0	13.4	13.4	12.7	39.5	7825
Pre-beta I-BW(5#)	3	10.7	10.5	11.1	32.3	6398
Pre-beta I-BW(5#)	4.5	11.2	12.4	12.0	35.6	7052
1/ # active ingredie	nt/gal.				- x	7293
					F (.05)	1.85NS
					S.E.X	392.75
					C.V. %	5.39

Ks VRS

1

Table _______ Summary of weed control and yield data from sugar beet study conducted on the Homer Bailey farm, Corvallis, Montana in 1971. Exp. I

Treatment		%	%	Crop				Gross
Herbicide	Rate #/A	Beet Stand	Weed Control	Injury 0-10	# Beets/ 100' row	Yield Ton/A	% Sucrose	Sugar Lbs/A
re-beta II (6#) ^{1/}	3	128	73	1.3	120	23.2	15.8	7349
re-beta I (5#)	3	122	69	1.3	128	24.1	16.6	7983
re-beta II-BW(#6)	3	121	68	1.3	113	23.0	16.2	7428
re-beta II-BW(6#)	4.5	115	80	3	105	20.9	16.8	7012
heck	0	100	0	0	108	24.4	16.0	7825
re-beta I-BW(5#)	3	120	64	1	120	20.0	16.0	6398
re-beta I-BW(5#)	4.5	119	72	3.3	128	21.9	16.1	7052

1/ # active ingredient/gal.

 \bar{x} 114 22.5 16.2 7293 F (.05) 2.00NS 1.70NS 1.14NS 1.35 S.E. \bar{x} 6.3893 12.43979 .16975 392.75 C.V.% 5.60 5.53 1.05 5.39

Table 8 . Data from sugar beet study conducted on the Homer Bailey farm, Corvallis, Montana in 1971. Sugar beet and weed plant counts. Exp. II

Treatmen						Plant c	counts-	!		
W3-1-1-1	Rate	Plot	Sugar		ght-	Lambs-	Pig-			Weed
Herbicide	#/A	No.	Beets	sh	ade	quarter	weed	Mustard	Kochia	Total
			Pre plan	t i	ncorp	orate				
NC 8438	2	1	122	15		2		2		19
		39	116	17		1	2	2		22
		52	95	4		2	1	4		11
		Total	333	36		5	3	8		52
		x	111abcde ²	12	bcd	2	1bc	3		
NC 8438	3	2	109	10		1			1	12
		34	100	15						15
		58	113	3		1			22	4
		Total	322	28	1	2			1	31
		x	107abcde	9	bcd	٠7			.3	
NC 8438	4	3	124	5				2	1	8
		49	137	4			1			5
		57 Total	117 378	6 15		1	1	2	1	7 20
		x	126a	5	cd	.3	.3c	.7	.3	20
	_				Cu	٥٥		0 /	• 5	-
Pyrazon +	3 +	4	123	4			1			5
NC 8438	2	33 70	95 98	6			1			6 3
		Total	316	12			1			14
		x	105abcde	4	d		.71	bc		1.4
Dimoson	3.75+		107	1			1			2
Pyrazon + NC 8438	3	48	109	2			1			2
NC 0430	-	65	84	_						0
		Total	300	3			1			4
		x	100 bcde	1	d		.3	C		
Cycloate	3	6	126	6		7	1	1		15
•		26	96	7		1	1			9
		53	110	9		2	6	1		18
		Total	332	22		10	8	2		42
		x	111abcde	7	cd	3	3 b	.7		
Cycloate	4	7	134	9		5	2			16
		32	102	3					1	4
		51	108	2		1 6	3 5		1	6 26
		Total x	344 115abcde	14 5	cd	2	2 bc		.3	20
					cu	۷				45
Cycloate +	3 +	8	141	11		4	4			15
R 7465	.5	41 62	105 107	11 45		1 1	2	7		14 55
		Total	353	67		2	8	7		84
-		x	118abc	22a	bc	.7	3 b	2		
		24						_		

Table _ 8 . (con't)

Treatment	:						Plant o	counts-			
1 2 3 3	Rate	Plot	Suga	r	Nig	ht-	Lambs-	Pig-			Weed
Herbicide	#&A	No.	Beet		sha		quarter	weed	Mustard	Kochia	Total
Cycloate +	3 +	9	141		5		4	1			10
R7465	1	50	117		11		-	1	1		13
117 105	-	55	106		5			1	-		6
		Total	364		21		4	3	1		29
		x	121a	b	7	cd	1	1	.3 c		
R7465 (50%)	1	10	129		35			7	1	2	45
(1402 (30%)	1	27	115		40			2	-	-	42
		60	113		22		1	2	1		26
		Total	357		97		1	11	2	2	113
		-		h a				4	.7 bc	.7	113
		x	119a	DC	32a		.3	4	. / DC	0/	
ycloate	5	11	129		9			3			12
		28	104		8		3	4			15
		56	116				-	1			1
		Total	349		17		3	8			28
		x	116a	bcde	6	cd	1	3			
Cycloate +	3 +	12	140		8		2	1	1	1	13
diallate	1	40	133		11			2			13
		64	101		6						6
		Total	374		25		2	3	1	1	32
		x	125a		8 :	bcd	.7	1	.3 c	.3	
Check (weedy) 0	13	134		37		4	6	14	4	65
•		37	102		34			12	8		54
		66	109		28			3	10		41
		Total	345		99		4	21	32	4	160
		x		bcde	33a		1	7	11a	1	
heck	0	14	113		15		21		1		37
(hand weede		36	105		37		1	22	6		66
, name weede	/	63	71		32		2	4	2		40
		Total	289		84		24	26	9		143
		x	96	de	28a		8	9	3 b		
		X	90	Post					3 2		
SN503	。75	15	125		4		_ 1				5
			73		26		3	5	4	1	39
		72	87								0
		Total	285		30		4	5	4	1	44
		x	95	е	10		1	2	1 bc	.3	
SN503	1	16	126		3		1				4
14303	1		88		4		*	1			5
		54	79		5			-			5
			293		12		1	1			14
		Total		ade	4	a	.3	.3			7-4
		x	98	cde	4	d	٠.٥	۰.5			

Table 8 . (con't)

Treatment					Plant c	counts			
	Rate	Plot	Sugar	Night-	Lambs-	Pig-			Weed
Herbicide	#/A	No.	Beets	shade	quarter	weed	Mustard	Kochia	Total
SN503	1.5	17	119	8		1			9
		30	91	10		1			11
		61	116	38	2	1			41
		Total	326	56	2	3			61
			109abcde	19abc	.7	1			
SN504	.75	18	146	7	2	1			10
		44	104	8		3			11
		68	105	5					5
		Total	355	20	2	4			26
		x	118abc	7 cd	.7	1			
SN504 1	1	19	117	2					2
		47	97	4		1	1		6
		73	84	2		1			3
		Total	298	8		2	1		11
			99 cde	3 d		.7	.3 c		
SN504 1.	1.5	20	115						0
		43	97	5		1			6
		74	97	2		1			3
		Total	309	7		2			9
		x	103 bcde	2 d		.7			
Phenmedipham	1 +	21	133	1		2			3
pyrazon	2	42	116	6	1	3			10
		67	113	3		1			4
		Total	362	10	1	6			17
		x	121ab	3 d	.3	2			
Phenmedipham	1 +	22	125	5		4			9
pyrazon	3	35	67	14		2	1		17
		59	108	5	1				6
		Total	300	24	1	6	1		32
		x	100 bcde	8 bcd	.3	2	.3 c		
Phenmedipham	1	23	128	9	1	8			18
		29	95	31	1	6	2		40
		69	95	3					3
		Total	318	43	2	14	2		61
		x	106abcde	14 bcd	.7	5	.7 bc		

Table 8 . (con't)

Treatment	t					Plant c	counts-	!		
	Rate	Plot	Sugar	Night	- 1	Lambs-	Pig-			Weed
Herbicide	#/A	No.	Beets	shade		quarter	weed	Mustard	Kochia	Total
		D	7 k d		-					
		Prep	lant incorp	porate +	Pos	st emerc	ence			
Cycloate ^{a/} phenmedipha	з т	24	135	2		1	1			4
phonmodinh	_b/_	46	106	6		1	2			9
buenmearbue	1111-05			0			3			9
		75	110				1			1
		Total	351	8		1	5			14
		x	117abcd	3	d	.3	2			
cycloate ^{a/} phenmedipha	3 +	25	143	1		2	2			5
nhenmedinha	b/1	38	114	6		_	4			10
priermiearprie	ш	71	106	1						1
				1		_	_			1
		Total	363	8		2	6			16
		x	121ab	3	d	.7	2			

a/ Preplant incorporate

²/ Items having common letters are not significantly different one from another .05 (Duncans multiple range test)

x ·	111	10	1	2	1	. 15
F(.05)	222**	4.61**	1.30NS	1.57NS	7.95**	
S.E.X	6.34362	4.37896	1.42666	1.6561	3 .78066	
C.V.%	5.72	42.87 1	33.75	80.65	81.31	

 $[\]frac{b}{1}$ Post emergence $\frac{b}{1}$ Eight counts made per plot with a quadrant 3" x48", \bar{x} based on eight square feet per plot.

Table 9 . Number of sugar beets from forty linear feet of beet row at harvest time in 1971. Homer Bailey farm, Corvallis, Montana. Exp. II

Treatment							
	Rate		TO A STREET OF THE PARTY OF THE	f beets	THE RESIDENCE OF THE PARTY OF T		No. Beets/
Herbicide	#%A	I	II	III	Total	х	100' of row
		ant in		STATE OF THE PARTY			
NC 8438	2	42	50	30	122	41	103
NC 8438	3	42	52	59	153	51	128
NC 8438	4	. 51	38	48	137	46	115
Pyrazon + NC 8438	3 + 2	53	48	57	158	53	133
Pyrazon + NC 8438	3.75+3	47	40	38	125	42	105
Cycloate	3	41	49	51	141	47	118
Cycloate	4	44	50	47	141	47	118
Cycloate + R 7465	3 + .5	46	49	48	143	48	120
Cycloate + R 7465	3 + 1	46	46	48	140	47	118
R 7465 (50%)	1	48	39	46	133	44	110
Cycloate	5	45	40	52	137	46	115
Cycloate + diallate	3 + 1	50	48	40	138	46	115
Check (weedy)	0	37	37	37	111	37	93
Theck (hand weeded)	0	42	46	44	132	44	110
	Po	st eme	rgence				
N 503	.75	52	47	49	148	49	123
N 503	1	48	41	38	127	42	105
N 503	1.5	48	44	44	136	45	113
N 504	.75	38	39	40	117	39	98
N 504	1	49	44	32	125	42	105
N 504	1.5	58	38	37	133	44	110
Phenmedipham + pyrazon	1 + 2	52	57	43	152	51	128
henmedipham + pyrason	1 + 3	45	44	59	148	49	123
henmedipham	1	41	45	44	130	43	108
3.72	lant incor	porate	+ Pos	t emerge	ence		
ycloate phenmedipham	/	40	38	40	118	39	98
cycloate + phenmedipham b	$\frac{1}{3} + \frac{1}{1}$	45	35	40	120	40	100
Yoroace + briefmearpriam	3 + 1		55	-10	120	10	100
/ Preplant incorporate							
/ Post emergence					x		112
						.05)	1.52NS
						E.x	8.21315
					C.	V.%	7.32

Table 10. Yield of sugar beets treated with various herbicides grown on the Homer Bailey farm, Corvallis, Montana in 1971. Plot size 73.3 sq. ft.

Treatment							
	Rate		Pounds	per plo	t		
Herbicide	#/A	I	II	III	Total	x	Tons/A
	Prepla	nt inco	rporate				
NC 8438	2	68.1	66.7	54.7	189.5	63.2	18.8 de 1/
NC 8438	3	71.7	73.1	82.4	227.2	75.7	22.5abcd
NC 8438	4	86.6	60.2	77.8	224.6	74.9	22.3abcd
Pyrazon + NC8438	3 + 2	90.5	71.6	86.1	248.2	82.7	24.6abc
Pyrazon + NC8438	3.75+3	85.1	54.4	72.0	211.5	70.5	21.0abcd
Cycloate	3	64.4	76.8	53.4	194.6	64.9	19.3 cd
Cycloate	4	79.0	104.7	79.8	263.5	87.8	26.1a
Cycloate + R 7465	3 + .5	83.3	62.5	63.9	209.7	69.9	20.8abcd
Cycloate + R 7465	3 + 1	75.8	69.2	89.4	234.4	78.8	23.4abcd
R 7465 (50%)	1	90.9	75.2	86.2	252.3	84.1	25.0ab
Cycloate	5	68.1	67.6	73.7	209.4	69.8	20.7abcd
Cycloate + diallate	3 + 1	60.4	64.6	69.5	194.5	64.8	19.3 cd
Check (weedy)	0	42.3	42.5	57.6	142.4	47.5	14.1 e
Check (hand weeded)	0	64.9	77.9	77.1	219.9	73.3	21.8abcd
	Pos	st emer	gence				
SN 503	.75	73.3	76.7	73.6	223.6	74.5	22.1abcd
SN 503	1	65.0	64.2	75.6	204.8	68.3	20.3 bcd
SN 503	1.5	62.1	70.7	75.1	207.9	69.3	20.6 bcd
SN 504	. 75	71.4	65.9	73.1	210 4	70.1	20.8abcd
SN 504	1	74.1	68.0	47.0	189.1	63.0	18.7 de
SN 504	1.5	71.6	68.0	80.5	220.1	73.4	21.8abcd
Phenmedipham + pyrazon	1 + 3	76.6	86.5	77.1	240.2	80.1	23.8abcd
Phenmedipham + pyrazon	1 + 2	76.7	51.1	72.0	199.8	66.6	19.8 bcd
Phenmedipham	1	67.6	69.8	77.4	214.8	71.6	21.3abcd
	ant incom	porate	+ Post	emerger	nce		
Cycloate hphenmedipham b/	3 + ½	72.1	56.6	57.5	186.2	63.1	18.7 de
Cycloate phenmedipham	3 + 1	80.2	66.6	63.6	210.4	70.1	20.8abcd

a/ Preplant incorporate

b/ Post emergence
1/ Items having common letters are not significantly different one from another .05 (Duncans multiple range test)

x	21.1
F(.05)	2.44**
S.E.x	1.57822
C-V- %	7-48

Table 11. Effect of herbicides on the sucrose content of sugar beets grown on the Homer Bailey farm, Corvallis, Montana in 1971.

Treatment			-			
	Rate			ucrose		
Herbicide	#/A	I	II	III	Total	ž
	Preplant	incorpor	ate			
NC 8438	2	17.1	16.2	17.2	50.5	16.8
NC 8438	3	16.7	16.4	16.6	49.7	16.6
NC 8438	4	16.1	16.9	16.2	49.2	16.4
Pyrazon + NC 8438	3 + 2	15.5	16.3	16.3	48.1	16.0
Pyrazon + NC 8438	3.75 + 3	15.3	16.5	15.9	47.7	15.9
Cycloate	3	16.3	16.4	16.1	48.8	16.3
Cycloate	4	15.6	16.0	16.2	47.8	15.9
Cycloate + R 7465	3 + .5	12.2	16.2	16.5	44.9	15.0
Cycloate + R 7465	3 + 1	16.3	16.1	16.2	48.6	16.2
R 7465 (50%)	1	16.1	16.0	15.8	47.9	16.0
Cycloate	5	16.1	15.8	16.6	48.5	16.2
Cycloate + diallate	3 + 1	15.1	16.1	16.8	48.0	16.0
Check (weedy)	0	15.9	15.5	16.0	47.4	15.8
Check (hand weeded)	0	16.3	15.5	16.6	48.4	16.1
	Post er	mergence				
SN 503	.75	16.7	15.1	16.8	48.6	16.2
SN 503	1	16.1	17.0	16.1	49.2	16.4
SN 503	1.5	14.7	15.8	16.1	46.6	15.5
SN 504	.75	15.8	16.2	14.4	46.4	15.5
SN 504	1	16.4	16.3	16.4	49.1	16.4
SN 504	1.5	16.5	16.4	16.1	49.0	16.3
Phenmedipham + pyrazon	1 + 2	16.2	16.3	15.8	48.3	16.1
Phenmedipham + pyrazon	1 + 3	16.6	15.8	16.2	48.6	16.2
Phenmedipham	1	16.3	16.5	16.4	49.2	16.4
	nt incorpora				4702	10.4
Cycloate $\frac{a}{a}$ + phenmediphan $\frac{b}{b}$ Cycloate + phenmediphan	3 + ½	17.0	17.1	17.3	51.4	17.1
Cycloate + phenmediphan	3 + 1	16.6	15.5	16.8	48.9	16.3
a/ Preplant incorporate						
b/ Post emergence				_		
				x		16.1
				F(.05)	1.21NS
				S.E.x		.39225
				C.V. 9	6	2.43

Table 12 . Effect of herbicides on gross sugar production. Conducted on the Homer Bailey farm, Corvallis, Montana in 1971. Size of plot 73.3 square feet.

Treatment							
	Rate		Pounds	per plot			# Sucrose
Herbicide	#6A	I	II	III	Total	x	per Acre
	Preplan	t inco	rporate				
NC 8438	2	11.6	10.8	9.4	31.8	10.6	6298 cd ¹ /
NC 8438	3	12.0	12.0	13.7	37.7	12.6	7468abcd
NC 8438	4	13.9	10.2	12.6	36.7	12.2	7270abcd
Pyrazon + NC 8438	3 + 2	14.0	11.7	14.0	39.7	13.2	7864abc
Pyrazon + NC 8438	3.75 + 3	13.0	9.0	11.5	33.5	11.2	6636 bcd
Cycloate	3	10.5	12.6	8.6	31.7	10.6	6279 cd
Cycloate	4	12.3	16.8	12.9	42.0	14.0	8320a
Cycloate + R 7465	3 + .5	10.2	10.1	10.5	30.8	10.3	6101 d
Cycloate + R 7465	3 + 1	12.3	11.1	14.5	37.9	12.6	7507abcd
R 7465 (50%)	1	14.6	12.0	13.6	40.2	13.4	7963ab
Cycloate	5	11.0	10.7	12.2	33.9	11.3	6715abcd
Ycloate + diallate	3 + 1	9.1	10.4	11.7	31.2	10.4	6180 d
Check (weedy)	0	6.7	6.6	9.2	22.5	7.5	4457 e
Theck (hand weeded)	0	10.6	12.1	12.8	35.5	11.8	7032abcd
	Post	emerge	ence				
SN 503	.75	12.2	11.6	12.4	36.2	12.1	7171abcd
SN 503	1	10.5	10.9	12.2	33.6	11.2	6656 bcd
SN 503	1.5	9.1	11.2	12.1	32.4	10.8	6418 bcd
N 504	.75	11.3	10.7	10.5	32.5	10.8	6438 bcd
N 504	1	12.2	11.1	7.7	31.0	10.3	6141 d
N 504	1.5	11.8	11.2	13.0	36.0	12.0	7131abcd
Phenmedipham + pyrazon	1 + 2	12.4	8.3	11.4	32.1	10.7	6339 bcd
Phenmedipham + pyrazon	1 + 3	12.7	13.7	12.5	38.9	13.0	7705abcd
henmedipham	1	11.0	11.5	12.7	35.2	11.7	6972abcd
	nt incorpo	orate +	Post e	mergenc	e		
$\frac{a}{b}$ + phenmedipham $\frac{b}{b}$	3 + 1/2	12.3	9.7	9.9	31.9	10.6	6319 cd
cycloate + phenmedipham b/	3 + 1	13.3	10.3	10.7	34.3	11.4	6794abcd

a/ Preplant incorporate

^{1/} Items having common letters are not significantly different one from another .05 (Duncans multiple range test)

x	6808
F.05	2.61**
S.E.x	491.7
CaVa%	7.22

b/ Post emergence

Summary of weed control and yield data from sugar best study conducted on the Homer Bailey farm, Corvallis, Montana in 1971. Table 13 .

Treatment	And or Control of Cont	%	%	Crop				Gross	1
	Rate	Beet	Weed	Injury	# Beets/	Yield	%	Sugar	
Herbicide	#/A	Stand	Control	0-10	100' Row	Tons/A	Sucrose	Lbs/A	
			Preplant	it incorporate	ate				
NC 8438	2	105	89	₀ گ	103	18.8 de 1/	8 71	6208 221	
NC 8438	က	102	80	3°0	128	de de	16.6	n	
NC 8438	4	119	87	2°3	115	22°3abcd	16.4	7270abcd	
Pyrazon + NC 8438	3 + 2	100	91	2.7	133	24.6abc	16.0	7864abc	
Pyrazon + NC 8438	3.75+3	95	97	2.0	105	21.0abc	15,9	6636 brd	
Cycloate	n	105	74	2.7	118	19°3 cd	16,3	6279 cd	
	4	109	84	3°0	118	σs	15.9	m	
	3 + °5	111	67	20	120	20°8abcd	15.0	6101 d	
Cycloate + R 7465	3 + 1	115	82	1,3	118	23,4abcd	16,2	apc	
R 7465 (50%)	7	113	30	1.7	110	25.0ab	16.0	7963ab	
Cycloate	S	110	82	3°0	115	20°,7abcd	16,2	6715abcd	
Cycloate + diallate	3 + 1	118	80	1,3	115	19.3 cd	16.0	6180 d	-17
	0	100	0	0	93	14°1 e	15.8		7 –
Check (hand weeded)	0	100	100	0	110	21.8abcd	16.1	abcd	
			Post	emergence					
	。75	06	72	3°3	123	22°1abcd	16.2	7171abcd	
	7	95	91	0°9	105	20°3 bcd	16.4	6656 bcd	
	1,5	103	62	5.7	113	20°6 bcd	15,5	6418 bcd	
	° 75	112	74	4.0	86	20°8abcd	15,5		
	Ų	94	93	4.0	105	18°7 de	16,4	6141	
SN 504	1.5	86	94	3.7	110	21.8abcd	16,3	7131abcd	
Phenmedipham + pyraxon	1 + 2	114	89	2.7	128	19.8 bcd	16,1	6339 bcd	
Phenmedipham + pyrazon	1 + 3	92	80	2.0	123	23 Babcd	16,2	7705abcd	
Phenmedipham	7	100	62	4.7	108	21.3ebcd	16,4	6972abcd	
, a/ b/		Prepl	ant incorporate	orate + Post	st emergence				
Cycloate phenmediphan b/	+ +	111		1,3	98	18.7 de	17,1	63.19 cd	
Cycloate phenmedipham	3 + 1	115	06	2.7	100	20.8abcd	16.3	49	
a/ Preplant incorporate			-				-		1

Items having a common letter are not significantly different one from Post emergence विवि

another .05. (Dunans multiple range test)

 X
 112
 21.1
 16.1

 F. 05
 1.52NS
 2.44**
 1.21NS

 S.E.X
 8.21315
 1.57822
 .39225

 C.W. %
 7.32
 7.48
 2.43

38 Ks VRS 1

40107

VRS 2

TITLE:

Chemical weed control in new seedings of legumes

PROJECT:

Weed Investigations MS 754

YEAR:

1971

PERSONNEL:

Leader - Vern R. Stewart

Cooperators - Chemical Company Research and Development

Representatives

LOCATION:

Northwestern Agricultural Research Center; Field No. Y-5

OBJECTIVES:

 To determine the effectiveness of certain herbicides for the control of weeds and the establishment of legume stands.

2. To measure the long term effect of weeds on legume yields.

3. To measure the effect of the herbicide on the legume.

SIGNIFICANT FINDINGS:

Alfalfa - after three harvest years, including the seeding year, there is not any yield difference in legume production. Table 5

Sainfoin - there is no significant differences in yield after three

harvest years.

Clover - yields are probably not significant, but it should be noted that when grown with a companion crop the clover yields are equal to chemically treated plots in 1971 or maybe a little superior.

FUTURE PLANS:

This study is now completed. At this writing no specific legume work is planned.

MATERIALS AND METHODS:

Discription and procedures for this project are found in the 1969 annual report of the Northwestern Montana Branch Station located on pages 64 and 65.

Plot size harvested in 1971 was 2' x 10' (20 square feet). This was done with a power flail type machine. Thousand gram green samples were secured at random from the study, dried to determine the moisture percentage. Six samples were taken from each crop in each replication. The average of the six samples was used as a basis to obtain moisture percentages in all plots in the replication.

Chemicals used afefound in the following table.

Table 1. Chemicals used were:

Common Name	Trade Name or other	Chemical Name	Company
EPTC	Eptam	ethyl N, N-dipropylthiolcarbamate	Stauffer
Bromoxynil	Brominal	3,5-dibromo-4-hydroxybenzonitrile	Amchem
	Buctril	5.199 (c) 1.5 (min) Assignment (COS) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	Rhodia
Benefin	Balan	N-butyl-N-ethyl-a,a,a-trifluoro-2,6-	
		dinitro-p-toluidine	
	VCS 438	2-(3,4-Dichlorophenyl)-4-methyl-1,2,4-oxadiazolidine-3,5-dione	Velsicol

Materials and Methods (con't)

Data was analyzed using the analysis varience technique.

Legumes used in this study were Vernal alfalfa, Eski sainfoin and altasweede mammoth red clover.

The 1968 seeding was not harvested in 1971 because no differences in yields between treatments was found in the 1970 yields. Thus for 1968 seeding we have only three years of yield data which includes the seeding year harvest.

RESULTS AND DISCUSSION:

Only one cutting was obtained from alfalfa study. This was caused by a mechanical error. When cutting around the plot, to prepare for harvest 24 plots of alfalfa were cut by mistake.

Alfalfa

The highest yields occurred where Bromoxynil was used as a post emergence treatment, however these differences were not found to be statistically different in 1971. Table 2.

Sainfoin

Yields were in the four to five ton per acre range. Yields were not found to be statistically different when analyzed. The lowest yielding treatment was where benefin had been used at 3 pounds per acre. Table 3.

Clover

The yields are quite low. Production of the legume in the study has not been high during the course of the study. Yields were not found to be significantly different when analyzed statistically. Table 4

It should be noted that the CV's are quite low which is an indication of fairly uniform stands throughout the study. In the sainfoin study there was considerable difference due to replications.

Ks

Table 2. Effect of certain herbicides on the yield of alfalfa two years following application。 1971

Treatment		Plo	t Yield Lb	s. Dry Mat	ter	Yield
Herbicide	Rate #/A	I	II	III	Total	T/A
CPTC1/	2	1.635	2.394	2.278	6.307	2.3
CPTC-	4	2.278	1.869	2.336	6.483	2.4
CPTC-1/	6	1.986	1.752	2.336	6.074	2.2
$PTC_{\frac{1}{2}}^{\frac{1}{2}}Bromoxynil_{\frac{1}{2}}^{\frac{2}{2}}$	$2 + \frac{1}{4}$	2.102	1.577	2.219	5.898	2.1
PTC+Bromoxynil2/	4 + 1/4	2.102	2.920	1.986	7.008	2.5
PTC+Bromoxynil2/	6 + 1/4	1.869	2.336	1.986	6.191	2.3
PTC +Bromoxynil 2/	2 + 5/16	2.278	1.927	1.635	5.840	2.1
PTC 1/Bromoxynil 2/	4 + 5/16	2.394	2.102	2.453	6.949	2.5
PTC+Bromoxynil2/	6 + 5/16	1.869	2.161	2.044	6.074	2.2
PTC Bromoxynil 2/	2 + 3/8	2.219	2.628	2.628	7.475	2.7
$PTC_{\frac{1}{2}}^{\frac{1}{2}}Bromoxynil_{\frac{1}{2}}^{\frac{2}{2}}$	4 + 3/8	1.752	1.810	2.102	5.664	2.1
PTC+Bromoxynil2/	6 + 3/8	2.044	1.927	2.102	6.073	2.2
enefin 1/	2	1.635	1.986	1.694	5.315	1.9
enefin 1/	3	1.869	1.810	2.102	5.781	2.1
enefin 1/	4	2.219	1.810	2.511	6.540	2.4
elsicol $438\frac{3}{2}$	2	1.869	2.336	2.044	6.249	2.3
elsicol $438\frac{3}{2}$	3	2.511	2.920	2.336	7.767	2.8
elsicol $438\frac{3}{}$	4	2.511	2.336	1.927	6.774	2.5
lipping (check)	0	2.336	2.102	1.869	6.307	2.3
ompanion Grop	0	2.278	2.628	1.810	6.716	2.4
$romoxynil_{\frac{2}{2}}$	1/4	2.394	2.453	2.511	7.358	2.7
$romoxynil\frac{2}{2}$	5/16	3.270	2.453	2.161	7.884	2.9
$romoxynil\frac{2}{2}$	3/8	2.803	2.920	2.044	7.767	2.8
romoxynil 2/	12	1.869	2.511	2.219	6.599	2.4

Pre plant incorporate

x	2.4
F Value for treatment comparison	1.71
S.E.X	. 197
L.S.D. (.05)	N.S.
C 17 0/	8.29

Post emergence

Post plant

Table 3 . Effects of certain herbicides on the yield of sainfoin two years following application. 1971 Plot size 20 sq. ft.

Treatment			Plot	Yield Lb	s. Dry M	atter	Yield
Herbicide	Rate #/A	Cutting	. I	II	. III	Total	T/A
EPTC1/	2	1 2	2.938 1.871 4.809	2.865 1.810 4.675	2.057 1.531 3.588	7.860 5.212 13.072	4.8
EPTC ¹ /	4	1 2	2.130 1.624 3.754	3.673 1.810 5.483	2.057 1.217 3.274	7.860 4.651 12.511	4.5
EPTC ¹ /	6	1 2	1.910 1.575 3.485	2.718 1.754 4.472	2.424 1.295 3.719	7.052 4.624 11.676	4.2
EPTC ¹ + Bromoxynil ²	2 + 1/4	1 2	2.865 1.871 4.736	2.424 1.471 3.895	2.350 1.609 3.959	7.639 4.951 12.590	4.6
$EPTC^{1/} + Bromoxynil^{2/}$	4 + 1/4	1 2	3.305 2.018 5.323	3.819 1.867 5.686	2.865 1.492 4.357	9.989 5.377 15.366	5.6
EPTC ¹ /+ Bromoxynil ² /	6 + 1/4	1 2	1.983 1.723 3.706	3.893 2.037 5.930	1.986 1.178 3.164	7.862 4.938 12.800	4.7
EPTC ¹ / ₊ Bromoxynil ² /	2 + 5/16	1 2	2.350 1.428 3.778	2.204 1.867 4.071	2.865 1.452 4.317	7.419 4.747 12.166	4.4
EPTC ¹ / ₊ Bromoxynil ² /	4 + 5/16	1 2	3.452 1.526 4.978	2.277 1.924 4.201	2.865 1.374 4.239	8.594 4.824 13.418	4.9
EPTC ¹ / ₊ Bromoxynil ² /	6 + 5/16	1 2	3.085 1.132 4.217	2.791 1.414 4.205	2.277 1.688 3.965	8.153 4.234 12.387	4.5
EPTC ¹ / ₊ Bromoxynil ² /	2 + 3/8	1 2	3.085 1.575 4.660	3.526 1.471 4.997	2.424 1.335 3.759	9.035 4.381 13.416	4.9
$EPTC^{1/2}$ + $Bromoxynil^{2/2}$	4 + 3/8	1 2	2.350 1.920 4.270	2.571 1.358 3.929	2.644 1.531 4.175	7.565 4.809 12.374	4.5
EPTC ¹ / ₊ Bromoxynil ² /	6 + 3/8	1 2	2.718 2.018 4.736	3.379 1.810 5.189	2.057 1.374 3.431	8.154 5.202 13.356	4.9
Benefin-	2	1 2	2.204 1.378 3.582	2.277 1.810 4.087	1.910 1.413 3.323	6.391 4.601 10.992	4.0

Table 3 . (con't)

Treatment					os. Dry M		Yield
Herbicide	Rate #/A	Cutting	I	II	III	Total	T/A
Benefin ^{1/}	3	1 2	1.910 1.231 3.141	2.057 1.641 3.698	2.571 1.335 3.906	6.538 4.207 10.745	3.9
Benefin 1/	4	1 2	2.718 1.575 4.293	3.011 1.641 4.652	2.350 1.492 3.842	8.079 <u>4.708</u> 12.787	4.6
Velsicol 438 ³ /	2	1 2	1.910 1.477 3.387	3.599 1.810 5.409	3.011 1.374 4.385	8.520 4.661 13.181	4.8
Velsicol 438 ³ /	3	1	2.277 1.575 3.852	3.158 1.471 4.629	2.130 1.335 3.465	7.565 4.381 11.946	4.3
Velsicol 438 ^{3/}	4	1 2	2.644 1.526 4.170	3.011 1.528 4.539	2.497 1.492 3.989	8.152 4.546 12.698	4.6
Clipping (check)	0	1 2	3.893 1.231 5.124	3.746 1.528 5.274	3.011 1.413 4.424	10.650 4.172 14.822	5.4
Companion Crop	0	1 2	2.718 1.526 4.244	1.689 1.584 3.273	2.277 1.531 3.808	6.684 4.641 11.325	4.1
Bromoxynil ² /	14	1 2	2.718 1.280 3.998	3.746 1.584 5.330	3.085 1.256 4.341	9.549 4.120 13.669	5.0
Bromoxynil ² /	5/16	1 2	2.718 1.428 4.146	4.554 1.414 5.968	2.644 1.374 4.018	9.916 4.216 14.132	5.1
Bromoxynil ^{2/}	3/8	1 2	2.277 1.329 3.606	3.305 1.754 5.059	2.938 1.570 4.508	8.520 4.653 13.173	4.8
Bromoxynil ^{2/}	1/2	1 2	2.644 1.526 4.170	3.599 1.528 5.127	3.305 1.492 4.797	9.548 4.546 14.094	5.1
1/ Preplant incorpor 2/ Post emergence 3/ Post plant	rate						4.7
<u> </u>		FValue S.E.X L.S.D. (atment c	ompariso	n	1.30 .354 N.S. 7.58

Ks VRS 2

Table 4 . Effect of certain herbicides on the yield of clover two years following application. 1971

Treatment			Plot	Yield L	os. Dry M		Yield
Herbicide	Rate #/A	Cutting	I	II	III	Total	T/A
EPTC1/	2	1 2	1.586 .842 2.428	1.682 1.273 2.955	1.634 1.234 2.868	4.902 3.349 8.251	3.0
EPTC1/	4	1 2	1.970 .803 2.773	1.874 1.839 3.713	1.345 1.275 2.620	5.189 3.917 9.106	3.3
EPTC ¹ /	6	1 2	1.634 .765 2.399	1.682 1.179 2.861	1.826 1.645 3.471	5.142 3.589 8.731	3.2
EPTC ¹ / ₊ Bromoxynil ² /	2 + 3/4	1 2	1.442 .995 2.437	1.970 .990 2.960	1.489 1.193 2.682	4.901 3.178 8.079	2.9
EPTC ¹ / ₊ Bromoxynil ² /	4 + 1/4	1 2	1.538 1.033 2.571	1.442 1.462 2.904	1.345 1.275 2.620	4.325 3.770 8.095	2.9
EPTC 1/+ Bromoxynil 2/	6 + 1/4	1 2	1.730 .803 2.533	1.153 1.226 2.379	1.586 .946 2.532	4.469 2.975 7.444	2.7
EPTC ¹ / ₊ Bromoxynil ² /	2 + 5/16	1 2	2.066 .956 3.022	1.682 1.179 2.861	1.489 1.357 2.846	5.237 3.492 8.729	3.2
EPTC ¹ / ₊ Bromoxynil ² /	4 + 5/16	1 2	1.730 .842 2.572	1.297 1.556 2.853	1.345 1.439 2.784	4.372 3.837 8.209	3.0
EPTC 1/+ Bromoxynil 2/	6 + 5/16	1 2	1.778 .995 2.773	1.153 1.415 2.568	1.442 1.110 2.552	4.373 3.520 7.893	2.7
EPTC ¹ / ₊ Bromoxynil ² /	2 + 3/8	1 2	1.538 1.033 2.571	1.634 1.462 3.096	1.538 1.193 2.731	4.710 3.688 8.398	3.0
EPTC 1/+ Bromoxynil 2/	4 + 3/8	1 2	1.586 .727 2.313	2.018 1.415 3.433	1.538 1.481 3.019	5.142 3.623 8.765	3.2
EPTC 1/+ Bromoxynil 2/	6 + 3/8	1 2	1.249 .689 1.938	1.586 1.367 2.953	1.538 1.193 2.731	4.373 3.249 7.622	2.8
Benefin 1/	2	1 2	1.970 1.224 3.194	1.538 1.132 2.670	1.201 .781 1.982	4.709 3.137 7.846	2.9

Table 4 . (con't)

Treatment			LTOT 1	rield Lbs	s. Dry Ma		Yield
Herbicide	Rate #/A	Cutting	I	II	III	Total	T/A
Benefin 1/	3	1 2	1.874 1.109 2.983	1.538 1.462 3.000	1.538 .987 2.525	4.950 3.558 8.508	3.1
Benefin 1/	4	1 2	1.393 1.109 2.502	1.826 1.084 2.910	1.201 .617 1.818	4.420 2.810 7.230	2.6
Velsicol 438 ³ /	2	1 2	1.105 1.262 2.367	1.489 1.697 3.186	1.778 .946 2.724	4.372 3.905 8.277	3.0
Velsicol 438 ³ /	3	1 2	1.682 1.148 2.830	1.538 1.650 3.188	1.538 1.398 2.936	4.758 4.196 8.954	3.3
Velsicol 438 ³ /	4	1 2	1.970 1.186 3.156	1.442 1.320 2.762	1.586 1.234 2.820	4.998 3.740 8.738	3.2
Clipping (check)	0	1 2	1.682 .803 2.485	1.393 1.462 2.855	1.682 .946 2.628	4.757 3.211 7.968	2.9
Companion Crop	0	1 2	2.018 1.339 3.357	2.162 1.226 3.388	1.634 .987 2.621	5.814 3.552 9.366	3.4
Bromoxynil ² /	34	1 2	1.970 .995 2.965	1.730 1.603 3.333	1.682 1.481 3.163	5.382 4.079 9.461	3.4
Bromoxynil ² /	5/16	1 2	1.970 1.109 3.079	1.778 1.792 3.570	1.826 .946 2.772	5.574 3.847 9.421	3.4
Bromoxynil ² /	3/8	1 2	1.778 .918 2.696	1.778 1.415 3.193	1.345 1.604 2.949	4.901 3.937 8.838	3.2
Bromoxynil ² /	1/2	1 2	1.922 1.339 3.261	1.634 1.273 2.907	1.489 .946 2.435	5.045 3.558 8.603	3.1

Preplant incorporate Post emergence Post plant

x	3.1
FValue for treatment comparison	1.18
S.E.X	.203
L.S.D. (.05)	N.S.
C.V. %	6.64

Table _ 5 . Summary of three harvests of alalfa which had been treatment with herbicides the seeding year.

Treatment			Yield T	on/Acre	
Herbicide	Rate #/A	1969	1970	1971	x
EPTC1/	2	1.7	3.3	2.3	2.4
EPTC1/	4	2.0	3.0	2.4	2.5
EPTC=	6	2.4	3.1	2.2	2.6
$EPTC_{\frac{1}{2}}^{1}$ + Bromoxynil $\frac{2}{2}$	2 + 1/4	2.1	3.0	2.1	2.4
EPTC1/+ Bromoxynil2/	4 + 1/4	2.3	3.1	2.5	2.6
EPTC + Bromoxynil 2/	6 + 1/4	2.2	3.1	2.3	2.5
EPTC + Bromoxynil 2/	2 + 5/16	2.1	3.4	2.1	2.5
EPTC + Bromoxynil 2/	4 + 5/16	1.9	3.3	2.5	2.6
EPTC + Bromoxynil 2/	6 + 5/16	1.7	3.1	2.2	2.3
EPTC1/+ Bromoxynil2/	2 + 3/8	2.1	3.4	2.7	2.7
EPTC + Bromoxynil 2/	4 + 3/8	2.1	3.4	2.1	2.5
EPTC + Bromoxynil	6 + 3/8	2.5	3.2	2.2	2.6
Benefin ,	2	2.0	2.9	1.9	2.3
Benefin 1/	3	2.0	3.0	2.1	2.4
Benefin—	4	1.8	2.9	2.4	2.4
Velsicol 4383/	2	1.6	3.0	2.3	2.3
Velsicol 4383/	3	1.5	2.9	2.8	2.4
Velsicol 438	4	1.4	3.3	2.5	2.4
Clipping (check)	0	.9	3.1	2.3	2.1
Companion Grop	0		2.5	2.4	2.5
Bromoxynil 27	1/4	1.9	3.4	2.7	2.7
Bromoxynil ² /	5/16	1.8	3.0	2.9	2.6
Bromoxynil ² /	3/8	1.6	3.1	2.8	2.5
Bromoxynil ² /	1/2	•9	3.2	2.4	2.2

Preplant incorporate
Post emergence
Post plant

Talbe 6 Summary of three harvests of sainfoin which had been treated with herbicides the seeding year.

Treatment		Yield Ton/Acre			
	Rate #/A	1969	1970	1971	Х
Herbicide EPTC 1/ EPTC 1/ EPTC 1/ EPTC 1/ EPTC 1/+ Bromoxynil 2/	Rate #/A 2 4 6 2 + ½ 4 + ½ 6 + ½ 2 + 5/16 4 + 5/16 6 + 5/16 2 + 3/8 4 + 3/8 6 + 3/8 2 3 4 0 0 0 ½ 5/16 3/8 ½	1969 1.9 2.2 2.5 2.7 2.5 2.1 2.3 2.4 2.3 2.9 2.5 2.3 2.8 3.0 2.2 2.0 2.6 2.0 1.1 1.7 2.7 2.1 2.2	3.5 4.1 3.8 3.4 3.5 3.6 4.0 3.9 3.4 4.0 4.1 3.3 3.7 3.5 3.5 4.1 4.1 3.8 2.4 4.0 3.7 4.1	4.8 4.5 4.2 4.6 5.6 4.7 4.4 4.9 4.5 4.9 4.5 4.9 4.5 4.9 4.5 4.9 4.5 4.9 4.6 5.4 4.1 5.0 5.1	3.4 3.6 3.5 3.6 3.7 3.4 3.9 3.7 3.8 3.4 3.5 3.4 3.5 3.4 3.5 3.4 3.7 3.6 3.7

^{1/} Preplant incorporate

^{2/} Post emergence 3/ Post plant

Ks

2

Table $\frac{7}{}$. Summary of three harvests of clover which had been treated with herbicides the seeding year.

Treatment	:		Yield To	ons/Acre	
Herbicide	Rate #/A	1969.	1970	1971	х
EPTC1/	2	1.1	2.8	3.0	2.3
EPTC-	4	.6	2.4	3.3	2.1
EPTC-	6	1.1	2.8	3.2	2.4
$EPTC_{\frac{1}{2}}^{\frac{1}{2}}$ + Bromoxynil $\frac{2}{2}$	2 + 1/4	1.0	2.3	2.9	2.1
$EPTC_{\frac{1}{2}}^{\frac{1}{2}}$ + Bromoxynil $\frac{2}{2}$	4 + 34	.9	2.5	2.9	2.1
$EPTC_{\frac{1}{2}}^{\frac{1}{2}}$ + Bromoxynil $\frac{2}{2}$	6 + 3	.9	2.5	2.7	2.0
EPTC + Bromoxynil 2/	2 + 5/16	.8	2.5	3.2	2.2
EPTC1/+ Bromoxynil2/	4 + 5/16	1.0	2.5	3.0	2.2
EPTC + Bromoxynil 2/	6 + 5/16	1.0	3.0	2.7	2.2
EPTC + Bromoxynil 2/	2 + 3/8	1.0	2.4	3.0	2.1
$EPTC_{\frac{1}{2}}^{\frac{1}{2}}$ + Bromoxynil $\frac{2}{2}$	4 + 3/8	.9	2.5	3.2	2.2
EPTC + Bromoxynil 2/	6 + 3/8	1.1	2.2	2.8	2.0
Benefin 17	2	1.0	2.2	2.9	2.0
Benefin 1/	3	1.3	2.5	3.1	2.3
Benefin 2/	4	1.0	2.5	2.6	2.0
Velsicol $438\frac{3}{3}$	2	.9	2.6	3.0	2.2
Velsicol 4383/	3	.6	2.8	3.3	2.2
Velsicol 4383/	4	.6	2.7	3.2	2.2
Clipping (check)	0	.8	2.7	2.9	2.1
Companion Crop	0		2.5	3.4	3.0
Bromoxynil $\frac{2}{2}$	1/4	.9	2.8	3.4	2.4
Bromoxynil $\frac{2}{3}$	5/16	1.1	2.7	3.4	2.4
Bromoxynil ² / ₃ /	3/8	•4	2.8	3.2	2.1
Bromoxynil ² /	35	.8	3.2	3.1	2.4

Preplant incorporate

Post plant

Post emergence

TITLE:

Control of spring and winter annuals in small grains

PROJECT:

Weed Investigations MS 754

YEAR:

1971

PERSONNEL:

Leader - Vern R. Stewart

Cooperators - Weed Research Committee, Chemical Company Research

and Development Representatives

LOCATION:

Northwestern Agricultural Research Center, Field No. R-3c, R-2b

and D.D. Brenneman, Paul Boss, Jim Snell farms

DURATION:

Indefinite

OBJECTIVES:

 To find a herbicide or herbicides that will effectively and economically control winter annuals in winter wheat with little or no deleterious effect on wheat yields.

2. To determine the effectiveness of granular triallate for wild

cat control in spring barley.

SIGNIFICANT FINDINGS:

1. Terbutryn provided excellent control of henbit, field gromwell and catchfly species when early spring applied to weeds in winter wheat. Yields were also significantly increased.

2. SD 30053, gave good control of wild oats, but caused a signifi-

cant reduction in barley height.

3. BAS 3510H, gave excellent control of German Knawel with significiant increase in barley yield when compared with the check.

MATERIALS AND METHODS:

Three individual tests on small grains were conducted in 1971. A total of eleven herbicides were used at various rates in the experiments. Herbicides used are found in Table 1.

The predominate species being studied were; field gromwell (Lithospermum arvense (L.)); wild oats (Avena fatua (L.)); catchfly (Silene conoidea (L.)); henbit (Larmium amplexicaule (L.)) and German knawel (Scleranthus annuus (L.)).

Herbicides were applied to established stands of small grains. Plots were 10' \times 20' (200 sq. ft.) in the replicated studies; 10' \times 100' (1000 sq. ft.) in the strip tests. Applications were made at right angles to the grain rows. All herbicides were applied in an aqueous solution at 39.5 gpa except the granular materials.

Climatic conditions at time of herbicide application were recorded and are found in Table 2, for all three experiments.

Weed scores were obtained by visual observation using a scale of 0-10, 0 being no control, 10 being complete control.

Materials and Methods (con't)

All data when applicable were analyzed using the analysis of variance technique.

Harvesting of the replicated plots was done with a "Jeri" mower, with 18.75 sq. ft. being harvested to determine yields. The strip tests were harvested with a field combine.

RESULTS AND DISCUSSION:

Experiment I

Early spring application to growing weeds in winter wheat of various herbicides (Table 3) gave from poor to excellent control. Terbutryn gave almost 100% control of all weed species present. The main species were; field gromwell, henbit and a catchfly species. The combination of bromoxynil and diuron as a package mix (ACP 69-386) was completely ineffective in weed control. The combination of bromoxynil and MCPA gave fair control of the species present. Dicamba plus bromoxynil was about equal to the bromoxynil-MCPA combination.

Yields when analyzed statistically were not found to be significant, however the terbutryn treatment resulted in a 9 bushel increase over the check. Other increases in yields as the result of treatments can be seen in Table 3.

Experiment II

Experiment two was conducted in an established stand of Ingrid barley, which contained a natural population of wild oats. This population was quite uniform throughout the plot area.

Two applications of herbicides were made; (1) when the wild oats were in the two leaf stage, (2) in the 4 to 5 leaf stage. Herbicides used and growth stage when applied are found in Table 4. Obtaining even distribution of granular triallate was quite difficult when applied by hand.

Weed control was quite poor with most all the triallate compounds, with the exception of granular formulation at 3 lbs/a which gave fairly good control. SD 30053 controlled 70% of the wild oats, but caused considerable reduction in plant height. In some cases plant height was reduced as much as four inches. The EC formulation of triallate did not affect the height of barley as greatly as the granular formulation. Table 4.

Field observations of the effect of the herbicides on barley and wild oat control are seen in Table 5.

Kernel size was not materially affected by any of the herbicides used, however the SD 30053 treatment did show a lower plump percentage than the check and triallate treatments. Table 4.

Yields vary greatly between treatments. The highest yield was obtained at 3 lbs/ acre of granular triallate when applied at the two leaf stage.

The same rate of granular triallate applied at the 4 to 5 leaf stage caused a 17.2 bu/a reduction which was statistically significant. All herbicide treatments were higher in yield than the check. Table 4.

Results and Discussion (con't)

Experiment III

German Knawel (Scleranthus annuus (L.)) was the species under study in this experiment. A high population was growing in a field of established Freja barley. Seven herbicides were used in the study at two or more rates. The first sixteen treatments were applied June 21, 1971 and the remaining five, June 28, 1971. Barley was in the 5 to 6 leaf stage for both applications. Weeds were in about the same stage of development for both applications.

The herbicide providing the greatest amount of weed control was BAS 3510H. Yields from these treatments were highest in the study, Table 6. Mon-097 provided no weed control, but yields were higher than the check plot. Diuron at 1 lb/a gave 20% weed control and a slight increase in yield. Dic 1897 at 1.00 and 1.5 lbs/a gave 80 and 90% weed control respectively with four to five bushel increase in yield. At this low yield level these yield increases are probably significant. In Table 6, are found all the yield data plus the effect of the herbicide on barley and weed species present.

Table 1 . Herbicides used in the experiments.

Common Name	Trade Name or other	Chemical Name	Company
triallate	Fargo	2,3,3-trichloroallyl NN-diisopropyl-thiolcarbamate	Monsanto
bromoxynil	Brominal Buctril	3,5-dibromo-4-hydroxybenzonitrile(4-cyano-2,6-dibromophenol)	Amchem Rhodia
MCPA		2-methyl-4-chlorophenoxyacetic acid (4- chloro-2-methylphenoxyacetic acid)	Amchem
diuron	Karmex	3-(3,4-dichlorophenyl)1,1-dimethylurea (N'-(3,4-dichloropheny)NN-dimethylurea	DuPont
linuron	Lorox	3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea	DuPont
terbutryn	Igran	2-(ter-butylamino-4+(ethyl amino)-6- (methylthio)-s=triazine	Geigy
acetochlor	Mon-097	2-chloro-N-(ethoxymethyl-6'-ethyl-o-acetotoluide	Monsanto
	BAS 3510H	3-isopropyl-1 <u>H</u> -2,1,3-benzothiadiazin- (4)3 <u>H</u> -one 2,2-dioxide	BASF
	Sencor	4-amino-6-t-butyl-3-(methylthio)-1,2,4 triazin-S(4H)-one	Chemagro
	Bay Dic 1897	no chemistry available	Chemagro
	SD 30053	<pre>ethyl 2-(N-benzoyl_3,4-dichloroanilino) propionate</pre>	Shell

Table 2 . Climatic conditions at time of application of herbicides.

Experiment	Temperature Degrees F	Humidity %	Wind Velocity Mph	Cloud Cover	Date
1	46	35	3-9 mph	Partly Cloudy	4/12/71
2	42	59	Calm	Cloudy	5/15/71
2a <u>1</u> /	56	55	Calm		6/ 7/71
3	80	14	Calm	Partly cloudy	6/21/71
3a <u>1</u> /	52	75	Calm	Light rain	6/28/71

^{1/} Two application days for the experiment.

Table 3 . Effect of several herbicides on the yield of Winalta winter wheat and control of winter annual weeds. Conducted on the D.D. Brenneman farm Route 4, Kalispell, Montana in 1971. Harvest Date: August 18, 1971.

Treatment		Weed				
	Rate	Score		cations		Yield
Herbicide	#/A	0-10	I	II (D) at	Total	Bu/A
			Po	ounds/Plot		
Bromoxynil	3/8	1	30.0	41.0	71.0	30.3
Bromoxynil + linuron	1/4 + 1/4	3	37.0	35.5	72.5	30.9
Bromoxynil + linuron	½ + 1/8	3	40.0	37.0	77.0	32.8
Bromoxynil + diuron 1/	½ + 3/10	1	47.0	34.0	81.0	34.5
Bromoxynil + diuron 2/	$\frac{1}{4} + \frac{3}{10}$	3	46.5	40.0	86.5	36.9
Bromoxynil + diuron 3/	½ + 3/10	3	45.0	34.5	79.5	33.9
Bromoxynil + MCPA	3/8 + 3/8	6	49.0	41.0	90.0	38.4
Bromoxynil + dicamba	½ + 1/16	7	43.0	43.0	86.0	36.7
Terbutryn	1	10	52,0	44.5	96.5	41.2
Check	0	0	40.0	35.5	75.5	32.2
1/ ACP 69-386 (30% div 2/ ACP 69-386 with wet 3/ Surfactant 20ml		xynil)		ž C F Z		34.8 2.3397
Application of Temperature: Humidity: Wind Velocity Plot size:	46 de 35%	egrees F		S.E.X L.S.D. CV %		N.S. 6.72

Ks VRS 3

Table 4. Effect of several herbicides on the control of wild oats (Avena fatua (L.)) in Ingrid spring barley. Conducted on the Paul Boss farm, Route 4, Kalispell, Montana.

Harvest Date: September 7, 1971 Size of Plot: 18 square feet

Treatment		Height	Plo	t Yie	ld in	Grams	Yield	%	% Weed
Herbicide	Rate #/A	Inches	I	II	III	Total	Bu/A	Plump	Control
Triallate 1/ (10g)	1.5	30.5	218	227	235	680	25.2 bcde 4/	98	8
Triallate (10g)	2.0	27.0	167	178	173	518	19.2 de	95	33
Triallate (10g)	3.0	30.0	410	322	302	1034	38.3a	96	30
Triallate (10g)	1.5	26.5	231	188	194	613	22.7 cde	97	32
Triallate (10g)	2.0	25.5	201	129	219	549	20.3 de	96	35
Triallate (10g)	3.0	27.0	207	162	193	562	20.8 de	97	67
Triallate / EC	1.5	32.5	162	194	194	550	20.4 de	97	3
Triallate , EC	2.0	34.0	206	207	175	588	21.8 cde	96	17
1/	3.0	30.5	323	217	270	810	30.0 b	96	23
	.75	27.5	269	181	128	5 7 8	21.4 cde	96	70
SD $30053\frac{2}{2}$	1.0	24.0	320	262	195	777	28.8 bc	93	70
SD 30053 ² /		24.0	181	119	174	474	27.7 bcd	93	90
SD 30053 ² / Check	1.5 0	30.5	197	164	142	503	18.6 de	98	0

^{1/} Applied at two-three leaf stage of wild oats 5/15/71

3/ On top of 6/64 x 3/4 sieve

Duncan multiple range test-any treatment having a common letter is not significantly different one from another.

x	23.5
S.E.x	2.204
CV %	9.93

Source	Analysis of D.F.	Wariance M.S.	F.
Replications	2	6970.564	5.91**
Treatment	12	8192.034	6.94**
Error	24	1180.008	
Total	38		

Applied at four-five leaf stage of wild oats 6/7/11

Table ______ Visual appraisal of the effects of certain herbicides on spring barley and wild oats.

Treatmen		
Herbicide	Rate #/A	Remarks
Triallate 1/(10g)	1.5	Poor distribution of material, no apparent crop injury
Triallate 1/(10g)	2.0	Poor distribution of material, some reduction in bar- ley stand, fair wild oat control
Triallate 1/(10g)	3.0	Poor distribution of granular material, fair control of wild oats in plot centers
Triallate ^{2/} (10g)	1.5	Reduction in stand, poor distribution of material and reduction of barley height
Triallate 2/(10g)	2.0	Uneven distribution of material, reduction in stand, fair weed control
Triallate ^{2/} (10g)	3.0	Quite a reduction in stand of barley, fairly effective weed control throughout the plot, good distribution
Triallate 1/EC	1.5	No injury to barley, no weed control
Triallate 1/EC	2.0	No injury to barley, some weed control
Triallate 1/EC	.3.0	Some reduction in height, no injury to barley, some wild oat control
SD 30053 ² /	.75	Few wild oats, four or five inches shorter than check, good weed control
SD 30053 ² /	1.0	Reduction in stand, barley about four inches shorter, good weed control
SD 30053 ² /	1.5	Reduction in stand, four or five inches taller than check, excellent weed control
Check	0	

^{1/} Applied at two to three leaf stage of wild oats

^{2/} Applied at four to five leaf stage of wild oats

Table 6 • Effect of several herbicides on the control of German Knawel (Sceranthus annuus (L.)) in a stand of Freja barley. Conducted on the Jim Snell farm, Route 4, Kalispell, Montana in 1971. Experiment III

Date Harvested: September 13, 1971 Plot Size: 850 sq. ft.

Treat	ment	Yield	% Weed	Stand-	
Herbicide	Rate #/A	Bu/A	Control	Reduction	Remarks
Terbutryn	1.00	4.0	100	% 30	Retardation in growth
Terbutryn	1.50	2.7	100	70	Retardation in growth
Terbutryn	2.00	1.9	100	90	Barley severely injured
Diuron	.25	12.0	0	0	No injury to barley
Diuron	.50	12.5	0	0	No injury to barley
Diuron	1.00	15.2	50	0	Slight retardation in growth
Linuron	。25	18.1	20	0	No injury to barley
Linuron	•50	13.9	95	-	Reduction in height of barley
Linuron	1.00	11.7	100	10	Quite a reduction in height of barley
Mon-097	1.00	17.3	10	0	No injury to barley
Mon-097	2.00	17.6	0	0	No injury to barley
Mon-097	4.00	13.9	0	0	Considerable reduction in height of barley
BAS 3510H	.50	17.9	90	0	No injury to barley
BAS 3510H	1.00	15.5	95	0	No injury to barley
BAS 3510H	1.50	17.9	100	0	No injury to barley
Dic 1897	. 25	14.4	0	0	No injury to barley
Dic 1897	。50	13.3	20	0	Some injury on bottom leaves
Dic 1897	1.00	16.3	80	0	Reduction in height of barley
Dic 1897	1.50	17.3	90	0	Some barley injury, slight
Sencor	. 25	17.1	70		Some burning of lower leaves
Sencor	.50	14.4	95	10	Leaves are shorter on these plants, some reduction in barley height
Check	0	12.8	0	0	

^{1/} Visual observation as compared with the check

VRS

TITLE:

Chemical control of weeds in potatoes

PROJECT:

Weed Investigations

MS 754

YEAR:

1971

PERSONNEL:

Leader - Vern R. Stewart

Cooperators - Weed Research Committee, Chemical Company Research and Development Representatives

LOCATION:

Northwestern Agricultural Research Center Field No. "Potato Rotation Plots", Harold Small and Harold Yeager farms, Rt. 4, Kalispell, Montana

OBJECTIVES:

- To measure the effectiveness of several herbicides for the control of weeds in potatoes.
- Determine the effects of herbicides on growth of the potato plant.
- 3. Determine the effect of herbicides on yield and grade of the potato tuber.

FUTURE PLANS:

Evaluation of herbicides will be continued in 1972.

SIGNIFICANT FINDINGS:

Experiment I

Eptam and Sencor are about equal in the control of the weed species present. Yields are very similar, about ten hundred weight more than the check. Other herbicides used in this test did not show much promise for weed control in potatoes.

Experiment II

Good control of quackgrass was obtained in location 1. Canadian thistle was adequately controlled with the use of Sencor in location 2.

MATERIALS AND METHODS:

Two experiments were conducted on potatoes in 1971. A discription of each follows. Eight herbicides at different rates were used in the studies and are listed in Table 2.

Experiment I

Plots 10 x 40 feet replicated three times were used in the experiment. Three rows of potatoes were planted in each plot. Rows were spaced 30" and seed spaced 9" in the row. The seed pieces weighted 2 ounces. Herbicides were applied in an aqueous solution at 39.5 gpa.

Depending on the herbicide requirement, they were applied: pre plant and incorporated 3" with a tandem disk; post plant and incorporated with a Lilliston-rolling cultivator; post plant-pre emergence of the potato; and post emergence of the potatoes when the weeds were quite small. The methods used for each herbicide is shown in Table 3.

Materials and Methods (con't)

Prior to application of the post plant products the potatoe rows were hilled twice with disk hillers. No further tillage operations were preformed during the growing season.

Weed species found in this study were wild oats (<u>Avena fatua</u>); red root pigweed (Amaranthus retroflexus (L.)) and mustards (<u>Brassica</u> species).

A visual rating of injury to potatoes and weeds was made two weeks following the last application of herbicides. Application dates are found in Table 1. A weed control score of 0 to 10 was used. 0 = no control, 10 = complete control.

The center row of the plot was harvested for yield with a single row potato combine. Harvested potatoes were graded, based on weight and appearance. Basis for weight division was $1\frac{1}{2}$ to 4 ounces, 4 to 16 ounces and culls.

Experiment II

Application of herbicides was made to field plots with a specially designed sprayer. Two hilled rows were sprayed simultaneously, applying the herbicides in an aqueous solution at 20 gpa. Two rates of Sencor were used in location 1, where quackgrass (Agropyron repens (L.)) was the predominate weed species and one rate in location 2 where Canada thistle (Cirsium arvense (L.)) was the predominate species.

RESULTS AND DISCUSSION:

Experiment I

Trifluralin at all rates did not give effective weed control.

EPTC, pre-plant incorporated, gave fair weed control, however it did not control the mustard plants, but gave excellent control of wild oats. EPTC post plant incorporated was not as effective in weed control as it was when pre plant incorporated.

A combination of EPTC and R 7465, pre plant incorporated, gave limited control of weed species present, except at the 3 and 1 lb/A rate which had a weed score of 7. The post plant incorporation of this combination provided fairly effective weed control.

Rp 17623 caused some injury to potatoes at 2 lbs/A, weed control was good (7).

Sencor at ½ lb/A, regardless of application techniques provided little or no weed control. At ½ lb/A, post plant and before emergence of the potato plant, Sencor caused some vine injury and reduction in growth. Weed control was good.

One 1b/A of Sencor post-plant, pre-emergence of the potatoes gave excellent weed control, some reduction in plant growth, however by the end of the season this difference was not apparent.

Results and Discussion (con't)

Sencor applied post emergence caused reduction in plant growth. At $\frac{1}{2}$ lb/A there was 35 to 40% reduction in plant growth of the potatoe plant. Weed control was excellent at all rates.

A-820 was not an effective product for control of wild oats, and only fair on the **broad** leaved species present.

BAS 3510H was very severe on the potato plants, causing reduction in vine growth.

BAS 2903 caused reduction in stand and gave very poor weed control. Table 3.

The yeild data was analyzed statistically as a total and by "sort", ie $1\frac{1}{2}$ to 4 ounce tubers, 4 to 16 ounce tubers and culls. Yields because of herbicide treatments were only found to be significant in the $1\frac{1}{2}$ to 4 ounce tubers. All other analysis were statistically non-significant. The highest yield, $1\frac{1}{2}$ to 4 ounce size, occurred in the Sencor treatment at $\frac{1}{2}$ lb/A, post plant pre-emergence of the potato plants. The highest total yield occurred in the Sencor treatment at 1 lb/A. Tables 4 and 5.

EPTC and Sencor were both effective products. They provided good weed control and a minimum amount of injury to the potato plant. Table 5.

EPTC, 4 lbs/A pre plant incorporated yielded 146 cwt/A and the weed control score was 7. At the 3 lb/A the weed control score was 8 and the yield 144.5 cwt/A.

Sencor at ½ lb/A applied post plant, pre emergence of the potatoes yielded 145.2 cwt/A and the weed score was 7. At 1 lb/A the yield was 148 cwt/A with a weed score of 9. This was also the highest yielding herbicide treatment.

Experiment II

Yields from Experiment II, location 1 are found in Table 6. The mean for the plot was 244 cwt/A, with the highest yield being secured from the check plot (269 cwt/A). Sencor at 1 lb/A resulted in the lowest yield which was 228 cwt/A. When analyzed statistically these data were found to be non-significant at the 5% level. A low C.V. of 6.12% would indicate that this is a very reliable test. The difference of 40 cwt/A seen here could be a significant factor in field production.

Quackgrass at location 1 was quite severe and Sencor at both rates gave good control.

The study at location 2 was conducted somewhat differently than location 1. The Sencor was applied at .7 lbs/A, followed by the hilling operation. Excellent control of Canada thistle was obtained. Due to an error in communications with the grower no yield data was secured.

	Degrees F	% Humidity	Wind Mph	Cloud Cover	Date
1	Degrees r	Hallicarcy	ripii	COVEL	Date
Expe	riment on	Northwestern	Agricu	ıltural Research	Center
Pre plant incorporate	58	56	Calm	Partly Cloudy	5/26/71
Post plant pre emergence	60	35	1-3	Cloudy	6/10/71
Post plant post emergence	56	58	Calm	Partly Cloudy	7/27/71
Expe	riment on	Small and Yea	ager fa	arms	
Post plant post emergence	87	40	Calm	Partly Cloudy	7/27/71

Table $\underline{\mathbf{2}}$. Herbicides used in the experiments.

Common Name	Trade Name or Other	Chemical Name	Company
trifluralin	Treflan	a,a,a-trifluoro-2,6-dinitro-N,N-dipropyl-p-tol=uidine	Eli Lilly & Co.
EPTC	Eptam	S-ethyl dipropylthiocarbamate	Stauffer
	R-7465	2-(aNaphthoxy)-N,N-diethylpropionamide	Stauffer
	Rp 17623	2-tertiobutyl-4-(2,4-dichloro-5-isopropylox=phenyl)-5-oxo-1,3,4-oxadiazoline	Rhodia
	Sencor	4-Amino-6-t-butyl-3-(methylthio)-1,2,4-tria= zin-5(4H0-one	Chemagro
	A-820	N-secondary-butyl-4-tertiary-butyl-2,6-din=itroaniline	Amchem
	BAS 3510H	3-isopropyl-1H-2,1,3-benzothiadiazin-(4)3H-one 2,2-dioxide	BASF
	BAS 2903H	2-chloro-N-(1 methyl-2 propynyl)acetanilide	BASF

Table 3. Effect of certain herbicides applied on potatoes for weed control at the Northwestern Agricultural Research Center, Kalispell, Montana in 1971.

Treatm	ont		Mess	
Herbicide	Rate #/A	Plot #	Weed Score	Comments
Trifluralin ¹ /	12	101 215 321 x	3 6 1 3	
Trifluralin ¹ /	3/4	102 211 302 x	3 7 5 5	
Trifluralin 1/	1	103 216 308 x	2 8 8 6	
EPTC ² /	3	104 219 307 x	8 7 9 8	A few mustard plants left, real good control of wild oats.
EPTC ² /	4	105 212 320	10 6 5	Controlled wild oats, but left considerable number of broadleaves.
EPTC1/	3	106 226 315	7 2 6 5	Left some mustard and wild oats.
EPTC1/	4	107 227 303 x	4 2 6 7 5	
EPTC + R7465 ² /	3 + ½	108 228 301 x	0 8 6	No control.
	3 + 1	109 208 312 x	5 7 8 7	
EPTC + R7465 ¹ /	3 + ½	110 222 305 x	9 7 7 8	Few mustard plants left

Table _ 3 . (con't)

Treat			Weed	
Herbicide	Rate #/A	Plot #	Score	Comments
Rp 17623 ³ /	1	111	5	
7	-	224	7	
		310	8	
		x	7	
Rp 17623 ³ /	1.5	110		
кр 1/623—	1.5	112	6	
		214	5	
		306 x	8	
3/		x	0	
Rp 17623 ³ /	2	113	5	
		205	7	slight potato injury, fairly good weed control
		314	8	real good broadleaf control
		x	7	3
Sencor3/	0.5		•	
Sencor-	. 25	114	0	
		217	9	
		3 <u>1</u> 6	0	
3/		X	3	
Sencor ^{3/}	.50	115	5	a lot of vine growth, no injury from Sencor
		225	8	
		313 x	9	20% reduction in growth
		x	7	
Sencor3/	1.0	116	9	no apparent injury
5011001	100	221	10	no apparent injury to the potatoes
		322	8	some reduction in plant growth
		x	9	J
Sencor4/	25	445		
Sencor-	. 25	117	6	
		220	9	20%
		304 x	9	20% retardation in plant growth
11		х	0	
Sencor 4/	.50	118	9	35 to 40% reduction in growth
		223	8	50% reduction in vine growth
		327	9	slight reduction in growth
		x	9	
Sencor4/	1	119	9	reduction in growth about 50%, good weed control
		213	9	reduction in stand & growth of potatoes
		311	10	slight reduction in stand and growth
		x	10	Tanging accounts an obtain the growth
1/				
A-8201/	1	120	4	
		207	5	
		3 <u>1</u> 8	5	
		x	5	

Table 3 . (con't)

Treatm	Treatment		Weed	
Herbicide	Rate #/A	Plot #	Score	Comments
A-820 ¹ /	1.5	121 206	6	
		323 x	4 5	
A-820 ¹ /	2	122 202 328 x	5 5 7 6	Some damage to vines
BAS 3510H ⁴	1	123 204 324 x	0 5 0 2	35% reduction in growth & no weed control some reduction in stand and plant vigor 50% reduction in growth of potatoes
BAS 3510H4/	2	124	1	50% reduction in growth, noticed considerable discoloration & burning of leaves, they seem to have recovered from that from the day of application
		218 326	9 6	reduction in vigor, about 50% quite a reduction in plant growth, not enough material for this plot, only 1st part sprayed
		x	5	
BAS 2903H ¹ /	2	125 210 317 x	5 2 5 4	may have some reduction in stand
BAS 2903H ¹ /	4	126 209 309 x	2 3 7 4	not too sharp
Check	0	127 203 3 19 x	10 10 10 10	handweeded check
Check	0	128 201 325 x	0 0 0	

 $[\]frac{1}{2}$ Post plant & incorporated with a Lilliston $\frac{2}{2}$ Pre plant incorporated $\frac{3}{4}$ Post plant no incorporation pre emergence $\frac{4}{4}$ Post plant no incorporation post emergence

Ks

Table 4 . Yield and grade data from herbicide study conducted on netted gem potatoes in 1971 on the Northwestern Agricultural Research Center, Kalispell, Montana.

Treatment			Potato	Size		
	Rate	Plot	4-16	11/2-4		Total
Herbicide	#/A	Number	Ounce	Ounce	Culls	Tubers
				Plot	Yield in P	ounds
Trifluralin 1/	12	101				
ITITIUT alin—	2	101	8.5	32.0	1.5	42.0
		215	17.0	22.0	4.0	43.0
		321	5.0	20.0	2.0	27.0
		Tetal x	30.5 10.2	74.0 24.7	7.5 2.5	112.0
1/						
Trifluralin <u>1</u> /	3/4	102	2.0	24.0	4.0	30.0
		211	7.5	27.5	2.0	37.0
		302	4.0	27.0	2.0 8.0	33.0
		Total x	13.5 4.5	78.5 26.2	2.7	100.0
1/						
Trifluralin <u>1</u> /	1	103	2.0	27.0	3.5	32.5
		216	4.5	43.0	4.0	51.5
		308	4.5	25.0	4.5	34.0 118.0
		Total x	11.0 3.7	95.0 31.7	12.0 4.0	110.0
PTC2/	2				5.0	53.0
PICE	3	104 219	18.0 15.0	30.0 20.0	.5	35.5
		307	1.5	25.0	3.5	30.0
		Total	34.5	75.0	9.0	118.5
		x	11.8	25.0	3.0	1.000
PTC2/	4	105	21.0	25.0	5.0	51.0
	4	212	2.0	28.0	0.0	30.0
		320	8.0	30.5	2.0	40.5
		Total	31.0	83.5	7.0	121.5
		x	10.3	27.8	2.3	
PTC1/	3	106	5.5	22.5	3.0	31.0
		226	3.5	26.5	1.0	31.0
		315	6.0	28.0	2.0	36.0
		Total	15.0	77.0	6.0	98.0
		×	5.0	25.7	2.0	
PTC_1/	4	107	7.0	17.0	1.5	25.5
		227	4.0	25.5	2.0	31.5
		303	8.0	21.0	4.0	33.0
		Total	19.0	63.5	7.5	90.0
		x	6.3	21.2	2.5	
PTC + R 74652/	3 + ½	108	1.0	11.0	0.0	12.0
		228	4.0	25.0	4.0	33.0
		301	8.5	25.0	7.5	41.0
		Total	13.5	61.0	11.5	86.0
		x	4.5	20.3	3.8	

Table 4 (con't)

Treatmen	it		Potato	Size		
	Rate	Plot	4-16	12-4		Total
Herbicide	#/A	Number	Ounce	Ounce	Culls	Tubers
				Plot Yield		142010
EPTC + R $7465\frac{2}{}$	3 + 1	109	7.0			
	5 + 1	208		21.0	4.5	32.5
		312	8.0	30.5	4.0	42.5
		Total	8.0 23.0	20.0	2.0	30.0
		x	7.7	71.5	10.5	105.0
1/			101	23.8	3.5	
EPTC + R 7465 1/	3 + ½	110	16.5	21.5	3.0	41.0
		222	3.0	23.0	2.0	28.0
		305	0.0	25.0	4.0	29.0
		Total	19.5	69.5	9.0	98.0
		x	6.5	23.2	3.0	
Rp 17623 ³ /	1	111	8.5	24.0	2.0	24.5
		224	4.0	31.5	2.0	34.5
		310	5.0	23.5	2.0 0.0	37.5
		Total	17.5	79.0	4.0	28.5
		x	5.8	26.3	1.3	100.5
Rp 176233/					1.0	
₹p 1/623=	1.5	112	8.5	17.0	7.5	33.0
		214	7.5	18.0	2.0	27.5
		306	5.0	23.5	4.0	32.5
		Total	21.0	58.5	13.5	93.0
0.4		x	7.0	19.5	4.8	
Rp 17623 3/	2	113	0.0	9.0	1.0	10.0
		205	17.0	25.5	1.0	43.5
		314	4.0	21.0	2.0	27.0
		Total	21.0	55.5	4.0	80.5
		x	7.0	18.5	1.3	0000
Sencor3/	. 25	111	1.0			
ercor-	023	114 217	1.0	18.0	0.0	19.0
		316	3.5	30.0	2.5	36.0
			6.0	26.0	3.5	35.5
		Total	10.5	74.0	6.0	90.5
2/		x	3.5	24.7	2.0	
encor 3/	.50	115	6.5	35.5	5.0	47.0
		225	16.0	25.0	1.0	42.0
		313	4.0	25.0	2.0	31.0
		Total	26.5	85.5	8.0	120.0
		x	8.8	28.5	2.7	
encor 3/	1	116	13.0			47. 5
	:#c	221	7.5	25.5	9.0	47.5
		322		32.5	3.0	43.0
		Total	4.5	24.0	4.0	32.5
		x	25.0	82.0	16.0	123.0
		A	8.3	27.3	5.3	

Table 4 (con't)

Treatment			Potato	Size		
	Rate	Plot	4-16	11/2-4		Total
Herbicide	#/A	Number	Ounce	Ounce	Culls	Tubers
					d in Pounds	
Sencor4/	. 25	117	10.0			
	025	220	9.0	22.0	3.0	35.0
		304	11.0	18.0 23.0	5.0	32.0
		Total	30.0	63.0	2.0 10.0	36.0
		x	10.0	21.0	3.3	103.0
Sencor4/	.50	118				
DCICOL	.50	223	15.0	22.0	2.0	39.0
		327	5.0	20.0	4.0	29.0
		Total	9.0	23.0	2.0	34.0
		x	29.0 9.7	65.0	8.0	102.0
- 1/				21.7	2.7	
Sencor4/	1	119	19.0	6.0	2.0	27.0
		213	7.0	18.0	6.0	31.0
		311	9.0	25.5	0.0	34.5
		Total	35.0	49.5	8.0	92.5
		x	11.7	16.5	2.7	
A-820 <u>1</u> /	1	120	8.0	24.0	5.0	37.0
		207	8.0	19.5	3.0	30.5
		318	16.0	18.0	.5	34.5
		Total	32.0	61.5	8.5	102.0
		x	10.7	20.5	2.8	
A-820 <u>1</u> /	1.5	121	6.0	22.0	2.0	30.0
		206	12.0	17.0	2.0	31.0
		323	0.0	32.5	5.0	37.5
		Total	18.0	71.5	9.0	98.5
		x	6.0	23.8	3.0	
A-820 <u>1</u> /	2	122	6.5	28.0	4.5	20.0
1-020-	2	202	2.5	30.0	5.0	39.0
		328	6.0	25.0	1.5	37.5
		Total	15.0	83.0	11.0	32.5 109.0
		x	5.0	27.7	3.7	109.0
BAS 3510H4/	1					-
BAS 35 10H=	1	123	0.0	10.5	1.0	11.5
		204	5.0	19.5	0.0	24.5
		324	0.0	8.5	0.0	8.5
		Total x	5.0	38.5	1.0	44.5
1/			1.7	12.8	.3	
BAS 3510H4/	2	124	0.0	5.0	0.0	5.0
		218	4.0	18.5	3.5	26.0
		326	3.5	18.0	1.0	22.5
		Tetal	7.5	41.5	4.5	53.5
		x	2.5	13.8	1.5	

Table 4. (con't)

Treatment			Potato	Size		
	Rate	Plot	4-16	112-4		Total
Herbicide	#/A	Number	Ounce	Ounce	Culls	Tubers
				Plot Yiel	d in Pounds	
BAS 2903H ¹ /	2	125	7.0	22.5	4 5	24.0
	2	210	2.0		1.5	31.0
		317		14.5	1.5	13.0
			10.5	25.0	1.0	36.5
		Total	19.5	62.0	4.0	85.5
1/		x	6.5	20.8	1.3	
BAS 2903H ¹ /	4	126	3.3	30.0	3.5	36.8
		209	1.5	18.0	0.0	19.5
		309	0.0	25.0	5.0	30.0
		Total	4.8	73.0	8.5	86.3
		x	1.6	24.3	2.8	0000
Theck(handweeded)	0	127	7.0	17.0	5.5	29.5
		203	8.5	25.0	7.0	40.5
		319	7.0	33.0	3.5	43.5
		Total	22.5	75.0	16.0	113.5
		-	7.5	25.0	5.3	11343
heck .	0	128	1.0	20.0	2.0	23.0
		201	1.5	30.5	4.0	36.0
		325	6.5	21.0	3.0	30.5
		Total	9.0	71.5	9.0	89.5
		×	3.0	23.8	3.0	0783
			6.7	00.4		0.0
			6.7	23.1	2.8	32.6
-value for treatme	ent compar	Ison	1.13	1.77	>1	1.63
·E·x			2.783	3.249	1.317	4.75
.S.D.			N.S.	9.2	N.S.	N.S.
.V.%			41.79	14.08	46.70	14.64

^{1/} Post plant & incorporated with a Lilliston (rolling cultivator)
2/ Pre plant incorporated
3/ Post plant no incorporation pre emergence of the potato plants
4/ Post plant no incorporation post emergence of the potato plants

Table _____5 __ Summary of data from herbicide study on netted gem potatoes at the Northwestern Agricultural Research Center, 1971.

Treatment		Pota	ato Yie	ld cwt/	′a	0-10	
		Size in				% Weed	
Herbicide	#/A	12-4	4-16	Culls	Total	Control	Remarks
Trifluralin 1/	1/2	89.7	37.0	9.1	135.8	3	
Trifluralin 1/	3/4	95.1	16.3	9.8	121.2	5	
Trifluralin 1/	1	115.1	13.4	14.5	142.9	6	
EPTC ² /	3	90.8	42.8	10.9	144.5	8	good control of wild oats left some mustard plants
EPTC ² /	4	100.9	37.4	8.4	146.7	7	left some broad leaved plants
EPTC1/	3	93.3	18.1	7.3	118.7	4	wild oats, mustard not controlled
EPTC1/	4	77.0	22.9	9.1	109.0	5	
EPTC + $R7465^{2/}$	3+32	73.7	16.3	13.8	103.8	5	
EPTC + $R7465^{2}$	3+1	86.4	28.0	12.7	127.7	7	
EPTC + R74651/	3+1/2	84.2	23.6	10.9	118.7	8	left some mustard plants
Rp 17623 ³ /	1	95.5	21.1	4.7	121.3	7	
Rp 17623 ³ /	1.5	70.8	25.4	17.4	113.6	6	
Rp 17623 ³ /	2	67.2	25.4	4.7	97.3	7	slight potato injury, good broad leafed control
Sencor 3/	.25	89.7	12.7	7.3	109.7	3	
Sencor ^{3/}	.50	103.8	31.9	9.8	145.2	7	slight reduction in vine growth
Sencor ^{3/}	1.0	99.1	30.1	19.2	148.8	9	some reduction in vine growth
Sencor 4/	. 25	76.2	36.3	12.0	124.5	9	retardation in plant growth
Sencor 4/	٥50	78.8	35.2	9.8	123.8	9	40% reduction in vine growth
Sencor4/	1.0	59.9	42.5	9.8	112.2	10	40% reduction in vine growth
A 8201/	1	74.4	38.8	10.2	123.4	5	poor weed control
A 8201/	1.5	86.4	21.8	10.9	119.1	5	
A 820 ¹ /	2.0	100.6	18.2	13.4	132.2	6	some vine damage
BAS 3510H ⁴ /	1	46.5	6.2	1.1	53.8	2	50% reduction in vine growth

Table _ 5 . (con't)

e <u>Size in</u> 1½-4 50.1	Ounces 4-16 9.1	Culls 5.5	Total	% Weed Control	Remarks
50.1	9.1	5.5	64.7	6	1.11.
				6	reduction in vigor, leaf burning, 50% reduction in vine growth
75.5	23.6	4.7	103.8	4	some stand reduction
88.2	5.8	10.2	104.2	4	not too sharp
90.8	27.2	19.2	137.2	10	
86.4	10.9	10.9	108.2	0	
	88.2 90.8	90.8 27.2	88.2 5.8 10.2 90.8 27.2 19.2	88.2 5.8 10.2 104.2 90.8 27.2 19.2 137.2	88.2 5.8 10.2 104.2 4 90.8 27.2 19.2 137.2 10

^{1/} Post plant and incorporated with a Lillisten (rolling cultivator)
2/ Pre plant incorporated
3/ Post plant no incorporation pre emergence of potatoes
4/ Post plant no incorporation post emergence of potatoes

Table 6 . Effect of the herbicide sencor 1/on the yield of netted gem potatoes on the Harold Small farm, Kalispell, Montana in 1971

Treat	ment				
	Rate	Plot yield cwt/acre			
Herbicide	#/A	Rep. I	Rep. II	Total	x
Sencor 2/	。735	237.48	235.46	472.94	236.47
Sencor	1.11	215.23	240.71	455.94	227.97
Check3/	0	286.19	251.86	538.05	269.03
	name e 10,767 square e 12,812 square			5.E.x L.S.D05 C.V. %	244.48 14.96864 N.S. 6.12

Analysis of Variance

Source	D.F.	Mean Square	F.	
Replications	1	19.6930		
Treatment	2	939.1974	2.09 NS	
Error	2	448.11845		
Total	5			

Screening of herbicides on several plant species

PROJECT:

Weed Investigations

MS 754

YEAR:

1971

PERSONNEL:

Leader - Vern R. Stewart

Cooperators - Chemical Company Research and Development

Representatives

LOCATION:

Northwestern Agricultural Research Center Field No. R-14

and yard area

OBJECTIVES:

- To determine the effect of herbicides on economic cultivated crops.
- To determine the effect of herbicides on ornamental species.
- 3. To determine the effect of the herbicides on weed species.

SIGNIFICANT FINDINGS:

Experiment I

Of the crops tested sainfoin was the most tolerant to the herbicides used in the study.

BAS 3510H, had good selectivity in the cereal crops and gave good weed control.

Sencor at .5 lb/A, provided excellent weed control and slight injury to sainfoin and barley.

Experiment II

Dalapon was the most effective product for grass control in lilies, jonquils, iris and tulips.

MATERIALS AND METHODS:

Two experiments were conducted to screen 13 herbicides on 7 field crops and 4 ornamentals. Herbicides used in the two studies are given in Table 1.

Experiment I

Seven crops, listed in Table 3, were used. Herbicides were applied at right angles to the crop, in plots 10×24 feet. Herbicides were applied in an aqueous solution at 39.5 gpa. The herbicides were applied: pre plant incorporated; post plant, pre emergence; post emergence. The method used for each herbicide is found in Table 3. Climatic conditions and dates of applications are found in Table 2.

Weed species in the study as a natural population were; field chickweed, (Stellaria media (L.)); henbit, (Lamium amplexicauls (L.)); field pennycress, (Thlaspi arvense (L.)); shepherdspurse, (Capella bursa-pastoris (L.)).

Materials and Methods (con't)

Experiment II

Three herbicides were applied to four ornamentals, namely tulips, iris, lilies and jonquils. These were established plants, located in an area with a large population of quackgrass (Agropyron repens (L.)) and blue grass (Poa pratensis). Plot size was 10 x 80 feet or 800 square feet. Application dates and climatic data are found in Table 2. Herbicides were applied in an aqueous solution at 39.5 gpa.

RESULTS AND DISCUSSION:

Experiment I

Germination of alfalfa and vetch were quite poor in the check plots which resulted in poor stands. Thus it is difficult to really determine the effect of the herbicides on these two crops.

The preplant incorporated products did not effectively control any of the weed species in the test plot. Triallate eliminated all grass and caused some injury to wheat and oats. A-820 killed the grass present. Two and 4 lbs/A of R-21403 caused considerable injury to grass, wheat, oats and barley. The 4 lb/A rate of R-21414 caused considerable injury to oats and grass.

Mon-097 provided excellent weed control but was quite injurious to all crops tested. Sainfoin showed the most tolerence to this chemical.

Lasso controlled 100% of the weeds but severely injured alfalfa, vetch and grass. Oats, barley and sainfoin were quite tolerant to this herbicide.

Dic 1897 pre emergence, gave 100% weed control at all rates. Sainfoin was the most tolerant crop at all rates. Oats, wheat and barley were not affected at the .25 lb/A rate, but wheat and barley showed considerable injury at the 1 lb/A rate.

Rp 17623 controlled all weeds except field chickweed. All crops in the test were severely injured or killed at all rates.

Sainfoin and barley were quite tolerant to Sencor at ½ lb/A, whereas other crops were severely injured. Weed control was 100%. At 1 lb/A all crops and weeds were killed.

Seventy percent weed control was obtained with BAS 3510H. Some henbit and chickweed were left uncontrolled. Small grain and sainfoin were very tolerant to this product at the ½ lb/A rate. At 1 lb/A sainfoin was very tolerant, and cereal crops showed considerable injury. BAS 3510H at 1.5 lbs/A caused less injury to small grains than it did at 1 lb/A. Sainfoin at this rate showed little or no evidence of injury.

Ku 2236 was very severe on all crops, however weed control was excellent. Oats showed the most tolerance to this herbicide.

Results and Discussion (con't)

Dic 1897 post emergence, provided 100% weed control. Oats is the most tolerant crop and showed less injury at 1 lb/A than at $\frac{1}{2}$ lb/A.

Complete data of this test is found in Table 3.

Experiment II

Diuron did not control quackgrass nor cause any injury to ornamental species. Sencor at 1 lb/A gave limited quackgrass control with no apparent injury to ornamental species.

Dalapon at 4 lbs/A controlled quackgrass and blue grass. Some injury was noted on some lilies, however they appeared to recover by the blooming season.

It was noted the lilies growing in the quackgrass stand were not as vigorous as those in the dalapon treated areas. Table 4.

Table $\underline{\ \ 1\ \ }$. Chemicals used in the experiment.

Common Name	Trade Name or Other	Chemical Name	Company
triallate	Fargo	S-(2,3,3,trichloroallyl)diisopropylthiocarbmate	Monsanto
alachlor	Lasso	2-chloro-2',6'-diethyl-N-(methoxymethyl)ace=tanilide	Monsanto
acetochloro	Mon-097	2-chloro-N-(ethoxymethyl)-6'-ethyl-o-acetoto= luidide	Monsanto
	A-820	N-secondary-butyl-4-tertiary-butyl-2,6-dini=troaniline	Amchem
	R-21403	Chemistry confidential	Stauffer
	R-21414	Chemistry confidential	Stauffer
	Dic 1897	Not available	Chemagro
	Sencor	4- amino-6-t-butyl-3-(methylthio)-1,2,4-triazin-5(4H -one	Chemagro
	Kue 2236	1,1-Dimethyl-3-(m-chloro-p-tri-fluorometh=oxyphenyl)urea	Chemagro
	BAS 3510H	3-isopropyl-1 \underline{H} -2,1,3-benzothiadiazin-(4)3 \underline{H} -one 2,2-dioxide	BASF
	Rp 17623	2-tertiobutyl-4-(2,4-dichloro-5-isopropylox=phenyl)-5-oxo-1,3,4-oxadiazoline	Rhodia
dalapon	Dowpon	2,2-dichloropropionic acid	Dow
diuron	Karmex	3-(3,4-dichlorophenyl)-1-,1-dimethylurea	DuPont

Table 2 . Climatic data and dates of application of herbicides used in Experiment I and Experiment II.

Type of Application	Date	Degrees F	% Humidity	Wind Mph	Cloud Cover	Experiment Number
Preplant incorporate	5/28/71	63	60	2-3	Clear	1
re emergence	5/28/71	63	60	2-3	Clear	1
ost emergence	7/2/71	58	50	2-3	Partly Cloudy	1
Post emergence	4/22/71	45	80	Calm	Clear	2

Table 3. Effect of various chemicals on seven crops and their effect on weed species present. Weeds are natural in origin.

Treatment					4/
	Rate	% Weed	Crop	Injury	
Herbicide	#/A	Control	Crop	9-10	Remarks
Triallate(10%) <u>1</u> / + Mon-097	1 +	85	sainfoin alfalfa vetch grass wheat oats barley	0 5 2 10 3 4 3	some fanweed and shepherdspurse left reduction in height of oats and bar- ley
A 820 ¹ /	1	0	sainfoin alfalfa vetch grass wheat barley oats	0 0 none 7 1 0	little or no weed control, especial- ly broadleaves, mustard, shepherds- purse, fanweed all vigorous
A 820 ¹ /	1.5	10	sainfoin alfalfa vetch oats barley wheat	0 0 none 5 0	same species as above, also chick- weed
A 820 ¹ /	3.0	50	sainfoin alfalfa vetch grass wheat oats barley	0 0 0 10 9 9	
R-21403 ¹ /	1	0	sainfoin alfalfa vetch grass wheat oats barley	0 0 none 0 0	henbit present
R-21403 ¹ /	2	0	sainfoin alfalfa vetch grass wheat oats barley	0 0 none 7 4 8 5	

Table 3 . (con't)

Treatmen					4/
Herbicide	- Rate #/A	% Weed Control	Cron	Injury 0-10	≕ Remarks
			Crop		Relialks
R-21403 ¹ /	4	0	sainfoin	0	
			alfalfa vetch	none	
			grass	10	
			wheat	2	
			oats	9	
			barley	5	
R-21414 ¹ /	1	0	sainfoin	0	
K=2 14 14	1	Ü		none	
			vetch	none	
			grass	1	
			wheat	2	
			oats	0	
			barley	1	
R-21414 ¹ /	2	0	sainfoin	0	
			alfalfa	none	
			vetch	none	
			grass	0	
			wheat	0	
			oats	0	
R-21414 ¹ /	4	0	barley sainfoin	2	may be some injury to sainfoin, grass
K-21414	4	O	alfalfa		about half missing
			vetch	none	
			grass	5	
			wheat	4	
			oats	8	
- 1			barley	4	
Mon-097 ² /	1	100	sainfoin	4	
			alfalfa	7	
			vetch	10	
			grass	10	
			wheat	5	
			oats	2	
2/			barley		
Mon-097 ²	2	100	sainfoin	7	sainfoin in bad shape
			alfalfa	8	
			vetch	none 10	
			grass wheat	7	
			oats	7	
720			barley	7	
Mon-097 ² /	4	100	sainfoin	3	
			alfalfa	9	# · · · · · · · · · · · · · · · · · · ·
			vetch	9	
			grass	10	
			wheat	9	
			oats barley	8	
			narrel	U	

Table 3 (con't)

Treatmer	nt				4.4
	Rate	% Weed		Injury	4/
Herbicide	#/A	Control	Crop	0-10	Remarks
Lasso ² /	1	100	sainfoin alfalfa vetch grass wheat oats barley	2 8 9 8 3 2 3	leaving a few mustard, shepherds- purse, fanweed
Dic 1897 ² /	。25	100	sainfoin alfalfa vetch grass wheat oats barley	1 7 8 8 0 0	leaving chickweed on one end of plot
Dic 1897 ² /	.50	100	sainfoin alfalfa vetch grass wheat oats barley	4 9 9 10 4 3 5	
Dic 1897 ² /	1	100	sainfoin alfalfa vetch grass wheat oats barley	1 10 10 10 7 0 5	
Rp 17623 ² /	1		sainfoin alfalfa vetch grass wheat oats barley	7 10 10 10 10 10 8 10	controlled all species except field chickweed and it is really growing
Rp 17623 ² /	2		sainfoin alfalfa vetch grass wheat oats barley	10 10 10 10 9 10	some chickweed

Table 3 (con't)

Treatmen					4.4
	Rate	% Weed		Injur	y <u>4</u> /
Herbicide	#/A	Control	Crop	0-10	
Rp 17623 ² /	3		sainfoin alfalfa vetch grass wheat oats barley	10 10 10 10 10 10	few chickweed left and that is all, even crops are gone
Sencor ² /	.5	100	sainfoin alfalfa vetch grass wheat oats barley	2 10 10 10 7 5 3	
Sencor ² /	1		sainfoin alfalfa vetch grass wheat oats barley	10 10 10 10 10 10	
BAS 3510H ^{3/}	.5	70	sainfoin alfalfa vetch grass wheat oats barley	2 9 5 4 3 3	some henbit, some chickweed
BAS 3510H ³ /	1		sainfoin alflafa vetch grass wheat oats barley	1 9 5 5 6 4 6	
BAS 3510H ^{3/}	1.5		sainfoin alfalfa vetch grass wheat oats	1 9 5 4 3 3	some henbit

Table 3 . (con't)

Treatmen	t				
	Rate	% Weed		Injury	4/
Herbicide	#/A	Control	Crop	0-10	Remarks
Kue $2236\frac{3}{}$.5	100	sainfoin alfalfa	8	
			vetch	10	
			grass wheat	5	
			oats	7	
				5 7	
3/			barley	/	
Kue $2236\frac{3}{}$	1	100	sainfoin	10	
			alfalfa	10	
			vetch	10	
			grass	10	
			wheat	7	
			oats	5	
2.4			barley	6	
Dic 1897 ^{3/}	۰5	100	sainfoin alfalfa	5 9	
			vetch	10	
			grass	8	
			wheat	4	
			oats	3	
			barley	4	
Dic 18973/	1	100	sainfoin	5	
210 107/27	1	100	alfalfa	10	
			vetch	10	
			grass	9	
			wheat	5	
			oats	0	
			barley	0	
Check	0		sainfoin		shook what the what there which
Sileck			alfalfa vetch		check plot - the plot above which is a 72623 worked down in this plot and injured the sainfoin. No in-
			grass		
			wheat		on stand, some retardation in sain-
			barley	0	foin due to adjacent plot.
			oats	0	
			0000		

^{1/} Pre plant incorporate
2/ Pre emergence
3/ Post plant
4/ 0 = no injury - 10 = all crop killed

Table 4. Herbicides applied to four ornamentals, tulips, lilies, iris and jonquils, and the effect of the herbicide. Grown on the Northwestern Agricultural Research Center, 1971.

Treat	tment	
Herbicide	Rate #/A	Remarks
Diuron	1	no quackgrass control, some blue grass control
Sencor	1	fair quackgrass control, some bluegrass control
Dalapon	4	excellent control of both grasses
Check	0	

Sainfoin Seeding Rate, Row Spacing and Competition

PROJECT:

Forage Investigations MS 755

PERSONNEL:

Leader - A. J. Jarvi

Cooperator - A. E. Carleton

LOCATION:

Northwestern Agricultural Research Center

DURATION:

Planted 1968 through 1971

OBJECTIVE:

Determine influence of different row spacings, seeding rates and some

specie mixtures on sainfoin hay yields.

PROCEDURES:

Treatments listed in Table 1 were planted in 4' x 20' plots in a RCB

design with four replications in field Y-4 under irrigation.

RESULTS AND DISCUSSION:

The 1971 season yields are presented in Table 1. The individual degree of freedom tests indicate comparisons H and I are significant, the comparisons are given in Table 2. The sainfoin-grass mixture mean was 3.21 T/A compared to 2.78 T/A for sainfoin alone. In other words, the addition of a grass increased the yield significantly in the 3rd production year. The other significant comparison indicated in the 3rd year, sainfoin in 2' rows at 15#/A and sainfoin in 12" rows at 15#/A with barley at 30#/A average 3.42 T/A compared to 2.99 T/A for mean of all other entries. Again this was probably due to the blue-grass which had successfully established itself in the poorer sainfoin stands.

The three year summary is present in Table 3 along with the individual degrees of freedom test for the three years. For treatments being compared check Table 2. No treatment was consistantly superior over the three year period. It appears that higher seeding rates (30#/A) contribute to better yields the first harvest year and at this harvest the addition of a grass reduces yields. In the second and third year seeding rates of sainfoin become less important and a grass added to the sainfoin results in better yields.

Table 1 . Sainfoin seeding rate, row spacing and competition influence on 1971 yields in T/A at 12% moisture. Planted in 1968 in Field Y-6.

			Replic	ations		
Entry	Cut	I	II	III	IV	x
Sainfoin in 1' rows at 15#/A	1 2 Total	1.24 1.35 2.59	1.18 1.55 2.73	1.54 1.49 3.03	1.36 1.55 2.91	2.81
Sainfoin in 1' rows at 30#/A	1 2 Total	1.26 1.18 2.44	1.26 1.27 2.53	1.23 1.44 2.67	1.50 1.55 3.05	2.67
Sainfoin in 6" rows at 30#/A	1 2 Total	1.03 1.27 2.30	1.45 1.45 2.90	.99 1.27 2.26	1.39 1.62 3.01	2.62
Sainfoin in 6" rows at 15#/A with Latar at 3#/A	1 2 Total	1.92 1.41 3.33	1.58 1.76 3.34	1.41 1.92 3.33	1.58 1.41 2.99	3.25
Sainfoin in 6" rows at 15#/A with Oahe at 6#/A	1 2 Total	1.63 1.39 3.02	1.93 1.48 3.41	1.46 1.37 2.83	1.83 1.39 3.22	3.12
Sainfoin in 6" rows at 15#/A	1 2 Total	1.28 1.83 3.11	1.50 2.05 3.55	1.24 1.39 2.63	1.08 1.62 2.70	3.00
Sainfoin in 12" rows at 15#/A with Hypana barley in 12" rows at 30#/A	1 2 Total	1.72 1.66 3.38	1.93 2.17 4.10	1.46 1.66 3.12	1.78 1.90 3.68	3.57
Sainfoin at 15#/A in alternate 12" rows with Latar at 3#/A	1 2 Total	1.86 1.75 3.61	1.65 1.45 3.10	1.48 1.75 3.23	1.55 1.75 3.30	3.31
Sainfoin at 15#/A in alternate 12" rows with Oahe at 6#/A	1 2 Total	1.84 1.66 3.50	1.70 1.55 3.25	1.62 1.32 2.94	1.55 1.46 3.01	3.17
Sainfoin in 2' rows at 15#/A	1 2 Total	1.93 1.64 3.57	1.36 1.15 2.51	1.55 1.26 2.81	1.62 2.53 4.15	3.26

ANOVA for 1971	200		
Source	11	D.F.	Mean Square
Treatments (9)	A-1/	1	.2730
	В	1	.0163
	C	1	.0541
	D	1	。1922
	E	1	。0689
	F	1	.0138
	G	1	.0001
	H	1	1.5313**
	I	1	1.1323**
Replications		3	.1811
Error		27	.1320

39

Total

^{1/} Treatment comparisons given in Table 2.

^{**} Significant at .01 probability level.

Breakdown of individual degrees of freedom.

Table

	Sainfoin 12" Tow at 15#\A	Sainfoin 12" A\#0£ js wor	A\#SI Js wor	Sainfoin 6" row at 30#/A	A\#\$L niofanis2 + Latar 3#\A wow "3	A\#2 nioin 15#\A + Oahe 6#\A Wor "0	Sainfoin 15#/A + Latar 3#/A 12" alternate rows	Sainfoin 15#/A + Oahe 6#/A 12" alternate rows	Sainfoin 15#/A 12" rows + Hypana barley 30#/A	A/#21 nioinis2 S4" rows
Comparison									-	
A Sainfoin 15#/A vs 30#/A B Sainfoin 6" vs	1	+1	ĭ	+						
	1	1	+1	+						
C Interaction seeding rate x row width	7	+	+1	1						
D Sainfoin plus barley vs 24" row sainfoin	ς.								1	+1
E Sainfoin plus "Oahe" vs sainfoin + "Latar"	. 7.				1	+	1	+ 1		
F Sainfoin ++ grass in 6" vs 12" alternate	c									
rows G Interaction grass					7	1	+1	+1		
					1,	+1	+	1		
sainfoin plus grass I Sainfoin + barley &	7	디	7	17	+1	+ 1	+	+1		
others	17	7	ζ.	1	17	1	-	17	4	+4
								-		

Table 3 . Three year summary of sainfoin seeding rate, row spacing and competition influence.

			x Yields		Yield T/A
Entry	Rate #/A	1969	1970	1971	3 yr. x
Sainfoin in 1" rows at 15#/A	15	3.86	2.74	2.81	9.41
Sainfoin in 1' rows at 30#/A	30	4.12	2.27	2.67	9.06
Sainfoin in 6" rows at 30#/A	30	4.18	2.36	2.62	9.16
Sainfoin in 6" rows at 15#/A with Latar at 3#/A	15 + 3	4.13	2.20	3.25	9.58
Sainfoin in 6" rows at 15#/A with Oahe at 6#/A	15 + 6	4.04	2.96	3.12	10.12
Sainfoin in 6" rows at 15#/A	15	3.71	2.22	3.00	8.93
Gainfoin in 12" rows at 15#/A with Hypana barley in 12"				F	
rows at 30#/A	15+ 30	2.16	2.61	3.57	8.34
ainfoin at 15#/A in alternate 12" rows with Latar at 3#/A	15 + 3	2.41	2.89	3.31	8.61
Sainfoin at 15#/A in alternate 12" rows with Oahe at 6#/A	15 + 6	2.46	2.92	3.17	8.55
Sainfoin in 2' rows at 15#/A	15	2.01	2.44	3.26	7.71

ANOVA for individual degrees of freedom for 3 year yields.

D.F.		Mean Square	
-	1969	1970	1971
1	.5329**	.1073	.2730
1	.0100	.1785	.0163
1	.0484	.3691*	.0541
1	.0465	。0595	。1922
1	.0123	.6202**	.0689
1	10.9560**	.4389*	.0138
1	.0182	.5293*	.0001
1	4.0045**	.9453**	1.5313**
1	14.9818**	.0123	1.1323**
3		.0222	.1811
27		.0711	.1320
39			
	1 1 1 1 1 1 1 1 1 3 27	1969 1 .5329** 1 .0100 1 .0484 1 .0465 1 .0123 1 10.9560** 1 .0182 1 4.0045** 1 14.9818**	1969 1970 1 .5329** .1073 1 .0100 .1785 1 .0484 .3691* 1 .0465 .0595 1 .0123 .6202** 1 .019560** .4389* 1 .0182 .5293* 1 .0182 .5293* 1 .4.0045** .9453** 1 .14.9818** .0123 3 .0222 27 .0711

Significant at the .05 level of probability

^{**} Significant at the .01 level of probability

^{1/} Treatment comparison given in Table 2.

Interstate sainfoin variety trial

PROJECT:

Forage Investigations

PERSONNEL:

Leader - A. J. Jarvi

Cooperator - A. E. Carleton

LOCATION:

Northwestern Agricultural Research Center

DURATION:

Planted 1968 through 1971

OBJECTIVES:

Determine the forage yield of regrowth sainfoin types in comparison to the one cut sainfoins and Ladak 65 alfalfa for irrigated and dry-

land hay.

PROCEDURE:

The nurseries were planted in fields Y-4 (irrigated) and F-2 (dryland) in 1968. Plots consisted of 4 rows, 12 feet long in a RCB design with four replications. Harvest area consisted of 24 square feet from the center of each plot. Plots were harvested when regrowth sainfoin types were at the full bloom stage for the harvest and at optimum

bloom for various entries on the second harvest.

RESULTS AND DISCUSSION:

Irrigated - Table 1. No significant differences were obtained in seasons yield in 1971. The variety Persian was the highest in yield. This nursery had a complete ground cover of Kentucky bluegrass which may have masked any yield differences between entries.

Dryland - Table 2. No significant differences were obtained in the 1971 seasons yield. The regrowth line 'Remont' was the highest yielding entry with White (a white flower Eski type) yielding about the same. This trial also had a complete Kentucky bluegrass ground cover and probably contributed a major portion to the yield.

The irrigated four year yields indi-Three Year Summary - Table 3. cate Ladak yielded more than any sainfoin. Of sainfoins under irrigation, the entry Canadian was the highest yielding. Under dryland conditions Ladak Alfalfa was lowest yielding entry over the four year period, and again the sainfoin line Canadian was the better yielding line.

Ks

Irrigated interstate sainfoin variety trial hay yields in T/A Table 1. at 12% moisture.

			Replications				
Variety	Harvest	I	II	III	IV	x	
Eski	1st 8/11 Total	1.99 .45 2.44	1.92 1.26 3.18	1.63 .97 2.60	1.63 1.19 2.82	2.76	
Regrowth	1st 8/ 4 Total	1.71 1.05 2.76	1.65 .82 2.47	2.00 1.23 3.23	1.51 .99 2.50	2.74	
White	1st 8/11 Total	2.14 .22 2.36	1.65 .62 2.27	1.45 .97 2.42	1.86 1.08 2.94	2.50	
Augusta	1st 8/11 Total	1.93 .68 2.61	1.65 .48 2.13	2.33 1.03 3.36	1.60 1.03 2.63	2.68	
Ladak	1st 8/11 Total	1.92 1.19 3.11	2.05 1.19 3.24	2.13 1.60 3.73	1.55 1.19 2.74	3.21	
Canadian	1st 8/11 Total	1.89 1.30 3.19	1.77 .68 2.45	1.96 1.47 3.43	1.20 .51 1.71	2.69	
Persian	1st 8/ 4 Total	2.16 1.41 3.57	1.68 .92 2.60	1.74 1.56 3.30	2.03 1.41 3.44	3.23	

$$CV = \underline{g}\underline{\underline{v}} = 8.5\%$$

ANOVA for irrigated yield trial

Source	D.F.	Mean Square
Varieties	6	.3090 NS
Replications	3	.3949 NS
Error	18	. 1883
Total	27	

Table 2 Dryland interstate sainfoin variety trial hay yields in T/A at 12% moisture.

Harvest			Repl	Replications		
Variety	Date	I	II	III	IV	x
Eski	6/22 8/11 Total	2.40 .77 3.17	1.60 .95 2.55	2.54 .67 3.21	1.27 .47 1.74	2.23
Regrowth	6/22 8/ 4 Total	1.67 .92 2.59	2.66 .73 3.39	2.19 1.29 3.48	1.81 .83 2.64	3.03
White	6/22 8/11 Total	2.26 .80 3.06	2.66 .51 3.17	2.15 .51 2.66	2.66 .51 3.17	3.02
Augusta	6/22 8/11 Total	2.44 .83 3.27	1.01 .36 1.37	2.24 .46 2.70	2.30 .56 2.86	2.55
Ladak 65	6/22 8/11 Total	1.83 1.05 2.88	1.61 .73 2.34	1.61 .84 2.45	1.24 .73 1.97	2.41
Canadian	6/22 8/ 4 Total	2.81 .87 3.68	1.05 1.10 2.15	2.18 .94 3.12	2.10 .87 2.97	2.98
Persian	6/22 8/ 4 Total	2.13 1.31 3.44	1.62 .74 2.36	1.87 .26 2.13	2.90 .56 3.46	2.85

$$CV = \underbrace{s\overline{y}}_{V} = 11.1\%$$

ANOVA for dryland yield trial

D.F.	Mean Square
6	.2414 NS
3	.8950 NS
18	.3832
27	
	6 3 18

Table 3 . Four year summary of irrigated and dryland interstate sainfoin variety trial hay yields in T/A.

	Irriga	ated x		Yield T/A		Dryla	and x		Yield T/A
1968	1969	1970	1971	4 yr. x	1968	1969	1970	1971	4 yr. x
2.13	4.57	2.18	2.76	11.64	1.68	3.26	2.34	2.23	9.51
1.87	4.72	2.27	2.74	11.60	1.75	3.11	1.58	3.03	9.47
1.73	4.19	2.31	2.50	10.73	1.79	2.60	2.20	3.02	9.61
1.53	3.59	1.96	2.68	9.76	1.99	2.09	2.23	2.55	8.86
2.01	4.90	2.66	3.21	12.78	1.62	2.97	1.65	2,41	8.65
2.19	5,00	2.60	2.69	12.48	1.97	3.64	2.19	2.98	10.78
1.61	4.45	2.55	3.23	11.84	1.91	2.82	1.59	2.85	9.17
05) -	.47	N.S.	N.S.		-	.41	.54	N.S.	
-	3.5	9.5	8.5		-	4.8	9.3	11.1	
	2.13 1.87 1.73 1.53 2.01 2.19 1.61	1968 1969 2.13 4.57 1.87 4.72 1.73 4.19 1.53 3.59 2.01 4.90 2.19 5.00 1.61 4.45 05)47	2.13 4.57 2.18 1.87 4.72 2.27 1.73 4.19 2.31 1.53 3.59 1.96 2.01 4.90 2.66 2.19 5.00 2.60 1.61 4.45 2.55 05)47 N.S.	1968 1969 1970 1971 2.13 4.57 2.18 2.76 1.87 4.72 2.27 2.74 1.73 4.19 2.31 2.50 1.53 3.59 1.96 2.68 2.01 4.90 2.66 3.21 2.19 5.00 2.60 2.69 1.61 4.45 2.55 3.23 05) - .47 N.S. N.S.	1968 1969 1970 1971 4 yr. x 2.13 4.57 2.18 2.76 11.64 1.87 4.72 2.27 2.74 11.60 1.73 4.19 2.31 2.50 10.73 1.53 3.59 1.96 2.68 9.76 2.01 4.90 2.66 3.21 12.78 2.19 5.00 2.60 2.69 12.48 1.61 4.45 2.55 3.23 11.84 05)47 N.S. N.S.	1968 1969 1970 1971 4 yr. x 1968 2.13 4.57 2.18 2.76 11.64 1.68 1.87 4.72 2.27 2.74 11.60 1.75 1.73 4.19 2.31 2.50 10.73 1.79 1.53 3.59 1.96 2.68 9.76 1.99 2.01 4.90 2.66 3.21 12.78 1.62 2.19 5.00 2.60 2.69 12.48 1.97 1.61 4.45 2.55 3.23 11.84 1.91 05) - .47 N.S. N.S. -	1968 1969 1970 1971 4 yr. x 1968 1969 2.13 4.57 2.18 2.76 11.64 1.68 3.26 1.87 4.72 2.27 2.74 11.60 1.75 3.11 1.73 4.19 2.31 2.50 10.73 1.79 2.60 1.53 3.59 1.96 2.68 9.76 1.99 2.09 2.01 4.90 2.66 3.21 12.78 1.62 2.97 2.19 5.00 2.60 2.69 12.48 1.97 3.64 1.61 4.45 2.55 3.23 11.84 1.91 2.82 05) - .47 N.S. N.S. - .41	1968 1969 1970 1971 4 yr. x 1968 1969 1970 2.13 4.57 2.18 2.76 11.64 1.68 3.26 2.34 1.87 4.72 2.27 2.74 11.60 1.75 3.11 1.58 1.73 4.19 2.31 2.50 10.73 1.79 2.60 2.20 1.53 3.59 1.96 2.68 9.76 1.99 2.09 2.23 2.01 4.90 2.66 3.21 12.78 1.62 2.97 1.65 2.19 5.00 2.60 2.69 12.48 1.97 3.64 2.19 1.61 4.45 2.55 3.23 11.84 1.91 2.82 1.59 05) - .47 N.S. N.S. - .41 .54	1968 1969 1970 1971 4 yr. x 1968 1969 1970 1971 2.13 4.57 2.18 2.76 11.64 1.68 3.26 2.34 2.23 1.87 4.72 2.27 2.74 11.60 1.75 3.11 1.58 3.03 1.73 4.19 2.31 2.50 10.73 1.79 2.60 2.20 3.02 1.53 3.59 1.96 2.68 9.76 1.99 2.09 2.23 2.55 2.01 4.90 2.66 3.21 12.78 1.62 2.97 1.65 2.41 2.19 5.00 2.60 2.69 12.48 1.97 3.64 2.19 2.98 1.61 4.45 2.55 3.23 11.84 1.91 2.82 1.59 2.85 05) - .47 N.S. N.S. - .41 .54 N.S.

TITLE:

Sainfoin inoculation strains USDA

PROJECT:

MS 756 Forage Investigations

PERSONNEL:

Leader: A. J. Jarvi

Cooperator: A. E. Carleton

LOCATION:

Northwestern Agricultural Research Center

OBJECTIVES:

To determine the effectiveness of six rhizobia strains developed by the USDA, Soil and Water Conservation Service, Beltsville, Maryland, as measured by forage yield of Eski and Hall varieties of sainfoin

at Kalispell.

PROCEDURE:

The study was planted in field R-6c (dryland site) on May 31, 1968. The experimental design was a split-plot with inoculants as main plots and varieties as sub-plots. Plots consisted of five rows with the center row of each plot being inoculated and hand planted with the nursery planter.

The trail was not harvested in 1969 because inoculated rows were obviously less in yield in all cases. Probably due to different methods of seeding than used on border rows.

The center row of each plot was harvested for forage. Yields per 20 ft. of row are converted to tons dry matter per acre.

RESULTS AND DISCUSSION:

No significance was obtained between inoculant strains, sainfoin varieties or the interaction between strains and varieties. Table 1.

A two year summary is presented in Table 2. It appears that none of the strains warrant further testing and there is still a need for an effective sainfoin inoculum.

Table 1 . Yields of Eski and Hall sainfoin when inoculated with six inoculums and non-inoculated, Northwestern Agricultural Research Center at Kalispell in 1971.

	Sainfoin		Replic	ations T/A	1	
Inoculum Strain	Variety	I	II	III	IV	x
I-1 3G2ela	Eski Hall Strain x	1.16 .95	2.32 1.92	.59 1.92	1.52 1.28	1.40 1.52 1.46
I-2 3G2c2	Eski Hall Strain x	2.21 2.02	.59 1.60	2.32 2.13	2.46 2.55	1.90 2.08 1.99
I-3 3Glcl (a)	Eski Strain x	.82 1.60	2.21 1.60	2.32 1.28	2.10 2.99	1.86 1.87 1.87
Non-inoculated check	Eski Hall Strain x	2.57 1.07	1.16 2.02	2.21 1.39	3.28 1.71	2.31 1.55 1.93
I-5 eG2c4	Eski Hall Strain x	1.75 1.28	1.16 1.18	1.75 1.48	2.32 2.88	1.75 1.71 1.73
I-6 3F6g3	Eski Hall Strain x	1.75 .40	1.16 1.28	2.10 1.92	2.32 2.87	1.83 1.62 1.73
I-4 3I7a4	Eski Hall Strain x	1.87 .42	1.05 2.13	1.05 1.18	2.21 1.92	1.55 1.41 1.48

ANOVA for forage yield of Eski and Hall sainfoin inoculum trial.

Source	D.F.	Mean Square
Inoculums	6	.3451NS
Replications	3	1.9132*
Error (@)	18	.3910
Varieties	1	。2016NS
V x I	6	。1951NS
Error (b)	21	.3695
Total	55	

CV (a) =
$$s\bar{y}/\bar{y}$$
 = 18.0% CV (b) = $s\bar{y}/\bar{y}$ = 17.5%

3

Table 2 . Two year summary of yields of Eski and Hall sainfoin when inoculated with six inoculums and non-inoculated. Grown at the Northwestern Agricultural Research Center in 1971.

	Sainfoin		X	Yield T/A
Inoculum Strain	Variety	1970	1971	2 yr. x
I-1 3G2ela	Eski Hall Strain x	1.65 2.19	1.40 1.52	3.05 3.71 3.38
I-2 3G2c2	Eski Hall Strain x	1.97 2.58	1.90 2.08	$\frac{3.87}{4.66}$
I-3 3Glcl (a)	Eski Hall Strain x	2.21 1.47	1.86 1.87	4.07 3.34 3.71
I-4 3 I 7a4	Eski Hall Strain x	1.91 2.01	1.55 1.41	3.46 3.42 3.44
I-5eG2c4	Eski Hall Strain x	1.41 2.21	1.75 1.71	3.16 3.92 3.54
I-6 3F6g3	Eski Hall Strain x	1.43 1.61	1.83 1.62	3.26 3.23 3.25
Non-inoculated check	Eski Hall Strain x	1.69 1.75	2.31 1.55	4.00 3.30 3.85

ANOVA for forage yield of Eski and Hall sainfoin inoculum trial.

Source	D.F.	Mean 1970	Square 1971
Inoculums	6	.4331NS	.3451NS
Replications	3	.5683NS	1.9132*
Error (a)	18	.4543	.3910
Varieties	1	.6953NS	.2016NS
V x I	6	.5130*	.1951NS
Error (b)	21	。1853	.3695
Total	55		

TITLE:

Intrastate Legume Nursery

PROJECT:

Forage Investigations

MS 755

PERSONNEL:

Leader - A. J. Jarvi

Cooperator - A. E. Carleton

LOCATION:

Northwestern Agricultural Research Center

DURATION:

Through 1973

OBJECTIVES:

Evaluate Montana legume selections and commercial legume varieties

for forage production.

PROCEDURE:

Experiment was planted in Field Y-6 on May 15, 1970 in a RCB design within a plot and 24" between adjacant plots. An application of 400 #/A of 0-45-0 preceded seeding. Harvest area consisted of 2' x 20' from the center of each plot. First harvest was made on a uniform date and second and third harvests were made when each entry was at

the optimum harvest stage.

RESULTS AND DISCUSSION:

The yields of the trial are given in Table 1, along with the date of each species harvest. The cicer milkvetch selection PX Bridger significantly out yielded all other entries in the trial at 5.35 T/A on two cuttings. In general the cicer's, trefoils and later single-cut sainfoins were put to a disadvantage by the single cutting date on the first harvest, which was too early for these entries.

The regrowth types of sainfoins furnished three harvests this season but yields per harvest were fairly low. The Creston composite was the lowest yielding entry in the nursery and the low yield was probably due to the early harvest on the first cutting which should have probably been delayed about two weeks. All cicer plots contained a good stand of shepherdspurse at the first harvest. No grass was present in any of the plots this season.

No significant differences were obtained between any of the alfalfa entries or between any of the trefoil entries.

Table 1 . Intrastate legume trial grown at the Northwestern Agricultural Research Center in 1971. Yields in tons/acre at 12% moisture.

	Harvest		Repli	cations		
Variety	Date	I	II	III	IV	x*
PX Bridger Cicer milkvetch	6/23 9/ 3 Total	2.04 3.61 5.65	1.73 3.83 5.56	1.70 3.83 5.53	1.49 3.17 4.66	5.35a
Thor NK alfalfa	6/23 8/19 Total	1.98 2.77 4.75	2.31 2.60 4.91	1.97 2.57 4.54	1.90 2.35 4.25	4.61 b
Regrowth sainfoin	6/23 8/ 4 9/ 3 Total	1.55 1.63 .64 3.82	1.74 1.76 1.00 4.50	1.60 1.84 2.62 6.06	1.78 1.34 .90 4.02	4.60 b
ICA-6 sainfoin	6/23 8/19 Total	2.35 1.54 3.89	2.57 2.04 4.61	2.54 2.20 4.74	2.86 1.96 4.82	4.52 bc
VIVA sainfoin	6/23 8/ 4 9/ 3 Total	1.92 1.63 .81 4.36	1.72 1.50 .92 4.14	2.43 1.67 .92 5.02	1.72 1.26 .58 3.56	4.27 bcd
Eski sainfoin	6/23 8/19 Total	3.34 1.81 5.15	1.90 1.74 3.64	2.63 1.85 4.48	1.97 1.78 3.75	4.26 bcd
Haymor alfalfa	6/23 8/19 Total	2.10 2.26 4.36	1.37 1.99 3.36	2.93 2.42 5.35	1.40 2.46 3.86	4.23 bcd
Ladak 65 alfalfa	6/23 8/19 Total	1.86 2.59 4.45	1.98 2.03 4.01	1.71 2.59 4.30	1.53 2.59 4.12	4.22 bcd
Tana trefoil	6/23 8/19 Total	1.86 1.86 3.72	2.20 2.04 4.24	1.58 1.97 3.55	2.48 1.97 4.45	3.99 bcd
Wivilcex alfalfa	6/23 8/19 Total	2.00 2.24 4.24	1.89 1.57 3.46	1.82 2.03 3.85	2.41 1.81 4.22	3.94 bcd
Persain NK-11 sainfoin	6/23 8/ 4 9/ 3 Total		1.88 1.54 1.01 4.43		1.19 1.30 1.01 3.50	3.87 bcd
NK 3270 sainfoin	6/23 8/ 4 9/ 3 Total					3.87 bcd

	Harvest		Replic	ations		
Variety	Date	I	II	III	IV	x*
Leo trefoil	6/23 8/19 Total	2.16 1.83 3.99	2.06 1.98 4.04	1.69 2.01 3.70	1.48 2.17 3.65	3.85 bcd
Sidney Cicer milkvetch	6/23 9/ 3 Total	1.76 2.22 3.98	1.73 2.14 3.87	1.61 2.10 3.71	1.82 1.62 3.44	3.75 cd
Melrose sainfoin	6/23 8/19 Total	2.80 1.44 4.24	1.23 1.62 2.85	2.36 1.80 4.16	1.48 1.76 3.24	3.62 de
Tretana trefoil	6/23 8/19 Total	1.74 1.87 3.61	1.44 1.90 3.34	1.10 2.28 3.38	1.62 2.22 3.84	3.54 de
Lutana Cicer milkvetch	6/23 9/ 3 Total	1.51 1.87 3.38	1.30 1.83 3.13	1.81 2.62 4.43	1.03 2.17 3.20	3.54 de
Creston composite sainfoin	6/23 8/19 Total	2.13 1.24 3.37	1.08 1.60 2.68	1.53 1.46 2.99	1.42 1.18 2.60	2.91 e

Means followed by the same letter are not significantly different at the .05 level of probability.

$$CV = \frac{s\overline{y}}{\overline{y}} = 6.0\%$$
 L.S.D. (.05) = 0.696 T/A

ANOVA for intrastate legume nursery

Source	D.F.	Mean Square
Varieties	17	1.1520**
Replications	3	0.7158*
Error	51	0.2392
Total	71	

TITLE:

Intrastate Cicer Trial

PROJECT:

Forage Investigations MS 755

PERSONNEL:

Leader - A. J. Jarvi

Cooperator - A. E. Carleton

LOCATION:

Northwestern Agricultural Research Center

DURATION:

Through 1972

OBJECTIVES:

Evaluation of Cicer milkvetch selections.

PROCEDURE:

This trial was planted in 1969 in Field Y-5 in a RCB design with four replications. Harvest area consisted of 2' x 20' from the center of each plot. Yields are presented as T/A at 12% moisture.

RESULTS AND DISCUSSION:

The first harvest on this nursery was complete at the 10% alfalfa bloom stage. This was too early for maximum cicer yeilds and also may have had an effect on reducing second harvest yields. All plots in this nursery were very weedy at the first harvest with shepherdspurse being the predominant weed. Yields are presented in Table 1. All entries yielded significantly less than the Ladak 65 alfalfa check.

Table 1 . Intrastate cicer trial grown on the Northwestern Agricultural Research Center in 1971. Yields in Tons/Acre at 12% moisture.

	Harvest		Replica	ations		
Variety	Date	I	II	III	IV	x
Bridger Cicer milkvetch	6/24 8/23 Total	2.18 1.55 3.73	1.91 1.09 3.00	2.36 .86 3.22	2.36 1.34 3.70	3.41*
Ladak 65 alfalfa	6/24 8/23 Total	3.21 2.63 5.84	2.35 2.69 5.04	2.58 2.66 5.24	3.45 3.49 6.94	5.77 check
Eski sainfoin	6/24 8/23 Total	2.12 1.91 4.03	1.94 1.81 3.75	2.08 2.33 4.41	2.12 1.54 3.66	3.98*
Sidney Cicer milkvetch	6/24 8/23 Total	2.13 1.56 3.69	1.46 1.93 3.39	2.08 1.53 3.61	2.46 1.65 4.11	3.70*
Bozeman Cicer milkvetch	6/24 8/23 Total	2.00 1.42 3.42	1.46 1.33 2.79	1.53 1.20 2.73	1.94 1.45 3.39	3.08*
Pengrift Crown vetch	6/24 8/23 Total	1.63 1.24 2.87	1.91 .95 2.86	2.10 1.35 3.45	1.99 1.27 3.26	3.11*

^{*} Yields significantly less than check at the .05 probability level.

$$CV = \frac{s\overline{y}}{y} = 5.0\%$$
 L.S.D. (.05) = 0.58 T/A

ANOVA for intrastate Cicer trial

Source	D.F.	Mean Square
Varieties	5	4.0372**
Replications	3	.5451*
Error	15	. 1487
Total	23	

Annual Dryland Forages

PROJECT:

Forage Investigations MS 755

PERSONNEL:

Leader - A. J. Jarvi

Cooperator - J. L. Krall

LOCATION:

Northwestern Agricultural Research Center

DURATION:

Undetermined

OBJECTIVES:

Evaluation of given species for annual forage production.

PROCEDURES:

The trail was planted, May 26, 1971 in field P-3 in a RCB design with four replications. Plots consisted of 4 rows 20' long with 12" between rows within a plot and 24" between plots. Harvested area consisted of 2' x 20' from the center of each plot. The field had been cropped to barley the previous year. No fertilizer was added.

RESULTS AND DISCUSSION:

Cool season forage crop yields are presented in Table 1. Unitan barley as a hay crop yield yielded significantly more forage than other entries. One should not directly compare yields in this trial because of the different nutritive values of the different entries. The addition of peas to a cereal for hay resulted in a slight reduction in total yield, not considering the effect on quality.

Warm season forage chop yields are presented in Table 2. Sunflowers yielded significantly more than any other entry. Corn did not make much growth until about July 15th. Probably due to the below normal temperatures. Kernel development on the early corn was in the very early stages at harvest.

6

Table 1 . Cool season annual forage yeidls, grown at the Northwestern Agricultural Research Center in 1971.

	Harvest		Yiel	d in T/A	at 12%			1/
Entry	Date	% DM	I	II	III	Z IV	x	1/
Unitan Hay	8/ 3	27.8	5.12	5.07	4.34	4.17	4.68a	
Mammoth Oats	8/12	24.9	3.93	4.43	4.35	3.85	4.14 h)
Unitan Head Chop	8/23	66.7	4.43	3.98	4.12	3.90	4.11 h)
Mammoth oats & Peas	8/12	25.7	4.49	4.10	3.74	3.82	4.04 h)
Horsford	8/12	33.8	3.97	4.65	4.23	3.19	4.01 h	0
Spring rye	8/12	38.3	4.38	3.38	3.97	3.50	3.81 h	oc
Park oats	8/23	38.2	3.78	3.84	3.96	3.60	3.80 h	C
Triticales	8/23	34.4	3.56	4.42	3.51	3.40	3.72 h	C
Horsford & Peas	8/12	26.2	4.13	3.81	3.61	3.20	3.69 h	ocd
Serra oats	8/12	28.7	3.46	3.73	3.28	3.37	3.46	cd
Serra oats + peas	8/12	27.2	3.49	2.65	3.66	3.66	3.37	cd
Jnitan/H ₂ O	8/23	70.8	3.17	3.58	3.23	2.79	3.19	d
Jnitan Dry Grain	8/27	88.0	2.91	2.83	2.36	2.62	2.68	е
<i>J</i> etch	8/3	10.7	1.33	1.16	.85	.97	1.08	f

Means followed by same letter are not significantly different at the .05 probability level.

$$CV = \frac{SY}{Y} = 4.6\%$$
 L.S.D. (.05) = .45 T/A

ANOVA for cool season annual forage yeilds.

Source	D.F.	Mean Square
Varieties	13	2.9504**
Replications	3	.5560**
Error	39	. 1079
Total	55	

Table 2 . Warm season annual forage yields, grown at the Northwestern Agricultural Research Center in 1971.

	Harvest		Yie.	ld T/A a	12% H)	-1/
Entry	Date	% DM	I	II	III 2	IV	<u>x</u> 1/
Sunflowers	9/1	13.7	6.31	6.25	6.24	6.86	6.42a
Corn 75-90 day	9/1	19.2	4.43	3.81	4.51	4.64	4.35 b
White millet	9/1	23.2	4.41	4.59	4.49	3.09	4.15 b
Corn 90-110 day	9/1	17.8	4.18	3.89	3.30	3.89	3.82 b
Corn 60-65 day	9/1	19.4	3.48	3.73	4.06	3.71	3.75 b
Sorghum x Sudan hybrid	9/1	21.4	2.99	3.18	2.88	3.21	3.07 c
Mini milo	9/1	20.9	2.26	1.89	2.72	1.75	2.16

^{1/} Means followed by same letter are not significantly different at .05 probability level.

CV = 5.4%

L.S.D. (.05) = .64 T/A

ANOVA for warm season annual forage yields

Source	D.F.	Mean Square
Varieties	6	6.8917**
Replications	3	.0386NS
Error	18	.1821
Total	27	

Wetland Forage Trial

PROJECT:

Forage Investigation MS 755

PERSONNEL:

A. J. Jarvi

LOCATION:

Northwestern Agricultural Research Center

DURATION:

Through 1974

OBJECTIVE:

Evaluate species for wet non-alkaline conditions.

PROCEDURES:

The trial was planted on June 1, 1970 in field R-11 in an area with a high water table. A RCB design was utilized with four replications. Plots consist of four rows, 20' long with 12" between rows and 24" between plots. Harvest area consisted of 2' x 20' from the center of

each plot.

RESULTS AND DISCUSSION:

No harvest was taken the year of seeding. Manchar smooth Brome grass was included but no stand emerged. Stands of reed canary, Alsike clover and cicer were very poor. Sainfoin, alfalfa and cicer exhibited a considerable amount of frost heaving in the spring of 1971 and resulted in the loss of some of the stands. Tall wheat was used as a border and was harvested for yield also. Kenmont tall fescue, tall wheat and Garrison were the top yielding entries. Cicer milkvetch was the lowest yielding entry this season and was yellow colored most of the growing season.

Table 1 . Wetland forage trial grown at Northwestern Agricultural Research Center at Kalispell in 1971. Yields in Tons/Acre at 12% moisture.

	Harvest		Replica	tions		-
Variety	Date	I	II	III	IV	x*
Kenmont Tall Fescue	6/10 8/23 Total	3.11 2.78 5.89	3.28 1.47 4.75	3.28 1.18 4.46	3.28 1.67 4.95	5.01a
Tall Wheatgrass	6/22 8/23 Total	3.11 2.10 5.21	3.20 1.75 4.95	2.54 1.31 3.85	2.54 1.07 3.61	4.41ab
Garrison Creeping Foxtail	5/21 8/ 4 Total	2.18 2.25 4.43	2.43 2.49 4.92	2.02 1.83 3.85	2.02 1.32 3.34	4.14ab
Alfalfa, Vernal	6/22 8/23 Total	1.92 1.75 3.67	1.92 1.47 3.39	1.27 1.18 2.45	2.16 1.67 3.83	3.34 bc
Timothy, Hopkins	6/22 8/23 Total	3.34 1.58 4.92	1.74 .56 2.30	1.39 .79 2.18	2.85 .65 3.50	3.23 bc
Reed canary grass	6/22 8/23 Total	.61 1.11 1.72	2.01 1.15 3.16	1.03 .72 1.75	2.11 .83 2.94	2.39 c
Alsike clover	6/22 8/23 Total	.75 1.34 2.09	.88 1.08 1.96	.85 1.20 2.05	.73 1.48 2.21	2.08 c
Sainfoin, Eski	6/22 8/23 Total	1.08 1.14 2.22	1.04 1.03 2.07	.75 .92 1.67	1.62 .73 2.35	2.08 c
Cicer milkvetch, Lutana	8/ 4 Total	2.59	1.49 1.49	1.90 1.90	1.70 1.70	1.92 c

^{*} Means followed by the same letter are not significantly different at the .05 level of probability.

$$CV = \frac{s\overline{y}}{\overline{y}} = 14.0\%$$

L.S.D. (.05) = 1.30 T/A

ANOVA for wetland forage trials

Source	D.F.	Mean Square
Varieties	8	3.9702**
Replications	3	1.3716NS
Error	24	。7952
Total	35	

Small Grain Investigations

PROJECT:

Spring Barley MS 756

YEAR:

1971

PERSONNEL:

Leader - A. J. Jarvi

Cooperators - R. F. Eslick and E. A. Hockett

LOCATION:

Northwestern Agricultural Research Center, Field A-1 (dryland),

Y-1 (irrigated) and G. R. Snyder farm Lake County.

DURATION:

Indefinite

OBJECTIVES:

 To determine the adaptation of new and introduced barley varieties and selections for Western Montana.

MATERIALS AND METHODS:

Standard four row plots with four to five replications in a RCB design were used on varietal trials. Genetic trials consisted of RCB design with nurseries over five entries and Latin square design used with five entry nurseries. Four genetic trials were conducted on dryland and seven under irrigation in cooperation with R. F. Eslick and E. A. Hockett.

No fertilizer was applied to either location. Adequate moisture prevailed under the irrigated location so no additional water was applied.

The World Collection x ms composite cross was grown in space planted rows. This was planted in a block 12 rows wide and bordered by spring wheat.

RESULTS AND DISCUSSION:

Irrigated Intra-state Nursery - Table 1. Yields were satisfactory without supplemental irrigation. No varieties or selections significantly better than the check Ingrid. Thirteen entries yielded significantly less than Ingrid. Differential lodging was observed in this nursery, with Centennial being the most resistant variety in the nursery.

Dryland Intra-state Nursery. Table 2. Four entries yielded significantly more than the check variety Piroline, these being WA3564/Unitan (a Washington Selection), Centennial, Stiff Freja (a Montana Selection) and Zephyr. WA 3564/Unitan warrants further testing as it out yielded Centennial by about 14 bu/a and Piroline by about 30 bu/a. This line is a 6-row type derived from a Unitan cross. Differential lodging occurred under this dryland test and appears to be a different type of lodging than occurred under the irrigated conditions. The dryland location is a sandy loam in which case lodging appears to be primarily the result of a weak crown and/or root system. Under the irrigated location it appears that lodging is primarily related to straw strength.

Off station. G. R. Snyder farm, Lake County. Table 3. This was a very uniform nursery. It was not irrigated during the growing season. Yields ranged less than 14 bu/a with no significant differences between varieties. Centennial exhibited the best lodging resistance in this nursery.

Genetic studies. None of the genetic yield trial. results are included. These will be in the feed grain general report under the leaders Eslick and Hockett. In general, none of the entries in these studies had acceptable level of straw strength to warrent production under either dryland or irrigated conditions here.

About 230 Trisomics were evaluated as to being balanced for specific genetic characteristics. All trisomic plants were harvested and seggregation ratios recorded and forwarded to R. F. Eslick.

Composite Cross. Male sterile plants were harvested from this composite. The mean seed set on these male sterile plants was $58.79\% \stackrel{+}{-} 23.3\%$. A considerable amount of ergot was present on the male-sterile plants. Some selections were made from the composite. These plants were choosen for yield potential and straw strength. All of these plants are F₁'s and reselection will have to be done again in the following generations. All plants should segregate $\underline{ms2}$.

A 10 year summary of yields for the irrigated trials on the station is presented in Table 4 and the corresponding dryland summary in Table 5.

Agronomic data from the irrigated intrastate barley yield nursery grown at the Northwestern Agricultural Research Center, Kalispell in 1971. Field Y-1, RCB design with 5 replications.

Table

16 square feet Plot size: August 18, 1971 Harvest date: May 3, 1971 Planting date:

Meight Heading Height Prev Sev. Plum Lbs/Bu Days Inches % 0-9 % 4 51.0 190.6 39.8 34.0 2.6 89. 4 48.0 176.8 44.6 80.0 2.2 % 4 48.0 176.8 44.6 80.0 2.2 92.8 4 50.5 191.0 37.0 24.0 2.2 92.8 4 50.5 193.8 40.4 34.0 1.6 92.8 4 50.5 193.8 40.4 24.0 3.2 92.8 4 50.5 193.2 40.4 34.0 4.0 92.8 4 50.0 188.0 44.2 34.0 4.0 92.8 4 50.0 184.8 44.2 44.0 4.0 92.8 3 48.0 184.8 41.8 44.0 7.2 93.8 50.0 <td< th=""><th>C. I. or</th><th></th><th></th><th>Test</th><th>Jan. 1 to</th><th>Plant Plant</th><th>Lodging</th><th>bu-</th><th></th></td<>	C. I. or			Test	Jan. 1 to	Plant Plant	Lodging	bu-	
Bu/A Lbs/Bu Days Inches % 0-9	3el. No.	Variety	Yield	Weight	Heading	Height	Prev	Sevo	Plump
601810 Betzes x Domen 60AB1810 116.24 51.0 190.6 39.8 34.0 2.6 6.22666 W32564/Untan 115.29 47.5 194.6 39.8 34.0 2.6 6.22666 W32564/Untan 115.29 47.5 194.6 39.0 6.0 2.4 13796 Primms III 115.29 47.5 193.8 40.4 56.0 2.2 40.0 2.2 131.667 Zephyr 114.64 50.5 193.8 40.4 36.0 2.2 131.667 Zephyr 114.64 50.5 193.8 40.4 36.0 2.2 131.6 13.6 1 111.6 1 50.5 193.8 40.4 36.0 2.2 13.6 13.6 1 10.2 40.0 3.0 3.6 13.6 13.8 13.8 14.8 40.4 36.0 2.2 13.6 13.8 11.6 13.8 13.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8 14			Bu/A	Lbs/Bu	Days	Inches	%	6-0	%
115.99 47.5 118.6 115.99 47.5 118.6 118.6 119.8 115.99 115.94		Betzes x Domen 60AB1810	116,24	51.0	190°6	6	34.0	2°6	9°68
13796 Primms III 115.24 48.0 176.8 44.6 80.0 2.4 13667 Zephyr 114.84 50.5 193.8 40.4 36.0 2.2 13667 Zephyr 114.84 50.5 193.8 40.4 36.0 2.2 1367 Centennial 114.61 50.5 193.6 37.4 36.0 1.6 146.85 Ingrid (check) 114.61 50.5 193.6 37.4 36.0 1.6 146.85 Ingrid x Betzes 106.31 52.0 193.6 37.4 34.0 24.0 3.6 146.81 Ingrid x Betzes 106.31 52.0 193.6 40.4 24.0 3.6 142.1 Unitan x Betzes 104.31 52.0 191.4 40.4 32.0 5.0 142.2 Unitan Extres 104.31 52.0 191.4 40.4 32.0 5.0 142.2 Unitan Extres 104.31 52.0 191.4 40.4 32.0 5.0 142.2 Pet x Pall DB 5-120 101.61 51.5 183.6 41.8 58.0 5.4 172.12 Bet x Pall DB 5-120 101.61 51.5 183.6 41.8 58.0 5.4 172.13 Bet x H Zx Pir Sept 50.2 101.61 191.6 19		WA3564/Unitan	115,99	47.5	184.6	39°2	64.0	7.0	88.4
10083 Ingrid (check) 114,84 51,5 193.8 40,4 36,0 2.2 594			115,24	48.0	176.8	44.6	0°08	2.4	93.8
13667 Zephyz 114.64 50.5 191.0 37.0 24.0 3.2 40669 Semi Smooth Awn Titan 108.66 50.5 191.0 37.0 4.0 406723 Ingrid x Betzes 106.31 52.0 193.2 40.4 24.0 4.0 8553 Stiff Freja 106.31 52.0 193.2 40.4 34.0 4.0 4021 Ingrid x Betzes 106.31 52.0 193.2 40.4 34.0 4.0 4022 Ingrid x Betzes 106.31 52.0 193.2 40.4 32.0 5.2 4023 Ingrid x Betzes 106.31 52.0 193.2 40.4 32.0 5.2 4024 Vantage 102.33 47.5 183.6 41.8 76.0 7.2 7324 Vantage 102.33 47.5 183.6 41.8 76.0 7.2 7325 Exectoides Betzes 10.10.61 51.5 184.6 41.8 58.0 5.4 7326 Exectoides Compana 96.23* 52.5 190.0 28.0 24.0 6.0 19827 Shabet 99.28* 48.5 190.0 28.0 24.0 6.0 19828 Exectoides Compana 93.58* 48.5 190.0 28.0 24.0 6.0 19829 Betzes Bet x HH Zx Pir 7698-62 92.53* 50.5 190.4 41.6 62.0 6.4 19829 Exectoides Compana 90.28* 48.0 180.4 41.6 62.0 6.4 19829 Betzes 88.33* 51.0 180.4 33.8 61.8 7.6 538 Expert 88.33* 51.0 180.4 33.8 62.0 6.4 538 Expert 88.33* 51.0 180.4 39.2 52.0 543 Compana 71.60* 47.0 193.4 52.0 543 Exerct 88.33* 50.1 187.4 39.2 52.2 543 Compana 71.50* 47.0 0.0 1.0 3.4 55.2 543 Exerct 88.33* 50.1 187.4 52.0 2.2 543 Compana 71.50* 47.0 0.0 0.24 52.0 544 Exerct 88.31* 50.1 187.4 52.0 5.2 555 Compana 71.50* 71.7 52.3 52.2 557 Compana 71.50* 71.7 52.3 52.2 558 Exerct 88.53* 50.1 187.4 52.0 52.0 558 Exerct 88.53* 50.1 187.4 52.0 52.0			114.84	51.5	193.8	0	36.0	2.2	92.4
594 Centennial 111.61 50.5 193.6 38.4 8.0 1.6 204723 Ingird x Betzes 108.86 50.5 184.8 44.2 34.0 4.6 204733 Ingird x Betzes 106.94 50.0 188.0 37.4 24.0 3.6 204738 Ingird x Betzes 106.94 50.0 188.0 37.4 24.0 5.2 10421 Unitan 102.73 48.0 188.0 40.4 32.0 5.2 10421 Unitan 102.73 48.0 188.0 47.8 44.0 5.2 7324 Unitan 102.73 48.0 184.8 45.8 44.0 7.2 7324 Unitan 102.73 48.0 184.8 45.8 44.0 7.2 72654 Erectoides Detzes 101.6 5.1 187.0 50.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0		Zephyr	114.64	50°2	191.0	37.0	24.0	3,2	88°0
46669 Semi Smooth Awn Titan 108.86 50.5 184.8 44.2 34.0 4.0 204723		Centennial	111,61	50°2	193.6	38.4	8°0	1,6	96°6
204723 Ingrid x Betzes 108.31 52.0 199.2 40.4 24.0 3.6 3.6 8553 Stiff Freja 106.94 50.0 188.0 170.4 170.2 9.0 108.0 188.0 188.0 170.4 170.2 9.0 102.9 188.0 188.0 170.4 170.0 170.2 9.0 191.4 40.4 40.4 32.0 5.0 104.2 104.3 102.9 47.5 183.6 40.4 32.0 5.2 104.2 104.2 104.2 104.2 102.9 47.5 183.6 41.8 76.0 7.2 104.2 104.2 100.2 183.6 41.8 76.0 7.2 104.2 Exertoides Betzes II 97.83 52.5 187.0 56.8 188.4 41.8 58.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5		Semi Smooth Awn Titan	108,86	50.5	184.8	44.2	34.0	4.0	92.4
853 Stiff Freia 106.94 50.0 188.0 37.4 34.0 6.0 10421 Ingrid x Betzes 106.94 50.0 191.4 40.4 32.0 5.2 10421 Unitan 102.93 47.5 183.6 41.8 52.0 75.0 10421 Vantage 102.73 48.0 184.8 45.8 44.0 4.4 7212 Bet x Pall IB B-120 102.73 48.0 184.8 45.8 44.0 4.4 7554 Exectoides Betzes II 96.46* 51.0 193.6 40.0 60.0 5.4 69942 Pale Green Betzes 96.46* 51.0 193.6 40.0 60.0 6.2 695801 Exectoides Compana 93.58* 48.0 186.4 40.6 60.0 6.2 1334 Bet x HH 2x Fir 7698-62 22.53* 50.5 186.4 34.4 60.0 6.4 1334 Betzes 88.63* 51.5 186.4 30.4 62.0 <td>200</td> <td>Ingrid x Betzes</td> <td>108,31</td> <td>52°0</td> <td>193.2</td> <td>0</td> <td>24.0</td> <td>3.6</td> <td>86.4</td>	200	Ingrid x Betzes	108,31	52°0	193.2	0	24.0	3.6	86.4
204738 Ingrid x Betzes 104,31 52.0 191.4 40.4 32.0 5.2 10421 Unitan 102.73 48.0 184.8 47.8 70.0 7.2 10421 Unitan 102.73 48.0 184.8 45.8 47.0 77.0 102.73 48.0 184.8 45.8 44.0 17.2 102.73 48.0 184.8 45.8 44.0 17.2 102.73 48.0 184.8 45.8 44.0 17.2 102.73 48.0 184.8 45.8 44.0 17.2 102.73 48.0 184.8 52.0 184.8 52.0 2.8 13827 Erectoides Betzes II 97.83* 52.5 187.0 28.0 24.0 6.0 13827 Shabet 99.38* 50.5 189.4 41.6 12.0 5.0 13828 Erectoides Compana 93.58* 50.5 189.4 41.6 12.0 5.0 1334 Bet x HH 2x Pir 7698-62 92.53* 50.5 189.4 41.6 72.0 5.0 1338 Betzes 89.15* 51.0 189.8 38.6 42.0 7.0 1330 Freja 89.15* 51.0 189.8 38.6 62.0 6.4 15216 Nordic 75.42* 48.5 186.4 39.8 64.8 7.6 15216 Nordic 77.34* 40.0 186.4 33.2 52.2 187.4 54.0 66.0 7.8 15216 Ariety ms 773.4* 0.0 103.3** 771.** 28339.0** 20.7** Varieties yielding significantly less than the check (.05) L.S.D. (.05) 13.84		Stiff Freja	106,94	50°0	188.0	0	34.0	6.0	77.2
10421 Uniten 102.93 47.5 183.6 41.8 76.0 7.2 7224 Variatee 102.73 48.0 184.8 45.8 44.0 7.2 7254 Et x Pail DB 5-120 101.61 48.0 184.8 45.8 44.0 5.8 44.0 72554 Erectoides Betzes II 97.83* 52.5 187.0 36.8 52.0 5.8 45.0 72654 Erectoides Compana 96.23* 48.5 190.0 58.0 58.0 73801 Erectoides Compana 96.23* 48.5 190.0 58.0 58.0 58.0 73802 Shabet		Ingrid x Betzes	104,31	52°0	191.4	40°4	32.0	5.2	93°6
7324 Vantage 7212 Bet x Pall DB 5-120 101.61 51.5 184.6 45.8 44.0 4.4 7213 Bet x Pall DB 5-120 101.61 51.5 184.6 41.8 58.0 5.4 7214 Dicken 7215 Bet x Pall DB 5-120 101.61 51.5 184.6 41.8 58.0 5.4 7215 Pale Green Betzes 1 97.83 52.5 197.0 56.0 60.0 60.2 695801 Erectoides Compana 96.23* 48.5 190.0 28.0 24.0 60.0 60.2 13324 Bet x HH 2x Pir 7698-62 92.53* 50.5 186.4 40.8 68.0 60.0 7330 Freja Bet x Erbet 88.53* 51.0 186.4 38.8 42.0 7.0 730 Freja Bet x Pir IB 6-3 88.53* 51.0 185.4 99.0 68.4 7215 Bet x Pir IB 6-3 88.53* 51.0 185.4 39.8 61.8 7.6 61.8 7.2 152.0 7.2 188.4 47.0 188.4 39.8 61.8 7.6 61.8 7.6 61.8 7.2 152.0 7.2 188.4 47.0 188.4 39.8 61.8 7.6 61.8 7.		Unitan	102,93	47.5	183.6	41.8	0°92	7.2	
72132 Bet x Pall DB 5-120 101.61 51.5 184.6 41.8 58.0 5.4 72654 Erectoides Betzes II 97.83* 52.5 187.0 36.8 22.0 2.8 695801 Erectoides Compana 96.23* 48.5 190.0 28.0 24.0 60.0 6.2 13827 Shabet 193.58* 48.0 186.6 40.8 68.0 24.0 5.0 13334 Bet x HH 2x Pir 7698-62 92.53* 50.5 186.4 38.8 68.0 6.0 13334 Bet x HH 2x Pir 7698-62 92.53* 51.0 186.6 40.8 68.0 6.0 13335 Bet x HH 2x Pir 7698-62 92.53* 51.0 186.4 34.4 64.0 6.0 1326 Erbet 88.53* 51.0 185.4 34.4 64.0 6.0 1526 Nordic 88.53* 51.0 185.4 37.0 66.8 15216 Nordic 88.53* 51.0 186.4 33.8 61.8 7.6 15216 Nordic 75.42* 48.5 187.2 43.0 77.0 6.8 15216 Varieties yielding significantly less than the check (.05) Varieties Yelding significant at the 0.01 level 13.84 0.0 0.0 0.24 2.10 2.10 20.16 21.40 ** significant at the 0.01 level 13.84 0.0 1.22 2.31 29.48 3.12 ** significant at the 0.01 level		Vantage	102°73	48.0	184.8	45.8	44.0	4.4	92.0
72654 Erectoides Betzes II 97,83* 52.5 187.0 36.8 22.0 2.8 699422 Pale Green Betzes 96,23* 48.5 193.6 40.0 60.0 6.2 6.2 699422 Shahet 96,23* 48.5 190.4 41.6 72.0 5.8 6.0 6.0 6.2 13827 Shahet 93,58* 48.0 186.6 40.8 68.0 60.0 6.0 1334 Bet x HH 2x Pir 7698-62 90,28* 48.5 190.4 41.6 72.0 5.0 6.0 6.0 6.0 6.3 88.5 88.5 89.5 89.5 89.5 89.5 89.5 89.5			101,61	51.5	184.6	41.8	58.0	5.4	
699422 Pale Green Betzes 96.46* 51.0 193.6 40.0 60.0 6.2 695801 Exectoides Compana 96.23* 48.5 190.0 28.0 24.0 2.8 1327 Shabet 93.58* 48.0 186.6 40.8 68.0 24.0 5.0 1334 Bet x HH 2x Pir 7698-62 92.53* 50.5 186.4 38.8 42.0 7.0 1335 Exterior 88.53* 51.0 189.8 38.8 42.0 7.0 1340 Freja 89.15* 51.0 189.8 38.6 62.0 6.4 1526 Piroline 88.53* 51.0 185.4 39.8 61.8 7.6 15216 Nordic 75.42* 48.5 187.2 43.0 74.0 6.8 15216 Nordic 75.42* 48.5 187.2 43.0 74.0 6.8 15216 Nordic 75.42* 48.5 187.2 43.0 74.0 6.8 15216 Nordic 75.42* 48.5 187.2 83.0 74.0 6.8 15216 Nordic 75.42* 67.0 10.0 103.9 71.7 7 8839.0 74.0 6.8 12.50 (0.5) 1.0 0.0 1.0 0.2 4 2.10 20.16 21.40 1.50 (0.5) 1.0 0.0 1.0 0.0 1.0 0.2 4 2.10 20.16 21.40 1.50 (0.5) 1.0 0.0 1.0 0.0 1.0 0.2 4 2.10 20.16 21.40 1.50 (0.5) 1.0 0.0 1.0 0.0 1.0 0.2 4 2.10 20.16 21.40 1.50 (0.5) 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.2 4 2.10 20.16 21.40		Betzes	97.83*	52.5	187.0	36.8	22.0	2.8	86.8
695801 Erectoides Compana 96.23* 48.5 190.0 28.0 24.0 2.8 13827 Shabet 93.58* 50.5 199.4 41.6 72.0 5.0 10568 Dickson 93.58* 50.5 1480.4 41.6 72.0 5.0 5.0 10568 Dickson 93.58* 48.0 1480.4 34.4 41.6 72.0 5.0 5.0 13334 Bet x HH 2x Pir 7698-62 92.53* 51.0 180.4 34.4 64.0 6.8 6.4 63.8 13826 Erbet 88.63* 51.5 176.0 35.4 99.0 6.8 6.8 13826 Erbet 88.63* 51.0 185.4 39.8 61.8 7.6 1516 Nordic 88.53* 51.0 185.4 39.8 61.8 7.6 1516 Nordic 75.42* 48.5 180.0 186.4 33.2 35.2 5.20 7.8 1516 Nordic 75.42* 48.5 180.0 180.2 180.2 33.2 52.2 5.20 7.3 12.0 0.0 103.9 17.1 187.4 23.1 29.48 33.12 12.0 0.0 0.24 2.10 20.16 21.40 13.84 0.0 1 1.28 2.3 1 29.48 33.12 1.28.5 (.05)	0200		96°46*	51.0	193.6	40.0	0°09	6.2	84.6
13827 Shabet 93.58* 50.5 189.4 41.6 72.0 5.0 6.0 10968 Dickson 93.58* 48.0 186.6 40.8 68.0 6.0 6.0 1334 Bet x HH 2x Pir 7698-62 92.53* 50.5 186.4 40.8 68.0 6.0 6.0 7.0 7.0 7.1 6.0 6.9 6.0 6.0 7.1 6.0 6.0 6.0 7.1 6.0 6.0 6.0 7.1 6.0 6.0 6.0 6.0 7.1 6.0 6.0 6.0 7.1 6.0 6.0 6.0 6.0 7.1 6.0 6.0 6.0 7.1 6.0 6.0 6.0 7.1 6.0 6.0 7.1 6.0 7.	-		96.23*	48.5	190.0	28.0	24.0	2°8	0°96
10968 Dickson 1334 Bet x HH 2x Pir 7698-62 92.53* 50.5 186.4 38.8 42.0 7.0 1334 Bet x HH 2x Pir 7698-62 92.53* 50.5 186.4 38.8 42.0 7.0 1334 Bet x HH 2x Pir 7698-62 92.53* 50.5 186.4 38.8 42.0 7.0 13826 Erbet 13826 Erbet 13826 Erbet 14382 Bet x Pir IB 6-3 88.63* 51.0 189.8 38.6 62.0 6.8 15218 Nordic 15216 Nordic 15216 Nordic 15216 Nordic 15216 Nordic 15216 Nordic 15216 Nordic 15438 Compana Varieties yielding significantly less than the check (.05) Table 187.4 39.2 52.2 5.20 Table 187.4 39.2 52.2 5.20 Table 187.4 39.2 52.2 5.20 Table 187.4 39.2 52.0 6.2 Table 187.4 39.2 52.2 5.20 Table 187.4 39.2 52.0 6.2 Table 187.4 39.2 52.2 5.20 Table 187.4 39.2 52.2 5.20 Table 187.4 39.2 52.0 6.2 Table 187.4 39.2 52.0 5.20 Table 187.4 552.9 6.2 Table 187.4 50.0 0.0 0.24 5.31 5.9.48 3.12 Table 187.4 552.9 5.31 59.48 3.12		Shabet	93°28*	50°2	189.4	41.6	72.0	5°0	87.2
1334 Bet x HH 2x Pir 7698-62 92.53* 50.5 186.4 38.8 42.0 7.0 7130 Freja 89.28* 48.5 190.4 34.4 64.0 6.6 6398 Betzes 89.15* 51.0 189.8 38.6 62.0 6.4 9558 Piroline 88.53* 51.0 186.4 37.0 66.0 6.8 15216 Nordic 77.42* 48.5 187.2 43.0 74.0 6.8 5438 Compana 77.40* 47.0 184.2 33.2 93.6 88.8 Varieties yielding significantly less than the check (.05) Ercor ms		Dickson	93°28*	48.0	186.6	40.8	68°0	0°9	77.8
7130 Freja 90.28* 48.5 190.4 34.4 64.0 6.6 6.9 6.39 Betzes 89.15* 51.0 189.8 38.6 62.0 6.4 13826 Erbet 88.63* 51.5 176.0 35.4 99.0 6.8 6.4 99.0 95.8 Piroline 88.53* 51.0 185.4 37.0 66.0 7.8 72129 Bet x Pir IB 6-3 83.48* 49.0 186.4 37.0 66.0 7.8 15.16 Nordic 75.42* 48.5 187.2 43.0 74.0 6.8 5.3	~	2x Pir	92°23*	50°2	186.4	38°8	42.0	7.0	79.2
6398 Betzes		Freja	90°28*	48.5	190°4	34.4	64.0	9°9	69°5
13826 Erbet 88.63* 51.5 176.0 35.4 99.0 6.8 9558 Piroline 88.53* 51.0 185.4 39.8 61.8 7.6 72129 Bet x Pir IB 6-3 83.48* 49.0 186.4 37.0 66.0 7.8 15216 Nordic 5438 Compana Varieties yielding significantly less than the check (.05) Variety ms Error ms CV % sy/Y L.S.D. (.05) ** significant at the 0.01 level 9558 Firo		Betzes	89 ° 15 *	51.0	189.8	38°6	65.0	6.4	84,6
9558 Piroline 88.53* 51.0 185.4 39.8 61.8 7.6 7.6 72129 Bet x Pir IB 6-3 83.48* 49.0 186.4 37.0 66.0 7.8 72129 Bet x Pir IB 6-3 83.48* 49.0 186.4 37.0 66.0 7.8 75.42* 48.5 187.2 43.0 74.0 6.8 8.8 75.42* 48.5 187.2 43.0 74.0 6.8 8.8 77.60* 47.0 184.2 33.2 93.6 8.8 8.8 74.0 184.2 33.2 93.6 8.8 8.8 8.8 74.0 184.2 33.2 93.6 8.8 8.8 8.8 8.8 773.4** 0.0 103.9** 771.7** 2839.0** 20.7** Error ms 4.97 0.0 0.0 1.0 2.4 2.10 20.16 21.40 1.0 0.0 1.28 2.31 29.48 3.12 4.8 significant at the 0.01 level		Erbet	88°63*	51,5	176.0	5	0°66	6.8	82.0
72129 Bet x Pir IB 6-3 83.48* 49.0 186.4 37.0 66.0 7.8 15.16 Nordic 75.42* 48.5 187.2 43.0 74.0 6.8 8.8 5438 Compana 71.60* 47.0 184.2 33.2 93.6 8.8 8.8		Piroline	88°23*	51.0	185.4	9		7.6	77.6
15216 Nordic 75.42* 48.5 187.2 43.0 74.0 6.8 543.8 Compana 71.60* 47.0 184.2 33.2 93.6 8.8 8.8 Varieties yielding significantly less than the check (.05)		Bet x Pir IB 6-3	83.48*	49.0	186.4	70	0°99	7.8	0°89
Varieties yielding significantly less than the check (.05) ** Varieties yielding significantly less than the check (.05) ** Variety ms Variety ms Error ms CV % sy/y Lo.S.D. (.05) ** significant at the 0.01 level Varieties than the doon of the check (.05) 12.6.* 47.0* 4	100	Nordic	75.42*	48.5	187.2	30	4°	0	83.0
yielding significantly less than the check (.05) 20.1 187.4 39.2 52.2 5.20 773.4** 0.0 103.9** 71.7** 2839.0** 20.7** 3.4 552.9 6.2 3.4 552.9 6.2 3.4 552.9 6.2 3.4 552.9 6.2 3.8 \$\frac{3}{2}\$\$ (.05) 3.1 29.48 3.12		Compana	71.60*	0	4	3	3°	0	84°6
99.3 50.1 187.4 39.2 52.2 5.20 773.4** 0.0 103.9** 71.7** 2839.0** 20.7** 122.0 0.0 1.0 3.4 552.9 6.2 4.97 0.0 0.24 2.10 20.16 21.40 5) 13.84 0.0 0.24 2.10 20.16 21.40 cant at the 0.01 level	Varieti	yielding significantly		(30°)					
773.4** 0.0 103.9** 71.7** 2839.0** 20.7** 122.0 0.0 1.0 3.4 552.9 6.2 4.97 0.0 0.24 2.10 20.16 21.40 5) 13.84 0.0 1.28 2.31 29.48 3.12 cant at the 0.01 level		ı×	99°3	50.1	187.4	39.2	0	5.20	85.8
122.0 0.0 1.0 3.4 552.9 6.2 4.97 0.0 0.24 2.10 20.16 21.40 5) 13.84 0.0 1.28 2.31 29.48 3.12 cant at the 0.01 level		Variety ms	773.4**	0°0	103.9 **	71.7**	0	20.7**	280°2**
05) 4.97 0.0 0.24 2.10 20.16 21.40 13.84 0.0 1.28 2.31 29.48 3.12 icant at the 0.01 level		Error ms	122.0	0°0	1.0	•	52°	6,2	54.3
05) 13.84 0.0 1.28 2.31 29.48 3.12 icant at the 0.01 level		\/\s\%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4.97	0.0	0.24	-	0	21,40	3.84
nt at the 0.01 level		T.S.D. (205)	13.84	0°0	1.28	0	0	3,12	9.24
		** significant at the 0.01 l	evel						Ks AJC

Agronomic data from the dryland intrastate barley yield nursery grown at the Northwestern Agricultural Research Center, Kalispell, 1971. Field A-1, RCB design with four replications. 2 ° Table

Harvest date: August 19, 1971

Planting date: April 29, 1971

16 sq. ft.

Size of plot:

TOT			Test	Jan. 1 to	Plant	Lodging		
TO TO LOS	Variety	Yield	Weight	Heading	Height	Prev。	Sev。	Plump
OUT OTHER		Bu/A	Lbs/Bu	Days	Inches	%	6-0	%
220012 111	WA3564 /IInitan	97,91	50°5	178.25	34.50	25,00	1,75	95,25
WA 042000	Contennial	83.72*	50.0	192.25	40	34.75	2.00	91,00
	A+1+6 Freia	82,21	51.0	185,25	33,25	32,25	1,00	83.00
		82,18*	52.5	190,00	33°20	00°	00°	83°00
	Initan	78,53	49.5	183.00	39°00	0	4.50	90°52
	Ret x Pall DB 5-120	77,53	52°0	183,50	38°20	67°20	5°52	82.75
		77,21	51.0	175,25	45°00	42,25	2,50	88,25
V	Betzes x Domen 60AB1810	46°09	51.0	188,25	36°15	00°09	2,50	82.75
	Semi Smooth Awn Titan	75.84	48.5	181,75	40°20	62,50	5°20	90°75
	Yukon	73.62	49.5	183.75	45°75	67,25	3,25	91,75
3351	Dekan	73.43	52°0	182,75	33°15	00°66	6,25	84.50
	7 E	72,84	51.0	188。75	32,50	27,50	3°20	
	Bet x Pir IB 6-3	72°77	53.0	184.50	36°15	59°20	2°20	81,50
C	Tudrid x Betzes	72.62	52.5	192,50	34°20	22°20	° 75	
	Betzes	72.52	51.0	186.75	37,25	94°52	5,25	74.25
	Early Carlsberg II	70.34	49.0	178.50	33°12	95°00	5°20	93.50
C		70.02	53°5	192,25	36.00	0	1,00	87.00
	Bet x HH 2x Pir 7698-62	69°80	51.5	184,50	36.00	42.50	2,75	79.50
		68,37	49.0	185,50	37,25	80°00	00°9	2
	Diroline (check)	67,68	53.0	184,25	36,75	32°00	07	91°20
		65.43	49.0	175.00	31,50	96°15	0	77,25
	North	64.99	52.0	182,25	44.75	39°12	1,50	86.50
(NOT OF THE POPULATION	63.96	52.0	192,00	35°75	57,50	4.25	26°00
	Pare Green Deces	61.86	46.5	188,25	25.00	00°66	4.75	00°06
٥		61.55	52.0	185,50	32°75	77.25	4.25	74.50
MI /2654		59.80	49.0	181,00	32°75	6	7.25	0
CI 5438	Compana	58.64	48.5	181,50	33°00	00°66	00°/	30°13
* Varietie	Varieties vielding significantly more	than the che	check.					L
		72,3	50.7	184.7	35.9	59.1	3.7	157.4**
	X X X X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	291,1**	000	94.6**	70.9	603.5	20.1	49.5
	am Instruct	88°2	000	200	2,5	34.55	2°02	68°6
	1. S D - 05	13,21	000	1°38	2,54	20°17	19.74	4.14
	N/200 00 00 00 00 00 00 00 00 00 00 00 00	6.50	000					
	<pre>cv % sy/1 ** significant at the 0.01 level</pre>	level						JJ 1
								5

Table 3. Agronomic data from the off station barley nursery grown at the G. R. Snyder farm, Lake County in 1971. RCB design with four replications.

Planting date: May 5, 1971 Harvest date:

August 26, 1971

Plot size:

16 sq. ft.

C. I. or			Test	Plant	Lodg	ing	
Sel. No.	Variety	Yield	Weight	Height	Prev.	Sev.	Plump
		Bu/A	Lbs/Bu	Inches	%	0-9	%
CI 10421	Unitan	95.28	44.0	37.75	96.75	4.75	88.50
CI 13827	Shabet	95.28	49.5	34.00	92.00	4.00	88.25
WA 642866	WA3564/Unitan	92.22	45.5	33.75	99.00	1.25	94.50
CD 5914	Centennial	91.47	49.0	30.25	.00	.00	97.00
CI 6398	Betzes	89.65	51.5	33.25	94.50	5.00	89.75
CI 11868	Vanguard	88.72	53.0	33.00	89.50	1.50	95.25
CI 13667	Zephyr	88.59	51.5	29.75	49.50	.50	92.50
ID 601810	Betzes x Domen 60AB1810	85.37	51.5	32.25	39.75	。50	91.00
CI 9558	Piroline	82.43	52.5	33.25	64.50	1.25	95.50
CI 10083	Ingrid	81.37	51.5	32.00	44.75	.50	96.25
	x	89.0	49.9	32.9	67.0	1.9	92.8
	Variety ms	93.6NS	0.0	19.5**	4371.4**	14.5**	43.3**
	Errors ms	93.6	0.0	2.9	1140.0	0.5	9.4
	CV % sy/y	5.43	0.0	2.57	25.19	17.44	1.65
	L.S.D05	14.04	0.0	2.45	48.99	.97	4.44

^{**} significant at 0.01 level

NS not significant at the 0.05 level

Summary yields for irrigated intrastate and station yield nursery grown on the Northwestern Agricultural Research Center, Kalispell, Montana from 1960 thru 1971. Table 4 .

	C.I. or											Sta。	% of
Variety	State #	1960	1961	1962	1965	1966	1967	1968	1969	1970	1971	Yrs。	Ingrid
Betzes x Domman	ID601810										116.2	7	101
WA3564/Unitan	WA642866										116.0	٠,	101
Primus II	CI 13796									87.8	115.2	٠,	107
Centennial	CD 5914							106.6	106.9	76.0	111.6	1 4	106
Semi-Smooth awn Titan	MT 46669								91.4	92.1	108.9	* ~	00
Zephyr	CI 13667						120.5	95.0	110.8	68.7	114.6	י ע	104
Unitan	CI 10421	73°0	80.4	76.4	84.4	8006	128.4	98°4	92.1	80.0	102.9	10	100
Vantage	CI 7324	52°8	71.5	78°2	101,6	67.8	119.2	90°3	0°96	87.4	102,7	10	96
Ingrid	CI 10083	68°8	8006	70°8	95.0	88°9	11107	80°6	109,3	75.0	114.8	10	100
Ingrid x Betzes	MT204738							95°2	80°8	66,1	104.3	4	91
Ingrid x Betzes	MT204723							70°7	91.9	75.2	108,3	4	16
Firoline	CI 9558	72.4	78°7	72.0	95°9	87.3	108.8	93.3	85,3	64.8	88°5	10	94
Stiff Freja	MT 8553									61.2	106.9	2	88
Betzes x HH 2x							109.2	74.5	103.8	70.1	92°2	2	92
Betzes x Pall D	MT 72132								82,1	62.4	101,6	e	82
Pale Green Betzes	MT699422									62.0	96.5	2	84
Shabet	CI 13827								80.4	67,2	93°6	m	81
Freja				71.1	77.8	79°3				63.0	90°3	. 10	16
Erectoides Betzes	MT 72654							74.9	79°9	58°2	97.8	4	82
Betzes	CI 6398	65.0	66°99	73.0	88°2	9°29	104.7	63.2	82.7	66,1	89.2	10	2 0
Erectoides Compana	MT695801									55.4	66.2	9	0 0
Dickson	CI 10968				76.8	6009			7	66 7	2000	u t	000
Erbet	CI 13826					,	01	5	1 0 7 0 7 0	2 50	0000	חו	80 0
Betzes x Piroline IB	MT 72129						*	2007	10°4	0	00000	n r	85
Nordic	CI 15216										0000	٠,	/3
Compana	CT 5438	65.4	16.0	71 2	200		4	,	0	(10°4	7	99
		4,000	4000	707/	100/	0000	85.5	63.4	72,3	29,9	71.6	10	74

Summary of yields for dryland intrastate and station yield nurseries grown on the Northwestern Agricultural Research Center, Kalispell, Montana from 1960 thru 1971. Table 5 .

Variety	-											Sta	% of
T	State #	1960	1961	1964	1965	1966	1967	1968	1969	1970	1971	Yrs。	Piroline
WA3564/Unitan	WA642866										97°8	-	145
Stiff Freja	MT 8553									9°68	82.2	2	117
Centennial	CD 5914							101,4	64.3	94.9	83.7	4	117
Primus II	CI 13796									84.7	77.2	2	111
Zephyr	CI 13667						6°09	94°8	60°5	93°7	82.2	2	112
Freja	CI 7130			9°29	91,4	71.9				83°7	72.8	2	104
Betzes x Domman	ID601810										76.1	7	112
Yukon	KK 1									83°2	73.6	2	107
Ingrid x Betzes	MT204723								62°7	87.5	72.6	m	113
Betzes x HH 2x	CI 13334						8009	101,6	96,95	92°7	8°69	2	109
Unitan	CI 10421	20°0	37.9	65°2	80°4	72.6	60°7	.90°1	64.5	86.2	78.5	10	101
Ingrid x Betzes	O.I								58°2	0°06	70°0	n	
Betzes x Pir IB	MT 72129										72.8	~	7-
Piroline	CI 9558	46°9	54,1	75.3	80°8	69°1	58°3	96°2	50.4	78°1	67.3	10	
Betzes	CI 6398	46,1	31,6	61.7	73°2	6°69	56°2	90°4	76.4	72.0	72.5	10	96
Early Carlsberg	MT 73481									75.0	70°3	2	66
Erectoides Betzes	MT 72654							94°8	57.6	80°5	61.6	4	100
Semi-Smooth awn Titan									43.9	82°6	75.8	3	103
Shabet	CI 13827								57.8	73.4	68,4	Э	101
Pale Green Betzes	MT6									73,3	64.0	2	94
Betzes x Pall DB 5-120	M 7								43,1	74.0	77.5	e	66
Dekap	CI 3351	52,8	45.7	26.8	72.5	56°2	52.4	86.7	53.8	74.8	73.4	10	92
Caribou	CI 14005										65.4	۲	97
Erbet	CI 13826						53°3	85.1	66,3	6°99	59,8	2	94
Nordic	CI 15216								,		65.0	1	96
Compana	CI 5438	45.5	34.9	57.1	79°8	65°9	58°5	89.1	44.9	66.2	58°6	10	88
Erectoides Compana	MT695801									9°69	61.9	^	06

TITLE:

Winter Barley Trials

PROJECT:

Small Grains Investigations MS756

PERSONNEL:

A. J. Jarvi, R. F. Eslick, Cooperator

LOCATION:

Northwestern Agricultural Research Center, Field R 6a

DURATION:

Indefinite

OBJECTIVES:

- Evaluate adaptability of winter barley varieties developed outside of Montana.
- Recycle composite cross bulk populations to improve winter survival in the population and to select agronomically desirable types for possible new varieties.
- Establish a hybrid system in winter barley based on the balanced tertiary trisomic system.

PROCEDURES:

General - All winter barley plots were grown under dryland conditions following a fallow season. Fertilization consisted of 200#/A of 16-16.

Uniform Winter Barley Yield Nursery consisted of four row plots in a RCB design with four replications. The Uniform Winter Hardiness Nursery consisted of single row plots, 12 feet long with two replications. Both nurseries were planted on September 15, 1970.

Composite cross material was planted in two foot rows at eight pounds per acre on September 14, 1970.

RESULTS AND DISCUSSION:

Agronomic data for the Uniform Yield nursery are presented in Table
1. The fourth replication of this nursery was lost to pocket gopher damage. Luther
(119.1 bu/a), Alpine (114.7 bu/a) and Schuyler (113.4 bu/a) were the top three yielding varieties. Both Luther and Schuyler have better lodging resistance than Alpine.
In general, this nursery was severely infected with scald with readings presented in
Table 1. No ergot was observed in any of the winter varieties.

Winter survival data of the winter hardiness nursery are presented in Table 2. This nursery was not harvested for yield.

The composite cross (world collection x ms1) was harvested on weekly intervals for four weeks. Data obtained from the four harvest dates are listed below:

	% Seed Set	on 100 Head Samples	
Harvest Date	Mean	Standard Error	Ergot
July 12	72.1%	10.2%	One head observed with honeydew.
July 19	7 7.8%	17.5%	Several plants with honeydew, no sclerotia.
July 26	76.3%	21.3%	First few sclerotia present.
August 2	60.7%	31.0%	Still less than 1% sclerotia.

The first harvest date was made when seed on the early tillers was in the soft dough stage. Ergot infections this season were very low in the winter barley trials.

None of the seed which was irradiated in 1970 to produce translocations grew at Kalispell this last season due to late planting, but a sizable increase was obtained in Arizona by Dr. R. T. Ramage. Seed from this increase was planted in 1971.

Some selections were made from the composite in 1970 and the evaluation of some of the more desirable types is to be continued in 1971-72. Also about 60 more selections were made in 1971 from the composites.

Some material which survived at Havre in 1970-71 was harvested and is currently being increased at Kalispell. This material is possibly from a different composite, may be segregating ms2.

111

Uniform Winter Barley Mursery (Hardy Varieties) for 1970-71, Northwestern Agricultural Research Center, Kalispell. Field R-6, harvested July 26, 1971. Table

	ů ů	Winter Surv.	Yiel	eld(by re	d(by replications)	s) B/A	Test	Date	Ht	Lod	Lodaina	
Variety	No°	%	П	II	III		Wto	Headed	In。	38	Sev。	Scald
Luther	13340	73	116.5	112.2	128.6	119.1	49.5	162	40	7	7	r 7
Alpine (check)	9478	80	114.5	118,1	111.4	114.7	49.5	162	48	87	4.7	, a
Schuyler	11887	09	88.4	116.4	135.5	113.4	51,0	151	35	33		0 0
OAC WB41-7-1	13873	57	113.8	98°2	119.6	110.6	45.5	152	36	0	90	2 6
No.Y. 6005-19		57	109.2	100,9	115.0	108.4	45.0	147	34	0	0	ر د د د د
Hudson	8067	29	99 ° 4	104.9	117.9	107.4	50°5	148	40	09	1,3	2
N.Y. 6005-18		09	107.9	100.6	113.2	107.2	51.0	149	37	27	1.7	2,4
Lakeland	13734	30	107,5	97.6	115.0	106.7	48.0	150	34	0	0	, r
N.Y. 6005-15		57	102.0	102,4	103.1	102.5	53.0	149	38	0	0	2
		73	112.8	90°6	96°6	100.0	43.0	147	41	57	2.7	, t
		20	104.6	88°6	6°86	97.4*	46.0	146	32	0	0	2 2
Purd。 5294A7-14-4		83	90°5	92.9	103.2	95.4 *	44.5	147	31	13	1.0	3,6
Olympia	6107	87	88°5	102.4	88°9	93.2	47.0	149	45	87	5,3	2.8
	13855	43	77.8	91.2	108.6	92.5	49.0	149	35	23	2.7	
Mich. 62-448-24		80	96.2	73.8	106.5	92.2*	45.0	145	36°	30	2	2,5
Mo. B1898		77	81,9	93.6	99°2	91.7	47.5	145	39	40	1,3	2,5
Ky. 66-7-63-1294	13876	63	103,6	76.2	0°06	89°9	47.0	142	32	0	0	5.0
Mo. B-4/5	9168	83	90°5	80.1	0°96	88.8	48.0	147	43	90	7.0	
Harrison	10667	40	79°9	84.1	100.5	88.2	49 0	149	36	13	6.7) e
		77	81.8	78.8	100.5	87.0	49.0	149	40	63	4.0	2-0
MD. B-1899	0	73	78.8	80°0	6°96	85.2*	48.0	146	40	30	.7	3.0
Mack Co 450 20	6020	57	98°8	0°89	81.2	82.7	49.0	151	45	67	0.8	0 00
Micn. 62-420-32	1	09	75.6	83°6	80°0	79°7 *	47.5	151	42	67	3.0	3,5
Cross Oliva	6561	87	88°2	88°0	61.8	78°4 *	47.5	148	38	93	7.7	200
Dagge 0021/	0	33	84.4	73.5	76°6	78.2	47.5	149	35	93	5,3	5.0
Dat soy	11904	9,0	78.6	63.1	86.9	76.2	51.5	141	31	0	0	5.0
Kearney	7500	2 2	77.5	64.6	65.4	69,2	48.0	144	35	0	0	3.0
Tofforeon	1300	53	0°69	44.9	81.8	65.2	49 0	147	37	80	5.0	2.0
	11902	40	63°2	47.6	72.1	61°1	45.5	148	37	0	0	2 %
	percent of plot	B (T		Analysis	4	Variance for Yield	r Yield				
= Aec	o = no lodging,	5	= Completely flat	at	Source		DoFo	ms	L.S.D.	L.S.D.(,05)	16	16.29hi/a
Scald: 0 = no scald present	present				Varieti		8	683.01	C.V.	= Sy		3 /3 /3 /3
5 = severe					Replications		2	962,12**		ı>	9	6.2%
* - Significantly less than check (.05)	less than	check (。	02)		Error	un c	56	99°15		1		Ks AJ 2
					Total	D	9					J

Ks AJJ

2

Table _ 2 _ . 1970-71 Barley Winterhardiness Nursery survival notes grown at the Northwestern Agricultural Research Center, Kalispell. Field No. R-6

Entry	C. I.		Surv	vival (pct.)	Reps.
No.	No.	Variety	I	II	Ave
4	5024				
1	6034	Tenn. Winter (check)	50	30	40
2	7580	Kearney	60	60	60
3		NB. 69129 (a)	80	60	70
4		NB。69130 (a)	70	50	60
5		NB. 69131 (a)	80	50	65
6		NB。69135 (a)	80	40	60
7		NB. 69139 (a)	60	40	50
8	1442	Kharkof (wheat)	95	95	95
9		Okla. S-654833-2S (b)	30	20	25
10		Okla. S-654833-7R (b)	40	30	35
11	6034	Tenn. Winter (check)	30	30	30
12	10667	Harrison	60	50	55
13	11902	Jefferson	60	50	55
14		Purd. 5924A7-14-1	90	80	85
15		Purd. 5924A7-14-4	60	60	60
16		Tenn. 65-117 (c)	60	30	45
17		Tenn. 65-118 (c)	80	60	70
18		Tenn. 65-137 (c)	50	30	40
19		Tenn. 60-34-69 (c)	40	60	50
20	936	Trebi	30	40	35
21	6034	Tenn. Winter (check)	40	40	40
22		Or. 6832	70	40	55
23		Cor. 59-17, OR 6924 (d)	40	30	35
24		Or. 2212U, OR 681 (e)	80	70	75
25	6051	Mo. Ey. Bdls.	60	50	55
26	0031	Mo. B1766	80	90	85
27		Mo. B1790	40	50	
28		Mo. B1807			45 60 <u>1</u> /
29		Mo. B1891	-	60	401/
30	9168	Mo. B-475	90	40	
31	6034			90	90
32	0034	Tenn. Winter (check) Belts. 68-1447	20	50	35
33			80 60	60	70
		Belts. 68-1448		80	70
34		Belts. 68-1428 (f)	90	70	80
35		Belts. 69-1049RR) (g)	70	70	70
36		Belts. 69-1051rr) (g)	7 0	80	75
37		Belts. 69-1065 RR) (h)	80	80	80
38		Belts. 69-1067 rr) (h)	80	70	75
39		Belts. 69-1191 RR) (i)	80	90	85
40		Belts. 69-1192 rr) (i)	60	80	70
41	6034	Tenn. Winter (check)	20	50	35
42		Belts. 69-1174 RR) (j)	70	80	75
43		Belts. 69-1175 rr) (j)	50	60	55
44		Belts. 69-1201 SS) (k)	20	60	40
45	***	Belts. 69-1203 ss) (k)	10	50	30

^{1/} Plots in Rep. I were seeded in same row.

Table 2 . (con't)

Entry	C. I.		Surv	ival (pct.)	Reps.
No.	No.	Variety	I	II	Ave
46	~-	Belts. 69-1258 00) (1)	20	60	40
47		Belts。69-1259 oo) (1)	30	50	40
48		Belts. 69-1156 NN) (m)	50	60	55
49		Belts. 69-1157 nn) (m)	30	50	40
50	13794	Malta (n)	30	40	35
51	6034	Tenn. Winter (check)	40	30	35
52		Belts. 69-1168 NN) (o)	50	50	50
53		Belts. 69-1169 nn) (o)	30	50	40
54	6728	Wong	70	80	75
55	11887	Schuyler	70	60	-65
56		N.Y. 6005-15	80	60	70
57		N.Y. 6005-18	70	90	80
58		N.Y. 6005-19	70	70	70
59		OAC WB58-27 (p)	70	60	65
60		OAC WB58-32 (p)	70	50	60
61	6034	Tenn. Winter (check)	40	50	45
62	12218	Blackhawk (wheat)	95	95	95
63	6050	Kentucky 1	80	60	70
64		Ks. 66217	20	40	30
65	6561	Reno	80	70	75
66	5529	Dicktoo	50	50	50

Parentage or origin of new entries

- (a) CI 10,880 2x Sabbaton x Meimi (E3,4,5,6,7)
- (b) 2* Rogers/Omugi greenbug isogenics -- E9, Susc.; E10, Res.
- (c) Parentage not submitted
- (d) Cascade x Wocus
- (e) Olympia x Alpine (f) Jaydee x Mo. B-475 (E44)
- (g) Iso. pair for rough (E35) vs. semismooth (E36) awns. Dicktoo x₈ Kenbar (h) " " (E37) " (E38) awns. Kearney x₈ Kenbar
- (E40) awns. Tschermak x Kenbar (E39) " 12 (i) " (both 6-row)
- (E43) awns. Tschermak x₈ Kenbar (E42) " (j) " (both 2-row)
- (E45) haired rachilla. Rogers x Dicktoo (E47) lemma. Orange lemma x 8 Mo. B-400 (k) " " long (E44) vs. short-
- " normal (E46) vs. orange (1) " (E49) Kernel; naked x Dayton " covered(E48) vs. naked 11
- (m) " (n) Malta: (Carstens x Aurea) x Dea) x Herfordia. Bred by Ackermann Plant Breeders in Germany. Entered by Rothwell Plant Breeders of England. Malta is subject to Plant Breeders rights and is not to be multiplied but to be used for experimental trials only.
- (o) Iso. pair for covered (E52) vs. naked (E53) kernel; naked x Kenbar
- (p) OAC Wb2-11 (Kearney x Wong) 2x Dover (E59,60)

TITLE:

Small Grains Investigations

PROJECT:

Spring Oats MS 756

YEAR:

1971

PERSONNEL:

Leader - Vern R. Stewart Cooperator - R. F. Eslick

LOCATION:

Northwestern Agricultural Research Center

DURATION:

Indefinite

OBJECTIVES:

To determine the adaptation of new and introduced oat varieties.

SIGNIFICANT FINDINGS:

Cayuse continues to give high yields, however several new lines show promise. They are somewhat higher in yield than Cayuse and Park. These lines are OT 717, OT 714, Harmon and a new entry ID 68710.

FUTURE PLANS:

If funds are reduced greatly in 1972 this project will be discontinued.

MATERIALS AND METHODS:

Standard nursery procedures were used in the variety testing program. A randomized block design was used for both nurseries, four row plots replicated three times. Two dryland nurseries were grown on the station in 1971. The uniform nursery which is grown throughout the Pacific Northwest, consisted of 25 entries. In the Montana nursery there were 10 entries.

RESTULS AND DISCUSSION:

Uniform Northwestern State Nursery

The mean yield of this nursery was 186.6 bushels per acre. Probably some of the highest yields we have had in an oat nursery at the Northwestern Agricultural Research Center for some 15 years. The range of the yield was 152.5 bushels per acre for Victory to 208.69 bushels per acre for the cross of Cayuse by Orbit, ID 68710. In this nursery Cayuse is used as a check variety. There were no varieties significantly higher in yield and three were significantly lower in yield; Gopher, Bridger and Victory.

Several lines were found to be considerably higher in test weight than the variety Cayuse, which was two pounds below the standard. This could be due in part to the rather wet conditions at harvest time.

The earliest heading entry in the nursery is Pendak x Glen OT 717. This is earlier than Cayuse by four days.

All entries were found to be significantly taller than Cayuse in this study.

There was no significant difference in lodging prevalence, but there was considerable difference in the lodging severity. Cayuse has the strongest straw of any entry in the nursery. The author would consider this to be a very reliable test as it pertains to yields, as indicated by the low CV.

Complete tabulation of the data is found in Table 1.

3

Results and Discussion: (con't)

Montana Oat Nursery

In this nursery the check, Cayuse is the highest yielding entry with 195.5 bushels per acre. The mean for the nursery is 172.08. There were four varieties that were found to be significantly lower in yield than Cayuse. They were; Basin, Park, Bridger and Gopher. In test weight Cayuse is low, but not significantly lower than Park.

Gopher is the earliest heading variety and also the lowest yielding in the study. Cayuse is significantly shorter than all other .ten entries. Cayuse has the best straw of the ten entries. The low CV of 4.30% for yield indicates that the data are quite reliable.

Complete tabulation of the data from this study are found in Table 2.

In Table 3, is found a ten year summary of varieties grown in the Uniform Northwest Regional Nursery, 1958-71. In an eight year comparison, Basin is 107% of Park, a five year comparison, Cayuse is 107% of Park. Other comparisons can be made in the table.

Table 1 • Agronomic data from dryland uniform oat nursery grown at the Northwestern Agricultural Research Center, Kalispell, Montana in 1971. Field No. Y-1

Planting Date:

May 3, 1971

Harvest Date:

August 21, 1971

Size of Plot: 16 sq. ft.

C.I. or		Yield	Test Wt.	Heading	Plant	Lode	ging
State No.	Variety	Bu/A	Lbs/Bu.	Date	Height	Prev.	Sev.
					V-1		
ID 68710	Cayuse x Orbit	208.69	31.70	194.33a	47.00a	82.67	5.00a
OT 717	Pendak x Glen	208.44	32.03	187.33b	48.33a	99.00	2.00
ID 654547	Park x Russell	199.94	33.67a	195.33a	51.67a	99.00	2.33
ID 635100	Cx202xSxS	198.50	32.03	191.67	47.00a	56.33	6.33a
OT 716	Random	197.69	30.73	188.33b	44.67a	33.00	.33
ID 352801	CI 5345,x Zanster	196.19	34.30	191.33	50.67a	99.00	2.67
CI 8263	Cayuse 1/	195.94	30.53	191.33	39.67	66.00	.67
ID 68644	Cayuse x Orbit	195.44	32.50a	194.33a	44.67a	66.00	.67
OT 611	Kelsey	195.31	34.43a	190.00Ъ	48.00a	49.67	2.00
ID 654602	Park x Russell	191.69	32.97a	192.67a	44.33a	99.00	1.00
CI 6611	Park	190.56	32.77a	194.00a	47.33a	66.00	2.33
ID 352807	CI 5345 x Zanster	190.44	35.27a	191.67	47.67a	99.00	2.67
ID 69443	Cayuse x Orbit	187.94	29.70	196.00a	44.00a	99.00	5.00a
ID 683975	Cayuse x Glen	183.62	30.77	190.67	44.67a	99.00	1.00
OT 714	Pendak x Glen	183.62	30.87	187.67a	47.33a	99.00	1.33
ID 68615	Cayuse x Orbit	181.87	30.27	193.33a	46.00a	99.00	4.00a
CI 8318	Fraser	181.87	34.47a	195.00a	49.33a	99.00	1.00
CI 7989	Harmon	177.75	34.50a	193.00a	51.67a	74.33	2.00
CI 5346	Basin	177.00	33.73a	193.67a	48.00a	99.00	1.67
IL 631668	Albion x N2 x M	176.81	32.57a	188.33b	49.00a	74.33	3.00
CI 2053	Markton	175.12	33.33a	191.33	53.00a	96.00	7.00a
CI 6661	Rodney	169.93	36.00a	194.33a	50.00a	66.00	.67
CI 2027	Gopher	168.87*	33.83a	186.33b	49.67a	99.00	6.67a
CI 2611	Bridger	165.74*	34.70a	197.67a	57.00a	99.00	6.33a
CI 1145	Victory	152.55*	34.27a	197.33a	55.00a	96.00	5.67a
	1						

^{1/} Check variety

b/ Values significantly less than the check

x .	186.06	32.88	192,28	48.23	84.53	2.93
F-value for variety com-	2.08*	8.07**	63.63**	12.47**	1.27	5.14**
parison	16.33	1.05	.67	1.84	30.16	1.65
S.E.x	26.78	1.72	1.10	3.01	N.S.	2.70
L.S.D05	5.07	1.85	.20	2.20	20.60	32.45

Varieties yielding significantly less than the check

a/ Values significantly more than the check

3

Table 2 . Agronomic data from dryland Montana oat nursery grown at the Northwestern Agricultural Research Center, Kalispell, Montana in 1971. Field No. Y-1

Planting Date: Size of Plot: May 3, 1971 16 sq. ft. Harvest Date:

August 24, 1971

			-					
C.I.	or		Yield	Test Wt.	Heading	Plant	Lode	ging
	e No.	Variety	Bu/A	Lbs/Bu.	Date	Height	Prev.	Sev.
CI	8263	Cayuse 1/	195.50	31.60	190.67	43.00	49.67	2.67
ID 3	52807	CI 5345 x Zanster	188.25	34.13a	191.67a	49.00a	99.00	1.67
OT	611	Kelsey	183.31	32.60	190.33	49.67a	99.00	4.67
ID 6	35100	Cx202xSxS	182.75	32.13	192.00a	46.33a	99.00	3.33
OT	716	Random	179.25	30.20b	186.67b	46.33a	99.00	1.33
CI	6661	Rodney	175.68	33.33a	192.33a	52.67a	99.00	5.33
CI	5346	Basin	170.43*	33.90a	193.00a	49.33a	69.33	5.67
CI	6611	Park	154.74*	32.63	194.00a	48.67a	99.00	4.67
CI	2611	Bridger	146.05*	33.07a	197.67a	58.33a	99.00	8.33
CI	2027	Gopher	144.86*	32.80	186.67b	50.00a	99.00	5.67

^{1/} Check variety

b/ Values significantly less than the check (.05)

x	172.18	32.64	191.5	49.33	91.10	4.33
F - value for variety com- parison S.E. x L.S.D. (.05)	5.76** 7.40 21.98 4.30	7.66** .41 1.23 1.27	149.40** .27 .80	19.40** .93 2.77 1.89	1.61 13.64 N.S. 14.97	2.43 1.36 N.S. 31.50
L.S.D. (.05) C.V. %				_		

^{*} Varieties significantly less than the check (.05)

a/ Values significantly more than the check (.05)

Summary of oat yield data from the uniform oat nursery, Northwestern Agrialtural Research Center 1958-71. Table 3

	5												Sta	36
Stat	State No.	Variety	1958	1959	1960	1962	1964	1967	1968	1969	1970	1971	Yrs。	Park
U	6661	Rodney	141,1	51.6	15.9	84.8	73.0	126.2	121.4	126.2	132.2	169.9	10	98
Ħ	6611	Park	63.5	99°4	17.5	89°2	80°2	108,3	120,3	171.4	127.1	190.6	10	100
Ħ	1145	Victory	49.4	92,5	18,1	78.8	62.8	81.2	114.3	122.2	131,2	152.6	10	85
IJ	2053	Markton	52,5	89°7	16.9	74.7	89°1	89.9	101,7	120,2	120.5	175.1	10	87
Ħ	2027	Gopher		49°7	10.6	61.6	46.2	116.8	101.0	134.9	127.4	168,9	0	81
IJ	5346	Basin			15.0	89°2	120°7	120.2	149.1	151.5	148.7	177.0	œ	107
U	2611	Bridger				91.8	.87.1	95.7	104.5	147.9	121,4	165°7	7	92
Ħ	8263	Cayuse						142.6	130.0	138.1	158,7	195.9	Ŋ	107
di 0	654547	Park x Russell							153,8	190.7	138.4	199.9	4	112
Ħ	8318	Fraser							136.2	161,1	129.7	181,9	4	100
ID 6	635100	Cx202xSxS							123.9	133.7	150.8	198.5	4	100
PIO	611	Kelsey								142,5	127.6	195.3	3	95
ED 6	654602	Park x Russell								135.0	122.6	191.7	m	92
PO	714	Pendak x Glen									167.7	183.6	7	111
E	352807	CI5345 x Zanster									155,3	190.4	2	109
	7989	Harmon									142,3	177.8	7	101
of	717	Pendak x Glen									135.0	208.4	2	108
	631668	Albion x N2 x M									131,2	176.8	2	16
	352801	CI5345 x Zanster									130°7	196.2	2	103
ID	68710	Cayuse x Orbit										208°7	Ç-I	110
F	716	Random										197.7	7	104
	68644	Cavuse x Orbit										195.4	₽	103
	69443	Cayuse x Orbit										187.9	↽	66
	683975	Cavuse x Glen										183.6	√	96
	68615	Cayuse x Orbit										181.9	4	92

TITLE:

Winter Wheat

PROJECT:

Small Grains Investigations MS 756

YEAR:

1971

PERSONNEL:

Leader - Vern R. Stewart Cooperator - G. A. Taylor

LOCATION:

Northwestern Agricultural Research Center and several off station locations throughout western Montana which will be identified in the manuscript.

DURATION:

Indefinite

OBJECTIVES:

- To obtain the information necessary for making varietal recommendations and evaluating new varieties and selections.
- 2. To cooperate in a breeding program in Northwest Montana designed to produce high yielding varieties with particular emphasis on the acceptable quality and resistance for dwarf bunt and stripe rust. Other agronomic characteristics such as straw strength, winter hardiness etc., will be evaluated in this program.

SIGNIFICANT FINDINGS:

- Semi-dwarf lines used provide good straw strength, but are not satisfactory for dwarf smut resistance.
- 2. Lines with PI 178383 parentage provide good dwarf smut resistance.
- 3. Cheyenne or Cheyenne types are best suited for Ravalli County wheat growing area.

FUTURE PLANS:

Plans for 1971-72 include regular yield nurseries and assistance in the overall state breeding program.

MATERIALS AND METHODS:

Standard nursery procedures were used in all of the variety testing programs. A randomized block design was used having four to six replications. Data obtained were: yield; plant height; test weight; disease and lodging. Nurseries grown were: Intrastate Winter Wheat Nursery at the Northwestern Agricultural Research Center in Field E-3; Western Regional Hard Red Winter Wheat Nursery grown on the L. B. Claridge farm, Northwest of Kalispell in a dwarf bunt area; Uniform White Wheat Nursery grown at the Northwestern Agricultural Research Center in Field E-3. The off station nurseries were planted in Ravalli, Missoula, Lake, Sanders and Mineral Counties.

Plots were harvested with a power harvester.

RESULTS AND DISCUSSIONS:

Intrastate Hard Red Winter Wheat Nursery

Four semi-dwarf lines were significantly higher in yield than Crest the check variety, and had exceedingly good straw strength. In all four varieties there was a high incidence of dwarf smut. Table 1. The mean of the nursery 52.3 bu/a is about average for the area in which it was grown. Lodging was very severe throughout the nursery except for the semi-dwarf lines already discussed.

In this area only short strawed or very strong strawed varieties should be considered for future testing.

Nine varieties are included in the ten year summary as seen in Table 2. Cheyenne is used as the long term check and is the only variety grown for the last consecutive ten years. Wanser, McCall and Crest are the only varieties that are equal to or exceed Cheyenne in Yield. Only Crest is resistant to the prevelent race of dwarf smut.

Western Regional Hard Red Winter Nursery

The C.V. is rather high in this nursery because of uneveness in stands in replication number three. The dwarf smut level was not high, but of a high enough level to secure good differential reading. McCall and Wanser, both high yielding varieties, are very susceptible to dwarf smut. A trace amount of dwarf smut was noted in the variety Crest this season.

There were no yields significantly higher than Crest (the check) in this nursery, however twelve entries were found to be significantly lower. The mean of 36.6 bu/a is about average for this area of the valley.

Uniform White Wheat Nursery

Dwarf smut levels in this nursery were sufficient to make good differential reading between entries. Those lines with P.I. 178383 in their parentage had a high level of resistance. Luke and Nugaines were about equal in yield. Straw strength in Luke is some less than Nugaines. There were no other entries in the nursery that would be of potential value in this area, because of their susceptibility to dwarf smut. Luke is about four days later in heading than Nugaines and two to three inches taller. See Table 4 for complete details.

Seven varieties have been tested for nine years in this nursery (Table 5). Some of these will be dropped in the 1972 growing season as long time checks. Based on two years data at this location plus additional data from Washington and Oregon, Luke is to be added to the recommended list for 1972. A seed increase is being grown this season.

Off Station Nurseries

These nurseries were composed of 16 entries.

A severe infestation of blue mustard in the nursery located on the Jack Marrinan farm in Sanders County, made harvest impossible and the nursery was abandoned. Very poor wheat stands in Mineral County was the reason for dropping this nursery. This study was located on the Elmer Hankenson farm near Tarkio, Montana.

Missoula County

Yield data obtained from this location was found to be statistically non-significant, however Crest was the highest yielding entry. These rather poor results can be attributed to low tillering, quite dry growing conditions and low fertility. Table 6.

Ravalli County

Cheyenne or Cheyenne type wheats continue to preform the best in this area of Western Montana. Crest was somewhat lower in yield, but was not statistically significant. Stands were good with no significant differences found between varieties. White wheats in this area have not been consistant in their performance over the years, however Omar was one of the higher yielding entries in 1971. Table 7.

Lake County

Soil variations were variable in this location, with replication one being in a very favorable location and number four in a rather dry sandy soil type. When analyzed statistically yield data was found to be non-significant. The mean yield in the nursery was quite high at 62.2 bu/a.

Table 9, is a summary of off station locations in 1971. McCall is the highest yielding entry of the hard red entries. Crest is No. 3 in rank.

Agronomic data from the intrastate hard red winter wheat nursery grown Table 1 . on the Northwestern Agricultural Research Center at Kalispell, Montana in 1971. Experimental design - random block, 6 replications.

Planting date: September 16, 1970 Harvest date: August 10, 1971 Size of plot: 16 sq. ft.

C.I. or	Yield	Test Wt	Heading	Plant	Lode	ging	Dwarf,
State # Vareity	Bu/A	Lbs/Bu	Date	Height	Prev %	Sev.0-9	Smut2/
DK 184	81.68*	61.0	159.83a		81.00	1.33b	25
DK 142	79.91*		157.67	44.17	82.50	1.00b	15
MT 6928 NB55-391-56-D8/Wmt11-4-		61.5	157.83	42.17	16.50		15
DK 176	74.76*		159.83a		83.67		20
CI13844 Wanser	59.57	62.5	160.17a		98.33	7.17b	x
CI13842 McCall	58.47	62.0	163.33a	48.83a	95.17	6.17b	x
MT 691 Yogo/Rsc//Marmin/3/Td	56.39	60.5	162.67a	45.83	99.00	8.50	x
CI13181 Rego	56.32	59.5	161.50a		99.00	8.50	×
CI13670 Winalta	55.94	62.0	161.17a	49.33a	93.50	7.50b	x3/
CI13880 Crest 1/	54.08	60.5	157.17		99.00	8.83	x-/
CI12933 Itana	53.25	60.5	162.00a		99.00	8.67	x
MT 6910 Wsc/Yogo//Rsc/3/Td 231	52.70	59.0	160.00a			8.33	x
MT 6615 Rego x Yto 457	52.65	59.5	165.67a		99.00		×
CI14580 Bridger	51.00	62.5	162.00a		96.83	7.33b	$\frac{x_3}{x}$
MT 698 Wsc/Yogo//Rsc/3/Wrr 189	49.30	59.0	160.17a		99.00	8.33	x-
CI 8033 Yogo	48.62	59.5	164.00a		99.00	8.50	x
CI 8885 Cheyenne	48.57	60.5	163.00a	48.67a	99.00	8.33	×
CI13190 Warrior	48.32	60.5	159.67a	48.00a	99.00	8.17	x
MT 6535 Rego/Cnn 39-7-4	47.40	61.0	164.17a	49.50a	99.00	7.83	x
MT 694 MM/Yogo//Rsc/3/Yogo/Tk/	46.92	60.0	160.33a	49.67a	99.00	8.33	x
CI13544 Sawmont	46.80	61.0	163.33a	47.33a	99.00	8.33	×
MT 6532 Rego x Cnn 37-12-4	46.78	59.5	162.83a	48.17a	99.00	8.50	×
NB66425	46.78	60.5	159.00a	47.67a	99.00	8.33	x
MT 692 MM/Yogo//Rsc/3/Td 123	46.72	60.5	162.67a	46.83a	99.00	8.50	x
CI14000 Winoka	46.32	61.5	163.00a	47.67a	95.83	7.83	x
MT 654 Sel Bulk 7-58	44.91	60.0	163.83a	50°50a	99.00	8.33	×
MT 693 Winalta 41	44.73	60.5	162.00a	49.00a	99.00	8.17	x
CI13999 Trapper	44.58	59.0	162.17a	47.83a	99.00	8.67	×
CI13872 Froid	43.81	61.0	163.67a	51.00a	99.00	8.50	×
CI13547 Lancer	42.65	62.0	157.50	47.83a	90.83	8.33	×
MT 6616 Sel Bulk 6-142-6	40.68	60.5	164.33a	50.17a	99.00	8.00	x
CI13998 Trader	38.80	60.5	161.50a	48.33a	99.00	8.33	x
CI 6938 Kharkof Mc22	36.18	59.0	168.00a	48.17a	99.00	9.00	x
x	52.3	60.6	161.7	47.9	94.3	7.4	
F-value for variety comparison			19.96**	7.32*	* 8.0*	48.09**	
S.E. X	2.91	0.0	.55	.89	5.23	.33	
L.S.D. (.05)	8.08	0.0	1.52	2.46	14.49	.92	
C.V. %	6.78	0.0	1.28	2.06	12.16	.77	
0010 /0			19,45,45				

^{1/} Check variety
2/ x indicates presence of smut, where variety was standing % of smut was recorded.

^{3/} found in trace amounts.
* varieties yielding sign varieties yielding significantly more than the check .05.

values significantly more than the check .05. values significantly less than the check .05.

Summary of selected winter wheat data from the intrastate yield nurseries grown at the Northwestern Agricultural Research Center, Kalispell, Montana from 1962 - 1971. Table

1968 1969 1970 1971 Yrs. Cheyenne x Average Bu/A 57.2 57.0 63.7 48.6 10 100 55.6 56.2 56.4 56.6 55.8 45.7 56.3 9 97 53.9 57.5 56.6 56.6 55.8 45.7 56.3 9 94 51.7 56.9 53.2 53.8 51.5 45.7 57.9 55.9 8 94 51.7 56.9 52.5 52.5 51.5 43.8 69.0 54.1 7 101 55.2 61.6 55.6 54.6 56.8 76.8 40.5 63.3 58.5 6 105 57.9 60.9 54.1 59.8 76.5 56.0 65.5 59.6 6 115 63.9 62.6 60.9 45.4 64.4 76.5 56.0 65.5 59.6 6 115 63.9 62.6												140	3		2	e	4	10
57.2 57.0 63.7 48.6 10 100 55.6 56.2 56.4 56.6 55.8 45.7 56.3 9 97 53.9 57.5 55.4 56.6 55.8 45.7 56.3 9 97 53.9 57.5 52.5 55.8 45.7 57.9 55.9 8 94 51.7 56.9 53.2 53.8 51.5 43.8 69.0 54.1 7 101 55.2 61.6 55.6 54.6 54.6 76.8 40.5 63.3 58.5 6 105 57.9 60.9 54.1 59.8 76.5 56.0 65.5 59.6 6 115 63.9 62.6 60.4 64.4 76.5 56.0 65.5 59.6 6 115 63.9 62.6 60.9 54.0 53.0 76.5 56.0 65.8 68.9 49.2 54.6 50.9 53.0	Variety Number 1962 1963 1964 1965 1966 1967						1967	1967 1968	1969	1970	1971	Sta. Yrs.	% of Cheyenne	ı×	Yrs。	Yrs.	Yrs. Bu/A	Yrs。
51.3 58.7 56.3 9 97 53.9 57.5 55.4 52.5 45.7 57.9 55.9 8 94 51.7 56.9 53.2 53.8 43.8 61.1 53.3 7 95 51.8 57.2 57.5 52.7 43.8 69.0 54.1 7 101 55.2 61.6 55.6 54.6 54.6 40.5 63.3 58.5 6 105 57.9 60.9 54.1 59.8 56.0 65.5 59.6 6 115 63.9 62.6 60.4 64.4 56.0 65.5 59.6 6 115 63.9 54.6 50.9 53.0 60.8 48.3 6 89 49.2 54.6 50.9 53.0	8885 55.5 61.9 57.5 48.7 59.3 46.4	55.5 61.9 57.5 48.7 59.3	59°3	59°3	59°3	59°3	46.4		57.0	63.7	48°6	10	100	55.6	56.2	56.4	56.6	55.6
45.7 57.9 55.9 8 94 51.7 56.9 53.2 53.8 43.8 61.1 53.3 7 95 51.8 57.2 57.5 52.7 43.8 69.0 54.1 7 101 55.2 61.6 55.6 54.6 40.5 63.3 58.5 6 105 57.9 60.9 54.1 59.8 56.0 65.5 59.6 6 115 63.9 62.6 60.4 64.4 56.0 65.5 59.6 6 115 63.9 62.6 60.4 64.4 60.8 48.3 6 89 49.2 54.6 50.9 53.0	13181 60.6 60.2 49.9 42.5 62.4 43.6	60.6 60.2 49.9 42.5 62.4	62,4	62,4	62,4		43.6		51,3	58°7	56,3	σ	26	53.9	57.5	55.4	52.5	
43.8 69.0 54.1 7 95 51.8 57.2 57.5 52.7 40.8 69.0 54.1 7 101 55.2 61.6 55.6 54.6 40.5 63.3 58.5 6 105 57.9 60.9 54.1 59.8 38.3 58.7 42.7 6 85 47.1 50.7 46.6 45.9 56.0 65.5 59.6 6 115 63.9 62.6 60.4 64.4 60.8 48.3 6 89 49.2 54.6 50.9 53.0	13670 54.4 31.4 67.4 44.9	54.4 31.4 67.4	31.4 67.4	31.4 67.4	31.4 67.4		44.9	55.8	45.7	57.9	55.9	ω	94	51.7	56.9	53.2	53.8	
43.8 69.0 54.1 7 101 55.2 61.6 55.6 54.6 40.5 63.3 58.5 6 105 57.9 60.9 54.1 59.8 38.3 58.7 42.7 6 85 47.1 50.7 46.6 45.9 56.0 65.5 59.6 6 115 63.9 62.6 60.4 64.4 60.8 48.3 6 89 49.2 54.6 50.9 53.0	12933 50。3 54.5 46.8 38.3 58.2	50.3 54.5 46.8 38.3	54.5 46.8 38.3	46.8 38.3		58°2				61,1	53,3	7	95	51.8	57.2	57.5	52.7	
40.563.358.5610557.960.954.159.838.358.742.768547.150.746.645.956.065.559.6611563.962.660.464.460.848.368949.254.650.953.0	13880 40.8 73.4 53.5	40.8 73.4	73.4	73.4	73.4		53°2	51.5	43.8	0°69	54.1	7	101	55.2	61,6	55.6	54.6	
38.3 58.7 42.7 6 85 47.1 50.7 46.6 45.9 56.0 65.5 59.6 6 115 63.9 62.6 60.4 64.4 60.8 48.3 6 89 49.2 54.6 50.9 53.0	13842 51.9	56.4					51,9	76.8	40.5	63,3	58°2	9	105	57.9	6°09	54.1	59.8	
56.0 65.5 59.6 6 115 63.9 62.6 60.4 64.4 60.8 48.3 6 89 49.2 54.6 50.9 53.0	13547 57.0 41.7	57.0					41.7	44.0	38,3	58°7	42°7	9	85	47.1	50.7	46.6	45.9	
48.3 6 89 49.2 54.6 50.9 53.0	13844 73.9 51.7	73.9					51,7	76.5	26.0	65°2	9°65	9	115	63.9	62.6	60°4	64.4	
	13190 45.8 37.1 59.5 43.5	45.8 37.1 59.5	37.1 59.5	37.1 59.5	37.1 59.5		43.5			8°09	48.3	9	88	49.2	54.6	50°9	53.0	-5 -

Table 3 . Agronomic data from the Western Regional Hard Red Winter Wheat

Nursery grown on the Lance Claridge farm, Kalispell, Montana in 1971.

Experimental design - random block, four replications.

Planting date: September 18, 1970 Harvest date: August 18, 1971 Size of plot: 16 sq. ft.

-				Test	Head ₇		Dwarf	Strip	e Rust
C.	I. or		Yield	Weight	ing 1/	Plant	Smut	Sev.	Type
Sta	ate No.	Variety	Bu/A	Lbs/Bu	Date	Height	%	%	0-9
	13842	McCall	48.89	62.5	171a	38.5	13.8a	.0	.0
MT	6826	Burt/PI 178383 4-1192	47.89	59.5	167a	37.8	.0	.0	.0
	13844	Wanser,	46.77	61.5	168a	39.8	13.8a	.0	.0
	13880	Crest ² /	46.47	61.5	165	36.8	.3	.0	.0
MT	6929	NB176/Y18181//YT01171-3	43.16	60.0	169a	39.3	۰0	.0	.0
ID	0039	II-60-157/Wanser//IT	42.41	61.0	165	35.0	11.5a	.0	.0
	13426	Tendoy	41.99	62.0	170a	43.3a	6.3	.0	.0
UT	755079	DM/178383//Columbia	39.74	61.5	171a	44.3a	.0	.0	.0
ID	0037	IT//KO/PI178383	39.54	62.0	169a	43.8a	1.5	.0	.0
MT	691	Yogo/RSC//Marmin/3/TD	39.04	59.5	170a	45.3a	5.0	.0	.0
	1442	Kharkof	38.14	61.5	171a	47.8a	9.0	.3	.8
MT	6827	Burt/PI 178383 14-1202	37.81	58.5	169a	35.5	.0	.0	.0
ID	5010	178383/Cnn//3*Tendoy	37.71	61.0	170a	41.5a	1.5	.0	.0
MT	6828	Burt/PI 178383 13-1201	37.49	60.0	168a	37.8	.3	.0	.0
ID	0031	IT*2/UT*2//ID/B/3/13438	37.21	62.5	167a	43.0a	4.0	.0	.0
ID	0030	It*2/UT*2//ID/B/3/13438	36.06	62.5	168a	43.8a	1.5	.3	.5
ID	0027	WRR//KO/PI 178383	35.99	62.0	165	39.8	.0	.0	.0
	8885	Cheyenne	34.29	61.5	170a	39.8	4.0	.0	.0
ID	0038	Cnn*2/PI 178383	34.01	60.0	172a	42.3a	.0	.0	.0
ID	5011	178383/Cnn//3*Tendoy	33.49*	59.0	175a	45.0a	2.5	.0	.0
	13846	Itana 65	32.79*	61.0	171a	40.3	5.3	.0	.0
	14580	Bridger	32.04*	63.0	169a	41.0	۰0	.3	1.3
WA	5835	Bez-1//Bnk1205/CI 13438	31.66*	60.5	173a	31.0	7.5a	.0	.0
	10061	Rio	31.61*	62.0	171a	40.8	5.3	.0	.0
WA	5836	Bez-1//CI 13438/Burt	31.31*	61.0	168a	26.0a	7.5a	.0	.0
****	12933	Itana	30.76*	61.0	171a	40.8	12.5a	1.3	2.3
ID	5012	Sonora 37/Cln//2*Tendoy	30.51*	60.0	168a	30.5a	.5	.0	.0
MT	6535	Rego/Cnn 39-7-4	30.36*	60.5	171a	44.8a	8.8a	.0	.0
ID	0010	Cnn/Utah 175A-53	30.36*		170a	39.0	1.0	.3	1.8
UT	697010	IT/DM//TD/UT 225-15-6	27.26*	60.0	172a	43.0a	10.0	.0	.0
	755029	DM/178383//Columbia	26.53*	62.0	168a	36.0	.0	.5	2.5

^{1/} January 1 to heading 2/ Check variety

* Varieties yielding significantly lower in yield than the check (.05)

a Values significantly different from the check

x F-value for variety comparison S.E.x L.S.D. (.05) C.V. %	36.6 1.74* 4.57 12.82 12.49	59.2 0.0 0.0 0.0 0.0	169.3 11.01* .70 1.97	8.21* 1.65		.25 N.S.	.3 1.1 .65 N.S. 225.50
--	---	----------------------------------	--------------------------------	---------------	--	-------------	------------------------------------

125

Agronomic data from the Western Regional White Winter Wheat nursery grown on the Northwestern Agricultural Research Center, Kalispell, Montana in 1971. Experimental Design - random block, four replications. 16 sq. ft. Size of plot: Harvest date: August 17, 1971 September 21, 1970 Planting date: Table

1						STATE OF THE PERSON NAMED IN COLUMN 2 IN C	Personal Property of the Person of the Perso	The same of the same of the same of	AND DESCRIPTION OF PERSONS ASSESSMENT	The same in case of the last o
C.I. or		Yield	Test Wt.	Heading=	Plant			Dwarf	Stripe	Rust
State #	Variety	Bu/A	Lbs/Bu.	Date	Height	Prev %	Sev 0-9	Smut	Sev. %	Type 0-9
14564	Nord Desprez/2*Sel.101	113,06	59°5	163	35.5	24.8	က္စ	2°2	0	0.
14565	Nord Desprex/2*Sel. 101	111,91	59°2	161a	37.8	99°0a	1.0	2,5	, r;	
WA 5828	PI 178383*2//Omar/1834	106,89	60°5	162a	35,3	00	0°	6.5	1,8	2°2
WA 5829	S.Helvia//Suwon 92/3645	104。48	0°09	163	36.5	49°5a	s,	7.5	ņ	1,0
14586	Luke 2/	103.11	59°2	168a	39.5a	89°3a	2,8a	ကိ	00	0°
13968	Nugaines-	102.83	61.0	164	36,3	0°	0°	5°0	2°8	1.5
14485	Suwon 92/4*Omar	101,21	60°5	165	43.0	57.0	3 ° 5a	7.5	00	0,0
~	Suwon 92/4*Burt	100,43	61.5	160a	35,8	0°	0°	4.0	ຸຕູ	, e
	Gaines*2/Swedish Type	99°23	58°5	165	37,3	0.	0°	1,8	00	0
	C 59287//(Omar/1834-3)	98°98	57.0	168a	37.8	64.8a	4.3a	00	0	0°
WA 5826	Om/1834-3//178383/13431	98°46	57.9	170a	39°0a	1,3	8	o0°	00	
14563	Yamhill	97,86	59,4	169a	44.5a	74.3a	ထူ	11,3a	0°	7-
OR 6739	178383/2*Omar//13438	97,61	60°5	161a	39 .8a	49°5a	ထွ	3,8	0°	0,0
OR 6857	27-15//Rio/Rex/3/Eg/4/Mo	93°33	61.5	168	45,3a	86.8a	2,3a	.0a	00	000
12385	Brevor	80°93	61.0	164	47.8a	86.8a	6,5a	2°2	30.0	2,3
12696	Burt	80°58	62.0	161a	47.0a	99°0a	1,8	10.0a	10.0	2,3
OR 6882	Oam/3/178383/2*Omar//101	74°30	0°09	167	51.0a	81.8a	8,0a	.0a	0	0
11/55	Elgin	72,95	61.0	168a	49.5a	84.3a	7.5a	11,3a	57.5a	9.08
13072	Omar	72.22	59°2	168a	50°0a	99°0a	8,5a	2.8	32,5a	6.59
	Moro	68°32	57°0	168a	47.8a	99°0a	9.0a	.0a	0°	0°
WA 55/2	Umar Mutant 642026-197	62.97	0°09	167	45.8a	99°0a	7.3a	°3a	1.5	000
1442 40062	Kharkot	62,10	60°5	162	51,5a	99°0a	8,3a	12.5a	00	000
10063	colden	61,85	57.5	167	50,5a	99°0a	8,89	3.8	31°3a	9.0a
	Triplet	59 . 79	61.0	161a	49.3a	99°0a	8,3a	12.5a	18°5a	9°0a
	Omar Mutant	29°62	60°5	168a	47.5a	47.5a	6,3a	6.3a	1,3	1,5
1/ Days	Days from January 1 2/ Check v Varieties yielding significantly less than	/ Check less tha	Check variety ss than the check	(°05)	Values si	significantly	ly different	ant than	the check	(90°)
ı×		87.4	20	0 031	5					
F-Val	F-Value for variety comparison	20.60*	0.0	11 11 11	45.64	63.6	9,8	4.6	7.5	1.8
SoEox		4.00	0.0	77.077	10°04	0°01	18,41*	6.49*	6,91	18,63*
L.S.D.	0° (°05)	11,28	0°0	09°2	2.40	10°CT	28.0	1.67	5.64	Ks VI
C°V° %	%	4.58	0.0	2 4	7 10	0000	2,30	4.75	15,92	
		E E)	0	1001	20°26	21,10	36,61	75,15	38,41

Summary of uniform white winter wheat nursery grown at the Northwestern Agricultural Research Center, Kalispell, Montana from 1962 - 1971. Table 5 .

1	TU									-		45	-	8	
St	State #	Variety	1962	1963	1964	1966	1967	1968	1969	1970	1971	Yrs	ı×	Omar	
	13072	Omar	60.2	36.0	51.2	58°7	51.4	73.9	71.0	75.0	72.2	0	61,1	100	
	12385	Brevor	68°2	61.7	67°7	71.0	0°09	87,9	68.4	75.8	80°9	6	71,3	117	
	10063	Golden	50°6	43.5	42,3	55.0	46.3	70°4	67.2	64.2	61.9	6	55°7	91	
	12696	Burt	0°09	58°7	54.6	62.2	46.0	86.5	0°99	71.6	80°3	σ	65,1	107	
	1442	Kharkof	48.8	50°1	49.2	52,1	47.4	58°2	58°9	56,4	62,1	6	53°7	87	
	5408	Triplet	50°2	49.8	51,1	59°2	47.4	71.3	57.2	63.6	59.8	6	56.6	93	
	11755	Elgin	59°3	41.6	57,3	52,3	49.6	80°2	51.2	74.1	73.0	σ	59°9	98	
	13740	Moro			50.1	85°9	57.2	86.3	65°7	75.4	68°3	7	8°69	108	
	13968	Nugaines				79°1	58°7	85.8	63.2	77.6	102.8	9	78°0	116	-8
	14485	Suwon92/4*Omar (Paha)						98,1	65.4	87.0	101.2	4	87.9	120	3-
	14564	Nord Desprez/2*Sel. 101						90°1	62°7	87,3	113,1	4	88°3	121	
	14483	Suwon 92/4*Burt						84.5	55.4	73.1	100.4	4	78.4	107	
	14563	Heines VII/Redmond(Yamhill)							9°69	78.4	6°26	e	82.0	112	
OR	6233	178383/2*Omar//13438							63°3	80°7	92.6	ю	80°2	111	
	14586	(59287/101 (Luke)								93,1	103.1	2	98°1	133	
	14565	Nord Desprez/2*Sel. 101								88.8	111,9	2	100.4	136	
OR	6857	27-15//Rio/Rex/3/EA/4/Moro								74.7	93°3	2	84.0	114	
Or	6882	Omar Mutant/3/178383/2*Omer//101								67.4	74.3	2	70°9	96	
WA	5572	Omar Mutant 642026-197								64.9	63.0	2	64.0	87	
1															

Table 6 . Agronomic data from off station winter wheat nursery grown in Missoula County on the Al Goodan farm, Missoula, Montana, in 1971. Experimental design - random block, four replications.

Planting date: September 22, 1970 Harvest date: August 11, 1971 Size of plot: 16 sq. ft.

C.	I. or		Yield	Plant	Lode	ging	Stand
St	ate No.	Variety	Bu/A	Height	Prev. %	Sev. 0-9	%
		1/					
	13880	Crest_1/	27.76	22.0	45.0	2.8	91.3
	14586	Luke	27.28	23.3	11.3a	.5a	83.8
	13740	Moro	25.48	25.0	13.8	.5a	90.0
MT	6829	Burt/PI 178383 101-1200	24.06	23.0	25.0	1.5a	89.5
	13072	Omar	23.93	25.3	32.5	1.5a	88.5
	13842	McCall	23.71	25.8a	18.8	.8a	86.0
MT	6827	Burt/PI 178383 14-1202	23.56	24.8	43.8	1.0a	80.0
MT	6826	Burt/PI 178383 4-1192	22.68	25.5	80.0a	1.8	73.8
	8885	Cheyenne	21.66	25.8	60.0	2.3	92.5
MT	6828	Burt/PI 178383 13-1201	21.61	22.8	18.8	1.8	87.5
	13968	Nugaines	21.26	20.0	32.5	.5a	81.3
	13442	Delmar	20.41	29.0a	1.5	.8a	87.3
	12930	Westmont	19.41	22.5	42.5	1.3a	93.8
UT	646001	Delmar/Columbia	19.11	25.8a	65.0	2.0	83.8
	13670	Winalta	18.98	25.8a	50.0	2.3	86.3
	13844	Wanser	18.96	24.5	16.3	1.3a	82.5
1/	Check 1	variety					-
a	Values	significantly different f	rom the	check			
		x	22.5	24.4	34.8	1.4	86.3
		F-value for variety					
			4 4/4	2 00*	2 61*	2 71*	9

x	22.5	24.4	34.8	1.4	86.3
F-value for variety					
comparison	1.14*	2.98*	3.61*	3.71*	.84
S.E.X	2.65	1.21	11.48	.36	5.60
L.S.D. (.05)	No.S.	3.45	32.69	1.04	N.S.
C.V. %	11.78	4.97	33.0	26.16	6.48

Table ______. Agronomic data from off station winter wheat nursery grown in Ravalli County on the L. B. McFadgen farm, Stevensville, Montana, in 1971. Experimental design - random block, four replications.

Planting date:

September 23, 1970

Harvest date:

August 11, 1971

Size of plot:

16 sq. ft.

C.	I. or		Yield	Test Wt.	Plant	Stand
Sta	ate No.	Variety	Bu/A	Lbs/Bu.	Height	%
	8885	Charranna	41.34	62.0	31.3	97.0
	100000000000000000000000000000000000000	Cheyenne Omar	40.96	59.0	31.8a	92.3
	13072		38.29	62.0	32.5a	95.0
	13844	Wanser	37.36	62.5	31.0	92.3
	13842	McCall	35.74	60.5	24.5a	91.3
	13968	Nugaines	35.74	65.0	28.3	93.8
	13880	Crest=	35.31	56.0	29.5	90.0
T	6827	Burt/PI 178383 14-1202	35.29	59.0	32.0a	92.3
	13740	Moro 470303 404 4300		59.0	30.3	93.8
YT	6829	Burt/PI 178383 101-1200	33.51	59.5	24.3a	92.3
	14586	Luke	33.44		30.3	88.8
T	6826	Burt/PI 178383 4-1192	32.59	59.0		94.8
	12930	Westmont	32.31	62.0	29.3	
ΥT	6828	Burt/PI 178383 13-1201	32.16	58.0	29.5	92.5
	13442	Delmar	31.99	61.0	32.8a	94.8
	13670	Winalta	31.04	61.5	34.3a	94.8
JT	646001	Delmar/Columbia	30.08	62.0	31.0	84.8
1/	Check- va	ariety				
a	Values s	significantly different from	the check			
		x̄	34.8	60.5	30.1	92.5
		F-value for variety				
		comparison	2.37*	0.0	5.94*	1.07
		S.E.x	2.17	0.0	1.11	2.82
		L.S.D. (.05)	6.18	0.0	3.16	N.S.
		C.V. %	6.24	0.0	3.68	3.05

Table 8 . Agronomic data from off station winter wheat nursery grown in Lake County on the William Hughes farm, Ronan, Montana, in 1971. Experimental design - random block, four replications.

Planting date:

September 23, 1970

Harvest date:

August 12, 1971

Size of Plot:

16 sq. ft.

Cal	or or		Yield	Test Wt.	Plant	Lodgi	ing
	te No.	Variety	Bu/A	Lbs/Bu.	Height	Prev. %	Sev. 0-9
MT	6829	Burt/PI 178383 101-1200	69.70	61.0	39.5	60.0	3.0a
	13968	Nugaines	68.90	62.0	32.0a	0.0a	0.0a
	13740	Moro	68.35	59.5	40.3	28.8a	4.3a
	13072	Omar	68.10	62.0	43.0	2.8a	1.0a
	13842	McCall	66.60	61.5	41.0	.7.8a	1.5a
T	6827	Burt/PI 178383 14-1202	65.77	59.5	40.3	70.8	2.5a
T	6828	Burt/PI 178383 13-1201	64.25	60.5	39.3	61.0	4.0a
	14586		64.15	59.0	30.0	50.0a	1.0a
	13880	Luke 1/ Crest 1/	62.95	61.0	38.5	88.3	6.5
T	6826	Burt/PI 178383 4-1192	61.42	60.5	36.3	75.0	4.3a
-	13844	Wanser	61.30	61.0	41.5	32.3a	2.8a
JT	646001	Delmar/Columbia	59.22	63.0	43.0	80.0	3.0a
	8885	Cheyenne	56.84	62.0	45.3	66.3	3.8a
	12930	Westmont	54.59	61.5	38.0	46.3a	4.3a
	13670	Winalta	52.92	63.0	45.0a	92.0	2.8a
	13442	Delmar	49.87	61.0	40.5	19.3a	1.8a

^{1/} Check variety

a Values significantly different from the check

x	62.2	61.1	39.6	48.8	2.9
F-value for variety comparison	1.17	0.0	5.99*	5.61*	7.25*
S.E.X	5.59	0.0	1.69	12.85	.60
L.S.D. (.05)	N.S. 8.99	0.0	4.81 4.27	36.60 26.35	1.72 20.84

Table 9 . Yield summeries of winter wheat varieties grown in Western Montana in 1970-71.

			THE RESIDENCE OF THE PARTY OF T	ld bu/a /		-
C.I.or		Loc	ations by co	unties /	_	
State #	Variety	Lake	Missoula	Ravalli	х	Rank
CI 8885	Charrenna	56.8	24 7	44.3	39.9	5 .
	Cheyenne		21.7	41.3		1w1
CI 13072	Omar	68.1	23.9	41.0	44.3	
CI 13844	Wanser	61.3	19.0	38.3	39.5	6
CI 13842	McCall	66.6	23.7	37.4	42.6	1
CI 13968	Nugaines	68.9	21.3	35.7	42.0	3w
CI 13880	Crest	63.0	27.8	35.5	42.1	3
MT 6827	Burt/PI178383 14-1202	65.8	23.6	35.3	41.6	4
CI 13740	Moro	68.4	25.5	35.2	43.0	2w
MT 6829	Burt/PI178383 101-1200	69.7	24.1	33.5	42.4	2
CI 14586	Luke	64.2	27.3	33.4	41.6	4w
MT 6826	Burt/PI178383 4-1192	61.4	22.7	32.6	38.9	8
CI 12930	Westmont	54.6	19.4	32.3	35.4	40
MT 6828	Burt/PI178383 13-1201	64.3	21.6	32.2	39.4	7
CI 13442	Delmar	49.9	20.4	32.0	34.1	112
CI 13670	Winalta	52.9	19.0	31.0	34.3	11
UT646001	Delmar/Columbia	59.2	19.1	30.1	36.1	: 9

^{1/} w = white wheat ranking

x	62.2	22.5	34.8
F value for variety comparison	1.17	1.14	2.37*
S.E. x	5.59	2.65	2.17
L.S.D. (.05)	N.S.	N.S.	6.18
C.V. %	8.99	11.78	6.24

TITLE:

Spring Wheat

PROJECT:

Small Grains Investigations MS 756

YEAR:

1971

PERSONNEL:

Leader - Vern R. Stewart

Cooperator - F. H. McNeal and M. A. Berg

LOCATION:

Northwestern Agricultural Research Center - Field No. Y-1. Off station locations as listed in the manuscript.

DURATION:

Indefinite

OBJECTIVES:

- To determine the adaptability of new introduced spring wheat varieties and selections by comparisons with recommended varieties.
- Study the semi-dwarf strains of spring wheat for use under irrigated conditions.
- To aid in basic genetics research in spring wheat and the overall breeding program.

SIGNIFICANT FINDINGS:

 Semi-dwarf types are the higher yielding entries generally and have good to excellent straw strength.

2. ID 0044 and ID 0046, head 10 days earlier than Twin and were

significantly higher in yield.

 Fungicide treatments of seed did not affect yield of spring wheat.

 Captam, Vatavax and Maneb reduced the severity of stripe rust significantly, however this needs further evaluation.

FUTURE PLANS:

To continue to evaluate spring wheat varieties. To aid in the total breeding program in Montana. To study semi-dwarf strains of spring wheat for irrigated conditions.

MATERIALS AND METHODS:

Standard nursery procedures were used in a variety testing program. Nurseries were grown in four row plots, four replications. A randomized block design was used for all nurseries. All station nurseries this season were located in Field No. Y-1 at the Northwestern Agricultural Research Center. Yield nurseries grown were: Advanced Yield Nursery, containing 32 entries; and the Western Regional White Spring Wheat Nursery, containing 21 entries.

One off station yield nursery was grown in Lake County and contained 6 entries.

Two fungicide nurseries were planted in the spring of 1971. One was located on the research center, the other in Lake County. These nurseries contained three varieties, four chemicals for seed treatment and an untreated check. Plant counts

were made just following emergence by Dr. Mathre. Twelve feet of row from each plot was counted. Additional agronomic data secured from the studies, depending on location were; yield, bushel weight, heading date and disease readings. A factoral analysis of the various types of data was done by the computing laboratory at Bozeman.

All studies were harvested with a small power harvester and threshed with a nursery type thresher (Vogel).

Advanced Yield Nursery

Twelve entries in this years nursery were significantly higher in yield than Sheridan, the variety used as the check. Eleven of these were of the semi-dwarf type. Lodging resistance was excellent in most of the semi-dwarf's except Pitic 62 and Era which are quite susceptible to lodging. Cargills Bounty and World Seeds selections have earliness in their favor. Bounty's straw maybe somewhat weak, but not serious. I would suggest further evaluation of MT 7042, WO 1651, Bonanza, WO 1616, MT 6830, Bounty and FB 406, based on date of heading and other agronomic characteristics. The performance of Shortana was somewhat disappointing this season. Stripe rust was quite heavy in this entry and in our larger field plots this season. Table 1, gives complete data of this nursery.

Table 2, contains a ten year summary of spring wheat varieties grown in the Advanced Yield Nursery. Thatcher is the long time check (100%). Sheridan has been dropping below Thatcher in the last few years, because of a degree of susceptibility to stripe rust and a very weak straw under the rather high fertile conditions the nurseries are grown. Shortana is 114% of Thatcher, however in 1971 Thatcher was 2 bushels higher in yield. This can no doubt be attributed to the stripe rust that occurred on Shortana. Most of the new entries of the semi-dwarf lines are far superior in yield to Thatcher over a 1 to 3 year period.

Western Regional White Wheat Nursery

This nursery was changed considerably in 1971, when many of the long time checks were dropped as entries. The only long time check left in the nursery is Federation which is super susceptible to stripe rust and lodging.

Twin is used as a check in this nursery and only two entries were significantly higher in yield, namely ID 0044 and ID 0046. These two entries head ten days earlier than Twin which could be an advantage, however ID 0044 has a somewhat weak straw and somewhat susceptible to stripe rust. The following entries should have more evaluation because of potential use in Western Montana, ID 0046, Fremont, ID 0042, OR 6713 and ID 0035.

Test weights were low in this nursery because of a heavy rain prior to harvest. The material was harvested, bundled, but could have been dryer when it was threshed and weighed for yield. However, the variety Twin has always had a low test weight in our plots.

In Table 4, is found a ten year summary of varieties grown in the Western Regional Spring Wheat Nursery. Action by the Western Wheat Improvement group in February 1971 resulted in the removal of many of the historic checks, leaving only Federation as a long time check. Only Twin has been in four years, all other en-

tries are one to three years. It is difficult to make any judgements from this table, as to the preformance of any one variety in relationship to Twin.

Off Station

This nursery was grown under very good dryland conditions. Yields were above average for the area with a mean of 42.5 bu/a. Twin (soft white) was the highest yielding entry, followed by Era (hard red). These two entries were significantly higher in yield than Sheridan which was used as a check. Table 5.

FUNGICIDE STUDIES:

Research Center

Yield difference between varieties was found to be highly significant, but there were no significant difference in yield because of the fungicide used. It should be noted however, that a difference of 3.6 bu/a was recorded between the check and Ceresan. Vatavax reduced yields below the check, which has been noted in previous work. Thatcher is the highest yielding entry, and is probably due to the rather high level of stripe rust found in Shortana this season.

Bushel weights were not analyzed statistically. A tabulation of these data did not indicate significant difference in test weight as a result of fungicide or because of the variety.

Varieties were found to be significantly different in heading date. Thatcher being the earliest and little or no difference between Shortana and Sheridan. Fungicide treatments had no effect on heading date.

Plant counts made following emergence were found to be significantly different because of variety with Shortana having the most plants per 12 feet of row. This difference probably exsists because of the seed size of Shortana, which is smaller than either Sheridan or Thatcher.

Stripe rust readings were made on an arbitrary scale. Type, on a scale of 0-9 and severity based on the amount of the leaf covered by spores. Varieties were found to differ in type and severity. Sheridan had the highest reading for severity with a 5.25 reading for type, moderately resistant. Fungicide treatment did not significantly affect the type of stripe rust infection, there were significant differences in severity of infection (number of spores on leaf surface). Vatavax, Maneb and Captam treatments resulted in lower severity readings than the check and the Ceresan treatment which had the highest severity reading. Table 6.

Lake County

This location was in an area with light soil, but rain fall was fair which resulted in above average yields for spring wheat in this location.

Varieties were found to be significantly different statistically. Shortana is the high yielding entry and Thatcher the lowest. This is just the opposite of the study on the research center. Yields because of fungicide treatment were not significantly different, however the check (no treatment) did result in the highest yield.

Plant counts were found to be significantly different between varieties with Shortana having the highest number, which was also true at the research center location. The fungicide treatment did not result in statistical significance however, in plant counts the highest was obtained in the check (no treatment). This was also true in the study located at the research center.

In summary it can be said variety differences were significant as was expected. Some fungicide treatments resulted in a significant difference in the severity of stripe rust with Vatavax, Maneb and Captam reducing the severity. Not significant, but yield reductions were noted in the Vatavax treatment at the Kalispell location (research center)

Plant counts were highest in the check plots in both locations. Looking at these data one would question the value of seed treatment for spring wheat when these varieties are used, as it related to yield.

Values significantly less than the check

ام

Agronomic data from the advanced yield nursery grown at the Northwestern Agricultural Research Center Route 4, Kalispell, Montana in 1971. Experimental design - random block. Four replications. Size of plot: 16 sq. ft. Harvest date: September 6, 1971 Planting date: May 3, 1971 Table

C.I. or	or Warietv	Yield Bu/A	Test Wt Lbs/Bu	Heading Date	Plant Height	Sheaf Wt Grams	Lodging Prev. Se	1:	Stripe Prev %	Rust	Straw/Grn Ratio	Straw	1
1	2	97 66	7 7 7	105 003	30 75h	2684_00a	00.66	8-25a	20.00b	6-25	.52	1767.75	
	392/ Fitte 62 7042 Si/3/Num30/Bur14//5*Cht	90 - 78*	70.00	190.50		2324.75	24.75b	25b	38.75	10	.64a	1417,25	
MI 139		*00.06	57.1	193.25a	37.75b	2239.50	80,50	75	13.75b	3.00b	.68a	1339.75t	
WO 16		89.53*	59.0	185.75b	35.25b	2353.00	24°75b	1.75b	1.75b	1,00b	.61a	1458,00	
~	Bonanza	86.08	59.0	189.25b		2211.50	31,00b	1,00b	.75b	.75b	.64a	1351,00b	
WO 16		85.85*	60.4	185.25b	36.50b	2211,50	6.25b	2,00b	2°00p	2.00b	. 63a	1353.25b	
		84.95*	57.2	189.75	38.50b	2154.50	49.50b	1,00b	15.25b	3°20p	.65a	1305,25b	
		84.23*	58.0	186,00b	38.25b	2183.25	43.50b	6.75	5.75b	1.25b	,63a	1341.25b	
		83.78*	57.1	184.00b	33.00b	2069.50b	00	900°	13.25b	2°55b	.68a	1232,00b	
		83.58*	59.5	191,50	53,00	2438,00	00°66	2.75b	1.00b	2.00b	.52	1602,50	
		83,00*	57.5	186,00b	31,00b	2041,00b	5.00b	1.25b	.75b	•75b	.68a	1211.25b	
CI 145	14587 Peak - ID0018	82.93*	58.1	187,00b	39°20p	2239.50	96.75	.75b	22.50b	00.9	,59a	1410.50b	
MT 68		81,45	55.1	189,25	37.25b	2268,25	00°	q00°	5.25b	2,00b	.56a	1454.00b	-
CT 135	13985 Fletcher	80.50	53.2	193.75a	36.25b	2126.25	55.75b	2.00b	8.75b	3.25b	.62a	1321.50b	5-
MT 69	6903 Si/3/Nrn10/Bvr14//5*Cht	78,53	58.4	189.50	39°20p	2069.75b	24.75b	.25b	29.00	4.25b	.61a	1284.75b	
MT 68	6839 Ftr/3/Nrn10/Bvr14//5*Cht	78,35	53.8	194.00a	43°00p	2296.25	00°66	2°20p	30.00	2	.52	1513,00	
DK			6.65	187,00b	37.25b	2211,25	00	q 00°	4°00p		.55a	1431,25	
CI 135	13596 Fortuna	76.75	60.2	189.50	47.00b	2211,25	00°66	2,00	17.50b	3.25b	.53	1444.00	
MT 69	6901 Ceres/3/N10/Bvr14//4*Cnt		51.0	191,50	40.75b	2126,00	74.25	2.75b			.58a	1359.25b	
WO 18	1812 World Seeds 1812		59.5	186,00b	32,50b	1871,00b	00°66	1,00b	2.00b		.68a	1111.25 b	
FB 4	408 Funk Brother, S W-408	73.37	57.3	185,00b	31.00b	1927.75b	00°	900°			. 63a	1194.25b	
CI 13	13586 Sheridan 1/	73,30	6.09	190.25	52°52	2324,75	96.75	5.75	40.00	6.75	.46	1592,00	
CI 10	10003 Thatcher	72,55	57.0	189,25	48.75b	2126,25		4.75	6.50b		.53	1401,00	
ND 6	6579 Fta/61-107, S6579	71.80	58.0	187.75b	100	2069.50b	_	1,00b			.53	1351.75b	
CI 12	12974 Centana	71,12	29.0	194.25a		2268.00	00°66	4.00		6.75	•46	1557,00	
CT 15	15233 Shortana	70.57	57.0	193.25a	38°20p		74.25	°75b	57		.48	1477.25	
CI 13		68,95	60,1	191,50	51.75b	2239.50	95.50	2,00	.75b	CA	•45	1550.25	
CI 13	13775 Manitou, R.L. 4159	67.07	58.0	189.00	49.25b	2041.25b		2.00b	4.25b		.49	1370.75b	
CI 13	13333 Wells	66.77	29.0	192,00a	53.75	2126.25	86,75	5,50	20,00		•46	1458,75	
CI 13	13958 Waldron	09.99	57.5	187.00b	45.25b		00°	400°	5.25b	2.00b	•44	1517.25	
CT 13	13768 Leeds	61,37	9.09	190,00		2268,00	00°66	1.75b		ģ	.37b	1654,50	
MT 6	6905 B59-3/Sheridan	55.64	54.1	189.75	45.25b		00.66	3°00p	80°00a	6.75	.41	1343.00b	
1/ 3	Check Variety					• Varieties		vielding		significantly	more	than the check	X
	במע אמדירה		-			1 11-11-1				1.1			1

1/ Check Variety a/ Values significantly more than the check

Straw Weight	1411.8 3.84** 71.20 199.57 5.04
Straw/Grn Straw Ratio Weight	.60 7.43** .03 .09 5.80
Stripe Rust Prev.% Type	41.6 2187.1 60.8 2.5 20.5 3.6 * 56.16** 3.09**8.36**8.05** .95 89.48 13.93 .80 5.43 .61 2.67 250.81 39.05 2.25 15.23 1.71 2.29 4.09 22.90 32.77 26.54 16.97
Lodging Prev. Sev.	2187.1 60.8° 2.5 20.5 3.6 3.09**8.36**8.05**, 11.21** 89.48 13.93 .80 5.43 .61 250.81 39.05 2.25 15.23 1.71 4.09 22.90 32.77 26.54 16.97
Sheaf Wt Grams	2187.1 * 3.09* 89.48 250.81 4.09
Yield Test Wt Heading Plant Sheaf Wt Bu/A Lbs/Bu Date Height Grams	57.7 189.5 41.6 21 0.0 34.96** 56.16** 0.0 .51 .95 0.0 1.43 2.67 2 0.0 .27 2.29
Heading	189.5 34.96* .51 1.43
Test Wt Lbs/Bu	.,
Yield Bu/A	77.6 1 6.674 3.42 9.59 4.41
	F - Value for variety comparison 6.67** S.E. X L.S.D. (.05) C. V. % 4.41

Table 1 . (Con't.)

Summary of dryland, hard red spring wheat yields for the Advanced Yield Nursery grown at the Northwestern Agricultural Research Center, Route 4, Kalispell, Montana 1962-71. 2 Table

C.I. or State #	Variety	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	Ave	Sta	% of
CT 10003	Thatcher	49.7	34.7	46.7	65.4	62.2	60.6	63.4	69.5	55.5	72 5	0	7	7000
	2 L LOIT	200	23.7	7 2 2 2	200	2000	0 0	٥	0	ם נ	000	0	27 5	TOOOL
	WELLS	000	000	100	4000	000	0 0 0	1000	0	0	900	0	10	100,1
	Sheridan	59.4	36.9	20.6	809/	50°6	54.5	0	0	45°7	73°3	0	10	0°66
		58°1	34,3	47.8	0	0	54°2	0	61.9	52,8	71,1	52°6	10	96°4
	Manitou, R.L.			50°8	62°5	0	57,5	0	70°1	66,99	67,1	62,5	ω	100.9
1001	Fortuna			65°9		0	56,4	0	88°6	41.9	76.8	8,99	7	108.7
CI 13768	Leeds					55°8	58,1	0	49.4	64.0	61,4	57.8	9	90°4
	Polk					0	52,3	57.2	64.3	50°2	6899	57.4	9	89.7
	Shortana							0	71.9	80°5	70.6	73.6	4	112.0
~	Waldron								62.0	67,1	9°99	65.2	m	99,1
	Fta/61-107,S								6°06	71.3	71.8	78.0	е	118.5
_	Ftr/3/Nrn10/								80°3	80°3	78.4	79°9	e	121.3
	Si/3/Nrn10/B								87.0	74.0	85.0	82.0	т	124.6
	Era								93,1	82,2	0°06	88.4	т	
۲,	Pitic 62								101,1	82.5	91.7	91,8	ж	139 .4 -
	Si/3/Nrn10/B									87.7	78°5	83,1	2	ω
	B52-91/3/N10									84.1	81,5	85,8	2	129.4
۲.	Fletcher									78.0	80°2	79.3	2	123.8
_	Ceres/3/N10/									75°5	76.7	76.1	2	118.9
~	Bonanza									79°7	86.1	82°8	2	130.0
	World Seeds									0	83.8	72.2	2	112.8
18.	World Seeds									0	0°94	70°9	2	110.9
	Dekalb, S SB8									77.2	78.0	77.6	7	121.7
	B59-3/Sherid									66.2	52°6	6009	2	95.2
	S1/3/Nrn10/B										8°06	8°06	Ţ	125.2
	World Seeds										89°2	89°5	1	123.4
_	World Seeds										85.9	85.9	H	118.5
	Cargill, S BO										84.2	84.2	7	116,1
	SWISSO1Z6911							1			83°6	83°6	1	115,3
F.B 406	Funk Brother										83°0	83°0	C	114.5
17	reak									85°7	85°9	80°3	2	131.7
FB 408	Funk Brother										73.4	73.4	\leftarrow	101,2

Agronomic data from the Western Regional Spring Wheat nursery grown at the Northwestern Agricultural Research Center in 1971. Experimental design, random block, four replications.

Table __

Size of plot: 16 sq. ft. September 8, 1971 Harvest date: May 3, 1971 Planting date:

ပံ	I or		Yield	Test Wt	Heading	Plant	e e	Rust	Lodging	ing	
St	State #	Variety	Bu/A	Lbs/Bu	Date-	Height	Sevo	Type	Prevo	Sev。	
ıA	0044	Aberdeen 65355-128-6-1	106,01*	56.4	186.00b	40.00	5.50	7.00a	00°66	6.75	
ID	0046	Yt54A*4//N10/B/3/A63166S	99°01*	55.5	185.25b	36.00b	2,00	3,00	44.75	3.50	
M	206248	Era SIB 1	89°20	57.6	193.00	38,75	6.50	3.00	99,00	00°9	
A	0045	Aberdeen 6535S-128-7-1	89 . 43	55°0	195,50	40.00	16.25a	6.00a	00°66	7,25	
П	0043	58/TC//TC/KF/3/FTN/3*TC	89 ° 23	58°0	185°75b	35°00b	3°00b	3°00	49.50	2,25	
WA	5652	Henry/Burt, Sel. 65-2	83.03	58.0	194,50	51.25a	36.25a	2,00	00°66	3.00	
CA	6907	Opal,	82°18	54.5	197,25	48.50a	1.00	2.00	49,50	° 50b	
IJ	14588	Twin-	82,63	26.0	195,25	38°50	2.00	2,75	57,25	4.75	
Ħ	14056	Fremont - UT256006	80°63	59°0	187。75b	37.50	3.00	1,75	49.50	° 50b	
П	5022	IDD/178383//3*LMH/3/Lm66	79°88	54.4	194.00	53.75a	11,25	7.50a	00°66	5,75	
Ħ	14587	Tzpf/Sonora 64	79°80	26.0	188,00b	40.25	16.25a	3,25	00°66	2.50	
OR	672	Idaed x Burt, 19-1	79°70	58°6	188,25b	42,00a	1,00	3,00	24.75	°25b	
A	0043	58/TC//TC/KF/3/FTN/3*TC	79.45	56.0	187,50b	36°20b	2.00	1,00	00°66	2,75	-8
WA	5866	1750/TST//PI 187383	76.75	56.9	192,50	52.25a	,75	°75b	00°66	7.00	-
WA	5651	Marfed Mutant 6278	74.35	59°2	196,00	49°25a	28°75a	4.25	00°66	5,00	
OR	6713	Idaed/Burt//Idaed 59	73 ° 75	59°2	188,00b	44°75a	7.50	2,50	00°66	1.00	
MA	5658	Marfed Mutant X6135-1	73.42	59°2	196,00	51,00a	35.00a	5.50a	00°66	00°9	
M	206264	Era Sib 2	72,17	54.9	192°75	36°20b	3,25	3.00	76,75	2,75	
ID	0035	Tzpp/Sonora 64	70.90	58°9	188,25b	37.50	1,00	3°00	49,50	°75b	
WA	5488	K337/AO//Koelz7941S66-9	65°17	56°2	191,75	51°50a	2,00	1,75	99,00	7.00	
IJ	4734	Federation	51,32	53.9	197,00	50°25a	99°00°	9.00a	00°66	4.75	
710	Days fr	Days from January 1.									
v]#	Varieties vie	Check Variety Varieties vielding significantly more than	re than the	check (205)	(5)						
होव	Values	Values significantly more than the check (.05)	check (.05								
ı	1	•									
	×		80°0	56.9	191.4	43.4	13.5	3°6	80.4	3°8	
	F valu	F value for variety comparison	9.23**	000	3,96*	101,21**	40°62*	**37°74*	2,70**	6.22**	
	JoEo X	(30)	3,77	000	2.05	.65	3.54	°36	15,66	96°	
	た。ひ。ひ。ひ。	(60°)	10.66	000	5.19	1,83	10.01	10,01	19.28	2,73	
			1 00	٥	Tool		1 1		+ 0	000	

Summary of regional spring wheat variety yields grown at Northwestern Agricultural Research Center, Route 4, Kalispell, Montana 1961-71. Table

Coro OF												Sta	% of
State #	Variety	1961	1962	1963	1964	1966	1967	1968	1969	1970	1971	Yrs。	
4734	Federation	24.9	44.1	27.2	29°5	36.6	43.7	54.1	r,	18.4	7	7	57
14588	Twin							71.0	, עם מי ת	2007		2 5	200
OR 672								001	5 0	מ לי		4	COT
ч									S	57,1		n	90
•									ô	29°6		m	9
-										70°4		7	102
	51.5 IS									62.9	70°9	~	94
										64.9	73.8	N	94
										59.4	82.8	^	44
										56.7	83.0	1 (0 0
	Marfed Mutant 6278									38.2	74.4	10	77
WA 5658	Marfed Mutant x 6135-1									33,3	73.4	10	7.2
ID 0044	Aberdeen 65355-128-6-1										1000	U 7	200
ID 0046	Y+54A*4/Nrn10//Byr/3/4631669										10000	-1	178
20	FYS CTR 1				/						0°66	H	120
											89°2	1	108
											89°4	₩	108
~											89°5	⊣	108
14030											80°e	₽	98
											6°62	۲	97
	-										0	~	96
20	1/30/18U//FI 1/6383										76°8	4	93
	7 010 5											7	27

Table 5 Agronomic data from off station spring wheat nursery grown in Lake County on the George Synder farm, Pablo, Montana in 1971.

Experimental design - random block, four replications.

Planting date: May 5, 1971 Harvest date: August 26, 1971 Size of plot: 16 sq. ft.

C.I. or		Yield	Test Wt.	Plant	Lodg:	ing
State #	Variety	Bu/A	Lbs/Bu.	Height	Prev.	Sev.
14588	Twin - ID 0015	53.64*	58.5	29.75b	.00b	.00b
13986	Era	51.89*	61.5	28.75b	.00b	d00。
MT 6830	Si/3/Nrn10/Bvr14//5*Cnt	47.34	60.0	30.00b	.00b	.00b
MT 6834	Si/3/Nrn10/Bvr14//5*Cnt	45.39	60.2	32.25b	.00b	.00b
10003	Thatcher 1/	43.76	59.7	38.50b	22.50b	.50b
13586	Sheridan 1/	42.99	60.2	42.75	99.00	2.25
wo 1809	World Seeds 1809	40.21	60.0	26.75b	.00b	.00b
13596	Fortuna	40.14	60.0	35.50b	41.25b	.50b
DK 1	Bonanza	40.11	60.5	29.25b	.00b	.00b
15233	Shortana	39.91	59.5	28.75b	.00b	.00b
DK 8	Dekalb, S SB8	39.71	61.0	30.25b	.00b	.00b
14056	Fremont - Ut256006	39.51	60.0	31.25b	.00b	.00b
13775	Manitou, R.L. 4159	35.96	59.5	36.25b	2.50b	.50b
CG 208	Cargill, S Bounty 208	34.59	62.0	25.75b	.00b	.00b

^{1/} Check variety

b Values significantly less than the check (.05)

x	42.5	60.2	31.8	11.8	.3
F-value for variety compa	arison				
	4.74**	0.0	22.60**	10.60**	8.80**
S.E.X	2.52	0.0	1.00	8.55	.20
L.S.D (.05)	7.18	0.0	2.86	23.34	.58
C.V.%	5.93	0.0	3.15	72.40	76.52

^{*} Varieties yielding significantly more than check (.05)

a Values significantly more than the check (.05)

Agronomic data from variety x fungicide nursery grown on the Northwestern Agricultural Research Center, Kalispell, Montana in 1971. Table 6 .

Planting date: May 3, 1971

Harvest date:

September 8, 1971

Size of plot:

16 sq. ft.

		ď	×		_	× >:
	×	ଜ୍ଞ	ave.	ą	tan	iet
	Check	Ceresan	Vatavex	Maneb	Captan	Variety
Variety	<u> </u>	Ö	> ·	Σ	0	
		Yie	ld Bu/A			
Thatcher	65.92	75.42	69.92	67.15	66.60	69.00
Sheridan	66.30	63.90	60.34	66.95	64.60	64.41
Shortana	59.54	63.30	52.94	65.17	61.75	60.54
Freatment \bar{x}	63.92	67.54	61.07	66.42	64.31	
		Test	wtLbs/bu			
Thatcher	56.90	57.10	56.50	56.80	56.50	56.76
Sheridan	58.40	57.50	54.50	58.10	57.80	57.26
Shortana	56.10	55.20	59.20	57.20	56.80	56.90
Treatment x	57.13	56.60	56.73	57.37	57.03	
		Hea	ding Date			
	106.05	187.25	187.50	186.75	186.75	186.90
Thatcher	186.25	190.50	190.50	190.75	190.25	190.50
Sheridan	190.50	191.00	191.00	191.00	191.25	191.10
Shortana _	191.25	189.58	189.67	189.50	189.42	
Treatment x	189.33	103.30	102.07	10000		
		Plants/	12 ft of row			
Thatcher	223.25	224.25	204.00	208.50	216.75	215.35
Sheridan	249.50	248.25	245.25	237.00	241.75	244.35
Shortana	273.25	252.50	243.00	248.00	265.00	256.35
Treatment x	248.67	241.67	230.75	231.17	241.17	
		Stripe R	ust-Severity	_		
Thatcher	2.00	3.00	2.00	1.00	2.00	2.00
Sheridan	17.50	21.25	10.00	12.50	13.75	15.00
Shortana	6.25	5.25	5.00	3.00	2.00	4.30
Treatment x	8.58	9.83	5.67	5.50	5.92	
		Stripe	Rust-Type			
Mhatahan	2.00	2.00	2.00	2.00	2.25	2.05
Thatcher Sheridan	5.75	5.25	4.75	5.00	5.50	5.25
Shortana	3.25	3.00	3.25	3.00	3.00	3.10
Treatment x	3.67	3.42	3.34	3.34	3.58	

Table 6 (con't)

59

Total

ANOVA for the variety x fungicide nursery grown on the Northwestern Agricultural Research Center.

Research Cen	ter.						
		Yi.	eld	Heading	Date	Stripe	
		• • •			-	Туре	
Source	D.F.	Mean Square	F.	Mean Square	F.	Mean Square	F.
Replication	3	2'07.213	4.77	1.35556	5.13	1.51111	4.87
Variety	2	358.913	8.26**	103.200	389.43**	53.2167	171.68**
VxR	6	51.8898	1.19	.355556	1.34NS	1.26111	4.06**
Treatment	4	74.8333	1.72	。208333	.78NS	.275000	.89NS
RxT	12	75.5267	1.74	.119444	.45NS	.497222	1.60NS
V x T	8	51.0015	1.17	.470833	1.78NS	.237500	.77NS
Error	24	43.4443		.265278		.309722	
Total	59						
		Stripe Ru	st				
		Severity		No. of Pl	ants		
		-					
Replication	3	24.1111	2.34	1086.46	3.17		
Variety	2	962.600	93.55**	8886.67	25.90**		
VxR	6	36.2444	3.52**	111.378	.32NS		
Treatment	4	47.0583	4.57**	702.517	2.05NS		
RxT	12	11.6806	1.14NS	406.239	1.34NS		
V x T	8	22.6208	2.20NS	171.667	.50NS		
Error	24	10.2931		343.072			
	-						

Table ______. Agronomic data from variety x fungicide nursery grown in Lake County on the George Synder farm, Pablo, Montana in 1971.

Planting date: May 5, 1971 Harvest date: August 26, 1971 Size of Plot: 16 sq. ft.

			Treatment			ıx
Variety	Check	Ceresan	Vatavax	Maneb	Captan	Variety
		Yie	eld bu/A			
Shortana Sheridan Thatcher Treatment x	45.01 40.44 38.24 41.23	42.11 42.09 38.24 39.52	44.46 41.54 34.29 40.10	36.81 38.71 38.61 38.05	39.14 39.24 36.81 38.40	41.51 40.40 36.46
		Plant/1	2 ft. of ro	<u> </u>		
Shortana Sheridan Thatcher Treatment x	272.75 215.75 205.50 231.33	235.00 206.75 196.00 212.58	211.00 209.75 188.75 203.17	228.50 195.75 190.00 204.75	246.25 187.50 212.75 215.50	238.70 203.10 198.60
		Test	Wt. lbs/bu			
Shortana Sheridan Thatcher Treatment x	58.2 60.7 59.7 59.5	61.0 60.5 59.5 60.3	60.5 60.5 59.2 60.1	59.0 61.0 59.5 59.8	58.9 61.0 59.5 59.8	59.5 60.7 59.5 59.9

ANOVA for plan	t number	and yield in var	iety x fungi ber	icide study. Yield	
Source	D.F.	Mean Square	F	Mean Square	F.
Replication	3	490.533	.50 9.91**	77.6597 140.740	4.26 7.71**
Varieties R x V	2 6	9652.07 859.000	.88NS	4.73723	.26NS
Treatment R x T	4 12	1518.61 911.519	1.56NS .94NS	20.0227 11.8176	1.10NS .65NS
V x T	8	761.671 974.049	.78NS	27.2216 18.2518	1.49NS
Error Total	24 59	9/4.049		2502020	

TITLE:

Fertilizers on spring and winter annuals

PROJECT:

Small Grains Investigations MS 756

YEAR:

1971

PERSONNEL:

Vern R. Stewart

LOCATION:

Rotation R-1 thru R-16. Northwestern Agricultural Research Center

MATERIALS AND METHOD:

All applications of fertilizers were made with field equipment. Seeding and harvesting was done with field equipment. Rates used are found in Table 1

RESULTS AND DISCUSSION:

Beginning in 1972 this rotation will be used for cropping sequence study. Thus in the future it will be reported under a special project. Spring crops were made part of the cropping sequence and a continuous cropping sequence in field R-7 was initiated in 1971.

Yields in 1971 were about average in the overall picture. Oats grown in R-13 were quite high (110 bu/a). This is the third small grain crop from this field. Yields in R-1a and R-2a are compared. R-1a was fertilized, yield was 63.1 bu/a, R-2a non-fertilized, yield was 44.3 bu/a. Part of that difference can be due to soil difference in these two fields.

Nugaines and Crest were fertilized at the same rate. (See Table 1, field R-3a and R-4a). Nugaines out yielded Crest by $23.9\ \text{bu/a}$. This we would expect with the average rainfall in 1970-71.

Protein levels are low in R-7a, as they were in R-7b in 1971. To date I do not have an explanation for this continued low protein level in this field. In all other cases where fertilizer was applied the protein levels were increased over the non-fertilized wheat in R-2a.

Table _____. Yield of spring and winter annuals grown in rotation R, Northwestern Agricultural Research Center, Kalispell, Montana 1971.

Number	Formulation	11.12			Acre						6 8
25. 74		#/A	N	P	K	S		Crop	Variety	Bu/A	Protein
R-1a	16-20- 0	200	32.0	40	0	28	W	Wheat	Crest	63.1	12.2
R-1b	27-14- 0	150	40.5	21	0	0	S	Wheat	Sheridan	29.6	
R-1c	27-14- 0	150	40.5	21	0	0	S	Wheat	Sheridan	29.6	
R-2a	0- 0- 0	0	0	0	0	0	W	Wheat	Crest	44.3	9.3
R-2b	27-14- 0	150	40.5	21	0	0	S	Barley	Piroline	76.4	
R - 3a	16-20- 0 34- 0- 0	200 135	32.0 45.0	40 0	0	28 0	W	Wheat	Nugaines	72.0	
R-4a	16-20- 0 34- 0- 0	200 135	32.0 45.0	40 0	0	28	W	Wheat	Crest	48.1	12.1
R-4b	27-14- 0	150	40.5	21	0	0	S	Barley	Piroline	67.2	
R-5c	16-20- 0	200	32.0	0	0	28	W	Wheat	Crest	57.2	13.3
R-7a	16-20- 0	200	32.0	40	0	28	W	Wheat	Delmar	42.0	10.0
R-7b	27-14- 0	150	40.5	21	0	0	S	Wheat	Sheridan	30.1	
R-8a	16-20- 0	200	32.0	40	0	28	W	Wheat	Delmar	41.1	
R-13	16-20-0	200	32.0	40	0	28	S	Oats	Cayuse	110.0	
R-14							S	Barley	Ingrid	79.0	
R-15	17-17-17		74	84	34	35	W	Wheat	Nugaines	52.7	
R-16	17-17-17	200	34	34	34	0	W	Barley	Alpine	60.1	

Ks AJJ

"NOT FOR PUBLICATION "

TITLE:

Potato Evaluation

PROJECT:

Potato Investigations MS 757

PERSONNEL:

Leader - A. J. Jarvi Cooperator - J. W. Dunse

LOCATION:

Northwestern Agricultural Research Center

DURATION:

Undetermined

OBJECTIVES:

1. Evaluation of virus-free gems with other grower stocks.

2. Evaluation of some commercial varieties and Montana selections.

PROCEDURE:

All trials were planted in field X-4 with 300#/A of 16-20-0 applied at planting. Twenty pounds of Di-Syston was applied with the fertilizers. A RCB design was used with six replications. Plots were three rows 20 feet long with 40 inches between rows and 9 inch spac-

ing between drops. Trials were planted on May 26, 1971.

RESULTS AND DISCUSSION:

Gem seed sources. Table 1. The virus-free Gem was the highest yielding of the seven entries. No significant differences were observed in stand counts. Significance was obtained in the 11/2 - 4 oz. yield, 4 - 16 oz. yield, total yield of No. 1's and specific gravity. There was a range of 62 cwt/A in the yield of No. 1's.

Table 2, illustrates the distribution of various classes of tubers from the different seed stocks. The Heterogeneity Chi-square indicates that there is no significant differences in the distributions.

The virus-free gem yielded signifi-Potato Variety Trial. Table 3. cantly better than the varieties and selections. The three lowest yielding entries this year were the Montana selections. Norland, Chiefton, Norgold and Norchip yields were not significantly different. The virus-free Gem also had the highest specific gravity readings.

Distribution of tuber types of the different varieties are present in Table 4. As one would expect the Heterogeneity Chi-square indicates the distributions of different varieties are significantly different.

Potato yield trial comparing various sources of Gems, grown at Northwestern Agricultural Research Center in 1971. Table

				Mean of	Mean of Six Replications	SU				
	Stand Counts		Vield Tuber Size. #1's	l's	Sum 13 thru1			Specific	Total	
Source	66.7 sq.ft.	松	4 - 16oz	16oz+	16oz + yield	#5's	Culls	Gravity	Yield	
	No	Cwt/A	Cwt/A	Cwt/A	Cwt/A	Cwt/A	Cwt/A	Units	Cwt/A	
Virus Free	23.2	191.5	173.2	0°0	364.7a	1.1	3,3	1.093	369.1	
Skone + Connors	ors 23.0	173.2	177.1	1,1	351,6ab	0°0	15.0	1,089	366.6	
Jacobson	21.3	165.4	179.1	3°3	348.4ab	1.1	4.4	1,001	353°9	
Schutter	23.7	158.2	177.8	1,1	336.7ab	4.4	12,4	1,089	353.4	
Mangles	23.3	162.1	168.0	2°5	332.0ab	1.1	22:2	1,088	355°3	
Smalls	22°7	177.8	147.1	1.1	325.5 b	1.1	15.0	1,089	341.6	
Treweek	23.8	216.3	86.3	0°0	302°6 b	0.5	4.9	1,089	308°0	-2
L.S.D. (.05)	05) 2.24plants	ts 25.2cwt	38.2cwt	,	33.6cwt	,	,	0.0027units	8	
C.V. SY/Y	3.4%	4.9%	8.4%	,	3.4%	1	ī	%6°0		
MEAN SQUARE:										
Variety	4°167NS	57.943**	159.525**	,	57.608		1	0.0000188	:	"NC
Replications	ons 3.828NS	7.734NS	17.700NS	,	28.854NS	,	,	0.0000042NS	NS	T F
Error	3.662	16.973	24.564	,	19.062	•	,	0.0000053		POR
1/ Means fo	llowed by same	Means followed by same letter are not significantly different at	significantly	differe	nt at the .05 probability level.	robabili	ty leve.	100		PUBLICATION"

Table 2 . Distribution of tuber types from various Gem seed sources.

Northwestern Agricultural Research Center in 1971.

	Distribution of Tuber Types					
		# 1's				
Seed Source	1½ - 40z	4 - 16oz	16oz +	# 2's	Culls	
	%	%	%	%	%	
Virus Free	51.9	46.9	0.0	0.3	0.9	
Skone + Conner	47.2	48.3	0.3	0.0	4.1	
Jacobson	46.7	50.6	0.9	0.3	1.2	
Schutter	44.8	50.3	0.3	1.2	3.5	
Mangles	45.6	47.3	0.6	0.3	6.2	
Small	52.0	43.1	0.3	0.3	4.4	
Treweek	70.2	28.0	0.0	0.2	1.6	
x	51.2	44.9	0.3	0.4	3.1	

Heterogeneity Chi-square = 25.39 @ 24df. Prob. = .25 - .50

Potato variety trial grown at Northwestern Agricultural Research Center in 1971. Table 3 .

				Mean of	of Six Replications	cons			
	Stand Counts				11				
	Plants/	Yield T	Yield Tuber Size, #1's	1's	Sum 1/2 thru-			Specific	Total
Line	66.7 sq.ft.	14 - 40z	4 - 16oz	16oz+	16oz + yield	#5's	Culls	Gravity	Yield
	No.	Cwt/A	Cwt/A	Cwt/A	Cwt/A	Cwt/A	Cwt/A	Units	Cwt/A
Virus Free Gem	21.2	165.0	201.0	0°0	366.0a	1,1	2.2	1,091	369°3
Norland	21.0	62.6	251,1	2°5	315°7 b	0°0	0°0	1,076	315,7
Chiefton	18.0	51.8	255.4	0°0	307.2 bc	0°0	7.1	1,080	314.3
Norgold	19.2	85.8	215.7	1.1	299.3 bcd	0.0	0°0	1.086	299.3
Norchip	20°2	63.2	232.5	0°0	296.1 bcd	000	0.5	1,088	296°9
M-35939-5	18.2	140.0	129.6	0°0	263.4 cde	0°0	1.1	1,083	264.5
M-55963-3	16.5	47.4	207.5	0°0	254.9 de	0°0	1,1	1.085	256.0
M-5908-1	18,3	130°7	116.0	0°0	247°1 e	0°0	1.6	1.082	248°7
L.S.D. (.05	L.S.D. (.05) 2.98plants	26.4cwt	49.1cwt	1	44.6cwt	,	,	0.0033units	
C.V. SY/Y	5.4%	1.0%	8°2%	٠	5.3%	ï	•	1.1%	
MEAN SQUARE:									
Variety	16,521	278.021**	382,129**	,	211,866**	1	,	0.00013264.	
Replications	9.022NS	15.558NS	350°746*°	1	506.038**	•	,	0.00000322NS	
Error	6.449	11.873	41.053	,	33,887	•	,	0.00000784	

1/ Means followed by the same letters are not significant at the .05 probability level.

Table 4. Distribution of tuber types of five varieties and three experimental lines. Northwestern Agricultural Research Center in 1971.

	Distribution of Tuber Types					
		# 1's				
Line	1½ - 40z	4 - 16oz	16oz +	# 2's	Culls	
	%	%	%	%	%	
irus Free Gem	44.7	54.4	0.0	0.3	0.6	
orland	19.8	79.5	0.7	0.0	0.0	
hiefton	16.5	81.3	0.0	0.0	2.3	
lorgold	27.7	72.1	0.4	0.0	0.0	
forchip	21.3	78.4	0.0	0.0	0.2	
-35939-5	52.9	47.2	0.0	0.0	0.4	
1-55963-3	18.5	81.1	0.0	0.0	0.4	
1-5908-1	52.6	46.6	0.0	0.0	0.6	
ž	31.8	67.6	0.1	0.0	0.6	

Heterogeneity Chi-square = 89.82 @ 28df. Prob. <.005