ANNUAL REPORT

1956

NORTHWESTERN MONTANA BRANCH STATION Creston, Montana

C. W. Roath, Superintendent Vern R. Stewart, Ass't in Agronomy

This report is in 6 parts:

- 1. Development of the Station.
- 2. Agronomy.
- 3. Horticulture.
- 4. Activities. 5. Livestock.
- 6. Weather.

Together, the six parts of this report presents a fairly comprehensive resume of the activities and accomplishments of the Station in 1956.

TABLE OF CONTENTS

Development of the Northwestern Montana Branch Stationl
Forage Crop Improvement (Irrigated)
Irrigated Pasture Mixtures3
Irrigated Hay Mixtures4
Trefoil Varieties with Orchardgrass6
Off-Station Hay Mixtures7
Silage Corn9
Vicia species observation
Registered Seed Production
Kenland Clover
Forage Crop Improvement (Dryland)
Grasses for Arid Lands15
Spring Grain Improvement (Irrigated)
Wheat16
Oats21
Barley
Spring grain Improvement (Dryland)
Wheat37
Oats42
Barley46
Date of Planting49
Certified Grains53
Winter Grain Improvement
Wheat54
Wheat off-station59
Barley64

TABLE OF CONTENTS (Continued)

Rotation Data65
Irrigation
Soils Research
Fertilizers on Russian Wild Rye73
Fertilizers on Alta Fescue74
Fertilizers on Native Meadow75
Fertilizers on Kenland Clover76
Fertilizers on Brome Grass80
Fertilizers on Spring Wheat87
Fertilizers on Spring and Winter Wheat94
Fertilizers on Spring Wheat98
Fertilizers on Winter Wheat
Fertilizers on Barley
Tillage Research
Spacing and Rate Studeis on Legume Grass mixtures108
Weed Control
Chemicals on Wild Oats and Quackgrass
General Farmll?
Potato Improvement
Influence of seed size, spacing, and Nirtogen on size,
set and yieldll9
Potato Varieties146
Raspberries
Activities148
Live stock
Weather

DEVELOPMENT OF THE NORTHWESTERN BRANCH STATION 1956

Chief among station development items in 1956 was the erection of three steel grain bins to provide more adequate and more sanitary storage for grains, primarily milling wheat. These bins were placed on cement block foundations. Cost of bins and blocks \$706.80.

Two new items of technical equipment, a 1000 gram scale and a seed packaging machine, were purchased. Both items well speed up work and increase accuracy. Cost of the two items \$240.00.

Some use has been made of the donable properties warehouse in Helena. On occasional trips through that city a number of hand tools and equipment items have been secured at a fraction of new list price. Among these items is a wide carriage typewriter, vice, anvil, power grinder and electric drill. Total Cost \$ 237.00.

Some changes have been made in farm rotations, to make provision for some additional detailed work. In most cases this simply required some sub-division of existing plots to provide room for the additional work, without changing the rotation system as originally planned.

A rotation book was prepared that provides a permanent record for yields fertilizers used etc.

New work provided for by the sub-divisions is as follows:

- 1. A long term study of fertilizer treatments for wheat.
- A direct comparison of wheat yields following fallow and following a cultivated corn crop.
- 3. Additional plots for detailed work with fertilizers on major crops.
- 4. A place to seed some additional detailed forage work each year.

IRRIGATED PASTURE MIXTURES

This is the third year of harvest for these pasture mixtures, yields shown are from four clippings made, 5/22, 6/25, and 8/16, from eighty square feet.

These pastures were irrigated, May 22, June 14, July 23, with a sprinkler system using three inch applications. Fifty pounds of Nitrogen per acre was applied in the spring.

This trial appears to be duplicating the results of a previous one in that ladino mixtures start strong and dwindle, while trefoil mixtures start slowly and improve in relation to ladino mixtures. Three year averages for ladino and trefoil mixtures with the same grasses are quite similar.

Analysis shows the 1956 yield of Orchard and trefoil to be significantly greater than for Orchard and Ladino.

These pastures are to be harvested one more year.

Quality analysis shows Alta fescue mixtures to be slightly lower in protein and phosphate percentages than other mixtures in this study.

Table I . Twelve Irrigated Pasture Mixtures, 1956.

	Pot	Pounds Per Pl	Plot		Total	Pounds Per	Three
Mixture	I	H	III	IV	Pounds	Acre	Average
1. Orchard and Ladino	00°6	5.81	7.22	8.88	30.91	4207.6	4619
2. Orchard and Trefoil	10.33	9.81	7.72	8,80	36.66	£°0667	4793
3. Brome and Ladino	7.00	6.61	6.88	7.39	27.88	3795.2	4316
4. Brome and Trefoil	8,13	7.63	8.09	7.91	31.76	4323.3	4252
-	7.05	7.52	5.97	10,13	30.67	4175.0	4850
6. Alta and Trefoil	8.33	7.70	8,19	8.70	32.92	4481.2	4617
7. Interm. and Ladino	6.36	6.05	7.17	7.84	27.42	3732.5	4315
	7.52	7.77	7.20	7.97	30.46	4746.4	4105
	7.75	5.80	6.45	5.95	25.95	3532.4	0907
Ε,	87.6	5.88	6.47	8,13	29.96	4078.3	3951
	10.09	8,80	7.56	9.50	35.95	4893.7	4585
2. Troy and Trefoil2	7.67	7.98	8.13	96.6	33.76	4595.6	4007
Five grasses with Ladino						3888.5	44,32
Five grasses with Trefoil						0.4044	4344

land² Same as 2 and 10 except different seeding rates. Note: Orchard and Ladino mixture is used as a check. *Mixture significantly higher in yield than the check.

Mean Yield ... 4247.1 S. E. X; ... 245.809 L.S.D.(5%) ... 705.3 L.S.D.(1%) ... 945.5 C. V. ... 5.79%

Analysis of Variance

[tz.				
Mean Square	4.5947	2,6709	.8152	
D. F.	3	11	33	24
Source	Replications	Varieties	Error	Total

FIFTEEN IRRIGATED HAY MIXTURES 1956

This is the third year of harvest for these mixtures of grasses with Kenland clover and alfalfa for hay.

Three irrigations were used, three inch applications, by sprinkler on 5/22, 6/14, and 7/23. Two cuttings were made, one on June 25th and the other on August 16.

Kenland clover has nearly disappeared from some plots after three years of harvest, and this is reflected in yields. Six grasses with alfalfa averaged 4.05 Tons per acre this year compared to 3.52 tons per acre for the same grasses with clover. Three year average yields are close, 4.36 tons compared to 4.11 tons.

Samples from the second cutting have been sent to Montana State College for analysis for protein and phosphate content.

Species or Mixtures producing significantly less than Ladak alfalfa this season are Kenland Clover, Intermediate Wheat grass with Kenland, and Timothy with Kenland.

Orchard grass and alfalfa hay is the leading mixture for yield for the three year period. Only slight differences exsist in protein and phosphate content of the several mixtures. Analysis by chemistry research of Montana State College shows Proteins to vary from 11.1% to 13.0%; phosphate from .10% to .15%. Alfalfa mixtures average 12.2% protein, clover mixtures 11.8%.

Table II . Fifteen Irrigated Hay Mixtures, 1956.

						Tons	Three
	Pot	Pounds Per Plot	ot		Total	Per	Year
Species or Mixture	I	II	III	IV	Pounds	Acre	Average
Ranger Alfalfa	17,11	14.97	14,19	15.69	61.96	4.22	70.47
Kenland Clover	6.56	13.63	11.94	11,38	46.54	3.17*	3.79
Tall Oat and Alfalfa	15,30	74.47	10.95	13.86	54.58	3.71	4.57
Brome and Alfalfa	13.81	14,80	15.19	16.64	44.09	4.11	4.54
Intermediate and Alfalfa	13.78	15.13	11.39	17.53	57.83	3.94	3.99
Orchard and Alfalfa	15.50	12.69	17.56	17.38	63,13	4.30	4.63
Alta and Alfalfa	15.72	15.16	14.16	18.08	63.12	4.30	4.29
Timothy and Alfalfa	15.88	13,56	12,70	15,88	58,02	3.95	4.19
Tall Oat and Clover	12,70	11,81	14.19	11.22	49.92	3.40	4.27
Brome and Clover	17.09	13,08	12,14	12,13	54.44	3.70	4.27
Intermediate and Clover	14,28	9.31	9.73	13.63	46.95	3.20*	3.%
Orchard and Clover	16,80	13,00	13,22	15.22	58.24	3.96	4.16
Alta and Clover	16.09	14.38	11,16	15.03	56.66	3.86	4.39
Timothy and Clover	12.47	13.89	7.69	10.42	14.47	3.03**	3.66
Ladak Alfalfa	14.63	13.63	13.53	15.33	57.12	3.89	4.02

Note: Ladak alfalfa is used as a check. *Mixtures significantly less in yield than the check (5%). ***Mixtures significantly less in yield than the check (1%).

Mean Yield...3.78T S. E. X.....2263 L.S.D.(5%)...65 L.S.D.(1%)...86 C. V....5.99%

Analysis of Variance

Mean Square	14.357 5.19 9.1744 3.32 2.7641
D. F.	75 73 74 73
Source	Replication Mixtures Error Total

TEN TREFOIL VARIETIES WITH ORCHARDGRASS 1956

This is the second harvest year for ten trefoil varieties seeded with orchardgrass.

These were clipped four times, irrigated three times. At no time was there much trefoil in the clippings, although the growth has improved as compared to the first harvest year and stands of all varieties are good.

The table shows air dry weights in pounds per plot of 80 square feet. No significant differences between varieties has been demonstrated.

Seasons Yield In

Table ___ III _. Ten Trefoil Varieties with Orchardgrass, 1956

		Po	unds Per	Plot	Tot al	Per	Year
Species	I	II	III	IV	Pounds	Acre	Ave.
Iowa Empire	8.59	10.33	9.42	12.77	41.11	5596.10	5330
Empire	10.38	9.89	9.14	11.80	41.21	5609.71	5478
Cascade	9.00	9.38	8.98	12.05	39.41	5364.69	5418
Viking	10.23	8.75	10.03	11.20	40.21	5473.59	5362
Granger	9.19	9.20	8.31	10.84	37.54	5110.13	5125
Mansfield	9.08	10.28	9.75	10.30	39.41	5364.69	5424
Italian Broadleaf	10.22	9.88	9.41	12.66	42.17	5740.39	5565
Montana Early	11.97	9.77	8.84	10.44	41.02	5583.85	5482
Oregon Narrowleaf	11.02	9.66	10.25	9.78	40.71	5541.65	5564
N. Y. Narrowleaf	10.63	9.09	10.56	12.47	42.75	5819.34	5480
Analysis of	Variance				S. E. X.	eld	245.406
Source D.	F.	Mean Squ	uare	F			
Replication 3		7.987		9.83**			
Varieties 9		.5621		-			
Error 27		.8126					
Total 39							

OFF-STATION HAY MIXTURES 1956

This is the first year of harvest for these mixtures in this location, in Western Sanders County near the Idaho line. Only one cutting was harvested, although doubtless a second cutting could have been secured.

Volunteer timothy and alsike clover made up much of the forage on all plots, even though an attempt was made to avoid this by cultivation during the seeding year.

This particular field had been recently cleared, and phosphate was used, about 300 pounds per acre prior to seeding the crop. It has not been irrigated, but is in an above thirty inch rain fall belt.

First cutting hays were harvested from a hay mixture nursery seeded on the John Harker place at Heron in 1955.

Volunteer alsike clover and volunteer timothy tended to obscure the actual differences between mixtures. However some significant differences were obtained.

Nearly all mixtures containing Kenland clover produced better than the same grasses with alfalfa, Kenland mixtures averaging 317 pounds more than alfalfa mixtures.

Mixtures producing significantly more than Timothy and alfalfa, were Timothy and Kenland, brome and alfalfa, brome and Kenland Intermediate wheatgrass and alfalfa and intermediate wheatgrass and Kenland.

Agronomic data from off-station hay mixtures nursery grown on John Harkers farm, Heron, Montana, 1956. N Table

Mixture	п	Pounds Per Plot II III	Plot	N	Total Pounds	Pounds Per Acre	Rank
Brome and Alfalfa	2,41	1.70	1.14	1.70	96.92	1576.78*	
Brome and Kenland	2.65	1.91	2,35	1.76	8.67	1967,01*	Н
Intermediate and Alfalfa	2.03	1.89	1,60	1,60	7.12	1615.35%	
Intermediate & Kenland	1.82	1.98	1.67	2.43	7.90	1792.31*	2
Orchardgrass & Alfalfa	1.38	1.53	1.68	1.84	6.43	1458.81	
Orchardgrass & Kenland	1.73	1.30	1.87	1.30	6.20	1406.63	
Hopkins Timothy & Alfalfa	1.47	1.47	64.0	1.14	4.57	1036.82	
Timothy & Kenland	1,80	1.80	1.50	2,55	7.65	1735.59*	· m
Alta Fescue and Alfalfa	1.14	1.79	1.30	86.0	5.21	1182,02	
Alta Fescue and Kenland	1.47	1.47	2,41	1.47	6.82	1547.29	
5 grasses with Alfalfa						1372.76	
5 grasses with Clover						1689.77	

SILAGE CORN

Silage corn for forage production, was started as a project in 1954. At that time a problem was so designed to include three factors, namely, plant populations, date of seeding, and varieties. The latter of these factors is to measure the performance of early medium and late maturity classes. This year it was designed as a multiple complex for the purpose of analysis.

Three varieties, three dates, and four plant populations, were included this season. Seeding dates were May 15, May 25, and June 5. Barnyard manure was spread on the entire plot at about six tons per acre. The previous crop was spring grain and the field was fall plowed. Three two inch irrigations were made during the growing season, and with greater rainfall than normal the moisture supply was very adequate. On June 30, the May plantings were injured by a light frost, and many of the top leaves turned white. However, all affected plants seemed to recover. To control weeds, four cultivations were necessary during the growing season. September 1, a killing frost terminated all growth.

Harvesting was started September 7. Center rows were cut and weighed. A spring scale was used in weighting all samples.

The data in the accompanying tables shows that DeKalb 1024, with 25,917 plants per acre seeded May 15 was the highest yielding combination. The analysis table shows a significant difference due to date of seeding, plant population, and varieties. Table VIa. One thing noted was the large reduction in plants in relationship to the number of seeds planted. There is still a question as to the cause. Next growing season, emergence counts will be made to attempt to find the cause of this reduction.

Yields of green corn silage grown in four row plots, 20 feet long three replications at three planting dates, four planting rates and three varieties. Table

Harvested. September 7, 1956

Size of Plot. 53.3 Square feet.

	Plant Population Seeded Harvested			Wisconsin 255	n 255	Strim	-	Kingscrost	st KF			Dekalb 1024	1024		Total of Three
			4	May 15	15 .	omic .	7	May 15		Sum		II Hell	III	Sum	Varieties
-												may 1			
9,443 16,229 23,423 28,043		Sum	223 63 23	27.7.0	57 67 78 82 82	136 176 211 225 718	46 62 70 70 70 70 70	67 88 88 88	61 88 88 88	174 222 252 259 246	88 104 114 145	154	124 87	248 346 355 400	558 744 825 871
)	į	ţ			2	200	277	320	TQ.	TC47	774	384	1349	2998
				May 25	2			May 25	10			May 2	25		
10,424 15,248 22,974 25,794		Sum	38 53 207	65 96 305	60 105 114 339	155 178 258 260 851	81 65 67 273	344 344 344	85 86 107 89 367	220 252 266 246 984	88 112 120 120 120	97 112 141 93 443	108 128 113 129 478	293 366 342 1334	668 763 890 848 3169
				June 5	5			June 5	10	-		June	2		
8,748 14,021 18,600 23,914	448 21 00 14 Sum		43 60 61 216	47 67 80 80 274	83 83 883 889	137 197 224 221 777	54 57 88 258	58 68 91 311	68 67 94 319	180 194 242 272 888	87 81 1000 348	77 89 95 384	82 108 122 142 454	237 286 298 365 1186	554 677 764 858 2853
our r	four rates		637	829	912	2378	787	716	1012	2773	1212	1341	1316	3869	9020

Mean Yield of silage corn, three plots of each population, average yields for all varieties and average yields for all dates, in tons per acre green weight. IV

Voniott		Down To 44 ou				
Actual Plants Harvested9,538	10,000	20,000 15,166	30,000	40,000	Average Each Variety Tons per A vr e	Average of 3 varieties all dates, T/A
		May 15				
Wisconsin 255 Kingscrost KF Dekalb 1024	9.2 11.8 16.8	12.0 15.1 23.5	14.4	15.3	12.7 15.3 22.9	13.5 15.7 21.9
Average	12.6	16.9	18.7	19.7	16.9	
		May 25				*
Wisconsin 255 Kingscrost KF Dekalb 1024	10.6	12.1 17.1 22.7	17.6 18.1 24.9	17.7 16.7 23.3	14.5 16.7 22.7	
Average	15.2	17.3	20.2	19.2	18.0	
		June 5				
Wisconsin 255 Kingscrost KF Dekalb 1024	9.3	13.4	15.2 16.5 20.2	15.0 18.5 24.8	13.2 15.1 20.2	
Average	12.5	15.4	17.3	19.4	16.2	
Average all Populátions	13.4	16.5	18.7	19.5	17.0	

L.S.D. (5%)......1.13T L.S.D. (1%).....1.50 Table VIa .

Analysis of Variance

Variation Due to	D. F.	Sums of Square	Mean Square	F
Blocks	2	5,852.67	2,926.335	14.24**
Dates	2	1,389.97	694.985	3.38*
Varieties	2	33,151.07	16,575.535	80.69**
Population	3	14,241.67	4,747.223	23.12*
Population x dates	6	905.53	150.922	_
Population x varieties	6	767.33	127.888	-
Population x dates x varieties	12	1,627.14	135.595	
Date x varieties	4	880.26	220.065	1.07-
Blocks x dates	4	1,372.33	343.083	1.67-
Blocks x varieties	4	661.23	165.308	-
Blocks x dates x varieties	8	2,406.44	300.805	1.46-
Error	54	11,009.33	205,431	
Total	107	74,264.97		

Vicia Species observation

Only seven strains of vicia were seeded during the past season. These were seeded in rows five feet long and two feet wide.

Observations were made during the growing season, but no records of any type were made as to forage growth. Observations will be made during the coming season to determine if they are annuals or perennials.

The following strains were seeded.

Row No.	P. I. No.	Species	Country
1	224,075	Vicia graminea	Argentina
2	225,732	<u>Vicia</u> sp	Turkey
3	227,053	Vicia sativia	Iran
4	228,297	Vicia sativia	Iran
5	222,177	Vicia dasycarpa	France
6	No Name or N	lumber	
7	220,918	Vicia tetrosperma var graules	Belgium

CLOVER SEED PRODUCTION 1956

Seed was harvested in 1956 from 1/3 acre each of Kenland seeded in 1955 in 6, 12, and 24 inch rows; and 1/3 acre seeded in 24 inch rows in 1954. The Kenland seeded in six and 12 inch rows in 1954, because of ponding of water in low areas in the fields, suffered severe winter injury and was too foul with weeds for seed. An attempt was made to eliminate troublesome weeds from the 12 inch rows '54 planted clover by spraying stubble immediately after clipping with ½ pound 2,4-D per acre. Clover regrowth following clipping was retarded to the extent that by the time vigorous clover growth was resumed two to three weeks later weeds again constituted a large part of the total plant population.

A new seeding method was used for 1956 seedings. Oats were seeded in 14 inch rows May 10, sprayed with $\frac{1}{2}$ pound ester 2,4-D on June 1, then Kenland was drilled across the oat rows. A good growth of weed free clover was obtained and the oats made 90 bushel per acre.

Favorable harvest weather made it possible to try out a (new for our station) harvest method. Clover was cut with a swather on September 17. On September 26 the swaths were dry and the clover threshed with an I.H.C. combine with flail type cylinder.

One-half of one plot was forked thru the combine two times and yield compared to a single pickup job on the other half, with little yield difference resulting, so the remaining plots were pickup threshed as one operation. The condition of the clover in the swath would doubtless determine wheather or not this could be done again.

Table VII . Yields of seed and forage of Kenland, 1956.

Row Spacing	Clean Seed Per Acre	Forage Per Acrel
6 in.	147 lbs.	2509 lbs.
12 in.	96 lbs.	1990 lbs.
24 in.	72 lbs.	2344 lbs.

¹From clippings cut, May 31.

Grasses for Arid Lands

Significant yield differences were discovered by harvesting grass species from a dryland grass planting on the Carr place near Hotsprings.

Mountain brome, Russian Wild Rye and Alta fescue were seeded with the other species shown but were found in measureable quanties in only one of the three reps.

Nordan crested and Intermediate wheatgrass were significantly higher in yield than alfalfa.

Seed was harvested later from alfalfa left for seed in this location and from four samples taken from rows spaced six feet apart found to be producing at the rate of 100 pounds per acre.

Table VIII . Grass Yields for Arid lands, Hotsprings, Montana 1956.

Grown on the Norman Carr farm.

		unds Per	The state of the s	Total	Pounds Per	3 year Average
Species	I	II	III	Pounds	Acre	Pounds/A
571 Crested	1.81	2.78	3.72	8.31	2514*	1397
Intermediate Wheat	1.61	2.81	3.50	7.92	2396*	1050
Manchar Brome	1.17	2.23	3.56	6.96	2105	935
Pubescent Wheat	1.50	2.47	3.44	7.41	2242	1175
Tall Wheat	1.16	2.92	3.50	7.58	2293	1138
Alfalfal	1.22	2.19	3.16	6.57	1987	853

^{*}Species yielding significantly more then the Alfalfa 5%.

Mean Yield...2260 S. E. X..... 99.8 L.S.D.(5%)...315.0 C. V..... 4.42%

Analysis of Variance

Source	D. F.	Mean Square	F
Replications	2	12.8904	355.21**
Varieties Error	5 10	.6643 .03629	3.66**
Total	17	***************************************	

lAlfalfa is used as the check in this plot.

IRRIGATED SPRING GRAINS

Wheat

The advance yield nursery with 27 entries was seeded on the station in field c-4a, May 8, 1956. Five replications were used to obtain better control in statistical analysis. The previous crop was Kenland red clover as a seed production study. The area was fall plowed and seed bed preparation done in the spring. The nursery was cultivated for weed control June 1, sprayed for weed control at the rate of $\frac{1}{2}$ pound 2,4-D ester per acre, June 12, 1956. Irrigation water was applied July 18. Two inches were applied this date. This was the only irrigation during the growing season.

Lodging was quite severe this season but was also very specific to the weak straw varieties. Yields were very good with a mean of 61.1 bushels per acre. C. I. 13242 was high in yield with good straw strength. C. I. 13041 was lower in yield this season with 59.6 and with its poor baking quality it has become questionable as a recommended variety. Centana (12974) was equal and in some cases better in yield than the recommended varieties, Pilot and Ceres. Control in this plot was very good and a very desirable co-efficient of variability of 5.13% was obtained. Table IX

Four off-station nurseries were seeded in Sanders, Missoula, Mineral and Lincoln counties. These nurseries consisted of thirteen varieties of which three were soft white wheat and ten hard red spring. These nurseries were seeded in single row plots eighteen feet long in four replications. To measure the use of moisture Bouyoucos blocks were buried at three levels, namely 6, 18 and 30 inches. Three readings were made during the growing season. Readings are listed below.

N2170, C. I. 12974 was the highest yielding variety in the nursery in Missoula county. Control was good in this nursery with a coefficient of variability of 5.72%. Three irrigations were made during the growing season. Table X.

Moisture level reading

		of Readin ure in pe		
Depth	6/8	7/25	9/5	Average
30	90	100	70	86.3
30 18	75	85	50	70.0
6	75	80	34	63.0

Irrigated yields in Lincoln county were quite low. Rainfall was low, and irrigation was not adequate for high yields. N2389 (C.I. 13041) was the highest yielding variety in this test. Table XI.

Moisture level reading

		of Readi re in pe		
Depth	6/14	7/17	9/20	Average
30	90	85	60	78.3
30 18	75	65	17	52.3
6	60	43	5	36.0

The nursery in Mineral county was lost to weather conditions. Seeding was May 7, and that evening a hard rain fell, making a hard crust for the plants to come through. Because of that condition and very dry weather following, only a partial stand was obtained. Very little growth was made by these emerged plants during the rest of the growing season, therefore no harvest data were obtained.

The nursery in Sanders county was not harvested because of severe bird damage. Growth in this nursery was very good, and prospects for good yields were evident, until invasion by the birds.

61.0

59.1

6.59

62.4

36.9

62.4 47.7

59.0

71.5%

238.4 357.3 275.8 341.1

58.9 89.3 70.9 78.0

43.3 63.1 51.0 68.1

47.5

69.5 52.5 69.5

7-13

4-6

13244 B52-90

(B50-18

Rescue x Thatcher

1953 x Lee 1953 x Lee

(H4258)

Chinook

4-6

13220

12974

62.0

Creston, Montana 1956. Wheat Nursery, Irrigated, Spring Agronomic data from Advanced Yield Four row plots, five replications. H rable

Plot.

of

September 19, 1956

Date Harvested.

1956

တ်

May

Date Planted,

Bushel Pounds 58.0 61.0 61.0 61.0 62,0 58.0 643.0 661.0 661.0 662.0 661.0 661.0 661.0 Per Acre Average 58.6 67.9% 70.9% 559.6 57.83 67.7* Bushel 63.5 0.09 55.9 58.1 59.8 54.2 60.3 57.0 Bushe 1 270.9 338.5 358.0 299.9 292.8 339.7 351.7 297.9 291.3 270.8 364.3 301.3 279.5 282.3 290.7 299.2 317.6 330.4 285.0 58.9 62.4 51.0 62.4 573.4 73.0 69.5 63.8 63.8 51.0 55.0 62.4 80.8 63.9 61.7 61.7 56.0 72.3 64.5 65.9 57.4 46.8 45.4 62.4 53.9 75.9 59.6 56.7 51.0 51.1 45.4 42.5 75.2 58.1 0.44 61.0 56.0 56.0 61.7 65.9 51.0 72.3 Acre H Plot Yield Bushels Per 57.4 56.0 65.9 78.0 4.29 57.4 80.3 69.5 51.8 62.4 52.5 63,1 74.4 47.5 59.6 61.7 56.7 61.7 57.4 60.3 58.9 79.4 79.4 59.3 71.6 59.6 61.0 56.0 55.07 59.6 62.4 65.9 65.2 61.7 53.2 59.6 54.6 56.7 68.8 68.8 63.8 39.0 79.4 72.3 52.5 0.19 Lod-Hea ding Height in Ins. Head-7-5 7-8 7-7 7-10 Date 7-14 7-8 7-11 7-8 7-8 4-6 7-6 4-2 7-8 4-6 29 3-52-120 B52-107 B52-57 352-92 12488 13243 13242 13042 13159 N2164 3306 13157 12484 13041 13304 12435 11945 3152 10003 13100 N No. 006 3641 Rescue x Th-S615 (B51-43) Pilot² x Thatcher (N2170) Lee x Mida Sib (3880,127) 3 Filot x Regent (N2183) R. L. 2563 x Lee (N.D. Pilot² x Merit Rescue x 1831 (B51-9) (B52-119) 1520 x 1752 (N2389) 1953 x Lee (B52-91 Variety or Cross Conley (N.D. Lee x 1831 1953 x Lee 2236 x Lee 1898 x Lee Lee x 1831 Thatcher Marquis Selkirk Rus sell Rescue Ceres Pilot. Lee

Note: Thatcher is the check in this Nursery. **Varieties Yielding Significantly more than *Varieties Yielding Significantly more than -Calculated Missing Plot. (1%) the check (5%). the check

Jariance	Mean Square 145,388* 208,040** 49,330	plot calculated.
nalysis of Variance	D. F. 26 1032 133	one missing plot
(A)	Source Replications Varieties Error	2 Value of one

S. E. X.....3.141 L.S.D. (5%)...8.8 L.S.D. (1%)...11.7 C. V.5.13% Mean Yield....61.1

Don	
the	
on	
County	18.
Missoula	eplication
in M	r.
grown in	fom,
wheat nursery g	row plots,
200	Single r
spring	956.
rigated	Montana 1
a from i	int on,
dat	CI
Agronomic	Roth farm,
Table	

Bushel Wt. in Pounds	C	59	65	59	-	99	- 19 95		59	09	09		58	Tield62.4 X3.571.95 (5%)10.3 (1%)13.7
Average B Bushel W Per Acre P	09 0				8 61			6				- **2**		Mean S. E. L.S.D C. V.
Ave Bus Per	55.0	62.4	71.3	8.69	63.8	66.3	64.2	6.49	63.8	68.0	53.2*	*87	60.3	1.37 3.53**
Total Bushe 1	219.8	249.6	285.0	279.3	255.2	265.1	256.6	259.5	255.3	272.3	212.7	192.9	247.0	Variance Mean Square 69.783 180.004
N N	9.65	53.9	73.7	62.4	4.07	56.7	58.1	4.07	69.5	69.5	55.3	4.54	56.7	는 다.
Yield In 8 Per Acre III	58.1	9.92	9.99	6.0%	6.0%	26.7	65.2	55.3	62.4	63.8	53.9	42.5	26.7	Analysis Source Replications 3 Varieties 12 Error
Plot Y Bushels II	9.69	65.2	75.2	4.67	2.95	85.1	40.0	63.8	0.19	63.8	55.3	53.9	65.2	Source Replicati Varieties Error
Н	42.5	53.9	69.5	9*99	26.7	9.99	62.4	5.69	62.4	75.2	48.2	51.1	62.4	nur sery. than the than the
C. I. or N No.	13242	0069	12974	13041	11945	51711	12235	B51-9	13244	13058	13157	10003	B52-107	a check in this ificantly less thificantly less
Variety or Cross	1953 x Lee (B52-91)	Ceres	Pilot ² x Thatcher (N2170).	1520 x 1752 (N2389)	Pilot	Lemhi	Awned Onas	Rescue x 1831	Rescue x Thatcher (B50-18)	Marfed x Merit - 28	Conley (N.D. 1)	Tha tche r	2236 x Lee	Note: Pilot is used as a check in this nursery *Varieties yielding significantly less than the check (5%). **Varieties yielding significantly less than the check (1%).

Agronomic data from irrigated spring wheat nursery grown in Lincoln County on the Wilfred XI Table

Variety or Cross	C. I. or N No.	н	Plot Yi Bushels II	Yield In s Fer Acre	e IV	Total Bushel	Average Bushel Per Acre	Bushel Wt. in Pounds
1953 x Lee (B52-91)	13242	25.2	29.8	32.6	31.2	118.8	29.7	09
Ceres	0069	19.9	19.9	36.2	22.7	7.86	24.7	65
$Pilot^2 \times Thatcher (N2170)$	12974	31.2	30.5	38.3	29.1	129.1	32.3	59
1520 x 1752 (N2389)	13041	29.8	29.1	34.0	56.0	148.9	37.2*	65
Pilot	11945	32.6	33.3	22.7	26.9	115.5	28.9	19
Lembi	11415	24.1	14.9	35.5	24.1	9*86	24.7	95
Awned Onas	12235	22.0	31.2	35.5	22,0	110.7	27.7	99
Rescue x 1831	B51-9	33.3	24.8	33.3	24.1	115.5	28.9	1
Rescue x Thatcher (B50-18)	13244	31.2	27.7	28.4	22.7	110,0	27.5	59
Marfed x Werit-28	13058	29.1	21.9	35.5	33.3	119.8	30.0	09
Conley (N.D. 1)	13157	16.3	19.9	22.0	19.9	78.1	19.5	09
Thatcher	10003	18.4	21.3	28.4	22.0	90.1	22.5	
2236 x Lee	B52-107	21.3	25.5	33.3	29.1	109.2	27.3	58
Note: Pilot is used as a check in this *Varieties yielding significantly less check (5%).	a check in this ifficantly less t	than the	Source Replication Varieties Error Total	Analysis Ortion Les	of 1	Variance Mean Square 132,9043 81,8149 31,903	Wean Yield S. E. X., 4.17% L.S.D., (5% 2.57% C. V.	Yield27.8 x2.8242 0.(5%)8.1

IRRIGATED SPRING GRAIN

Oats

To test a larger number of varieties, the oat nursery was increased to 36 entries and included all of the Pacific Northwest Uniform nursery entries. Five replications were used in this test to increase precision of the test. Plots were four rows, ten feet long. Seeding was done May 8, with cultivation June 1, spraying June 12, and irrigation July 18. Irrigation water was applied at the rate of two inches. Harvesting was delayed because of other projects, thus considerable shattering was noted for all varieties. Centore, C. I. 3865 was the high yielding variety and shows considerable promise as a new variety. It out yielded Park 18 bushel this season, but was not significant statistically. See Table XII for complete yield picture.

Four off-station nurseries were seeded, one in each of the following counties, Sanders, Mineral, Missoula, and Lincoln. These nurseries consisted of ten entries.

Yields were high in the nursery on the Roth farm in Missoula county. Three irrigations were made during the growing season. However no statistical significance was obtained in this trial.

No significance was found in the nursery at Hotsprings. This can be contributed to the location of the nursery, which was on a steep slope. Differences were great between replications. Table XIII.

The nursery in Mineral county was lost because of weather conditions. A discription of these conditions can be found in the wheat section of this report, page 17.

Cattle destroyed the oat nursery in Lincoln county.

Agronomic data from irrigated oat nursery grown at Creston, Montana in 1956. Four row Table XII

Variety	C. I.	12				200			Average	Bushel
Oross	Sel. No.	ing Date	Н	Plot Yie	Yield in O	Ounces	Δ	Total	Bushel Per Acre	Wt. In Pounds
Park	1199	7-15	22,75	26.50	19.50	21,00	15.25	105,00	111.7	39
Mission	2583	7-10	18,00	13,00	19.00	14.75	19.75	84.50	89.9	42
Bridger	2611	7-17	20.25	25.75	23.75	22.75	24, 50	117,00	124.4	42
Gopher	2027	2-8	16,00	8.50	16,00	28.75	9.50	78.75	83.6	07
	6612	7-11	27.00	19.75	18,00	23,00	21.75	109.50	116.5	4
	8499	7-12	23,75	18,00	16.75	22,00	15.75	96.25	102.4	47
Garry (New)	6662	7-11	8.25	20.25	22,00	18.25	19,00	99.75	106.1	47
Rodne y	1999	7-15	6.50	10,00	32,50	20.25	4.50	73.75	78.4*	47
Exeter	41.58	7-16	21.25	8.25	20,00	21.25	21.25	104,00	110.9	07
Canada Hybrid	2795-11-5	4-6	25.50	14.75	17.50	19,00	18.75	95.50	101,6	04
Ajax	4157	7-10	23.50	15,00	17.75	14.75	16,00	87.00	92.5	47
Gopher x Bridger	44-5-3-12	7-17	23.00	9.50	16,25	11.00	15.50	75.25	*0.08	07
Gopher x Bridger	44-5-3-31	7-8	22.25	16,00	16,25	16.25	15.25	86.00	91.5	745
C.I. 4189 x Overland	6613	7-16	22.75	24.25	22,50	22,00	24.25	115.75	123.1	41
Jackson	5441	9-6	27.75	17.50	16,00	16,50	24,00	101.75	108,2	42
Clinton x Overland2	AB6014	7-13	27.75	23.25	18,50	17.75	21.75	109,00	115.9	07
Eagle	4113	7-16	22,00	9.75	30.25	21.75	23,00	106.75	113.5	47
Overland x Mission	44-1-1-68	7-12	20.25	24.00	27.00	18.75	19.50	103.50	110,1	47
Craig	4332	7-12	23,50	23.25	18,25	19,00	28.75	112.75	119.9	07
C.I. 4189 x Overland	5347	7-15	21,25	17.75	29.75	17.00	23.50	109.25	116.2	41
V-R x Bannock (Centore)	3865	7-13	23.25	24.50	28.25	21.50	24.75	122,25	130.0	8
Overland	4181	7-12	22,50	19.75	25,00	22.75	23,50	113.50	120.7	41
Waubay	2440	7-5	17,25	15,00	20.00	19.75	17.75	89.75	95.5	07
Abegweit	1	7-11	19.50	15.75	23,25	24.25	27,00	103.75	110.3	07
Cody	3916	7-16	27,00	25.50	16.75	30.00	19,00	112,25	119.4	38
Clinton x Overland	5346	7-13	18,00	24.25	14,25	25.50	8,00	00.06	7.56	07
Clinton x Overland	5345	7-13	21.75	24.50	16.75	26,00	17.75	106.75	113.5	04

. (Continued) Agronomic data from irrigated oat nursery grown at Creston, Montana in 1956. Four row plots, five replications. Table XII

Variety	C. I.	Head-							Average	Bushel
Or	or cal	ing	F	Plot Yie	Yield in Ounces	unces	Þ	Total	Bushel	Wt. in
orosa	ORT. NO.	Dane	7	77	1777	ΛT	>	ounc es	rer Acre	Founds
Binder	1	7-18	21,00	27.00	19.75	25.00	16,25	109,00	115.9	07
Roxton	4134	7-15	23,50	15.50	15.75	18,00	16,25	89,00	7.46	39
Maganskii 044	770	7-17	19,00	18.50	11.75	15.50	18,75	83,50	88,8	07
Cverland x Mission	44-1-1-76	7-14	20.50	14.75	11,00	20.25	20,25	86.75	92.3	07
Overland x Mission	44-1-1-1	4-6	18,00	16.75	18,50	14.25	18.75	86.25	91.7	07
Overland x Mission	44-1-1-49	7-11	19.50	14.50	16,00	16,00	14,25	80.25	85.4	41
Copher x Bridger	44-5-3-26	7-11	26.00	15.50	16.25	14.25	20.50	92.50	98.1	41
Gopher x Bridger	44-5-2-2	4-6	12.50	16,00	18,00	13,50	15.50	75.50	80.3%	017
Gopher x Bridger	44-5-2-6	2-8	74.00	14.75	15.50	13.25	17.50	75.00	*9.64	07

Note: Park is used as a check in this nursery. *Varieties yielding significantly less than the check (5%).

Analysis of Variance
is of Varian
is of Varian
is of Varian
Analysis of
Analysis

H	1.94	
Mean Square	36.27 37.6314 18.7421	
D. F.	4 35 140	179
Source	Replication Varie ties Error	Total

C. V.7.29%

1.855 26.511 13.777

33300

Replications Varieties

Error

Agronomic data from irrigated oat nursery grown in Missoula County on the Don Roth farm, Clinton, Montana in 1956. Single row plot four replications. Table XIII

Variety or Cross	C. I. or Sel. No.	П	Plot Yield In II	III	IV	Total Ounces	Average Bushel Per Acre	Bushel Wt. in Pounds
Park	1199	32,50	24.25	27.50	24.75	109,00	144.9	39
Gopher	2027	21.75	23.25	19.75	22.50	87.25	0.911	47
Bridger	2611	28.50	33.00	25.50	32.75	119.75	159.2	43
Canada Hybrid	2795-11-5	18,50	28.75 .	29,00	24.75	101,00	134.3	17
Garry (New)	6662	30.00	21.00	21.75	24.25	00.79	129.0	39
Rodney	6661	23,00	24.75	28,00	29,00	104.75	139.3	141
C.I. 4189 x Overland	6613	25.25	21,00	30.50	26.00	102.75	136.6	07
Craig	4332	20.25	26.50	20.50	23.75	91,00	121.0	39
C.I. 4189 x Overland	5347	26.75	26.00	21,000	19,00	92.75	123,3	39
V-R x Bannock	3865	31,00	26.50	25.00	31,00	113,50	150.9	37

farm.	6
- 63	
Jim	
the	
on	
county	ions
Sanders	eplicati
in	ur 1
grown	fol.
at nursery g	row plot
ted oat	Single
irriga	1956.
ata from	Montana,
Agronomic da	Hotsprings,
Table XIV	

Variety or Cross	C. I. or Sel. No.	Plot	Plot Yield in Bushels II III		Per Acre IV	Total Bushel	Average Bushel Per Acre	Bushel Wt. in Pounds
Park	6611	14.6	73.1	31.9	0.4	123.6	30.9	37
Gopher	2027	25.3	35.9	45.2	35.9	142.3	35.6	38
Bridger	2611	19.9	17.3	38.6	49.2	125.0	31.3	35
Canada Hybrid	2795-11-5	22.6	51.8	45.2	90.06	150.2	37.7	88
Garry (New)	6662	27.9	37.2	42.5	12.0	119.6	29.9	37
Rodney	1999	27.9	6.7	23.9	55.8	114.3	28.6	1
C. I. 4189 x Overland	6613	29.3	18.6	45.2	29.3	122.4	30.06	82
Craig	4332	17.3	33.2	11.9	22.6	85.0	21.3	1
C. I. 4189 x Overland	5347	38.6	18.6	42.5	26.6	126.3	31.6	38
V. R. X Bannock	3865	31.9	42.5	16.0	63.8	154.2	38.6	33
Analysis of Variance	ance					Mean Yie	Mean Yield31.6	31.6
Source D. F.	Mean Square	٠ ا				S. E. X L.S.D.		8.4225
	1.05 616					C. V.		26.5%

495.545 881.09 7661.445

33

Replications Varieties Error Total

IRRIGATED SPRING GRAIN

Barley

The interstate barley nursery grown in field C-4A (See Page 16 this report) consisted of 25 entries. Thirteen entries were two row selection and twelve six row selections. Four row plots, 10 feet long and five replication was the design of this nursery.

Yields were very good with a mean of 71.9 bushels per acre. Using Vantage as a check several two row selections were higher in yield. These selections were Carlsberg II, Herta and Weibulls 5425. The average of the two row for test weight was about two pounds higher than the average of the six row selections. Table XV.

Four off-station nurseries were seeded in Sanders, Missoula, Mineral and Lincoln counties. These nurseries consisted of ten entries with six two row and four six row selections.

In Sanders county poor location plus low moisture conditions contributed to the low yields in that nursery. The mean was 20.0 bushels per acre and the coefficient of varability was very high. Greatest difference were found between replications. Table XVI.

Carlsberg II was the high yielding variety in Missoula county, but was quite green at time of harvest. There were no varieties significantly higher in yield than Vantage which was used as the check variety. Table XVII.

Barley yields were fair to good in the Lincoln county nursery. Carlsburg II was the leading variety yield wise, being significantly better in yield than Vantage. Freja and Vantage were about equal in yield. The mean of of this nursery was 62.0 bushels per acre. Table XVIII.

The nursery in Mineral county was lost to weather conditions. See page 17 of this report for details.

A continuation study of two row vs six row varieties, an Isogenic nursery was seeded in the same field as the interstate nursery. No significance was found in yields of these varieties but considerable difference was found in lodging between selections and between the two vs the six rows within the selection. Selection 7-2-15 was the most resistant to lodging of all selections. As a whole the two row selections were more resistant to lodging than the sister selection for the six row character. Table XIX.

Three malting barley nurseries were seeded in western Montana, and a large plot seeded for measuring malting characteristics of some promising varieties. The nurseries were located in Flathead (station), Missoula, and Ravalli counties. The nurseries in Missoula and Ravalli county were irrigated and the station nursery non-irrigated. This nursery consisted of eight two row malting varieties and two six row feed barleys. These were grown in five row plots and three replications.

The nursery on the station showed considerable difference between variety as related to lodging. Carlsberg II and Heimdal had the least amount of lodging and the highest yields. Compana is used as a check in all of these nurser ies. Table XX.

In Missoula county C. I. 50-5639-12 was high in yield, a six row selection. Vantage and Heimdal showed no lodging. Freja, Vantage and Betzes were also significantly better in yield than Compana, Table XXI.

Quackgrass was a problem in the Ravalli county nursery. This would account for the high coeefficient of variability and reduction in yields. Table XXII.

Freja ranks number one for the two row varieties grown in Western Montana in 1956. Table XXIII, shows the yields of all of the varieties.

In the large plots grown in Lake county Freja was the highest yielding variety. Malting tests are not completed on this material, so they can not be included in this report.

plot Four row Agronomic data from irrigated interstate barley nursery, Creston, Montana in 1956. five replications, randomized block design. XV Table

Date Planted. May 8,	1956	Date H	Harvested.	. August	ust 31,	1956		Size of	Plot.	16 feet.		
Variety	C. I.	Head-		Lod-							Average	Bu she 1
Oross	or N No.	ing	in Inches	ing %	I Pl	Plot Yield in		Ounces TV	Δ	Total	Bushel Per Acre	Wt.in
							-	4	>	200		Todilda
Hannchn (s)	14841	2-7	47	100	14.75	10,50	13.25	15.50	17.75	71,75	50.8	0.84
_	3351	7-1	35	100	17,50	14,25	18.50	18,00	21,25	89.50	63.5	0.94
Heines Hanna (s)	9532	7-5	%	66	19.00	18,00	17,00	20,00	16.75	90.75	64.3	0.67
	4608	4-6	35	98	23.25	24,00	25.50	16.75	24.25	113.75	80.7	0.67
Carlsberg II	10114	4-6	32	34	29.25	29.75	21.50	26.75	23,00	130,25	92.4%	0.87
Betzes	9689	7-5	35	81	27,00	20,00	16.75	17.75	19,25	94.75	67.2	51.0
Freja (s)	7130	7-5	27	97	23, 50	26.50	21,00	22,25	22,25	115.50	81.9	50.0
Compana	5438	6-59	33	25	14,00	19.75	11,00	16,50	16,50	77.75	55.1	0.64
	8097	9-2	33	12	24,00	29.75	19,25	28 . 25	30,00	131.25	93.1**	52.0
Weibull's 5425	10083	2-8	34	22	29.50	28,00	19,00	32,50	29.75	138.75	%** ⁷ °86	51.0
Peroline	9558	7-5	33	147	23, 50	23,00	20.75	20° T	20,25	108,50	76.9	52.0
Ymer (s)	7275	9-2	31	77	19,50	21.75	11,50	23,00	21.50	97.25	0.69	0.647
	-	7-7	38	69	9.75	21.75	15,00	19,25	18.50	84.25	59.7	54.0
	50-5639-12	6-59	37	19	18,50	23,75	19,25	25,00	21.50	108,00	9.92	78.0
x Tita	50-5610-7	6-59	37	56	18,00	23.00	27,00	29.75	28.50	126,25	89.5*	0.97
Lico x C. I. 7152 (s)	49-5580-4	6-27	32	9	18,50	21.25	19.50	19,00	21.50	99.75	70.7	47.0
Vantage (s)	7324	7-3	8	39	19,25	24.75	19,00	15,50	26.50	105,00	74.47	0.87
Husky	9537	2-2	36	10	19,00	16,00	18,25	19.50	22,00	94.75	67.2	50.0
Vantmore (s)	9555	7-3	38	16	17.25	19.75	18,00	17.00	19,00	91,00	64.5	50.0
Titan	7055	6-59	36	71	16.75	19.75	7.75	13.75	16.75	74.75	53.0	0.64
Glacier (s)	764	6-27	32	29	22.75	19.25	19.50	24.00	22,00	107,50	76.2	47.0
5	10118	7-10	38	147	16.25	18.25	16,25	21.75	21,00	93.50	66.3	0.44
Trail (B103)	9538	7-3	8	46	14.50	13,00	16.75	15,25	17,00	76.50	54.2	47.0
Hiland	9530	7-1	36	51	12.25	22,50	23.50	27.75	26.50	112,50	79.8	47.0
Balder	7131	7-7	33	28	18.25	20.75	24.00	21,25	18.75	103.00	73.0	0.05

Variety Error Total Note: Vantage is used as a check in this nursery. **Varieties yielding significantly more than the *Varieties yielding significantly more than the (s) indicates smut. check at 5%. check at 1%.

F 5.27 ** 9.8247 124 124 124 Source Replication

S. E. X......4.969 L.S.D.(5%)...13.9 L.S.D.(1%)...18.5 C. V. Mean Yield ... 71.9

Agronomic data from irrigated off-station barley nursery grown in Sanders county on the Jim Cook farm, Hotsprings, Montana in 1956. Single row plots four replications. Table XVI

rg II 10114 8.9 26.6 31.9 40.8 83.3 11.7 10.6 11.5 20.4 28.4 76.3 12.3 11.7 14.2 22.2 41.7 85.2 11.7 13.0 11.5 20.4 28.4 76.3 12.3 11.7 14.2 22.2 41.7 85.2 11.7 85.2 12.3 111.7 12.3 11.5 10.6 20.4 40.8 83.3 11.5 10.6 20.4 40.8 83.3 11.5 10.6 20.4 40.8 83.3 11.5 10.6 20.4 40.8 83.3 12.4 8.9 16.0 9.8 31.9 66.6 17.3 12.4 8.9 16.0 9.8 31.9 66.6 17.3 12.4 10.6 10.6 18.6 20.4 60.2 12.4 10.6 10.6 18.6 20.4 60.2 12.4 10.6 10.6 27.5 26.6 70.9					-	-		-
na N No. I III III IV Bushel na 5438 16.0 11.5 20.4 28.4 76.3 narg II 10114 8.9 26.6 31.9 44.3 111.7 s - 8.9 26.6 31.9 44.3 111.7 s - 8.9 14.2 17.7 35.5 76.3 ge - 8.9 11.5 10.6 20.4 40.8 83.3 ge 7324 8.9 16.0 9.8 31.9 66.6 gr x Titan 50-5610-7 10.6 10.6 27.5 24.8 72.7 gr x Titan 50-5639-12 6.2 10.6 27.5 26.6 70.9	Variety or	C. I.		Plot Bushels	field In Per Acre		Total	Average Bushel
na 5438 16.0 11.5 20.4 28.4 76.3 oerg II 7130 7.1 14.2 22.2 41.7 85.2 oerg II 10114 8.9 26.6 31.9 44.3 111.7 s - 8.9 14.2 17.7 35.5 76.3 s 6398 11.5 10.6 20.4 40.8 83.3 g 7354 8.0 25.7 29.2 35.5 98.4 g 7055 3.6 16.0 9.8 31.9 66.6 g 7055 3.6 15.1 29.2 24.8 72.7 g x 11.5 10.6 10.6 20.4 60.2 60.2 g x 11.5 29.2 24.8 72.7 72.7 g 50-5610-7 10.6 10.6 27.5 26.6 70.9 g 50-5639-12 6.2 10.6 27.5 26.6	Cross	N No.	I	II	III	IV	Bushel	Per Acre
oerg II 10114 8.9 26.6 31.9 44.3 111.7 strate 10114 8.9 26.6 31.9 44.3 111.7 strate 10114 8.9 14.2 17.7 35.5 76.3 strate 6398 11.5 10.6 20.4 40.8 83.3 ge 7324 8.9 16.0 9.8 31.9 66.6 er x Titan 50-5610-7 10.6 10.6 18.6 20.4 72.7 er x Titan 50-5639-12 6.2 10.6 27.5 26.6 70.9	отрапа	5438	16.0	11.5	20.4	28.4	76.3	19.1
oerg II 10114 8.9 26.6 31.9 44.3 111.7 e - 8.9 14.2 17.7 35.5 76.3 s 6398 11.5 10.6 20.4 40.8 83.3 ge 7324 8.0 25.7 29.2 35.5 98.4 er x Titan 7055 3.6 16.0 9.8 31.9 66.6 er x Titan 50-5610-7 10.6 10.6 18.6 20.4 60.2 er x Titan 50-5639-12 6.2 10.6 27.5 26.6 70.9	reja	7130	7.1	14.2	22.2	47.14	85.2	21.3
e 8.9 14.2 17.7 35.5 76.3 s 6398 11.5 10.6 20.4 40.8 83.3 ge 7324 8.9 16.0 29.2 35.5 98.4 er x Titan 7055 3.6 15.1 29.2 24.8 72.7 er x Titan 50-5610-7 10.6 10.6 18.6 20.4 60.2 er x Titan 50-5639-12 6.2 10.6 27.5 26.6 70.9	arlsberg II	41101	8.9	26.6	31.9	444.3	7.111	27.9
s 6398 11.5 10.6 20.4 40.8 83.3 ge 7324 8.9 16.0 9.8 31.9 66.6 er x Titan 50-5610-7 10.6 15.1 29.2 24.8 72.7 er x Titan 50-5639-12 6.2 10.6 18.6 20.4 60.2 er x Titan 50-5639-12 6.2 10.6 27.5 26.6 70.9	me r	1	8,9	14.2	17.7	35.5	76.3	19.1
ge 7324 8.0 25.7 29.2 35.5 98.4 77324 8.9 16.0 9.8 31.9 66.6 er x Titan 50-5610-7 10.6 15.1 29.2 24.8 72.7 er x Titan 50-5639-12 6.2 10.6 27.5 26.6 70.9	etzes	9689	11.5	10.6	20.4	8.04	83.3	20.8
ge 7324 8.9 16.0 9.8 31.9 66.6 7055 3.6 15.1 29.2 24.8 72.7 er x Titan 50-5610-7 10.6 10.6 18.6 20.4 60.2 er x Titan 50-5639-12 6.2 10.6 27.5 26.6 70.9	ekap	3351	0,8	25.7	29.2	35.5	7.86	24.6
7055 3.6 15.1 29.2 24.8 72.7 er x Titan 50-5610-7 10.6 10.6 18.6 20.4 60.2 er x Titan 50-5639-12 6.2 10.6 27.5 26.6 70.9	antage	7324	8.9	16.0	8.6	31.9	9.99	16.7
50-5610-7 10.6 10.6 18.6 20.4 60.2 50-5639-12 6.2 10.6 27.5 26.6 70.9	itan	7055	3.6	15.1	29.5	24.8	72.7	18.2
50-5639-12 6.2 10.6 27.5 26.6 70.9	lacier x Titan	50-5610-7	10.6	10.6	18.6	7.00	60.2	15.1
	lacier x Titan	50-5639-12	6.2	10.6	27.5	26.6	6.07	17.7
	Analysis	of Variance				L'S.D.		N. S.
	E		ţ					T4. T0/b

33.00**

1059.302 58.783 32.101

333

Error

Replication Varieties

42

8.65

. 239.3

55.9

68.2

62.0

53.2

50-5610-7

Glacier x Titan

14

71.8

287.2

71.8

78.9

4.49

71.8

50-5639-12

Glacier x Titan

74

51.9**

207.4

68.2

57.6

6.27

33.7

7055

Titan

Date Planted. May 9, 1956	May 9, 1956	Ď	ate Har	vested.	Date Harvested. September 5, 1956	06KT 66	OTZE C	Size of Plot. 16 feet	eet
Variety or	C. I.		,	Flot Field Bushels Per	Plot Field Bushels Per Acre		Total	Average Bushel	Bushel Wt. in
Cross	N No.		1	I		IV	Bushel	Per Acre	Pounds
Compana	2738		52.3	31.9	39.0	42.5	165.7	47.4%	67
Freja	7130		97.5	76.2	71.8	79.8	325.3	81.3	53
Carlsberg II	10114		0.98	83.3	110.8	82.4	362.5	9.06	52
Yme r	1		8.67	7.06	81.0	101,0	352.2	88.1	52
Betzes	9669		78.0	64.7	78.0	67.3	288.0	72.0	53
Dekap	3351		50.5	65.9	4.07	61.2	245.5	61.4*	64
Vantage	7324		68,2	64.7	91.3	83.3	307.5	6.97	50

Note: Vantage is used as a check in this nursery.	Mean Yield
*Varieties yielding significantly less than the check (5%).	S. E. XI
**Varieties yielding significantly less than the check (1%).	L.S.D. (5%)
	L.S.D. (1%)
Analysis of Variance	C. V.

Mean Square 193.8133 1002.4333 95.1196

D. F.

Source Replications Varieties Error Total

unty		
In co	uoj sa	
Lincolr	ow plot	
in	10	
grown i	Single).
nursery	1956.	
ley	in	
bar.	tana	
tior	Mor	
ed off-station barley nu	Eureka,	
4	ranch,	
from irriga	Johnson	
data	ilfred	ons.
nic	I	atic
Agronomic	on the Wi	replicati
XVIII.		
able		

Date Planted.	May 23, 1956.	Date	Date Harvested.		September 20,]	1956 Size	Size of plot 16 feet.	feet.
Variety or Cross	C. I. or N No.	H	Plot Yield In Bushels Per Acre II III	eld In Acre III	VI	Total Bushel	Average Bushel Per Acre	Bushel Wt. in Pounds
Compana	5438	54.1	54.1	46.1	8 • 07	195.1	48.8	847
Freja	7130	40.9	60.3	58.5	7.65	249.1	62.3	20
Carlsberg II	10114	76.2	81.5	70.0	70.07	297.7	*4.47	90
Ymer	1	82.4	73.6	56.7	62.0	274.7	68.7	90
Betzes	9689	75.3	72.6	43.4	52.0	243.3	8.09	51
Dekap	3351	9.59	68.2	62.9	62.0	258.7	4.49	67
Vantage	7324	82.4	53.2	6.24	68.2	251.7	62.9	747
Titan	7055	54.1	1,6,1	0.444	18.7	192.9	78.8	947
Glacier x Titan	an 50-5610-7	83.3	60.3	50.5	55.9	250.0	62.5	4747
Glacier x Titan	an 50-5639-12	76.2	75.3	26.7	26.7	564.9	66.2	47
Note: Vantag *Varieties yi	Note: Vantage is used as a check *Varieties yielding significantly	eck in this	in this nursery. more than the check (5%).	ck (5%).		Mean Yield S. E. X L.S.D. (5%		62.0 3.4479 10.0
Ar	Analysis of Variance	0				L.S.D.(1% C. V.		5.56%

13.76**

654.527 262.725 47.552

3330m

Replications Varieties

Error

Mean Square

D. F.

Source

Table XIX. Agronomic data from irrigated isogenic, 2 vs 6 row, nursery grown at Creston, Montana in 1956.

		ging	I P:	Plot Yield II	in Ounces	ies	Total Ounces	Average Bushel Per Acre	Bushel Wt.in Pounds
Poppenheim 13-2-15 7-6 Kolter 16-6-15 7-7 Kolter 16-2-15 7-6 Plumage 21-6-14 7-12 Plumage 21-2-14 7-12 C. I. 5037 7-6-15 7-1 C. I. 5037 7-2-15 7-1 C. I. 4254-1 23-6-14 7-2 C. I. 4254-1 23-2-14 7-1 sis of Variance F. Mean Square F	-6 39	64	13,25	22,50	23,00	12.50	71.25	63.1	43
Kolter 16-6-15 7-7 Kolter 16-2-15 7-6 Plumage 21-6-14 7-12 C. I. 5037 7-6-15 7-1 C. I. 5037 7-6-15 7-1 C. I. 5037 7-2-14 7-12 C. I. 4254-1 23-6-14 7-2 C. I. 4254-1 23-6-14 7-2 C. I. 4254-1 23-2-14 7-1 Sis of Variance D. F. Mean Square F	0†7 9-	8	19.75	14,00	19.00	18.75	71.50	63.4	64
x Kolter 16-2-15 7-6 x Plumage 21-6-14 7-12 x C. I. 5037 7-6-15 7-1 x C. I. 5037 7-6-15 7-1 x C. I. 5037 7-2-15 7-1 x C. I. 4254-1 23-6-14 7-2 x C. I. 4254-1 23-2-14 7-1 lysis of Variance D. F. Mean Square F	-7 44	100	17.75	17.75	16.25	16.00	67.75	0°09	147
x Plumage 21-6-14 7-12 x Plumage 21-2-14 7-12 x C. I. 5037 7-6-15 7-1 x C. I. 5037 7-2-15 7-1 x C.I. 4254-1 23-6-14 7-2 x C.I. 4254-1 23-2-14 7-1 lysis of Variance D. F. Mean Square F	777 9-	66	15.75	9.25	15.50	20.25	60°75	53.8	97
x C. I. 5037 7-6-14 7-12 x C. I. 5037 7-6-15 7-1 x C. I. 5037 7-2-15 7-1 x C.I. 4254-1 23-6-14 7-2 x C.I. 4254-1 23-2-14 7-1 lysis of Variance D. F. Mean Square F	-12 46	98	24.50	20.25	15.75	22,00	82,50	73.1	775
7-6-15 7-1 7-2-15 7-1 23-6-14 7-2 23-2-14 7-1 nce Mean Square F	-12 46	10	17.50	17.50	15.75	16.50	67,25	9.69	97
7-2-15 7-1 23-6-14 7-2 23-2-14 7-1 nce	-1 37	20	23.00	29,00	18,00	16.50	86,50	76.7	547
23-6-14 7-2 23-2-14 7-1 nce Mean Square F	-1 36	7	15.25	16.25	21,00	21,00	73.50	65.1	7777
23-2-14 7-1 ace Mean Square F	-2 42	100	15.00	10,25	14.75	19,50	59.50	52.7	547
Analysis of Variance D. F. Mean Square F	-1 45	92	11.75	15.75	15.75	14.25	57.50	51.0	747
D. F. Mean Square F							Mean Yield	:	6.19
	[24						L.S.D. (5%)		N. S.
Replication 3 .421 - Variety 9 22.468 1.51 Error 27 14.866 1.51 Total 39 14.866	1.51						•	0	2/40

Agronomic data from 2 row malting barley nursery and advance yield nursery grown in Flathead county on the Northwestern Montana Branch Station, Creston, Montana in 1956. Five row plots, three replications. Table XX.

Variety	C. I.	Head-	Heading	Lod-	Plot	Id	띠	- 8	Average	Bushe 1
Cross	N No.	Date	in Ins.	So carried	D H	Ounces	III	Total	bushel Per Acre	Wt. in Pounds
Vantage	7324	7-14	1/1	25	51.50	58,00	53.75	163.25	64.3%	0.64
Glacier x Titan	50-5639-12	7-12	07	45	71.75	69.75	50.00	191.50	75.5*	. 0.94
Compana	5438	7-10	8	100	35.50	45.50	31.25	112,25	44.2	7.00
Freja	7130	7-13	31	10	31.75	00°89	59.25	159.50	62.8*	0.64
Betzes	9689	7-19	35	147	00°67	24.00	48.25	151.25	9.65	50.0
Carlsberg II	41101	7-21	34	2	54.25	00°29	78,00	199.25	78.5*	47.0
Hannch en	14841	7-20	42	26	44.50	50.50	34.00	129,00	50.8	0.64
Heinas Hanna	9532	7-16	39	09	51.50	56.50	39.25	146.75	57.8	50.0
Heimdal	7608	7-20	37	7	72,00	74.50	53.25	199.75	78.6*	0.74
Stamm	,	7-19	42	06	48.50	00.84	51,00	147.50	58.1	53.0

Note: Compana is used as a check in this nursery. *Varieties yielding significantly more than the check (5%).

L.S.D. (5%).....18.6

%76.6.0

Analysis of Variance *

Source	D.F.	Mean Square	[24]	
Replications	N	259.69	3.07	
Varieties	6	287.893	3.47%	
Error	18	84.542		
Total	29			

Agronomic data from 2 row malting barley, an advance yield nursery grown in Missoula county on Table XXI.

Date Planted. Ma	May 7, 1956	Date H	Harvested.	Septe	September 5, 19	1956 S	Size of Plo	Plot. 48 sq. f	ft.
Variety or Cross	C. I. or N No.	Height In Inches	Lod- ging	Plot	Yield in (in Ounces III	Total Ounces	Average Bushe 1 Per Acre	Bushel Wt. in Pounds
Vantage	7324	32	ı	65.00	60.25	00.69	194.25	76.5**	51
Glacier x Titan	50-5639-12	53	17	65.75	85.00	69.50	220.25	**9*98	24
Compana	5438	27	86	54.00	51.75	44.50	150.25	59.2	27
Freja	7130	26	10	05.99	74.00	75.75	216.25	85.2**	50
Betzes	9689	8	20	63.50	65.00	63,25	191.75	75.5*	51
Carlsberg II	70174	8	8	49.25	62,50	00 • 79	175.75	69.2	50
Hannchen	4841	31	52	05.97	56.75	45.25	148.50	58.5	647
Heinas Hanna	9532	31	38	1,0.50	00 • 49	744,00	148.50	58.5	52
Heimdal	7608	29	1	57.25	52,25	748,00	157.50	62.0	90
Stamm	1	37	20	42,00	49.75	00.04	131.75	51.9	55
Note: Compana is used as a check in this nur *Varieties yielding significantly more than **Varieties yielding significantly more than Analysis of Variance	ana is used as a check in thi yielding significantly more yielding significantly more Analysis of Variance	k in this Ly more t Ly more t	sery the	heck	(5%).			Mean Yield. S. E. X. L.S.D. (5%). L.S.D. (1%). C. V.	Yield68.3 \(\bar{x}\) \(\frac{5\pi}{12.5}\) \(\frac{5\pi}{12.5}\) \(\frac{12.5}{17.2}\) \(\frac{12.5}{6.19\pi}\)

Mean Square 142.90 317.46 38.282 Analysis of Variance D. F. 99 Source Replication Varieties Error

Total

Agronomic data from 2 row malting barley, an advance yield nursery grown in Ravalli county on the Homer Baily farm, Stevensville, Montana in 1956. Five row plots three replications. Table XXII.

Variety	C. I.	Pl	Plot Yield]	In		Average	Bushel
Or Cross	or N No.	, Bushe	Bushels Per Acre	cre	Total	Bushel Per Acre	Wt. in Pounds
Vantage	7324	31.3	57.3	57.6	146.2	48.7	50
Glacier x Titan	50-5639-12	48.5	72.27	67.1	138.3	46.1	8 [†] 7
Compana	5438	35.5	6.44	52,31	132.7	44.2	94
Freja	7130	65.0	37.8	68.2	171,0	57.0	52
Betzes	8689	62.0	31.6	66.2	159.8	53.3	53
Carlsberg II	41101	33.1	35.4	32.2	100.7	33.6	9†7
Hannchen	4841	28.4	6.94	58.2	132.9	44.3	13
Heinas Hanna	9532	21.3	34.9	42.2	4.86	32,8	52
Heimdal	4608	37.8	32.2	37.5	107.5	35.8	45
Starm	ī	30.7	7.02	18.3	7.69	23,1	20

Mean Yield41.9	L.S.D	
	7.52 2.23	
riance	Mean Square 512.705 324.922	1.92.67
Analysis of Variance	[Fe]	73 73
Analys	Source Replications Varieties	Error Total

lCalculated missing plot.

Table XXIII. Summary of two row malting barley yield nurseries grown in Western Montana 1956.

Variety or	C. I.		County			2 row
Cross	N No.	Missoula	Ravalli	Flathead	Average	Rank
Vantage	7324	76.5	48.7	64.3	63.2	
Glacier x Titan	50-5639-12	86.6	46.1	75.5	69.4	
Compana	5438	59.2	44.2	44.2	49.2	7
Freja	7130	85.2	57.0	62.8	68.3	1
Betzes	6398	75.5	53.3	59.6	62.7	2
Carlsberg II	10114	69.2	33.6	78.5	60.4	3
Hannchen	4841	58.5	44.3	50.8	51.2	5
Heinas Hanna	9532	58.5	32.8	57.8	49.6	6
Heimdal	8094	62.0	35.8	78.6	58.8	4
Stamm	-	51.9	23.1	58.1	44.3	8
Mean Yield		68.3	41.9	63.1		
S. E. x		4.22	6.97	6.27		
L.S.D. (5%)		12.5	N S.	18.6		
C. V. %		6.19	16.63	9.94		

Table XXIV. Yield data from large increase malting barley plots grown on the Walter Mangles farm, Polson, Montana. Three entries, with strips ten feet wide and 270 feet long. Whole plot was harvested or 2270 square feet.

Entry	C. I. No.	Yields Bu/A
Betzes	6398	27.6
Fre ja	7130	32.0
Hannchen	4841	30.4

DRYLAND SPRING GRAIN

Wheat

The Advanced yield spring wheat nursery consisted of 27 entries this season. Seeding was done May 3. Plots were four rows ten feet long and replicated three times. Growing conditions were very good during the growing season. Moisture was above normal for the season. See weather data in this report. There was no lodging in the nursery, and very little loose smut. This nursery was cultivated once during the growing season.

Control in this nursery was very good. Yields were high. The mean was 52.1. Pilot and Ceres were significantly higher in yield than Thatcher which was used as a check. Test weights were below normal in all but three varieties. For more details of this trial see Table XXIV.

The western regional white wheat nursery was seeded in four row plots, three replications with fifteen entries. The conditions listed above for the hard red spring nursery are the same for this nursery. The results were not significant when analysised statistically. The two hard red wheats were lower in yield than the white wheats, except Marfed. Test weights were all below standard. See Table XXV.

To determine the value of durm in the economic picture in Western Montana, a nursery was seeded in the Bad Rock community in Flathead county. Nine entries in four row plots ten feet long and three replications were included in this nursery. The previous crop was oats and the soil was very sandy. Hail damage July 20 was in part responsible for the low yields. Damage was not severe, but quite noticeable. Mindum and Sentry were highest yielding but not as high in yields as the hard red springs in the nursery. These results were not significant upon analysis. This nursery will be continued next year to further evaluate these varieties. Table XXVI.

The milling and baking plots included five varieties. These were seeded in seven foot drill widths, 100 feet long. Frost, on September 1, severely injured this planting. Because of the frost injury it was not used in milling and baking tests. N2389 was high in yield with 57.9 bushels per acre. Table XXVII.

3.23** 4.76%

Square 68.435 46.361 14.333

公石の公司

Source Replication Varieties Error Total

1Calculated missing plot.

2Loose Smut found in these varieties.

row	
Four	
1956.	
Montana	
Creston,	
nursery,	
wheat	
Spring	
Tield	
Advance	
from dryland	lications.
data	ee rep
Agronomic	plots thre
XXIV.	
Table	

858 N. No. Date In Ins. B52-120 6-29 42 3641 12488 6-29 44 12488 6-27 41 B52-107 6-30 44 13157 7-5 46 13157 7-5 46 13157 7-5 46 13157 7-5 46 13157 7-7 47 13157 7-7 47 12435 7-1 46 12435 7-1 46 11945 6-30 44 13242 6-30 44 13242 6-30 44 13242 6-30 43 13242 6-30 43 13042 6-30 43 13053 6-30 44 13053 6-30 44 13053 6-30 44 13155 6-30 44 13155 6-30 44 13155 6-30 44 13155 6-30 44	1 49.6 48.9 58.9 58.9 57.7 60.3 60.	11 456.74 466.75 50.53 50.	52.5 48.2 49.6 61.0 51.8 55.3 46.8 47.5 51.8 51.8 51.8 51.8	Bushel 149.6 153.8 143.9 175.2 158.1 165.2 139.7 146.0 153.9	Per Acre 49.9 51.3 48.0 58.4** 52.7* 55.1**	59 57 57 57 58 56 60
B52-120 6-29 42 3641 12488 6-27 44 12488 6-27 44 12488 6-27 44 12488 6-27 44 13243 6-30 44 13152 (N.D. 1) 13152 7-5 46 13152 (N.D. 1) 13152 7-5 46 13152 (N.D. 1) 13152 7-1 46 13243 6-27 41 146 12435 7-1 46 12435 7-1 46 11945 6-30 44 11945 6-30 44 11945 6-30 44 11945 6-30 44 11945 6-30 44 11945 6-30 44 11945 6-30 44 13242 6-28 43 13242 6-28 43 13242 6-29 41 13242 6-30 44 13242 6-30 44 13242 6-30 44 13242 6-30 44 1336 x Lee (N.D. 3) 13159 7-1 43	459.00 20 20 20 20 20 20 20 20 20 20 20 20 2	747.55 75.53	52.5 46.5 61.0	149.6 153.8 143.9 175.2 158.1 165.2 146.0 167.3		50 22 22 22 22 22 22 22 22 22 22 22 22 22
Jee ² Lee ² Lee ² Lee ² S31 (B52-119) B52-107 v 6-27 41 B52-57 6-30 44 B52-57 6-30 44 B52-57 6-30 44 B52-57 6-30 44 I3152 (N2389) x 1831 (B 51-9) Lee (B52-91) Lee (B52-91) S43 Lee (B52-91) S580.12) S6900 T-3 47 T-1 46 Lee (B52-91) S6900 T-3 47 S7-1 46 S800.12) S6900 T-3 47 S7-1 46 S800.12) S6900 T-3 47 S7-1 46 S800.12) S7-1 46 S7-1 47 S7-1 46 S7-1 47 S7-1	448.9 50.0	756.7 757.55.7 757.55.7 757.55.7 757.55.7 757.55.7 757.55.7 757.55.7 757.55.7 757.55.7 757.55.7 757.55.7 757.55.7	448.2 61.0 61.0 61.0 61.0 61.0 61.0 61.0 61.0	153.8 175.2 175.2 158.1 165.2 146.0 167.3		222222222222222222222222222222222222222
Lee ² Lee ² Lee ² S31 (B52-119) S31 (B52-119) S31 (B52-119) S31 (B52-119) S324,3 S-29 Lee ² Lee ² Lee ² X 1831 (B 51-9) Lee (B52-91) S400 T-2 T-2 T-2 T-3 T-4 T-4 T-4 T-4 T-4 T-7 T-1 T-6 T-1 T-7	450 726 736 736 736 736 736 736 737 737	46.00 50	449.6 61.0 51.0 46.8 47.5 47.5 444.7 63.9	143.9 175.2 158.1 165.2 146.0 153.9 167.3	0 -1 (-1-0 (-1)	52777
Lee 2 10e 2 10e 2 10e 2 10e 2 10e 2 10e 3 10e 4 10e 6-30 44 10e 6-30 44 10e (B52-119) 10e (B52-91)	726.03 73.04 74.03 73.04 74.04 73.04 74.04	55.25.4 50.	61.0 51.0 46.3 47.5 50.7 44.4 50.7 60.7 60.7	175.2 158.1 165.2 139.7 146.0 153.9 167.3	T (- F () (- ()	50 52 52 52 52 52 52 52 52 52 52 52 52 52
Lee ² (831 (B52-119) 13243 6-30 44 (831 (B52-119) 131243 6-29 45 (N.D. 1) 13157 7-5 46 Durum 13102 7-1 46 Lee ² 1752 (N2389) 13041 7-2 43 x 1831 (B 51-9) 13041 7-2 43 x 1831 (B 51-9) 13242 6-27 44 Lee (B52-91) 6900 7-3 44 lida Sib (3880.12) 13152 6-30 43 x Regent (N2183) 13042 6-29 41 ty in the contract of the con	722.0 720.0 720.0	50°3 45°5 50°3 50°5 50°5 50°5 50°5 50°5 50°5 5	51.8 46.83 47.55 47.55 47.65 47.	158.1 165.2 139.7 146.0 153.9 167.3	(- m · v (- f.	57 58 56 57
831 (B52-119) 13243 6-29 45 (N.D. 1) 13157 7-5 46 Loe 2 Loe 2 13102 7-1 46 Loe 2 1752 (N2389) 13041 7-2 43 13752 (N2389) 13041 7-2 43 12435 7-1 46 Loe (B52-91) 13242 6-38 43 11945 6-38 43 6900 7-3 47 12435 7-3 47 13242 6-38 43 100003 6-30 39 13152 6-39 41 43 13042 6-29 41 43 13159 7-1 43	577: 477: 503: 503: 503: 503: 503: 503: 503: 503	52.5 45.5 53.5 53.9 53.9 56.1 56.0 57.0 50.0	47.55 47.55 51.88 444.7 53.9	165.2 139.7 146.0 153.9 167.3	H .0 (-1)	58 50 57
(N.D. 1) Durum Durum 13102 7-5 46 Lee 2 1752 (N2389) 13041 7-2 43 1752 (N2389) 13041 7-2 43 12435 12435 7-1 46 11945 6-30 44 13242 6-30 44 13242 6-30 44 13042 7-3 47 7-1 7-1 7-2 7-3 7-1 7-3 7-1 7-3 7-1 7-3 7-1 7-3 7-1 7-3 7-1 7-3 7-1 7-1	47. 50.03	45.4 55.0 53.9 53.9 58.1 56.7	46.8 47.5 51.8 56.7 444.7 53.9	139.7 146.0 153.9 167.3	46.6	56 60 57
Durum Durum Durum B52-92 1752 (N2389) 13041 7-2 43 1752 (N2389) 13041 7-2 43 12435 12435 7-1 46 11945 6-30 44 13242 6-30 47 140 13242 6-30 7-3 175 10003 100	72,00 72,00 73,00 73,00 73,00 73,00 73,00 73,00 73,00 73,00 73,00 73,00 73,00 73,00 73,00 73,00 73,00 73,00 73,00 74,00 75,00	55.3 51.8 53.9 53.9 56.1 56.1	47.5 51.8 56.7 444.7 53.9	146.0 153.9 167.3	7.84	60
Lee 2 1752 (N2389) x 1831 (B 51-9) 13041 x 1831 (B 51-9) 12435 12435 12435 12435 12435 7-1 46 11945 6-30 44 13242 6-30 47 6900 7-3 47 6900 7-3 47 13152 6-30 43 13152 6-30 43 13152 6-30 43 13152 6-30 43 47 6-30 6-30	72 44 4 6 6 9 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7	53.9 53.9 53.9 56.1 56.7	51.8 56.7 49.6 44.7 53.9	153.9	מרא	57
x 1752 (N2389) 13041 7-2 43 x 1831 (B 51-9) 13435 7-1 46 12435 7-1 46 11945 6-30 44 x Lee (B52-91) 13242 6-28 43 6900 7-3 47 13242 6-29 43 10003 2536 x Lee (N.D. 3) 13159 7-1 43	56.7 44.5 45.1 53.2	53.9 53.9 58.1 56.7	56.7 49.6 44.7 53.9	167.3	C.+C	
x 1831 (B 51-9) 13304 7-7 47 12435 7-1 46 11945 6-30 44 x Lee (B52-91) 13242 6-28 43 6900 7-3 47 6900 7-3 47 6900 7-3 47 13152 6-30 43 10003 6-30 43 13003 6-30 43 13003 6-30 43 13003 6-30 43 13003 6-30 43 13003 6-30 43	445.0 445.4 53.2 53.2	53.9 58.1 56.7 59.01	49.6 44.7 53.9	147.5	55.8**	59
12435	45.4 46.1 53.2	56.7	53.9	*	49.2	58
x Lee (B52-91) 11945 6-30 44 Mida Sib (3880.12) 13242 6-28 43 6900 7-3 47 13152 6-30 43 10003 6-30 43 10003 6-30 39 2 x Regent (N2183) 13042 6-29 41 2536 x Lee (N.D. 3) 13159 7-1 43	53.2	59.01	53.9	148.2	4.67	57
x Lee (B52-91) 13242 6-28 43 6900 7-3 47 Mida Sib (3880.12) 13152 6-30 43 10003 6-30 39 2 x Regent (N2183) 13042 6-29 41 2536 x Lee (N.D. 3) 13159 7-1 43	53.2	59 °01	707	156.7	52.2	58
Mida Sib (3880.12) 13152 6-30 43 ner 2x Regent (N2183) 13042 6-29 41 2536 x Lee (N.D. 3) 13159 7-1 43	53,2		7.70	174.6	58.2**	28
Mida Sib (3880.12) 13152 6-30 43 10003 6-30 39 2 x Regent (N2183) 13042 6-29 41 2536 x Lee (N.D. 3) 13159 7-1 43	200	53.9	53.9	161.0	53.7*	09
(N2183) 13042 6-30 39 (N.D. 3) 13159 7-1 43	58,1	62.4	48.2	168,7	56.2**	58
(N2183) 13042 6-29 41 (N.D. 3) 13159 7-1 43	47.5	44.7	8.94	139.0	6.94	57
(N.D. 3) 13159 7-1 43	45.4	52.5	58.9	156.8	52.3	58
	0.44	45.3	51.1	1.04	8.94	58
N2164 7-2 43	58,1	58.1	60 • 3	176.5	58.8**	58
, 13100 7-2 43	51.8	56.7	9.65	168,1	56.0××	57
x Th S615 (B51-43) ² 13306 6-28 44	52.5	53.9	9*49	161.0	53.7*	65
(N2170) 12974 7-4 46	51.8	52.5	58.1	162.4	54.1%	59
13220 6-29 46	42.5	7740	46.8	133,3	44.4	09
(B50-18) 13244 7-4 45	51.8	58.1	51.8	161.7	53.9*	59
B52-90 6-27 41	8*97	48.9	53.2	148.9	9.67	58
42	78.5	55.3	6.85	162.4	54.1%	58
Note: Thatcher is used as a check in this nursery.		Analysis	of	Variance	Mean Yield	152.1
ties yielding significantly more than thecheck (5%)	(%)		Mean		S. E. X.	2.18579

Table XXV. Agronomic data from Western Regional White Spring Wheat Nursery, dryland at Greston,

Date Flanted.	May 3,	1956	Date	s Harvested.		September 10,	1956	Size of	Plot. 16 fe	feet.
		C. I.	Head-	Heading		Plot Yield	ld In		Average	Bush el
		or	ing	Height		Bushels F	Per Acre	Total	Bush el	Wt. in
Variety or Cross	S	M No.	Date	In Ins.	П	II	III	Bushel	Per Acre	Pounds
Thatcher		10003	7-1	42	45.4	45.4	1,6,1	136.9	45.6	57.0
Onas		6221	7-9	44	56.0	56.0	59.6	171.6	57.2	57.0
Lemhi x Hope-Fed.	ed.	13053	9-2	42	34.0	53.9	65.2	153.1	51.0	55.0
4232-20B		13259	7-1	42	50.3	45.4	53.9	149.6	6.67	58.0
Lenhi 53		13068	7-7	45	53.2	52.5	52.5	158,2	52.7	58.0
Henry		12365	6-30	44	7.44	39.0	60.3	144.0	0.84	58.0
Lembi		11415	7-7	444	55.3	57.4	57.4	170.1	56.7	59.0
Baart ¹		1697	7-6	847	50.3	57.4	48.9	156.6	52.2	59.0
Kenya x Lemhi ⁶		13258	7-7	45	57.4	61.7	53.9	173.0	57.7	58.0
Federation		4734	7-14	45	45.4	55.3	8.97	147.5	7.67	58.0
Marfed		11919	7-9	44	57.4	53.2	8.3	170.9	57.0	59.0
Idaed		11706	6-28	37	48.2	44.7	46.1	139.0	46.3	58.0
4232-20 S		13260	7-9	1.7	53.2	42.5	6.84	144.6	78.2	59.0
Onas 53		13257	7-9	43	50.3	60.3	61.0	171.6	57.2	58.0
Marfed x Merit-28	-28	13058	7-5	43	76.8	58.1	45.4	150.3	50.1	58.0
Note: Lemhi i	is used	as a check	in	this nursery.					Mean Yield.	d51.9
									S. E. X.	3.5
Anal	Analysis o	of Variance	0						L.S.D.	N. S. N. S.
Source	D. F.	Mean Square	uare	[II					•	
Replication Varieties Error Total	F 88 F 5	57.56 54.357 37.984		1.52						
	4.4.									

Agronomic data from Durm Yield Nursery at Creston, Montana. (Bad Rock Community) 1956. Four row plots three replications. Table XXVI.

OT II	Height in Ins.	ging	Bushe ls	Per	In Acre III	Total Bushel	Bushe 1 Per Acre
Vernum 12255	39	10	16.3	26.9	29.1	72.3	24.1
Ramsey (Ld. 369) 13246	36		22.7	19.1	22.7	64.5	21.5
Towner (Ld 370* 13247	42	2	19.1	9.5	25.5	53.8	17.9
Mindum 5296	39	10	25.5	26.2	25.5	77.2	25.7
Ld 308 x Nugget Ld 357	7 37	15	19.9	22.7	34.7	77.3	25.8
Tuna (Ld 364) 13245	×	15	18.4	21.3	18.4	58.1	19.4
Thatcher 10003	35		26.2	19.1	26.9	72.2	24.1
Rescue	38		25.2	26.2	26.9	78.3	26.1
Stewart 12066	39	10	21.3	12.8	25.5	9.65	19.9
Langdon (Id 372) 13165	34	70	19.9	11.3	24.8	56.0	18.7
Sentry (Ld 356) 13102	37		24.8.	13.5	28.4	2.99	22.2
Lee 12488	37		26.2	28.4	24.1	78.7	26.2
Selkirk 13100	37		26.2	25.5	78.82	80.1	26.7

Table XXVII. Agronomic data from Milling and Baking Plots, Dryland, Creston, Montana 1956.

Variety or Cross	C. I. or N No.	He ad Type	Bushels Per Acre	Rank
Thatcher x Rescue B50-18	13244	Bear ded	56.8	2
Rescue	12435	Beardless	31.1	5
1520 x 1752 (N2389)	13041	Bearded	57.9	1
Tha tcher	10003	Beardless	37.5	4
Pilot ² x Thatcher (N2170)	12974	Bearded	48.2	3

Mean Yield......46.3

DRYLAND SPRING GRAIN

Oats

The Pacific Northwest Uniform nursery with 36 entries was seeded in four row plots and replicated three times. The soil was very wet at the time of seeding and tended to pack. Emergence was quite even, but growth was slow because of the cool soil and weather conditions. Cultivation of plots was done in July as was spraying with ½ pound 2,4-D, per acre. Exeter and C. I. 6613 were significantly better in yield than Park which is used as the check variety. Test weights were all better than U.S.D.A. standard of 32 pounds per bushel. Mid season oats seem to produce better than the early or late varieties. Table XXVIII.

A cross was made between Gopher and Bridger to combine the desirable characteristics of these two recommended varieties in to one. The purpose is to develope a high quality high yielding dryland oat. In all cases Bridger out yielded all selections, whereas Gopher was lower in yield than all selections. Table XXIX shows the data from this nursery.

Table XXVIII. Agronomic data from dryland Pacific Northwest Unifrom nursery, grown at Creston, Montana

Date Planted. May 14, 1956		Date Harvested.		September 18,	1956	Size of Pl	Plot. 16 feet	
Variety	C. I.	Head-	Plot	Vield in	Ounces	Total	Average	Bushel
Cross	N No.	Date	П	1	III	Ounces	Per Acre	Pounds
Andrew x Clinton	5658	7-11	22,50	14.50	18,25	55.25	6.76	93
Clinton x Ukraine	6537	7-10	21.75	16.75	20.50	59.00	104.6	36
Andrew x Clinton	5657	7-11	15.00	16,50	16.50	00.84	85.1	35
Palomino	5636	7-10	25.50	20.50	21.75	67.75	120.1	36
Cody	39.76	7-19	23.25	25.75	20.00	00*69	122.3	38
Clinton "59"	4259	7-10	17.75	17.25	174.00	00°67	86.9	33
Winema	4,373	7-10	22,00	20.50	20,00	62,50	110.8	×
V-R x Bannock (Centore)	3865	7-17	26.75	23.75	23.75	74.25	131.6	×
Craig	5332	7-17	18,00	19.50	18.75	56.25	7.66	33
Overland	4181	7-18	25.50	22.50	16.50	05.49	114.3	38
Clinton x Overland 2	5345	7-14	23.00	24,00	19,00	00*99	117.0	8
x Overlan	5346	7-16	23.50	24.75	27,00	69.25	122.7	38
(B-A x logold) x (V-R)	6612	7-13	25.25	17.50	16.50	59.25	105.0	39
rk	1199	7-18	25.25	27.00	17,00	63.25	112,1	37
ř	6613	7-19	28.25	30.25	19.25	77.75	137.8*	39
C. I. 4189 x Overland	5347	7-18	29.00	23,00	18.75	70.75	125.4	39
-	48 AB6 902	7-18	24.50	21.25	21,25	00.79	118,8	38
Markton	2053	7-16	23.25	24.00	17.25	64.50	114.3	39
Ajax	4157	7-14	20.75	18,50	10,50	49.75	88.2	39
Simcoe	6767	7-14	17.50	17.25	11.75	46.50	82.4	39
-	5226	7-17	17.50	16.75	16.50	50.75	0.06	39
	6662	7-16	24.25	14.25	16.25	54.75	0.76	39
Garry (Original)	87799	7-15	17.00	18.75	15.75	51.50	91.3	39
Rodney	1999	7-19	20.50	16.25	15.50	52.25	92.6	07
Sauk	94765	7-15	22.50	18,00	18,50	29.00	104.6	39
Exeter	4158	7-19	27.75	28.75	23.25	79.75	141.4%	39

Mean Yield...106.8 S. E. X......8.2106 L.S.D.(5%)...23.1 L.S.D.(1%)...30.8 C. V.....7.69%

Creston,	
at	
grown	
nur sery,	
Uniform	
Northwest	
Pacific	ications,
dryland	ee repli
from	s thr
data	plot
Agronomic	Four row p
(Continued)	Montana 1956.
Table XXVIII.	

Date Harvested. September 18, 1956

Date Planted. May 14, 1956

Size of Plot. 16 feet

Variety	C. I.	Head-					Average	Bushel
or	or	ing	plot	yield in o	unces	Total	Bushel	Wt. in
Cross	N No.	Date	I		III	Ounces	Per Acre	Pounds
Shelby	4372	7-14	18.50	17,00	11.25	46.75	82.9	07
Bannock	2592	7-19	16,00	23, 50	23.50	63.00	111.7	39
Victory	1145	7-21	25.75	24.25	19.50	69.50	123.2	41
Shasta	3976	7-22	29.50	21.50	21.75	72.75	129.0	39
Lagle	4113	7-19	26.00	26.75	20.75	73.50	130.3	41
Bridger	2611	7-22	24.25	25.00	19.50	68.75	121.9	07
Mission	2588	7-15	17.00	11.75	13,50	42.25	74.9	41
Gopher	2027	7-11	12.25	10.00	15.25	37.50	6.99	36
Dupree	4672	7-9	14.00	17.25	15.25	46.50	82.4	%
Jackson	5441	7-11	19.00	20.50	80.00	59.50	105.5	4

*Varieties significantly higher in yield than the check (5%). Note: Park is used as a check in this nursery.

Analysis of Variance

(24	19.64**	
as I	140 • 4795 37 • 2426 7 • 1524	
D. F.	2 35 70 107	1
Source	Replication Varieties Error Total	1

Agronomic data for dryland selection nursery, Creston, Montana in 1956. Single row plots and four replications. Table XXIX.

Variety or Cross	C. I. or N No.	Head- ing Date	Plot	Yield in Ounces II III	Ounces III	IV	Total Ounces	Average Bushel Per Acre	Bushel Wt. in Pounds
Gopher	2027	7-14	11.50	18,00	12.25	12,00	53.75	71.5	3%
Gopher x Bridger	44-5-3-12	7-19	17.50	16.25	20.50	17.50	71.75	*4.56	37
Gopher x Bridger	44-5-3-31	7-15	14.00	17.00	12,50	00°02	63.50	84.4	37
Gopher x Bridger	44-5-3-13	7-15	16.50	17.25	20.50	15.50	69.75	92.7*	39
Jopher x Bridger	444-5-3-26	7-16	19.50	19.75	19,00	16.50	74.75	*4*66	8
Gopher x Bridger	44-5-2-9	7-15	18,00	16.50	20.50	19.25	74.25	*1.86	39
Gopher x Bridger	44-5-2-2	7-15	16.00	24.25	22,00	15.75	78.00	103.7%	07
Gopher x Bridger	44-5-2-6	7-14	19.25	17.00	17,00	17.00	70.25	83.4*	37
Gopher x Bridger	44-5-2-5	7-18	13.50	10.50	20.50	16.00	05.09	4.08	37
Bridger	2611	7-20	22.50	21.50	56,00	21.50	91.50	121.6**	07
*Varieties yielding significantly more th **Varieties yielding significantly more Varieties yielding significantly less Varieties yielding significantly less	ng significal ing significa ding signifi	ntly more antly mos cantly le	than Go e than C ss than ss than	opher (5%). Fopher (1%). Bridger (5%) Bridger (1%)				Mean Tield94.1 S. E. X7.17. L.S.D.(5%)20.8 L.S.D.(1%)28.1 C. V.	E. X. 7.174 5.D.(5%)20.8 5.D.(1%)28.1 V. 7.62%

Analysis of Variance

 Source
 D. F.
 Mean Square
 F

 Replication
 3
 10.0877
 1.39

 Selections
 9
 26.6729
 3.66**

 Error
 27
 7.2808

DRYLAND SPRING GRAIN

Barley

The interstate barley nursery was grown in field A-l, following silage corn. This nursery contained 25 entries. Moisture during the growing season was very good. Cultivation was done during June for weed control.

Yields were very high, with a mean of 83.5 bushels per acre. Freja was highest in yield with 108.4 bushels per acre. Considerable smut was found on several varieties in the nursery. See table XXX. Lodging was severe in the weak straw varieties. In the two row selections Freja and Sanalta were equal in straw strength. None of the six row selections were equal to these varieties.

The isogenic nursery, 2 vs 6 row barley contained ten entries or five selections, with a character for two and six row heads. This nursery was sprayed for weed control June 14 and cultivated once during the growing season. None of the selections met the standard of 48 pounds for bushel weight. The six row selections were higher in yield than two row selections in all pairs except Isogenic numbers 21-6-14, and 21-2-14, in which case 21-2-14 was higher in yield. Lodging was more severe among the six row selections than the two row. Table XXXI.

S. E. X. 10.484 L.S.D.(5%). 29.8 C. V. 12.56%

Mean Square 22,325 55,943 26,2386

Source D.F. Replication 2

*Varieties yielding significantly less than the check (5%).

Note: Vantage is used as a check in this

nursery.

Fror

ADOL of che Table XXX. Agronomic data from dryland interstate barley nursery at

	G. I.	Head-	Height	Lod-	PI	ot Yield			Average	Bushel
	or	ing	in	ging	I	In Ounces		Total	Bushel	Wt. in
Variety or Cross	N No.	Date	Inches	80	П	II	III	Ounces	Per Acre	Pounds
Hannchen	1484	7-4	39	96	18.75	23, 50	15.75	58,00	*2*89	61
Dekap	3351	6-29	33	95	17.75	14.50	21.50	53.75	63.5%	200
Heines Hanna (s)	9532	7-2	35	45	19.25	21.50	23.00	63.75	75.3	51
Heimdal	8094	7-7	32	57	24,00	23,25	36.50	83.75	0.66	17
Carlsberg II	10114	7-7	8	10	25.75	19.75	25.75	71.25	84.2	14
Betzes	8689	6-59	33	55	24.00	20.75	23.75	68.50	80.9	51
Freja (s)	7130	6-29	27	2	25.50	21.50	36.75	91.75	108.4	20,
Compana	5438	6-25	26	100	21,50	17.50	14.75	53.75	63.5*	17
Otis (s)	7557	6-22	R	95	20,00	26,00	27.50	73.50	86.9	17
	49-527-24	6-21	23	77	17.75	15.00	12,00	44.75	52.9%	67
Sanalta (s)	2809	7-7	42	2	37.50	23.75	29.75	91,00	107.5	87
Australian	3038	6-59	34	32	26.25	19,00	17.50	62.75	74.2	47
	1	7-5	35	31	17.25	19,00	20,00	56.25	66.5*	53
Titan	50-5639-12	6-25	200	12	22,00	17.75	31,50	71.25	84.2	97
	50-5610-7	6-27	34	12	34.50	00.00	31.50	86.00	101.6	777
Lico x C. I. 7152 (s)	7-0855-67	6-21	32	42	17.75	37.50	30.50	85.75	101.3	97
Vantage (s)	7324	6-36	39	26	24,25	26.50	33.75	84.50	6.66	87
_	9537	7-3	37	ī	18,50	24.50	30.00	73.00	86.3	87
Vantmore (s)	9555	92-9	41	37	24.00	24.50	24.50	73.00	86.3	147
Titan	7055	6-25	33	15	26.00	15.50	17.50	59.00	*4.69	474
Glacier (s)	9267	6-21	32	10	26.25	28.75	14.25	69.25	81.8	47
Trail (B-103)1	9538	6-29	07	28	25.00	30.25	25.75	81.00	95.7	147
Hiland	9530	6-27	35	04	17,00	22.75	15.00	54.75	*4.49	43
C. I. 714 x Velvon 11	10000				28.50	22,25	28.50	79.25	93.7	777
U.M. 570	1	6-29	38	12	29.50	21.50	24.75	75.75	89.5	84

Table XXXI. Agronomic data from dryland	data from	dryland	isogenic,	3, 2 VS	9	row nursery	grown at	Creston	, Montan	Creston, Montana in 1956.	
Date Planted. May 18, 1956	99	Date	Harvested.		September	8, 1955		Size of Pl	Plot. 16	feet.	
Variety or Cross	Isogenic Number	Head- ing Date	Height in Inches	Lod- ging	Plot	Yield i	in Ounces III	IV	Total Ounces	Average Bushel Per Acre	Bushel Wt. in Pounds
Manchuria x Poppenheim	13-6-15	7-19	37	25	20.75	20.25	21,50	17.75	80,25	71.1	0.47
Manchuria x Poppenheim	13-2-15	7-16	14	2	17.75	16.00	16.75	18.50	00.69	61.2	75.0
Manchuria x Kolter	16-6-15	7-16	14	100	13,50	13,50	13,50	18.75	59.25	52.5	75.0
Manchuria x Kolter	16.2-15	7-17	43	52	14.25	13.25	13.00	13.50	24,00	6.74	50.0
Manchuria x Plumage	21-6-14	7-21	947	100	9.75	12,25	11,341	16,00	76.67	43.7	0.04
Manchuria x Plumage	21-2-14	7-21	877	62	14.75	13.00	15.25	23,00	00.99	58.5	0*67
Manchuria x C.I. 5037	7-6-15	7-10	07	8	18.50	28.50	20.25	20,00	87.25	77.3	0.444
Manchuria x C.I. 5037	7-2-15	7-10	017	1	16.75	17.25	14.75	20.75	05.69	61.6	0.94
Manchuria x C.I. 4254-1	23-6-14	7-15	77	66	17.50	18.50	16.75	21.75	74.50	0.99	0.94
Manchuria x C.I. 4254-1	23-2-14	7-12	43	59	16.50	13.25	15.00	18.25	63.00	55.8	37.0
lCalculated missing plot.	028		Analysis	of	Variance				d t	d	59.65
	Source		D.F.	Mean	Square	[IZ4	1		L.S.D. (5%		13.0
	Replication Variety Error Total	ation V	388	19.244	19.244 33.6006 6.3037	3.05*			C. V	Tp)	21.62

DRYLAND SPRING GRAINS

Date of Planting

In 1952 a date of planting study was started to determine the best dates to plant. Results from the study showed that the best planting dates for wheat was May 5, barley May 5 or April 15, and oats April 15. In 1956 seeding rates were added to the date of seeding study. Two rates were used for each cereal. The varieties used were recommened, namely Pilot wheat, Vantage barley, and Park oats. This trial was designed as a split plot.

Pilot wheat in this trial gave the best yields planted, April 25, at 60 pounds of seed per acre. There were significant differences between rates but none due to date of planting. See Table XXXII.

Park oats were high in yield with the combination of 80 pound seeding rates and planting date of April 15. Analysis shows no significance between seeding rates, but highly significant due to dates of planting. Table XXXIII.

Seeding 70 pounds of seed per acre April 25 gave the highest yields of Vantage barley in 1956. There was no significance due to seeding rates but dates were significant at the 5% level. Table XXXIV.

Table XXXIIa. Agronomic data from Pilot spring wheat planted at five different dates and two rates of seeding at Creston, Montana 1956.

Replications	Date of Seeding	Rate of 30#	Seeding 60#	Sum	Replication Total
I	April 15 April 25 May 5 May 15 May 25	24.25 27.25 23.25 22.75 12.50	25.50 26.25 21.75 22.75 14.25	49.75 53.50 45.00 45.50 26.75	220.50
II	April 15 April 25 May 5 May 15 May 25	16.25 18.75 15.25 21.75 11.25	20.25 28.25 22.00 23.25 15.25	36.50 47.00 37.25 44.50 26.50	191.75
III	April 15 April 25 May 5 May 15 May 25	18.75 14.25 11.25 17.50 11.50	21.00 16.25 22.50 22.25 19.75	39 • 75 30 • 50 33 • 75 39 • 75 31 • 25	175.00
Sum		266.50	321.25	587.25	587.25

Table XXXII b.

	Ra	te of Seedi	ng.	Average
Date of Seeding	30#	60#	Sum	Bushel/Acre
April 15	59.25	66.75	126.00	59.6
April 25	60.25	70.75	131.00	61.9
May 5	49.75	66.25	116.00	54.8
May 15	62.00	68.25	130.25	61.6
May 25	35.25	49.25	84.50	39.9
Sum Average Bushel Per Acre	266.50 50.4	321.25 60.7	Mean Yie	ld55.6

Table XXXII c. Agronomic data from date of planting study on Pilot wheat Creston, Montana 1956.

	Seedin	ng Rate 30#	!	Seedi	ng Rate 60	#
Planting Date	Head- ing Date	Height in Inches	Har- vest Date	Head- ing Date	Height in Inches	Har- vest Date
April 15 April 25 May 5 May 15 May 25	6-25 6-28 7-5 7-12 7-20	45 44 44 46 42	8-22 9-8 9-8 9-8 8-19	6-25 6-28 7-6 7-12 7-19	45 45 46 45 43	8-22 9-8 9-8 9-8 9-19

Table XXXIII a. Agronomic data from Park oats planted at five different dates and two rates of seeding, at Creston, Mont. 1956.

Replications	Date of Seeding	Rate of 40#	Seeding 80#	Sum	Replication Total
I	April 15 April 25 May 5 May 15 May 25	27.00 31.50 28.25 26.50 15.50	31.00 26.00 30.00 30.00 20.00	58.00 57.50 58.25 56.50 35.50	265.75
II	April 15 April 25 May 5 May 15 May 25	30 • 75 24 • 50 24 • 75 26 • 50 19 • 00	29.00 26.00 28.50 26.75 19.50	59 • 75 50 • 50 53 • 25 53 • 25 38 • 50	255•25
III	April 15 April 25 May 5 May 15 May 25	28.00 29.00 28.50 21.50 18.00	22.75 27.50 25.25 24.00 14.75	50.75 56.50 53.75 45.50 32.75	239•25
Sum		379.25	381.00	760.25	760.25

Table XXXIII b.

Date of Seeding	Rate o 40#	f Seeding 80#	Sum	Average Bushel/Acre
April 15 April 25 May 5 May 15 May 25	85.75 85.00 81.50 74.50 52.50	82.75 79.50 83.75 80.75 54.25	168.50 164.50 165.25 155.25 106.75	149.3 145.8 146.5 137.6 94.6
Sum Average Bushel Per Acre	379.25 134.4 Date	381.00 135.1 of Seeding	L.S.D.(5	134.8 5%)17.6 1%)17.9

Table XXXIII c. Agronomic data from date of planting study on Park oats Creston, Montana 1956.

	Seedin	ng Rate 40	#	Seed	ing Rate 80	#
Planting Date	Head- ing Date	Height in Inches	Har- vest Date	Head- ing Date	Height in Inches	Har- vest Date
April 15 April 25 May 5 May 15 May 25	6-29 7-7 7-9 7-16 7-20	43 42 42 41 35	8-22 9-8 9-8 9-8 9-19	6.29 7-5 7-9 7-16 7-20	41 39 42 41 36	8-22 9-8 9-8 9-8 9-19

Analysis of Variance

Source	D.F.	Sum of Square	Mean Square	F
Replication	2	35.617	17.809	2.89
Dates	4	443.688	110.922	18.00**
Error a	8	49.286	6.161	
Main Plots	14	528.591		
Rate	1	.102	.102	
Rate and Dates	4	14.210	3.553	
Error b	10	65.033	6.503	
Total	29	607.936		

Table XXXIV a. Agronomic data from Vantage barley planted at five different date and two rates of seeding at Creston, Montana 1956.

Replication	Date of Seeding	Rate of 35#	Seeding 70#	Sum	Replication Total
I	April 15 April 25 May 5 May 15 May 25	26.75 17.75 17.25 23.25 16.00	17.50 23.25 19.75 20.25 18.25	44.25 41.00 37.00 43.50 34.25	200.00
II	April 15 April 25 May 5 May 15 May 25	20.50 22.50 22.50 19.00 15.50	23.00 25.50 20.25 23.50 16.50	43.50 48.00 42.75 42.50 32.00	208.75
III	April 15 April 25 May 5 May 15 May 25	16.75 25.75 15.00 23.25 16.50	26.50 29.50 21.00 19.00 14.50	43.25 55.25 36.00 42.25 31.00	207.75
Sum		298.25	318.25	616.50	616.50

Table XXXIV b.

Date of Seeding	Rate o 35#	f Seeding 70#	Sum 1	Average Bushel/Acre
April 15 April 25 May 5 May 15 May 25	64.00 66.00 54.75 65.50 48.00	67.00 78.25 61.00 62.75 49.25	131.00 144.25 115.75 128.25 97.25	77.4 85.2 68.4 75.8 57.5
Sum Average Bushel Per Acre	298.25 70.5	318.25 75.2	616.50	14 72

Mean Yield......72.9
Date of Seeding-L.S.D.(5%).....13.3
C. V.7.88%

Table XXXIV c. Agronomic data from date of planting study on Vantage barley, Creston, Montana 1956.

	Seedi	ng Rate 35	#/A	Seedir	ng Rate 70#	/A
Planting Date	Head- ing Date	Height in Inches	Har- vest Date	Head- ing Date	Height in Inches	Har- vest Date
April 15 April 25 May 5 May 15 May 25	6-22 6-28 7-1 7-8 7-15	38 38 38 40 36	8-22 8-22 8-22 9-8 9-8	6-22 6-28 6-30 7-7 7-14	39 37 39 39 39	8-22 8-22 8-22 9-8 9-8

Analysis of Variance

Source	D.F.	Sum of Squares	Mean Square	<u>F</u>
Replication	2	4.588	2.294	
Date	4	209.716	52.429	6.66*
Error a	8	62.933	7.867	
Total Main Plots	14	277.237		
Rate	1	13.333	13.333	
Rates and Date	4	21.209	5.303	
Error b	10	137.896	13.7896	
Total	29	449.675		

CERTIFIED GRAINS

Certified or Foundation Seed was used in seeding all field grains in 1956. Of the amount seeded only 3.3 acres were inspected for Certification. The following table gives the amount produced of the various crops.

Crop	Variety	Generation	No. of Acres	Amont Produced	Field in- spection	Laboratory Data
Wheat	Pilot	Foundation	11/2	5013#	Passed	Blue Tag
Wheat	Wasatch	Foundation	•5	660#	Passed	Blue Tag
Wheat	12930	Approved	.2	420#	Passed	- ,
Wheat	N2389	Foundation	•5	2169#	Passed	- 1
Barley	Vantage	Certified	.6	2143	Passed	Blue Tag

DRYLAND WINTER GRAIN

Wheat

The interstate winter wheat nursery seeded at Creston consisted of seventeen entries. All were hard red winters except 27-15 x Rex-Rio-41 which is a bread type white wheat. Moisture conditions were very good. Ice which formed during January reduced the yield of much of the wheat, but had no effect on the station material. To control weeds this nursery was cultivated once and hand weeded to remove weeds within the row.

Drawf bunt was moderate to severe in this nursery. Newturk and Yogo-Rescue 66-22 were the varieties with the highest rate of infection. Wasatch had traces of bunt. C.I. 12696 was the highest yielding variety with 74.2 bushels per acre and free of drawf bunt. C.I. 12933 was next in yield followed by 12930. These are of the drawf bunt resistant varieties, of these, C.I. 12933 showed 0.1% drawf bunt this year. Lodging was moderate in the Yogo-Rescue crosses and in some of the older varieties. No lodging was noted in C. I. 12933, 12930 and C. I. 12696. The mean yield of this nursery was 65.5 bushels per acre. Table XXXV.

Twenty entries were grown in the Uniform Western Regional Hard Red winter nursery. This was seeded very late in the season, Oct. 17, 1955. Emergence was poor due to dry conditions in the area. Winter killing was severe in the less hardy varieties due to the lack of snow cover.

There was no evidence of drawf bunt in this nursery. Stands were poor in most varieties. This nursery tested the winter hardness of these varieties. C. I. 12696 was poorest in stand (7%), and lowest in yield (2.3). C. I. 12806 was best in stand (90%) and highest in yield (17.0). Because of erratic stands a high C. V. was obtained. Wasatch, the check variety was low in yield 6.4 bushel per acre and a stand of 33%. C.I. 12930 and 12933 were 53 and 72% in stand respectively. However the difference of yield of these two varieties was not significant. Table XXXVI.

To study a large selection of crosses of Yogo-Turkey/oro 221 a single row three replicated nursery was seeded. There were 163 entries in this nursery. Only a portion of them were harvested. Many being eliminated because of poor characteristics. Lodging was severe in this nursery, but no notes were taken for comparisons. Drawf bunt was noted in several of the varieties. The mean of this nursery was 53.5 bushels per acre. No one variety can be selected at this time for high yielding ability.

Planting dates of winter wheat have been a question in Northwestern Montana for many years. To determine the optium date a study was began in the fall of 1955. Two varieties were used in this study. See Table XXXVII a. One years data shows that Sept. 24 was the best planting date in 1955, and 12930 was the highest yielding variety. Table XXXVIIb.

Agronomic data from interstate winter wheat nursery grown at Creston, Montana in 1955-56. Four row plots four replications. Table XXXV.

	C. I.	Head-	Height	Lod-	Drawf		Plot 1	Yield In	1		Average	Bushel
	OL	ing	in	ging	Bunt		Bushel	Per Acre	0	Tota1	Bushel	Wt. in
Variety or Cross	N No.	Date	Inches	88	80	П	Ħ	III	IIV	Bushel	Per Acre	Pounds
Blackhull-Rex/Rio/Rex	12932	9-10	37	7	٦,	64.5	60.3	77.6	64.5	260.9	65.2	62
Yogo	8003	6-11	17	8	L.	55.3	0.19	56.7	4.79	240.4	60,1	62
Yogo x Rescue 56-28		6-10	41	54	3	71.6	61.7	59.6	73.7	266.6	66.7	19
Yogo x Rescue 56-30		6-10	38	8	.7	75.2	75.9	94.6	81.5	287.2	71.8	62
Yogo x Rescue 66-22		3	38	1	ω.	8.3	0.44	44.44	51.1	199.8	50°0××	19
		6-11	07	78	0	61.0	56.7	9.45	63,1	235.4	58.9	63
Kharkof 17-7		6-10	47	26	EH	9.99	55.3	57.4	69.5	248.8	62.2	62
Cheyenne		6-10	39	ı	1.6	71.6	61.7	70.2	80.8	284.3	71.0	62
Karmont		6-10	33	777	3	58.1	63.1	52.5	9.69	233.3	58.3	62
asatch	11925	64	47	~	₽	61.7	61.0	69.5	68,1	260.3	65.1	
Blackhull/Rex x Cheyenne	12933	01-9	07	1	۲,	75.9	80.1	56.0	80.1	292.1	73.0	63
27-15 x Rex-Rio-41 (Burt)	126%	6-9	37	1	1	82.2	76.5	51.6	86.5	296.8	74.2	
Norin 10 x Brevar-11		8-9	24	ı	Н	81.5	69.5	9.65	9.99	277.2	69.3	
Norin 10 x Brevar-17		8-9	22	1	2	71.6	73.0	73.0	73.7	291.3	72.8	9
Yogo x Rescue 56-19		6-10	37	10	3	60.3	63,1	53.9	70.2	247.5	61.8	65
Rio-Rex Nebred	12930	8-9	37	1	1	68,1	74.4	51.6	80.1	274.2	9.89	63
Columbia	12928	8-9	%	1	E	57.4	69.5	60.3	73.0	260.2	65.1	63

Note: Wasatch is used as a check in this nursery. **Varieties yielding significantly less than the check 1% .

	Ana Lyst :	3 01	Variance	
Source	D. F.	교	Mean Square	E4
Replicat			464.20	10.47%
Varieties	ss 16	2	168,2375	3.79%
Error		100	44.3548	
Total	.9	7		

10	S. E. X3, 3299		,	20
4	m	10	~	\Box
10		٠,	O.	-
:65.5	3	0	ï	20
73		-	-	
-	. 1	1.34	29	
Yield	ı.	2	.(1%)12.6	•
M				
Mean	1	-	-	
ਵਧ	1	S	CO	. *
Me	S	i	i	O

grown in Flathead county on the	Montana in 1955-56. Single row	
Agronomic data from Uniform hard red winter wheat nursery	Conrad Gilbertson farm in the Stillwater area, Kalispell,	plots four replications.
Table XXXVI.		

	October 17, 1955 Date Har	Har vesceus	HUE WO 6 279	1950 T			TO TOOK	
	C. I.	Height	Stand	Plot	1.70			Average
Variety or Cross	or N No.	in Inches	rer-	In Bushels	shels Per II	Acre	Total Bushel	Bushels Per Acre
Minturki x Tim/Vaulgare ²	12806	27	06	21.3	17.0	13.5	51.8	17.3%
Yogo x Rescue	56-30	24	07	16.3	12.8	10.6	39.7	13,2%
H44 x Minturki4	Minn 2844	27	58	17.7	15.6	11,3	9.44	77.6%
Kharkof	1442	25	70	17.0	19.1	14.9	51.0	17.0**
Yogo	8003	26	89	19.9	0.2	19.1	47.5	15.8%
Wasatch	11925	25	33	5.7	9.2	4.3	19.2	7.9
Blackhull/Rex x Cheyenne	12933	23	72	9.2	19.9	12,8	41.9	77.0**
Kiowa	12133	21	474	8.5	8.5	9.2	26.2	8.7
Blackhull/Rex x Rio/Rex	12932	24	65	8.5	15.6	11.3	35.4	11.8*
Rio	10001	24	29	13.5	17.0	10.6	41.1	13.7**
Rio/Rex x Nebred (Columbia)	12928	な	89	15.6	17.7	11.3	9.474	14.9**
Rio/Rex x Nebred	12930	8	53	13.5	14.2	7.1	34.8	11.6*
Orfed x Wasatch	12943	22	74	14.2	16.3	12,1	42.6	14.2%
175a - 53 Utah		27	55	7.8	6.6	10.6	28.3	4.6
175a - 55 Utah		23	32	9.2	7.1	11.3	27.6	9.5
Rio/Rex x Nebred	12929	23	32	9.2	12.1	4.9	27.7	9.2
Cheifkan x Mt/Tg	160-49-4-13	23	8	5.7	2.1	5.1	12.9	4.3
Commanche x C. I. 12250		20	35	3.5	8.5	7.1	19.1	4.9
Kharkof-17-7		27	09	13.5	18.4	8.5	47. 047	13,5%
27-15 x Rex/Rio - 41	126%	100	7	0.0	3.5	2,4	7.0	2.3

Note: Wasatch is used as a check in this nursery. *Varieties yielding significantly more than the check (5%). **Varieties yielding significantly more than the check (1%). Analysis of Variance

3.49

34.472 53.7597 9.88516

2 138

Replications Varieties

Fror

Source

Mean Square

D. F.

14	52			C. V15.92%
Mean Yield11.4	\square	-	-	0
- 3	w	14	0.	
		10		4
-		4,	~	7
- 1	- 1			
ਰ		-	-	
-		PE	28	
0	. 0	5	\vdash	
:-	×	-	-	
H	250%			
-				. *
H	9			P
a	125	3	(1)	
e			. :	-:
-	U)	-	\vdash	0

Table XXXVII. Yield data from Yogo x Turkey/oro-221 F2 derived lines in winter hardness and smut nurseries.

1955-56 Plots No.	Plot	Yield in	Cunces	Total	Average
Replication # 1		II	III	Ounces	Bu/Acre
5	22.50	25.50	19.00	67.00	63.3
5 8	22.00	2).00	15.50		7. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10
9	21 00	25 00		15.50	42.5
	24.00	25.00	13.50	62.50	59.1
10	19.75		18.50	38.25	54.2
11	18.00	30.00	16.25	34.25	48.6
12	22.75	18.00	13.25	54.00	51.1
13	22.25		16.00	38.25	54.2
14	25.75	16.50	16.00	58.25	55.1
15	13.75		14.50	28.25	40.1
16	27.25		15.00	42.25	59.9
17	20.25	22.00	22.00	64.25	60.7
18	20.00	23.00	16.50	59.50	56.3
19	18.25	19.75	16.00	54.00	51.1
20	19.75	-/0//	15.75	35.50	50.3
21	21.75		14.50	36.25	51.4
22	20.50	20.75	19.75	61.00	2000 March 1970
					57.7
23	21.25	26.00	16.00	63.25	59.8
24	20.75	21.50	21.75	64.00	60.5
25	27.50		19.00	46.50	65.9
26			13.00	13.00	36.8
27	23.00		15.00	38.00	53.9
28	22.50		16.50	39.00	55.3
29	17.00	19.00	14.25	50.25	47.5
30	25.25		19.00	44.25	62.7
31	20.00	18.00	13.00	51.00	48.2
32	19.50	20.00	16.00	35.50	50.3
33	27.00		16.25	43.25	61.3
	24.00		23.75		67.7
34				47.75	
35	21.50		14.25	35.75	50.7
36			16.00	16.00	45.4
37	22.75		12.00	34.75	49.3
38	21.00	21.00	19.00	61.00	57.7
39	20.00	20.00	17.00	57.00	53.9
O ₄ O			13.75	13.75	39.0
41		16.75	20.75	37.50	53.2
+3	24.50		15.00	39.50	56.0
15	22.75	20.50	18.00	61.25	57.9
,6	19.75	22.50	12.75	55.00	52.0
18	-/01/	220	14.50	14.50	41.1
53		16.75	18.00	34.75	49.3
		21.00	15.25	36.25	51.4
57	20.00	21.00		33.00	46.8
60		20 25	13.00		
3	23.50	28.25	17.75	69.50	65.7
66			18.75	18.75	53.2
68	18.00	17.75	17.00	52.75	49.9

Table XXXVII. (Continued) Yield data from Yogo x Turkey/oro-221 F2 derived lines in winter hardness and smut nurseries.

1955-56 Plots No.		ield in Ou	nces	Total	Average
Replication #1	I	II	III	Ounces	Bu/Acre
70	20.25	20.25	19.25	59.75	56.5
71	14.25	20.2)	17.2)	14. 25	43.2
72	140 2)	21.50	15.50	37.00	52.5
73	14.50	26.25	16.00	56.75	53.5
74	14.00	27.50	18.00	45.50	64.5
76	19.50	210,00	15.50	35.00	49.6
78	16.00		14.50	30.50	43.3
79	10.00		18.75	18.75	53.2
31		21.50	12.25	33.75	47.9
33	19.25	21.00	18.50	37.75	53.5
35	1702)		14.25	14.25	40.4
88		24.25	17.50	41.75	59.2
39		240 2)	13.25	13.25	37.6
90	18.00		18.25	36.25	51.4
91	20.50		23.50	44.00	62.4
92	18.00	19.50	23.00	60.50	57.2
93	10.00	24.00	19.00	43.00	61.0
94	17.75	24.00	14.25	32.00	45.4
95	16.75	20.00	16.75	53.50	50.6
9	10.17	25.75	14.50	40.25	57.1
LÓ3		~)•1)	20.00	20.00	56.7
106		17.75	17.50	35.25	50.0
107		11 + 17	24.00	24.00	68.1
.09			18.00	18.00	51.1
111		25.75	20.25	46.00	65.2
.12		26.00	12.50	38.50	54.6
.15		20000	21.50	21.50	61.0
17	21.00		18.00	39.00	55.3
19	20.00	18.00	17.25	55.25	52.2
121	19.75	23.50	17.50	60.75	57.4

Mean Yield.....53.5

Table XXXVIIa. Agronomic data from Date of Planting Study with winter wheat, three dates, two varieties, four row plots and four replications. Plot size 16 feet.

Repli-		Varie	ety		
cation	Date	Wasatch	12930	Sum	Total
I	Sept. 14	56.0	73.0	129.0	
	Sept. 24	67.3	70.2	137.5	
	Oct. 4	65.0	64.5	129.5	396.0
II	Sept. 14	66.6	60.2	126.8	
	Sept. 24	63.1	64.5	127.6	
	Oct. 4	40.4	65.9	106.3	360.7
III	Sept. 14	52.5	59.6	112.1	
	Sept. 24	56.0	65.2	121.2	
	Oct. 4	53.1	58.1	111.2	344.5
IV	Sept. 14	69.5	48.2	117.7	
	Sept.24	50.3	73.0	123.3	
	Oct. 4	59.6	43.2	102.8	343.8
Sum		699.4	745.6	1445.0	1445.0

Table XXXVII b.

Date of Seeding	Wasatch	12930	Sum	Average
September 14 September 24 October 4	244.6 236.7 218.1	241.0 272.9 231.7	485.6 509.6 449.8	60.7 63.7 56.2
Sum	699.4	745.6	1445.0	
Average	58.3	62.1		

Analysis of Variance

Variation due to	D.F.	Sum of Square	Mean Square o F
Replication	3	266.43	88.81 4.54
Dates	2	194.01	97.005 4.96
Error a	6	117.38	19.563
Main Plots	11	577.82	
Varieties	1	56.54	56.54
Variety and Date	2	132.01	66,005
Error b	9	1005.86	111.762
Total	23	1772.23	

DRYLAND WINTER WHEAT

Six off-station nurseries were seeded in six Western Montana counties. These counties will be listed with each Table. These nurseries consisted of nine entries, all hard red except C. I. 126%. Seeding was done in single row plot 18 feet long and four replications.

The location of the nursery in Lake county was poor, being in a low place. Because of this condition two replications were quite poor and low in yield. Results thus obtained were not significant when analysed statistically. Drawf bunt was very bad in mon-resistant varieties. A trace was found in C. I. 12930, but none in Wasatch or C.I. 12933. Stands were good to fair with C. I. 12696 being the poorest. Table XXXVIII.

The low coefficient of variability indicated good data were obtained from the nursery in Missoula County. C. I. 12930 was significantly better in yield than Wasatch at the 1% level as was Columbia. However the difference between Columbia and C. I. 12930 was not significant. C. I. 12696 was poorest in Stand with 72%. Drawf bunt was found only in Newturk and Yogo. Table XXXIX.

The seed bed in Lincoln county was very dry. However spring survival was fair. Yields did not vary among varieties but stands varied considerably. Yogo and Columbia wer high in yield with 19.2 bushels per acre. No drawf bunt was found in the nursery. The mean yield was 15.5 but results were not significant. Table XL.

As in past trials in Ravalli county, Newturk was the high yielding variety again in 1956, with 34.6 bushel per acre. No drawf bunt was found in this nursery. C. I. 12930 was second in yield. It was equal in stand to Newturk and there was no lodging as compared to ten percent in Newturk. Table XLI.

79.74**

3228.03 58.493 40.477

D. F. 33

Replications

Source

Varieties

Error

Mean Square

Analysis of Variance

Agronomic data from dryland winter wheat nursery grown in Lake County on the Walter Mangle Farm, Polson, Montana in 1955-56. Single row plot four replications. Table XXXVIII.

	C. I.	Stand	Stand Drawf	Heading			ld In			Average	Bushel
Variety or Cross	or N No.	N Pe	Bunt %	Height in Ins.I	H	Bushels P	Per Acre	IV	Total Bushel	Bushel Per Acre	Wt. in Pounds
Wasatch	11925	78	1	4717	7.84	38.2	7.1	6.6	103.5	25.8	19
Yogo	8033	48	15.0	38	48.9	54.6	00	4.9	118.4	9.62	19
Kharkof 17-7		80	E-	04	48.2	39.0	19.1	9.5	115.5	28.9	09
Columbia	12928	81	1	8	9*67	41.1	5.7	8.5	104.9	26.2	62
Newturk		69	15.0	38	6.84	45.4	9.2	4.9	109.9	27.5	19
Blackhull-Rex x Cheyenne (M482296)	12933	85	1	39	45.4	44.0	33.3	8.5	131.2	32.8	19
Blackhull-Rex x Rio-Rex (M482271)	12932	77	•33	36	38.3	36.9	4.9	4.9	88.0	22.0	1
27-15 Rex-Rio-41	12696	09	1	31	37.6	35.4	7.1	7.8	87.9	22.0	65
Rio-Rex x Nebred (M482235)	12930	48	H	37	39.7	7,8,2	29.1	12.8	129.8	32.5	62

Agronomic data from dryland winter wheat nursery grown in Missoula County on the William Lucier, Table XXXIX.

Variety or Cross	C. I. or N No.	Stand in %	d Drawf Bunt %	Heading Height in Ins.	Plot Bushels	Plot Yield shels Per II I	Yield In Fer Acre	ΔI	Total Bushel	Average Bushel Per Acre	Bushel Wt. in Pounds
Wasatch	11925	42	1	38	36.9	22.7	36.9	34.0	130.5	32.6	09
Togo	8033	98	10	37	41.1	42.5	42.5	35.5	161.6	* 7. 07	57
Kharkof 17-7		82	1	37	32.6	25.5	38.3	32.6	129.0	32.3	58
Columbia	12928	06	ı	31	51,8	42.5	41.8	9.64	185.7	44.97	28
Newturk		8	6	35	36.9	35.4	42.5	32.6	147.4	36.8	59
Blackhull-Rex x Cheyenne (M482296)	12933	47	1	33	41.1	39.0	34.7	31.9	146.7	36.7	59
Blackhull-Rex x Rio-Rex (M482271)	12932	46	1	34	0.44	35.4	43.2	39.7	162,3	*9*07	24
27-15 Rex-Rio-41	12696	72	ı	30	24.8	32.6	26.2	27.7	111.3	27.8	57
Rio-Rex x Nebred (M482235)	12930	87	1	90	50.3	44.7	43.6	0.444	182,6	45.7%	09

F. S. E. X.2.049 2.24 L.S.D.(5%)...6.0 9.38**L.S.D.(1%)...8.1 G. V.5.44% Mean Square 37.557 157.581 16.796 Analysis of Variance D. F. 324 Source Replications Varieties Error Total Note: Wasatch is used as a check in this nursery. *Varieties yielding significantly more than the check (5%).
**Varieties yielding significantly more than the check (1%).

Agronomic data from Dryland winter wheat nursery grown in Lincoln County on the Carl Lundeen farm, Eureka, Montana in 1955-56. Single row plots four replications. Table XI

Variety or Cross	C. I. or N No.	Stand	Drawf Bunt %	Heading Height in Ins.I	Н	Flot Yi Bushels II	Yield In s Per Acre III	IV	Total Bushel	Average Bushel Per Acre
Wasatch	11925	63	ı	8	15.6	15.6	13,5	6.6	9.45	13.7
Yogo	8033	69	- 1	28	26.2	17.0	13.5	19.9	9.97	19.2
Kharkof 17-7		09	1	28	16.3	11.3	13.5	17.7	58.8	74.7
Columbia	12928	81	1	24	13.5	25.5	17.0	9.02	9.97	19.2
Newturk		65	1	25	14.2	15.6	15.6	19.9	65.3	16.3
Blackhull-Rex x Cheyenne (M482296)	12933	52	- 1	25	14.9	13.5	8,5	13.5	4.05	12.6
Blackhull-Rex x Rio-Rex (M482271)	12932	89	1	56	14.2	14.2	14.9	14.9	58.2	374.6
27-15 Rex-Rio-41	126%	87	1	25	20.6	12,8	12,1	10.6	56.1	174.0
Rio-Rex x Nebred (M482235)	12930	917	1	25	9.00	16.3	12,1	12.8	61.8	15.5

Analys	is of V	Analysis of Variance		
Source	D.F.	Mean Square	F	
Replications	3	23.494	1.95	
Varieties	100	21.439	1.78	
Error	24	12,073		
Total	35			

	1		100	Han who		D +0 LG	- 1				-
Variety or Cross	or N No.	Stand %	gring %	in Inches	I	Flot I Bushels II	Per III	Acre IV	Total Bushel	Average Bushel Per Acre	Wt. in Pounds
Wasatch	11925	96	10	34	31.9	21.3	31.2	24.1	108.5	27.1	62
Yogo	8033	48	12	29	34.7	23.4	14.2	26.2	98.5	24.6	62
Kharkof 17-7		72	12	32	31.2	21.3	22.0	24.1	9.86	24.7	19
Columbia	12928	92	N	30	26.9	14.9	25.5	30.5	8.76	24.5	63
Newturk		85	10	34	78.5	22.0	34.0	34.0	138.2	34.6	62
Blackhull-Rex x Cheyenne (M482296)	12933	95	1	K	22.7	25.5	24.1	39.7	112.0	28.0	63
Blackhull-Rex x Rio-Rex (11482271)	12932	92	8	32	26.2	29.8	26.9	22.7	105.6	26.4	62
27-15 Rex-Rio-41	12696	69	10	29	10.6	8.5	29.1	16.3	64.5	16.1	1
Rio-Rex x Nebred (M482235)	12930	98	1	29	24.1	30.5	29.8	26.9	111.3	27.8	62

Mean Square 73.271 92.742 46.352 Analysis of Variance D. F. Replications Varieties Error Total

Source

1,58

WINTER BARLEY

Eight winter barley nurseries were seeded in the fall of 1955. One located on the station and five off-station in Lincoln, Lake, Mineral, Missoula, and Sanders counties. These nurseries each contained ten entries.

The station nursery was seeded in Field Number B-8, October 1, 1955. This is an area with a high water table in the spring and a large wild oat population. Because of the wet condition early in the growing season it was impossible to control and of the wild oats. Because of the condition the nursery was abandoned.

The off-station nurseries had a mortality rate of 100 percent, due to winter killing. Not one of the nurseries remained in sufficient stand to warrant harvesting.

DATA FROM ROTATIONS

A Rotation Record Book has been prepared, for keeping permanent yield records for each rotation, and each plot in each rotation.

Data since 1949 has been entered. Schedules for fertilizer, manure and green manure use have been set up for each rotation. Also certain tillage practices have been specified, so that each years data will be somewhat comparable with each other years, so far as conditions are concerned.

Crop sequence by years has been listed for each rotation so that a glance at the Rotation Book will tell us what goes where when.

One interesting bit of information came from the yield summary made, showing that spring grain yields following cultivated crops on dryland have equaled spring grain yields following fallow.

Yields of spring grain following various crops and fallow at Creston, Grain yields in pounds per acre, five year average, dryland.

Spring grain after fallow 2835

Spring grain after peas 2174

Spring grain after potatoes 3071

Spring grain after corn 3200

IRRIGATION

Comparison of BPI Tank with Barrel Evaporation Rates 1956

	Loss in	inches
Period	Tank	Barrel
April 23 to June 3	3.067	6.21
June 3 to September 30	6.235	6.92

¹For this period the barrel was completely filled and half submerged, one-half the barrel below ground level. In that position evaporation was more than double that of the tank.

²June 3 the barrel was placed almost entirely below ground with the top two inches above ground level, and then filled to approximately ground level. In this position the moisture loss from the two vessels was quite comparable, being 66 inches more than the tank for the period.

It would appear that a steel barrel placed almost entirely below ground level and filled to ground level will provide a moisture loss meter quite comparable to the six foot BPI pan. It is my opinion that a half barrel would be even better, easier to enstall and fill, and less dangerous than the whole barrel.

Table XLII. Summary of Five crops irrigated at three rates 1956.

Growth period for c					Pasture 5/1-9/1			Barley 5/15-8/	
Irrigation Rate-	1	2	3	1	2	3	1	2	3
Pre-growth Precipitation	13.32	13.32	13.32	13.32	13.32	13.32	13.95	13.95	13.95
Growth period Precipitation	8.54	8.54	8.54	10.70	10.70	10.70	7.91	7.91	7.91
Inches Irrigation water	9.77	6.00	6,00	12.80	8.00	9.00	6.20	3.20	3.20
Total Moisture for crop	31.63	27.86	27.86	36.82	32.02	33.02	28.06	25.06	25.06
Yield Per Acre	3.5 T	3.8 T	3.6 T	2.6 T	2.8 T	2.3 T	76 Bu.	81 Bu.	80 Bu
L.S.D. (5%)		N. S.			N. S.			N. S.	
Evap. Tank loss for period		6.956			7.693			5.762	
Crop-	Co		ge		ota toe s				
Irrigation Rate-		2	3	1	2	3			-
Pre-growth Precipitation	14.38	14.38	14.38	15.25	15.25	15.25			
Growth period Precipitation	7.48	7.48	7.48	6.61	6.61	6.61			
Inches Irrigation	9.47	4.00	6.00	7.90	4.00	6.00			
Total Moisture for crop	31.33	25.86	27.86	29.76	25.86	27.86			
Yield Per Acre	27 T	26 T	23 T	312 cwt	350 cwt	308 cwt			
L.S.D. (5%)		.31T			22 cwt				
Evap. Tank loss for period		5.352			4.15				

Irrigation of Alfalfa at Three Rates 1956

Alfalfa was sprinkler irrigated at three rates.

- 1. .2 inches per day less rainfall, May 1- Aug. 14, when three inches is needed.
- 2. May 1-August 14 apply two inches whenever two inches is lost from Tank1.
- 3. May 1-August 14 apply three inches whenever three inches is lost from Tank.

Soil moisture was optimum at the beginning of the period. The amount and frequency of application at all rates was reduced by frequent rainfall.

Pre-growth precipitation, September 1, 1955 to May 1, 1956 was 13.32 inches.

Growth period precipitation, while not considered adequate, was frequent and totaled 8.54 inches.

The pre-growth moisture, 13.32 inches, plus the growth period moisture of 8.54 inches, plus the water applied by irrigation totaled: Rate 1. 31.63 inches. Rate 2. 27.86 inches. Rate 3. 27.86 inches.

Table XLIII. Alfalfa Hay, Two Cuttings

	Irrig	Irrigation		Total		Plot Yie	Total	T/A		
Rate	Dates			Inches	I	II	III	IV	Pounds	1956
1	5/22	6/15	7/31	9.77	13.32	11.52	13.22	13.41	51.47	3.50
2	5/22	6/14	7/30	6.00	14.59	13.00	13.00	15.59	56.18	3.82
3	6/1		7/31	6.00	10.75	11.75	16.13	14.84	53.47	3.64

Mean Yield.....3.65 S. E. X.....2138 L.S.D.N. S. C. V.5.86%

¹ Tank- BPI Pan six foot tank two feet deep.

Irrigation of Pasture at three rates 1956

Pasture, primarily orchardgrass and Ladino, was sprinkler irrigated at three rates.

- 1. .2 inch per day less rainfall, 6/1 to 9/1, whenever three inches was needed.
- 2. 5/1-9/1, apply two inches when evaporation tank loss is two inches.
- 3. 5/1-9/1, apply three inches when tank loss is three inches.

Soil was wet May 1, from melting snow. The total amount applied and frequency of application by all rates was deminished by frequent summer rains. Pre-growth precipitation, September 1, 1955 to May 1, 1956 was 13.32. The growth period, May 1- 9/1 rainfall was 10.7 inches. These amounts added to the moisture applied by irrigation makes the total amount of moisture available to the crop 36.82 inches for Rate 1, 32.02 inches for Rate 2, and 33.02 inches for Rate 3.

Table XLIV. Irrigated Pasture, four clippings, 80 Square feet.

Date os clippings. 1-6/1 2-6/26 3-7/20 4-8/17

Rate	Irrig Dates	ation			Total Inches		Yield II	in Poun	ds IV	Total Pounds	
1	5/22	6/15	7/31	8/24	12.8	9.90	9.08	9.36	10.67	39.01	2.65
2	5/22	6/14	7/30	8/20	8.0	10.30	9.67	10.14	10.96	41.07	2,79
3	6/1	7/31	8/24		9.0	10.31	8.54	8.42	6.80	34.07	2.31

Irrigation of Corn Silage 1956

Corn for silage was sprinkler irrigated at three rates.

- 1. .2 inch per day less rain whenever three inches is needed.
- 2. Apply two inches whenever evaporation tank loss is three inches.
- 3. Apply three inches whenever tank loss is three inches.

(Figure all rates from seeding date)

Soil moisture was very adequate at seeding time. All rates were reduced by frequent summer rain.

Pre-growth moisture, September 1, 1955 to May 29, 1956 was 14.38 inches. Growth period moisture May 29 to September 1 was 7.48 inches.

Totals including irrigation by rates were: Rate 1. 31.33 inches, Rate 2. 25.86 inches, Rate 3. 27.68 inches. Rates 1 and 2 were both significantly above rate 3 @ 5%.

Table XLV. Corn Silage Pourds from 106.66 Square feet.

	Irrigation		Tdtal	Plot		Tons				
Rate	Dates			Inches	I	II	III	IA	Total	Per A.
1	7/18	8/3	8/24	9.47	136	128	131	141	536	27.36
2	7/30	8/20		4.00	126	144	126	120	516	26.34
3	8/3	8/28		6.00	118	116	99	112	445	22.72

Irrigation of Barley at Three Rates 1956

Barley was sprinkler irrigated at three rates.

- 1. .2 inches per day less rainfall when jointing and heading.
- 2. Amount of evaporation tank loss at jointing and heading.
- 3. Apply three inches when loss from tank is three inches. All rates figured from seeding date.

Soil moisture was very adequate at seeding time. Frequent summer rains reduced the amount of irrigation required by all rates.

Pre-growth moisture, September 1, to May 15 was 13.95 inches.

Growth period moisture May 15, to August 12 was 7.91 inches.

Total including irrigation water was: Rate 1. 28.06 inches, Rate 2. 25.06 inches, Rate 3. 25.06 inches.

Table XLVI. Barley in pounds from 300 square feet.

	Irrigat	ion	Total	Plot	Yields	in Pour	nds	Tota 1	Bu./
Rate	Dates		Inches	I	II	III	IV	Pounds	Acre
1	6/13	7/10	6.20	27.0	23.5	24.0	26.0	100.5	76.0
2	6/12		3.20	30.1	23.5	29.0	25.0	107.6	81.4
3	6/12		3.20	21.0	34.0	27.0	24.0	106.0	80.2

Best rate for barley is number two.

Irrigation of Netted Gem Potatoes 1956

Netted Gem potatoes were irrigated by sprinkler system at three rates, all calculated from time of emergence.

- 1. .2 inch per day less rainfall, whenever two inches is needed.
- 2. Two inches whenever tank loss was two inches.
- 3. Three inches when tank loss was three inches.

Soil moisture was quite adequate when the crop was planted.

All rates were reduced by frequent rain. Pre-growth moisture September 1, 1955 to June 12, 1956 was 15.25 inches. Growth period rain, June 12 to September 1, was 6.61 inches. Total moisture including irrigation by rates was: Rate 1. 29.76, inches, Rate 2. 25.86 inches, Rate 3. 27.86 inches.

The best rate for potatoes with significance at the 1% level this year is the two inch application whenever the evaporation tank loss is two inches, Rate 2, even though the amount of water applied at this rate is less than for other rates used.

Table XLVII. Irrigated Potatoes, Pounds from 50 feet of 40 inch row.

	Irrigation							Total Cwt	%		
Ra	te Dat	es		Inches	I	II	III	IV	Pounds	Per A.	# 1's
1	7/18	7/31	8/28	7.9	125.0	110.0	132.0	110.0	477.0	311.7	94.09
2	7/30		8/20	4	133.5	127.0	143.0	131.5	535.0	349.6	92.01
3	7/31		8/28	6.0	119.5	120.0	122.0	110.0	471.5	308.08	94.30

Best rate for Potatoes, two inch tank loss.

Mean Yield.....323.1 S. E. X......6.3827 L.S.D.(5%).....22.1 L.S.D.(1%)....33.5 C. V.....2.0%

Fertilizer on Russian Wild Rye Seed

This is the fourth harvest year for 80 seed plots with twenty fertilizer treatments.

There has been little or no uniformity of responce. The greatest variation in yield is between the replications of a given treatment rather than between treatments.

If one were to believe what the four year average yields tell him he would conclude that by using fifty pounds of Nitrogen the seeding year and again the fourth year he would get the maximum possible yield. Personally I doubt that there is magic in this particular treatment when I look at the yields of Individual plots and see the variation from $\frac{1}{4}$ ounce to $2\frac{1}{4}$ ounces.

Probably this work should be discontinued and started over under more uniform soil conditions.

Table XLVIII. Fertilizer on Russian Wild Rye Seed. Ounces from 16 feet of two feet row and pounds per acre.

		Pounds Per]	Plot Y			Total	Pounds Per	Four Year
Treatment		Acre	I	II	III	IV	Ounces	s Acre	Ave.
Nitrogen every		50	1.25	.50	1.50	.25	3.50	74.44	182
year including		100	1.75	1.50	.75	.25	4.25	90.40	208
seeding year.		200	1.75	1.25	.50	.75	4.25	90.40	186
Nitrogen		50	.25	.25	.25	.25	1.00	21.27	137
every harvest		100	.75	.75	.25	.25	2.00	42.54	138
year.		200	1.75	1.25	1.50	.25	4.75	101.03	160
Nitrogen every	٠.	50	.50	.50	.50	.25	1.75	37.22	138
year beginning		100	1.25	.50	1.75	.75	4.25	90.40	187
2nd harvest year		200	1.25	.75	.50	.50	3.00	63.81	133
Nitrogen		50	1.75	.50	.25	2.25	4.75	101.03	246
lst and		100	2.25	.75	.25	.25	3.50	74.44	186
4th years.		200	1.75	1.25	.50	1.00	4.50	95.71	184
N. 1st 2 years. 50 100 200	50 N 50 N 50 N	50 P 50 P 50 P	2.25 .50 1.50	.25 .25 1.25	.25 1.50 .25	.25 .25 .25	3.00 2.50 3.25	63.81 53.17 69.13	192 191 205
Nitrogen		50	2.00	1.25	· 25	.25	3.75	79.76	150
alternate		100	1.00	.25	· 25	.25	1.75	37.22	131
years.		200	3.00	1.00	· 25	.25	4.50	95.71	194
50 lst, 100 2nd, Checks	, 200 3	rd. No N.	1.25	1.25 .50	1.50	.25 .25	4.25 2.50°	90.40 53.17	191 142

Mean Yield.....71.25 S. E. x......22.25 L.S.D.N. S. C. V.31.65%

Fertilizer on Alta Fescue 1956

Plots of alta fescue seed, treated with fertilizers in 1955, were harvested in 1956 to determine wheather or not there was any residual effect on yield.

Another similar study has been started on fescue seeded in the spring of 1956.

Yields found to be significant when compared to no fertilizer were produced by plots treated with 66-66-0 and with 99-0-0.

Table XLIX.

Treatment Per	r Acre 1955	Gra	ams per	Plot		Total	Pounds	Two year
N	P	I	II	III	IV	Grams	Per Acre	Average
33	0	49	46	75	55	225	112.5	145
0	0	85	57	62	43	247	123.5	177
33	33	75	78	95	64	312	156.0	216
33	66	85	80	65	54	284	142.0	181
0	66	65	45	45	65	220	110.0	154
66	66	120	70	84	80	354	177.0*	234
66	132	70	105	70	49	294	157.0	204
99	0	98	112	77	67	354	177.0*	191

^{*}Treatments yielding significantly more than the check 5%.

Mean	Yiel	d.,	 	.143.1
S. E.	x		 	.15.9106
L.S.D	. (5%)		.46.8
C. V.			 	.11.12%

Fertilizer on Native Meadow

Curious as to why phosphate applications were not beneficial in this meadow which by test is very phosphate deficient harvest has been continued, for three years following fertilizer application in 1954.

Apparently we have been rewarded for continued effort, for yield of plots treated with 160 P_2 O_5 in 1954 were found to be producing significantly more than the checks this season.

Three year average yields favor using 80 pounds nitrogen per acre. In this study this treatment has produced .85 tons more native hay for the three year period for a total of 2.55 tons of hay for a fertilizer cost of \$11.20.

Protein content is shown to be lower for all treatments than for the checks by sample analysis by Chemistry Research at M.S.C. Phosphate content is also lower than the check in some treatments. Treatments used apparently stimulate yield at the sacrifice of quality.

Table L. Fertilizer on Native Meadow, Carter Hardy ranch, Marion, Montana. Harvested to measure residual effect of 1954 treatments.

	Treatment and rate in		ounds fr	om 96 s	q. ft.	Total	Pounds Per Acre	3 Year Average
Pound	s Per Acre	I	II	III	IA	Pounds	1956	Tons/A
N	P							300
0	P 80	3.60	6.30	3.60	9.00	22.50	2550	
0	160	5.40	7.20	7.20	10.00	29.80	3380**	1.16 -
40	0	5.40	6.30	3.60	9.00	24.30	2754	1.24 - 3.77
80	0	8.10	5.85	6.30	13.50	33.75	38 25 **	1.97 5.9
0	0	8.10	3.60	6.30	8.10	26.10	2958	1.12 - 3,36
40	80	7.20	7.20	6.30	7.20	27.90	3163	1.49
40	160	5.85	8.55	4.50	8.55	27.45	3113	1.62
80	80	5.40	10.35	6.75	5.85	28.35	3217	1.77
80	160	6.75	10.80	5.40	8.10	31.05	3521**	1.85

**Treatment yielding significantly more than the check (1%).

Analysis of Variance

Source	D. F.	Mean Square	<u>F</u>
Replications Treatment Error Total	3 8 24 35	18.4294 2.0225 .181	101.81** 16.15**

Mean Yield....3167 S. E. X......96.52 L.S.D.(5%)....281 L.S.D.(1%)....382

C. V.3.04%

Clover treated with Fertilizer

This is the first harvest year for this fertilizer trial on Kenland Clover grown on the Station at Creston.

Two treatments have produced significant yield increases over the checks, the 120 pound rate of phosphate and the 50-60 treatment.

Yield differences to be significant in this trial must exceed 1050 pounds which leaves some treatments with apparent increases below the necessary level. Gypsum plots and plots with nitrogen alone were slightly below the checks.

Analysis by the Chemistry Research Department at M.S.C. indicates some interesting improvement in quality of forage due to fertilizers. From this standpoint as well as from a yield standpoint the use of 120 pounds of phosphate was best. The protein percentage was 14.7 compared to 12.3 for the check an increase of 2.4%. The phophate content was .20% for the 120# phosphate treatment, .10% for the check which is a 100% increase in the phosphate content of the forage due to this treatment.

Table LI. Yields from Clover treated with Fertilizers and grown at the Station.

Harvest Dates: 6/23 and 8/15, 1956

Treatme	nts	Plo	Yield	in Pound	ls	Total	Pounds
N	P	I	II	III	IV	Pounds	Per Acre
0	120	18.0	18.5	16.5	19.5	72.5	9869*
0	60	18.0	17.0	16.5	15.5	67.0	9120
50	0	14.0	14.0	15.5	15.5	59.0	8031
50	120	16.5	16.5	16.0	16.0	65.0	8848
50	60	18.5	18.5	17.0	16.5	70.5	9597#
Gypsum		16.0	15.5	13.0	16.0	60.5	8236
Checks		12.5	15.5	17.0	16.5	61.5	8372

Mean Yield......8875.4 S. E. X.......353.98 L.S.D.1050.9

*Treatment	significantly	higher	in	yield
	check (5%).			

Analysis of Variance

Source	D.F.	Mean Square	F
Replications Treatment Error Total	3 6 18 27	.524 6.619 1.6904	3.92*

Fertilizer on Clover

Plot yields varied considerably within treatments in this Kenland Clover nursery, with the effect that no significance in yields from the seven fertilizer treatments was obtained.

Greatest three replication total yields were obtained from treatments containing both Nitrogen and phosphate.

Table LII. Yields from Fertilizer on Clover grown on the McIntyre farm at St. Ignatius.

Harvest Date. June 28, 1956

Treatment N	Р	I	Pounds Pe	er Plot III	Total Pounds	Pounds Per Acre
0	120	8.06	4.73	5.56	18.35	3330.5
0	60	7.13	5.64	6.24	19.01	3450.3
50	0	6.72	5.88	6.44	19.04	3455.8
50	120	6.40	8.73	7.57	22.70	4120.1
50	60	7.64	7.06	7.64	22.34	4054.7
Gyp		5.36	6.85	5.36	17.57	3189.0
Check		5.64	5.94	5.64	17.22	3125.4

Fertilizer on Clover

In this the first harvest year for Kenland Clover plots on the Smurr-farm near Polson treated with seven fertilizer treatments, best yields were obtained from the use of the highest rate of physphate. This difference was not statistically significant.

The use of fifty pounds of Nitrogen increased yields from the sixty pound P_2 O_5 application slightly but did not beneficially effect the 120 pound P_2 O_5 application.

Soil tests showed this soil to be higher in organic matter and in available phosphate than would be presently considered adequate for production without fertilizer use.

Quality differences were not great due to treatments, as shown by protein and phosphate percentages of samples analysed by Chemistry Research at M.S.C. Protein percentages varied from 13.7 to 15.4, phosphate percentages from, .22 to .26.

Table LIII. Yields from fertilizer on clover grown on Smurrs farm in Polson, Montana 1956.

Harvest Dates. June 28, 1956, August 10, 1956.

Treatment		Plot	Yield in	Pounds		Total	Pounds
N	P	I	II	III	IA	Pounds	Per A.
0	120	19.5	18.7	22.0	17.6	77.8	10,590.5
0	60	17.3	16.1	18.5	13.5	65.4	8,902.6
50	0	18.7	16.3	19.7	16.1	70.8	9,637.7
50	120	17.7	22.3	18.9	18.5	77.4	10,536.1
50	60	17.0	14.5	17.5	18.3	67.3	9,161.2
Gyp		18.6	16.2	13.2	19.2.	67.2	9,147.6
Check		16.2	17.4	17.8	17.2	68.6	9,338.2

Mean Yield.....9637.7 Analysis of Variance S. E. X........548.95 D.F. Mean Square Source 3 1.5527 Replications 6 6.3165 1.55 Treatment 4.066 Error 18 Total 27

Table LIV. With Hay @ \$20.00 Nitrogen @.14 and Phosphate @ .09, what increased value per acre over fertilizer cost was derived from fertilizer use on clover.

Treatment	Fertilizer Cost	less Fertilizer Value	Over Check Increase	Less Fertilizer Value	Increase
0-120	\$10.80	95.10	1.72	87.89	4.17
0-60	5.40	83.63	-9.75	85.80	2.08
50-0	7.00	89.38	-4.00	73.31	-10.41
50-120	17.80	87.56	-5.82	70.68	-13.04
50-60	12.40	79.21	-14.17	83.57	15
Check		93.38		83.72	

Table LV. Improvement in Quality due to Fertilizers, Pounds per Cwt.

Smurr		Station	n	F. F.	A
Protein	Phos.	Protein	Phos.	Protein	Phos.
15.1	.22	14.7	.20	14.3	.16
13.7	. 22	13.6	.18	13.4	.14
14.8	. 26	12.8	.13	13.7	.15
15.4	.24	14.7	.19	14.2	.17
14.1	.22	12.7	.16	12.4	.15
15.1	.22	11.5	.08	13.1	.14
15.2	. 24	12.3	.10	13.0	.12
	Protein 15.1 13.7 14.8 15.4 14.1 15.1	Protein Phos. 15.1 .22 13.7 .22 14.8 .26 15.4 .24 14.1 .22 15.1 .22	Protein Phos. Protein 15.1 .22 14.7 13.7 .22 13.6 14.8 .26 12.8 15.4 .24 14.7 14.1 .22 12.7 15.1 .22 11.5	Protein Phos. Protein Phos. 15.1 .22 14.7 .20 13.7 .22 13.6 .18 14.8 .26 12.8 .13 15.4 .24 14.7 .19 14.1 .22 12.7 .16 15.1 .22 11.5 .08	Protein Phos. Protein Phos. Protein 15.1 .22 14.7 .20 14.3 13.7 .22 13.6 .18 13.4 14.8 .26 12.8 .13 13.7 15.4 .24 14.7 .19 14.2 14.1 .22 12.7 .16 12.4 15.1 .22 11.5 .08 13.1

Fertilizers on Bromegrass 1956

This is the first harvest year for this off-station fertilizer trial on bromegrass, seeded in early spring in 1955.

For some reason growth following cutting June 18-28 was very slow and in no location did regrowth justify making a second cutting. Clover in plots in these same locations made two nice cuttings.

Table LVI. Fertilizers on Brome Grass, 1956. Four plot Average Pounds
Per Acre.

Trea	tment							
N	P	Creston	F.F.A.	Passmore	Smurr	Mc Intire	Total	Average
0	80	3675	1582	2216	5587	2548	15608	3122
50	0	4628	3920	6021	7292	4602	26463	5293
25	0	4220	3420	3338	5860	4425	21263	4253
50	80	5241	4434	5171	6256	3760	24862	4972
25	80	5105	3245	3413	6328	3903	21994	4399
0	0	3607	2208	2027	4336	2433	14611	2922
				,				

Fertilizer on Brome grass, Creston, Montana

County soil analysis shows this soil to contain twelve pounds of available phosphate, to have an organic matter content of 6.6 percent, and a ph reading of 8.

Yields shown are in pounds per plot and per acre from eighty square feet, from one cutting only.

Inter-plot variations within treatments were sufficient to make four plot total differences less than significant in the fertilizer trial on bromegrass at the Station this season.

As can be seen in the adjoining chart yields per acre based on four plot totals were above the checks for all treatments, and in direct relation to the amount of nitrogen used. Also higher where phosphate was used in addition to nitrogen.

Table LVII. Fertilizer on bromegrass nursery grown at Creston, Montana, 1956.

Trea	tment		Pounds Per			Total	Pounds
Rate	Per Acre	I	II	III	IV	Pounds	Per Acre
N	<u>P</u>						
0	80	8.5	6.5	6.0	6.0	27.0	3675
50	0	12.0	6.0	9.0	7.0	34.0	4628
25	0	5.5	9.5	8.5	5.5	29.0	3951
50	80	8.0	9.0	11.0	10.5	38.5	5241
25	80	8.5	10.5	8.5	10.0	37.5	5105
0	0	5.5	7.5	7.0	6.5	26.5	3607

Source	D. F.	Mean Square	F
Replication Treatment Error Total	3 5 15 23	.623 7.036 3.146	2.24

Fertilizer on Bromegrass F.F.A. Farm

One cutting yields of bromegrass hay from fertilier plots on the F.F.A. farm near Kalispell shows significant increases over checks for all treatments receiving Nitrogen at the 1% level.

Yields were higher where fifty pounds of Nitrogen was used than where twenty-five pounds of Nitrogen was used, and higher for the 50-80 treatment than the 50-0 treatment, but these differences did not obtain statistical significance.

County soil analysis shows this soil to contain fifteen pounds of available phosphate, to have an organic matter content of 2.9 percent, and a ph reading of 8.

Yields shown are in pounds per plot and per acre from 80 square feet, from one cutting only.

Table LVIII. Fertilizer on bromegrass nursery grown on the F. F. A. Chapter farm, Kalispell, Montana 1956.

Trea	tment	Po	unds Per P	nds Per Plot			Pounds	
Rate	Per Acre	I	II	III	IV	Pounds	Per Acre	
N	P							
0	80	2.32	2.32	4.07	2.91	11.62	1582	
50	0	8.40	7.80	7.20	5.40	28.80	39 20 **	
25	0	6.91	5.65	6.91	5.65	25.12	3420**	
50	80	7.84	7.84	9.05	7.84	32.57	4434**	
25	80	5.80	5.80	6.44	5.80	23.84	3245**	
0	0	4.73	3.38	3.38	4.73	16.22	2208	

**Treatment significantly more in yield than the check.

Analysis of Variance

Source	D.F.	Mean Square	F
Replications Treatments Error	3 5 15	.9099 15.2946 .61116	1.49 25.02**

Mean Yield....3136 S. E. Xi.....21.28

L.S.D.(5%)....643

L.S.D.(1%)....888

C. V.6.79%

Fertilizer on Bromegrass, Smurr farm, Polson, Montana

This is the first harvest year for fertilizer plots on bromegrass on the Smurr farm near Polson.

Even though analysis of the soil in this location show organic matter and available phosphate above the level where fertilizers are usually recommended, significant increases were obtained from the use of fifty pounds Nitrogen, 50-80, and 25-80, with the highest yield coming from the 50-0-0 application.

Yields shown are in pounds per plot and per acre from 80 square feet, from one cutting only.

Table LIX. Yields from fertilizers on bromegrass nursery grown on the Smurr farm 1956. Polson, Montana.

	100	unds Per Pi	LOT		Total	Pounds
Per Acre	I	II	III	IV	Pounds	Per Acre
<u>P</u>						
80	13.68	10.64	9.50	7.22	41.04	5587
0	14.48	12.67	13.39	13.03	53.57	7292*
0	11.55	11.90	9.45	10.15	43.05	5860
80	12.99	13.99	9.66	9.32	45.96	6256*
80	13.53	12.84	10.06	10.06	46.49	6328*
0	9.45	8.05	7.00	7.35	31.85	4336
	P 80 0 0 80 80	P	P	P	P	P

*Trea	tment	yield	ling	significantly	mor e
		check			

Mean Yield......5946 S. E. \(\overline{x}\)......519.7 L.S.D.(5%)......1568 C. V.8.74%

Analysis of Variance

Source	D.F.	Mean Square	F
Replication Treatment	3	13.1239	3.60* 3.54*
Error	15	3.644	2024
Total	23		

Fertilizer on Bromegrass, McIntire farm, St. Ignatius

Yields from one cutting of bromegrass on plots on the McIntire farm near St. Ignatius show all Nitrogen treatments to be significantly higher than untreated checks.

Highest yields came from the use of the highest nitrogen rate. Adding phosphate to these did not furthur increase yields.

Yields shown are in pounds per plot and per acre from 80 square feet, from one cutting only.

Table LX. Yields from fertilizer on bromegrass nursery grown on the McIntire farm at St. Ignatius 1956.

Treatmen	t	Por	unds Per Pl	Lot		Total	Pounds
Rate Per	Acre	I	II	III	IA	Pounds	Per Acre
N	<u>P</u>						
0	80	3.83	4.68	6.38	3.83	18.72	2548
50	0	8.99	7.70	8.99	8.13	33.81	4602**
25	0	10.98	6.59	7.90	7.04	32.51	4425**
50	80	7.39	5.06	8.17	7.00	27.62	3760*
25	80	5.99	6.85	8.13	7.70	28.67	3927**
0	0	2.84	4.47	5.28	5.28	17.87	2433

^{*}Treatment yielding significantly more than the check (5%).

Analysis of Variance

Source	D. F.	Mean Square	<u>F</u>
Replications Treatment Error Total	3 5 15 23	2.557 11.5259 1.4375	1.78 8.02**

^{**}Treatment yielding significantly more than the check (1%).

Fertilizer on bromegrass, Passmore farm, Creston

This is the first harvest year for this bromegrass nursery treated with six fertilizer treatments.

Visual response to certain treatments was very evident.

Regrowth following harvesting of the first cutting was very slow so only one cutting was made.

As can be seen by the adjoining table, increases were highly significant even at the 1% level from all treatments containing Nitrogen.

County soil analysis shows this soil to contain 29 pounds of available phosphate, to have an organic matter content of 2.2 percent, and a ph reading of 8.

Yields shown are in pounds per plot andper acre from 80 square feet, from one cutting only.

Table <u>LXI</u>. Yields from fertilizer on bromegrass grown on the Passmore farm, Creston, Montana 1956.

Treat	ment	I	ounds Per	Plot		Total	Pounds
Rate	per Acre	I	II	III	IA	Pounds	Per A.
N_	<u>P</u>						
0	80	2.41	4.22	4.22	5.43	16.28	2216
50	0	10.37	8.98	11.75	13.13	44.23	6021**
25	0	6.58	4.78	4.19	8.97	24.52	3338**
50	80	9.66	8.37	7.72	12.24	37.99	5171**
25	80	5.37	4.18	7.76	7.76	25.07	3413**
О	0	3.24	2.59	3.24	5.82	14.89	2027

^{**}Treatments significantly more than the check 1%.

Mean Yield....3697 S. E. X.....293.6

Analysis of Variance

L.S.D.(5%)....882 L.S.D.(1%)....1217 C. V.7.94%

Source	D. F.	Mean Square	<u>F</u>
Replication Treatment Error Total	3 5 15 23	12.789 34.4469 1.16295	10.99 29.62

With Nitrogen @ .14 pound, P 0, @ .09 pound and bromegrass hay @ \$20.00 Ton, how much per acre would the farmer make by using the following treatments?

Treatmen Pounds/A		Cost			Farmers		
N	P	Fertilizer	Smurr	McIntire	Station	F. F. A.	Passmore
0	80	7.20	5.31	-6.05	-6.52	-13.36	-5.31
50	0	7.00	21.56	14.69	3.21	10.12	32.94
25	0	3.50	11.74	16.42	06	8.62	9.61
50	80	14.20	5.00	93	2.14	8.06	17.24
25	80	10.50	9.42	4. 44	4.48	13	3.36
0	0						
Value of	Hay @	\$20.00 Ton, 0	ver Ferti	lizer Cost.			
		,					
		7.20	48.67	18.28	29.55	8.62	14.96
		7.00	65.92	39.02	39.28	32.20	53.21

40.75

23.40

28.77

24.33

55.10

48.36

52.78

43.36

3.50

14.20

10.50

0.0

36.01

38.21

40.55

36.07

30.70

30.14

21.95

22.08

29.88

37.51

23.63

20.27

Soils Research

Fertilizers on Spring Wheat

The Uniform fertility study was continued in Montana this past season with one nursery established off-station in the Creston area. This nursery was located on the M. C. Roberts farm with the following legal discription, SE_{4}^{1} , Section 16, Township 28, Range 20. Soil was classed as Creston Sandy loam #156.

The following information was obtained during the growing season; moisture data, plant weights at two stages of growth, plant analysis, straw and grain weights, and grain yields.

Moisture use for the crop was 13.7 inches using 1.5 cubic feet for basis of calculation. Table LXII a. No significant differences were found in green weights at either the eight inch cutting or the cutting just before heading. Table LXII b, and LXII c. The check plot had the highest bundle weight and the highest grain yield. Table LXII d, and LXII e.

Fertilizers in this trial gave no increase in yield. From the economic stand point, in regards to yield, fertilizers decrease the dollar return per acre. Table LXII f.

Last years quality data was not ready in time to be included in the 1955 annual report, so it is included in this report. Table LXIII.

Table LXII a. Agronomic data from Uniform fertility Study, Creston, Montana on Pilot spring wheat grown in Flathead County on the M. C. Roberts farm, Rt. #4, Kalispell, Montana.

		ture in Percent		t Ave-	A Marian Company of the Company of t			Ave-		
Depth	I	II	III	rage	I	II	III	rage	%	In.
0-6	46.3	30.0	14.2	30.2	13.9	15.4	11.1	13.5	16.7	1.30
6-12	24.7	20:6	16.9	20.7	13.8	14.6	13.4	13.9	6.8	•53
12-24	13.2	16.0	14.6	14.6	8.0	8.7	16.6	11.1	3.5	•55

Total inches moisture used 12.37

Precipitation from seeding to harvest 9.99 inches.

Table <u>LXII</u> b. Green plant material cut at 8" high, May 19, 1956. Six feet square.

Treatment and Rate Per Acre	Plot W	Plot Weights in Grams			Average Pounds	
In Pounds	I	II	III	Grams	Per Acre	
Check	38.4	24.8	20.6	83.8	447.1	
15 P ₂ O ₅	43.8	22.0	10.0	75.8	404.4	
30 P ₂ O ₅	30.6	25.2	15.4	71.2	379.9	
15 N	43.5	30.3	16.2	90.0	480.2	
15 N 15 P ₂ O ₅	38.4	26.4	19.7	84.5	450.8	
15 N 30 P ₂ O ₅	37.6	28.4	20.9	86.9	463.6	
30 N	31.9	25.4	33.6	90.9	485.0	
30 N 15 P ₂ 0 ₅	25.3	26.8	23.4	75.5	402.8	
30 N 30 P ₂ 0 ₅	23.7	19.2	30.3	73.2	390.5	
60 P ₂ O ₅	25.5	30.5	12.8	68.8	367.1	
15 N 60 P ₂ O ₅	27.2	21.4	20.3	68.9	367.6	
30 N 60 P ₂ 0 ₅	35.7	17.7	23.3	76.7	409.2	
90 P ₂ 0 ₅	27.8	17.8	29.1	74.7	398.5	
15 N 90 P ₂ O ₅	30.3	17.9	18.4	66.6	355.3	
30 N 90 P ₂ 0 ₅	24.7	17.2	15.1	57.0	304.1	

Mean	Yield.		406.5
S. E.	X	0000000	59.15
L.S.D			N. S.
C. V.			14.55%

Analysis of Variance

Source	D.F.	Mean Square	F
Replication Treatment	2 14	560.18 29.846	_
Error Total	28 44	40.974	

Table <u>LXII c</u>. Green Forage cut before heading, July 10, 1956, Six Square feet. Weight is given in dry matter.

Treatment and Rate Per Acre	Plot Yi	elds in (Grams	Total	Average Pounds
in Pounds	I	II	III	Grams	Per Acre
Check	126.0	130.0	68.5	324.5	1731.2
15 P ₂ O ₅	193.0	118.8	50.4	362.2	1932.4
30 P ₂ 0 ₅	164.0	104.0	95.3	363.3	1938.2
15 N	203.2	147.0	91.2	441.4	2354.9
15 N 15 P ₂ O ₅	162.3	171.5	117.7	451.5	2408.8
15 N 30 P ₂ 0 ₅	107.7	164.9	73.5	406.1	2166.6
30 N	95.0	118.2	141.0	354.2	1889.7
30 N 15 P ₂ 0 ₅	234.1	123.4	125.0	482.5	2574.2
30 N 30 P ₂ 0 ₅	232.8	172.2	142.6	547.6	2921.5
60 P ₂ 0 ₅	195.5	127.2	83.5	406.2	2167.1
15 N 60 P ₂ 0 ₅	150.0	115.2	65.8	331.0	1765.9
30 N 60 P ₂ 0 ₅	141.0	143.5	133.8	418.3	2231.7
90 P ₂ 0 ₅	137.8	72.0	134.5	344.3.	1836.9
15 N 90 P ₂ O ₅	170.2	109.0	90.0	369.2	1969.7
30 N 90 P2 05	148.8	115.0	174.8	438.6	2339.9

Mean	Yield.	 2148.6
S. E.	x	 305.898
L.S.D		 N. S.
C. V.		 14.24%

Analysis	of	Variance
Lat Bill at y U and	0.1	A COMP SPECIAL CO.

Source	D.F.	Mean Square	F
Replication	2	14,867.05	13.57**
Treatment	14	1,288.88	1.18
Error	28	1,095.79	
Total	14		

Table <u>LXII d.</u> Bundle weight at time of harvest, 32 Square feet. Harvested. September 19, 1956.

Treatment and Rate Per Acre	-	elds in (Total	Average Pounds
In Pounds	<u>I</u>	II	III	Ounces	Per Acre
Check	94.25	87.50	66.50	248.25	7,040
15 P2 O ₅	97.50	69.50	32,25	199.25	5,651
30 P ₂ O ₅	93.00	80.00	54.25	227.25	6,445
15 N	92.25	62.50	45.25	200.00	5,672
15 N 15 P ₂ O ₅	95.00	48.50	90.50	234.00	6,636
15 N 30 P ₂ O ₅	88.50	72.50	41.50	202.50	5,743
30 N	84.50	58.00	68.75	211.25	5,991
30 N 15 P ₂ O ₅	91.00	64.50	83.50	239.00	6,778
30 N 30 P ₂ 0 ₅	93.50	79.75	70.75	244.00	6,920
60 P ₂ 0 ₅	74.50	70.75	35.25	180.50	5,119
15 N 60 P ₂ 0 ₅	82.00	60.25	44.25	186.50	5,289
30 N 60 P ₂ 0 ₅	79.50	82.25	68.00	229.75	6,516
90 P ₂ 0 ₅	78.75	33.25	77.25	189.25	5,367
15 N 90 P ₂ O ₅	70.00	48.00	58.00	176.00	4,991
30 N 90 P ₂ 0 ₅	66.50	67.00	54.25	187.75	5,325

Mea	n	Yi	0]	_d	. 0			0	0	0	0		.5	,965	
S.	E.	\bar{x}											.70	08.956	Ś
L.S	.D												. N	. S.	
C.	V.											0	.13	1.88%	

13.29**

Analysis of Variance

Source	D.F.	Mean Square
Replication	2	2769.315
Treatment	14	202.367
Error	28	208.354
Total	44	

Table LXII e. Grain Yield data from Spring wheat fertility study on M. C. Roberts farm, Rt #4, Kalispell, Montana.

Treatment and Rate Per Acre		t Yields els P er A		Total	Average Bushel
In Pounds	I	II II	III	Bushel	Per Acre
Check	49.6	42.5	36.9	129.0	43.0
15 P ₂ O ₅	48.2	37.9	15.6	101.7	33.9
30 P ₂ O ₅	53.2	41.8	28.4	123.4	41.1
15 N	52.1	31.2	15.2	98.5	32.8
15 N 15 P ₂ O ₅	49.3	23.8	47.5	120.6	40.2
15 N 30 P ₂ O ₅	48.6	39.3	19.1	107.0	35.7
30 N	46.8	28.0	37.6	112.4	37.5
30 N 15 P ₂ 0 ₅	49.6	34.4	43.6	127.6	42.5
30 N 30 P ₂ O ₅	48.2	37.9	36.2	122.3	40.8
60 P ₂ O ₅	37.6	37.6	15.2	90.4	30.1
15 N 60 P ₂ 0 ₅	42.5	33.3	22.3	98.1	32.7
30 N 60 P ₂ 0 ₅	28.0	44.7	33.3	106.0	35.3
90 P ₂ 0 ₅	41.8	20.6	9.9	72.3	24.1
15 N 90 P ₂ O ₅	36.2	23.8	28.0	88.0	29.3
30 N 90 P ₂ 0 ₅	34.0	35.8	26.6	96.4	32.1

Analysis	of Var	iance	Mean Yield
Source	D.F.	Mean Square	F
Replication Treatment Error	2 14 28	1061.5285 89.299 74.415	14.27** 1.20*

44

Error Total

Table <u>LXII f.</u> Fertilizer cost data from Uniform fertility study on M. C. Roberts farm, Rt #4, Kalispell, Montana on Pilot Spring Wheat.

Treatment and Rate Per Acre In Pounds	Fertilizer Cost Per Acre	Gross Return Per Acre	Net Return Per Acre	Increase or Decrease return over the Check
Check	0.00	79.98	79.98	-
15 P ₂ O ₅	1.35	63.05	61.70	-18.28
30 P ₂ 0 ₅	2.70	76.45	73.75	- 6.23
15 N	2.10	61.00	58.90	-21.08
15 N 15 P ₂ O ₅	3.45	74.77	71.32	- 8.66
15 N 30 P ₂ O ₅	4.80	66.40	61.60	-18.38
30 N	4.20	69.75	65.50	-14.48
30 N 15 P ₂ O ₅	5.55	79.05	73.50	- 6.48
30 N 30 P ₂ 0 ₅	6.90	75.89	68.99	-10.99
60 P ₂ O ₅	5.40	55.99	50.59	-29.39
15 N 60 P ₂ O ₅	7.50	60.82	53.32	-26.66
30 N 60 P ₂ 0 ₅	9.60	65.66	56.06	-23.92
90 P ₂ 0 ₅	8.10	44.83	36.73	-43.25
15 N 90 P ₂ O ₅	10.20	54.50	44.30	-35.68
30 N 90 P ₂ 0 ₅	12.30	59.71	47.41	-32.27

Cost N-14¢ Per Pound P2 05-.09@ Per Pound

Table LXIII. Protein data from Uniform spring wheat nursery, Creston, Montana 1955.

Trea	tment					
Poun Per	ds Acre	8 inch Cutting	Before Heading	Total Plant	Grain Protein	Average for Total Plot
N_	P					
)	0	20.8	14.5	6.8	11.8	13.5
15	0	20.8	13.3	7.0	11.9	13.2
30	0	22.2	15.2	8.2	12.3	14.5
O	30	20.7	13.0	7.3	12.2	13.3
30	30	22.2	16.8	6.2	12.4	14.4
)	15				11.8	
15	15				11.8	
30	15				12.7	
15	30				11.9	

Fertilizer on Spring and Winter Wheat

A long range production study was begun this season and included three factors. These factors are fertility level, spacing, and seeding rates. The object of this study is to discover the rate of seeding, spacing and fertility level best adapted for high economic yields of spring and winter wheat. The rotation on this will be spring wheat, fallow, and winter wheat. The trial will run nine years.

The fertility levels are; (a) 240 P₂ O₅ one application (made in 1956) and 20 pounds of Nitrogen per acre during the year grain is grown, (b) twenty pounds of Nitrogen plus 40 pounds P₂ O₅ each year grain is grown, (c) checks. Fertilizers are applied with an International fertilizer drill.

Two rates of seeding were used being, 30 pounds and 60 pounds per acre. Spacings are 6, 12, and 24 inches. Plots are eight rows for six inch spacings and four rows for twelve and 24 inch spacings. Length of plot is 18 feet and replicated twice.

For analysis a multiple complex is used.

The high yield this year was obtained from six inch spacing at the sixty pound seeding rate and fertility level b. When analysed statistically the following conditions were found to be significant; spacing, rates, and fertility levels, and a single order interaction of spacing x rates. See Table LXIV a and b.

Protein determination made on this study shows the 24 inch spacing with the highest protein percentage. See Table LXIV c.

Table LXIV a. Yields of Pilot spring wheat seed at two rates on three fertility levels and replicated twice.

		Block Number								
Fertility		ing Rate			Sedding Rate 2					
Level	I	<u>II</u>	Sum	I	II	Sum	Rates			
			6" Spacin	7						
240 P ₂ 0 ₅		,	Opacit	5						
20 N annually	36.5	47.9	84.4	50.0	46.8	96.8	181.2			
10 D 0										
40 P ₂ O ₅ 20 N annually	44.3	54.2	98.5	64.2	64.2	128.4	226.9			
20 N annually	44.0	1402	10.)	04.2	04.2	120.4	22007			
Check	51.4	35.1	86.5	69.4	56.7	126.1	212.6			
Sum	132.2	137.2	269.4	183.6	167.7	351.3	620.7			
			10 # C							
			12" Spaci:	ng						
240 P ₂ O ₅										
20 N annually	25.5	43.3	68.8	44.3	37.6	81.9	150.7			
10 Po 0-										
40 P ₂ O ₅ 20 N annually	50.3	45.7	96.0	49.6	49.3	98.9	194.9			
			400				/			
Check	48.2	36.9	85.1	53.9	54.6	108.5	193.6			
Sum	124.0	125.9	249.9	147.8	141.5	289.3	539.2			
			24" Spaci	næ						
		•	ct. phaci	46						
240 P ₂ O ₅			V 4 (***)				HE TO WILLIAM			
20 N annually	30.3	35.5	65.8	37.6	43.1	80.7	146.5			
40 P ₂ O ₅										
20 N annually	36.9	36.9	73.8	37.2	42.9	80.1	153.9			
			~ 4		0/ 0	70.0	7.50			
Check	38.5	39.7	78.2	35.5	36.8	72.3	150.5			
Sum	105.7	112.1	217.8	110.3	122.8	233.1	450.9			
Sum of three										
Spacings	361.9	375.2	737.1	441.7	432.0	873.7	1610.8			

Table LXIV b. Mean yields of two plots of each fertility level, and average yields for both rates and average yields of fertility levels for all spacings.

			Average for	
Rate	240 P ₂ O ₅ 20 N (a)	40 P ₂ O ₅ 20 N (b)	Check (c)	Seeding Rates
		6" Spacing		
30# 60# Average	42.2 48.4 45.3	49 • 3 64 • 2 56 • 8	43.3 63.1 53.2	44.9 58.6 51.8
		12" Spacing		
30# 60# Average	34·4 41·0 37·7	48.0 49.5 48.8	42.6 52.3 47.5	41.7 47.6 44.7
		24" Spacing		
30# 60# Average	32.9 40.4 36.7	36.9 40.1 38.5	39.1 36.2 37.7	36.3 38.9 37.6
Average of all spacings	39•9	48.0	46.1	44.7
Fertility Leve	el and spacing L.S		Average	seeding rate
	L.S.D. 5%2.5 bu L.S.D. 1%3.5 bu		30 # 60 #	41.0 48.4

Summary-Best combination 6 inch spacing level b, at 60# a.

Analysis of Variance

-				
Source	D.F.	Sum of Square	Mean Square	F
Blocks	1	. 36	• 36	_
Spacing	2	1,201,98	600.99	51.97**
Rate	1	518.32	518.32	44.82**
Fertilizer level	2	443.31	221.655	19.17**
Interaction of-				
Fertilizer x spacing	4	153.10	38.275	3.31-
Fertilizer x rate	2	16.79	8.395	_
Fertilizer x spacing xrate	4	594.89	148.723	12.86**
Spacing x rate	2	189.51	94.755	8.19**
Block x spacing	2	40.92	20.46	1.77-
Block x rate	1	14.69	14.69	1.27-
Block x spacing x rate	2	30.42	15.21	1.32
Error	12	138.78	11.565	
Total	35	3,343.07		

Table LXIV c. Protein data from rate, spacing and fertility level study, Creston, Montana 1955.

		Fertility Level		Average
Seeding Rate	240 P ₂ 0 ₅ 2 (a)	0 N 40 P ₂ 0 ₅ 20 1 (b)	Check	for seeding
		6" Spacing		
30 # 60# Average	10.5 11.3 10.9	13.0 12.7 12.9	13.1 14.6 13.9	12.2 12.9 12.6
		12" Spacing		
30# 60# Average	11.6 11.8 11.7	12.4 12.4 12.4	13.5 15.7 14.6	12.5 13.3 12.9
		24" Spacing		
30# 60# Average	12.6 12.6 12.6	13.3 13.7 13.5	14.0 16.0 15.0	13.3 14.1 13.7
Average all Spacings	11.7	12.9	14.5	13.0
Rate average	30#/A12.7	60#/A —13.4		

Summary of these data. Seed in 24 inch rows, 60 pounds per acre with no fertilizer.

Fertilizer on Spring Wheat

A study was started in 1956 in field B5-c to determine the long term effect of fertilizers on high organic matter and low phosphate soils. This trial was set up to work under actual field conditions. Seeding and fertilizing are done with an international fertilizer drill, and harvested with a combine, six feet wide and fifty feet long or 300 square feet. Four samples are taken at random from each treatment. Yield and protein determination are made from these samples.

The four treatments are listed on Table LXV. This year the high yield came from twenty pounds of nitrogen per acre plus forty pounds of P O5 per acre. The last treatment or 160 P2 O5 this year was economical and paid for the high rate of application. Control was very good in this nursery and highly significant between treatments. There was not a large difference between protein in these treatments. Range was 14.8 to 15.1 percent.

Table LXV a. Yield data from long term effect of fertilizer practices on high organic matter and low phosphate soils. Yields on Pilot spring wheat in 1956.

	Rate	Plot	Yields	in Bu	I/A	Total	Ave	Ave. %
Treatment	Per A.	I	II	III	IV	Bushel	Bu/A.	Protein
Check	0	41.1	35.1	31.5	33.9	141.6	35.4	14.8
N on each grain crop	20	36.3	41.1	38.7	43.6	159.7	39.9	15.1
N and P ₂ O ₅ on each grain crop	20-40	53.3	65.3	53.3	62.9	234.8	58.7**	15.05
Build P level at 160 P ₂ 0 ₅ and maintain wit 40 P ₂ 0 ₅ on spring gra	ch in	55.7	50.8	55.7	62.9	225.1	56.3**	15.08

*Treatment yielding significantly more than the check (5%).

**Treatment yielding significantly more than the check (1%).

Mean Yield......47.6 S. E. X.......2.33195 L.S.D. (5%).....7.5 L.S.D. (1%).....10.7 C. V.....4.90%

Analysis of Variance

Source	D.F.	Mean Square	F
Replications	3	25.95	1.19
Treatments	3	541.61	24.90**
Error	9	21.7522	
Total	15		

Table <u>LXV</u> b. Economic data from long range fertilizer study.

Treatment	Rate Per Acre	Fert- ilizer Cost	Gross Return	Net Return	Gain or Loss
Check	0	0	65.84	65.84	-
N each grain crop	20	2.80	74.21	71.41	5.57
N and P2 05 on each grain crop	20-40	6.40	109.18	102.78	36.94
Build P_2 O_5 level with 160 P_2 O_5 and maintain with 40 P_2 O_5	-	14.40	104.72	90.32	24.48

Wheat @ \$1.86 per Bushel.

P₂ O₅ @ .09 ¢ per pound.

Nitrogen @ .14 ¢ per pound.

Fertilizer on Winter Wheat

The uniform wheat nurseries also include work with winter wheat. This trial is conducted in the same manner explained on page 87 of this report and will be omitted here.

No significance was found in this data at the 5 percent point. However, when ploted (see figure 1), 30 pounds nitrogen is a consistent high point at every stage of harvest. The economical return was also at the 30 pound nitrogen level. Moisture use by this crop was 28.6888 inches. See tables LXVIa thru LXVId.

Quality data at this writing is not available and thus will be included in the 1957 annual report.

Table LXVI a. Agronomic data from uniform fertility study at Creston,
Montana in 1955-56 on Wasatch winter wheat. Six row
plots three replications.

Planted. Sept. 19, 1955 Harvested. Aug. 15, 1956 Plot Size. 32 Sq.Ft.

Treatment	Green May	Average			
and rate Per Acre		Weight in O	Total Grams	Pounds Per Acre	
Check	104.3	126.8	135.8	366.9	1957.5
15 P ₂ O ₅	135.2	162.9	87.2	385.3	2056.1
30. P ₂ 0 ₅	128.6	108.4	153.7	390.7	2084.4
15 N	111.3	137.1	159.6	408.0	2176.7
15 N 15 P ₂ O ₅	119.4	144.2	128.0	391.6	2089.2
15 N 30 P ₂ O ₅	174.7	119.8	143.2	437.7	2335.2
30 N	170.8	184.9	160.5	516.2	2754.0
30 N 15 P ₂ O ₅	137.3	131.1	106.6	375.0	2000.7
30 N 30 P ₂ 0 ₅	106.9	138.2	111.6	356.7	1903.0

Mean Yield.....2151.1 S. E. X......213.83 L.S.D......N. S. C. V......9.94%

Table <u>LXVI</u> b. Agronomic data from Uniform fertility study at Creston, Montana in 1955-56 on Wasatch winter wheat. Six row plots three replications.

Treatment and rate		eight at t: s. 6-19-56	ime of harv	rest 32 sq. f	t. Pounds
Per Acre	I ounce	II	III	Ounces	Per Acre
Check	107.00	132.25	123.25	362.50	10,280
15 P ₂ O ₅	111.00	144.00	113. 25	368.25	10,443
30 P ₂ O ₅	117.25	131.00	113.25	361.50	10,252
15 N	127.00	118.50	131.25	276.75	10,684
15 N 15 P ₂ O ₅	134.50	118.50	128.25	381.25	10,812
15 N 30 P ₂ O ₅	120.00	123.75	139.00	382.75	10,854
30 N	139.50	112.50	156.50	408.50	11,585
30 N 15 P ₂ O ₅	135.00	112.50	133.50	381.00	10,804
30 N 30 P ₂ 0 ₅	140.50	133.00	138.50	412.00	11,684

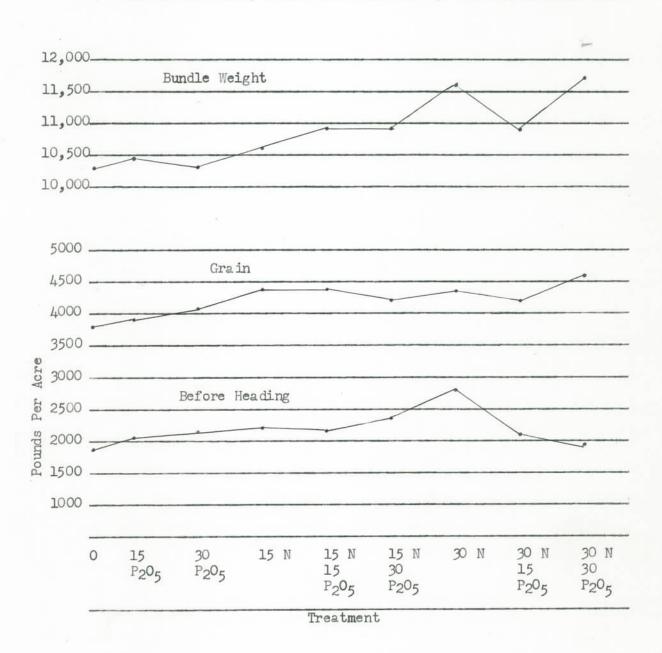
Mean Yield.....10,821 S. E. X........644.84 L.S.D.......N. S. C. V.......5.96%

Table LXVI c. Uniform fertility study on winter wheat, Creston, Montana 1955-56, moisture data.

Moisture in Percent					Moist	Loss				
Sample	at	seeding		Ave-	5.	t harves		Ave-	Loss	In
Depth	1	II	III	rage	1	II	III	rage	%	Inches
0-6	18.2	18.0	17.5	17.9	15.6	11.0	11.1	12.6	5.3	.41
6-12	15.1	14.6	15.6	15.1	10.2	13.4	8.9	10.8	4.3	• 34
12-24	14.1	13.9	13.3	13.8	13.1	6.7	7.3	9.0	4.8	.75
24-36	12.6	11.8	10.5	11.6	7.4	5.6	6.8	6.6	5.0	.78
36-48	10.4	7.9		10.4	8.2	9.0	6.8	8.0	2.4	•37

Total----23.90

Table LXVI d. Grain yields from uniform fertility study on winter wheat at Creston, Montana in 1956.


Treatment and rate	Plot Yi	Plot Yield in Ounces			Average Bushel	Pounds Per
Per Acre	I	II	III	Ounces	Per Acre	Acre
Check	34.25	47.50	36.50	118.25	55.9	3354
15 P ₂ O ₅	39.50	49.00	31.00	119.50	56.4	3384
30 P ₂ 0 ₅	42.50	47.00	40.00	129.50	61.2	3672
15 N	45.00	45.50	47.00	137.50	65.0	3900
15 N 15 P ₂ O ₅	46.50	48.00	43.50	138.00	65.2	3912
15 N 30 P ₂ O ₅	43.25	43.25	40.75	127.25	60.6	3636
30 N	47.50	45.50	45.75	138.75	65.6	3936
30 N 15 P ₂ O ₅	41.50	43.50	48.50	133.50	63.1	3786
30 N 30 P ₂ O ₅	47.50	46.75	48.00	142.25	67.2	4032

Mean Yield.....62.2 S. E. \overline{x}3.101 L.S.D.......N. S. C. V.......4.99%

Table LXVI e. Fertilizer cost data from uniform fertility study at Creston, Montana in 1956, on Wasatch winter wheat.

Treatment and Rate Per Acre In Pounds	Fertilizer Cost Per Acre	Gross Return Per Acre	Net Return Per Acre	Increase or de- crease in return over the check
Check	0.00	103.97	103.97	
15 P ₂ O ₅	1.35	104.90	103.55	-42
30 P ₂ 0 ₅	4.50	113.83	109.33	5.36
15 N	2.10	120.90	118.80	14.83
15 N 15 P ₂ O ₅	3.45	121.27	117.82	13.85/
15 N 30 P ₂ O ₅	6.60	112.72	106.12	2.15
30 N	4.20	122.02	117.82	13.85
30 N 15 P ₂ O ₅	5.55	117.37	111.82	7.85
30 N 30 P ₂ O ₅	8.70	124.99	116.29	12.32 /

Figure 1, Yield of plant material and grain yields in pounds per acre from uniform fertility trial on winter wheat, Creston, Montana 1956.

Fertilizers on Winter Wheat

A fertilizer program was started in Ravalli county in the winter wheat region of that county in 1954. The trial has consisted of four treatments using recommendations by the soil lab as one of the treatments.

Results from these trials have not been very successful and give little information. No significant data was obtained from these two trials. Last years (1956) data is shown in Table LXVII.

Table LXVII. Agronomic data from fertilizer study in Ravalli County on L. B. McFadgen farm, Stevensville, Montana. Four row plots four replications.

Date Planted. September 22, 1955

Date Harvested. September 6, 1956

Size of Plot. 16 feet.

	Rate in lbs.	Plot Yield In Bushels Per Acre				Total	Average Bushel
Treatment	Per-Acre	I	II	III	IV	Bushel	Per Acre
Check	0	19.9	22.7	28.4	25.5	96.5	24.1
10-20-0	100	18.4	25.5	30.5	22.0	96.4	24.1
P ₂ 0 ₅	40	14.9	20.6	26.9	23.4	85.8	21.5
(NH ₄) ₂ & P ₂ O ₅	33 N & 40 P ₂ O ₅	31.2	12.8	19.9	18.4	82.3	20.6

Analysis	of Var	iance		Mean Yield22.6 S. E. x2.83
Source	D. F.	Mean Square	F	L.S.D
Replications	3	29.055	-	
Treatment	3	13.324	-	
Error	9	32.04		
Total	15			

Fertilizers on Barley

In cooperation with the extension service a uniform fertility nursery on barley was proposed and established in 1956. This trial consists of fifteen treatments, four replications, using four row plots, twenty feet long. Yield data and quality data are obtained from these nurseries.

Two nurseries were seeded in the spring of 1956. One on the station on a high organic low phosphate soil and one in Lake county on a low organic low phosphate soil.

Yields were good in the nursery at Creston, but yields were not significant. The high yield was from 100 N 80 P $_2$ O $_5$, but unless the value of protein is figured in the receipts the yield was not economical. The protein amounts in this nursery were increased with the increase in N & P $_2$ O $_5$ in combination. See Table LXVIII.

The nursery in Lake county was damaged severly by birds, making the data very irratic. However protein data was obtained and followed a definite pattern. The high fertilizer applications in combination gave the highest percent protein.

Table LXVIII. Agronomic data from fertilizer trial on Vantage barley at Creston, Montana in 1956. Four row plots and four reps.

Planted.	May	18.	1956	На
- Tours	The same of		-110	4.4

Harvested.	Sept.	18,	1956	Plot	size.	32	sq.	ft
------------	-------	-----	------	------	-------	----	-----	----

	er Acre		ot ^Y ield hels ^P er			Total	Average Bushel
In Pour	nds	I	II	III	IA	Bushel	Per Acre
N	P205						
Check		49.2	58.9	86.9	49.6	244.6	61.2 -
25	40 310	58.9	65.6	67.8	62.9	255.2	63.8
50	4010.60	58.1	65.6	70.0	58.1	251.8	63.0
100	40,260	74.9	50.5	51.8	63.8	241.0	60.3
0	40-3.60	48.3	62.5	63.4	45.2	219.4	54.9
25	804.70	50.1	67.4	46.1	63.8	227.4	56.9
50	8014.20	67.4	83.7	74.9	59:8	285.8	71.5
100	8021.20	73.1	67.8	85.1	75.3	301.3	75.3*
0	802,20	62.0	69.6	68.2	60.11	259.9	65.0 -
25	160/2.90	63.4	70.5	51.4	42.1	227.4	56.9
50	16021.40	67.8	48.3	63.8	51.0	230.9	57.7
100	160-28,40	57.6	71.8	67.8	45.2	242.4	60.6
0 ?	160/440	63.8	76.2	67.4	55.4	262.8	65.7
25	0 3,50	47.0	50.5	50.5	54.1	202.1	50.5
50	0 2.00	52.3	60.7	66.0	57.6	236.6	59.2
100	0 14,00	38.6	47.9	60.7	49.6	196.8	49.2

Mean Yield60.7 S. E. X........4.401 L.S.D. (5%).....12.5 L.S.D. (1%).....16.7 C. V.....7.25%

Source	D.F.	Mean Square	F
Replication	3	305.14	3.94*
Treatment	15	189.73	2.45**
Error	44	77.475	
Total	62		

¹Calculated missing plot. *Treatments yielding significantly more than the check,

Table LXIX. Agronomic data from fertilizer trial on Vantage barley in Lake county on Ed Turbull farm, Charlo, Montana. Four row plots, four replications.

Planted. May 16, 1956 Harvested. Aug. 20, 1956 Plot Size. 32 sq. ft.

Treatm Rate P	ent er Acre	F	Plot Yield In Bushels Per Acre			Total	Average Bushel
In Pour		I	II	III	IV	Bushel	Per Acre
N	P ₂ O ₅						
Check		7.1	50.5	48.3	35.5	141.4	35.4
25	40	17.7	31.5	38.1	49.2	136.5	34.1
50	40	33.2	32.4	34.6	35.0	135.2	33.8
100	40	38.6	34.6	26.6	31.11	130.9	32.7
0	40	49.6	43.0	39.4	41.91	173.9	43.5
25	80	41.2	34.6	44.8	19.1	139.7	34.9
50	80	46.5	26.1	31.9	29.7	134.2	33.6
100	80	43.0	37.7	58.1	50.5	189.3	47.3 7 40
0	80	31.9	35.9	30.6	43.0	141.4	35.4.
25	160	35.5	41.2	41.7	37.31	155.7	38.9
50	160	21.7	38.1	51.8	44.3	155.9	39.0
100	160	47.4	51.4	58.5	36.3	193.6	48.4
0	160	45.2	35.0	36.3	16.4	132.9	33.2
25	0	39.0	40.8	46.5	44.3	170.6	42.7
50	0	22.2	33.7	33.7	24.4	114.0	28.5
100	0	18.6	18.6	59.8	29.2	126.2	31.6
lcalen	lated mis	sing plo	t.			Mean Yiel	d37.1
Oat ICU.		s of Var				S.E. X L.S.D	
Source		D.F.	Mean S	quare	F	Us Vs ***	14.11%

Source	D.F.	Mean Square	F
Replications Treatment	3 15	237.507 131.363	2.17
Error Total	42 60	109.561	

Tillage Research

Row Spacings and Seeding Rates for Alfalfa

This is the second harvest year for this work involving three row spacings and two seeding rates.

No significant differences in yield are found, due either to spacings or rates. Yields from plots seeded with twelve pounds of seed per acre in six inch rows are the same as from plots seeded with six pounds per acre in twelve inch rows. Plots seeded with three pounds per acre in 24 inch rows are not significantly lower in yield.

Table LXX. Row spacings and seeding rates for alfalfa 1956.

D	Spacing	D. I.	D 1 0	,	Total
Replications	Inches	Rate 1	Rate 2	Sum	Pounds
1	6	19.0	19.0	38.0	
	12	16.0	20.0	36.0	
	24	17.0	19.0	36.0	110.0
2	6	20.5	19.0	39.5	
	12	20.0	19.0	39.0	
	24	18.0	18.0	36.0	114.5
3	6	19.0	18.5	37.5	
	12	20.5	19.5	40.0	
	24	20.5	18.5	39.0	116.5
Sum		170.5	170.5	341.0	341.0

Spacing Inches	Rate 1	Rate 2	Total Pounds	Tons Per Acre	Two Year Average
6 12 24	58.5 56.5 55.5	56.5 58.5 55.5	115.0 115.0 111.0	4.35 4.35 4.20	4.98 4.68 4.20
Sum Tons Per Acre	170.5	170.5	341.0		

Best rate and spacing this years test: six pounds per acre in twelve inch rows, same as twelve pounds in six inch rows.

Source	D.F.	Sum of Square	Mean Square	F
Replication	2	3.695	1.8475	1.55
Spacings	2	1.778	1.889	
Error a	4	4.722	1.193	
Total main plots	8	10.195		
Rate	1	0		
Rate and Spacing	2	1.333	.6665	
Error B	6	12.867	2.144	
Total	17	24.395		

Row and spacing, and Seeding rates for alfalfa and bromegrass

During this second year of harvest of two seeding rates and three row spacings for bromegrass-alfalfa hay no significant yield differences have been found.

Bromegrass now occupies the entire area of the plots, although it is not yet as thick in plots seeded in 24 inch rows. The main apparent difference is in the alfalfa which of course remains as seeded, in rows 6, 12 or 24 inch rows.

While differences are not significant yields increase as row spacings increase, and the best single treatment for total yield this year was four and one-half pounds brome with one and one-half pounds alfalfa seeded in 24 inch rows.

Table LXXI. Row spacings and Seeding rates for alfalfa-brome hay 1956.

Replication	Spacing Inches	Rate 1	Rate 2	Sum	Total Pounds
1	6	23.13	23.38	46.51	
	12	23.41	20.56	43.97	
	24	24.13	23.03	47.16	137.64
2	6	23, 22	22.92	46.14	
	12	22.31	24.17	46.48	
	24	25.91	21.66	47.57	140.19
3	6	23.28	19.45	42.73	
	12	22.53	24.30	46.83	
	24	23.22	23.00	46.22	135.78
Sum	Ø 18	211.14	202.47	413.61	413.61

Spacing Inches	Rate 1	Rate 2	Total Pounds	Tons/ Acre	Two year Average
6 12 24	69.63 68.25 73.26	65.75 69.03 67.69	135.38 137.28 140.95	5.12 5.20 5.33	5.61 5.91 5.72
Sum Tons/Acre	211.14 5.32	202.47 5.10			

Best rate and spacing this years test: four one-half pounds of bromegrass with one one-half pounds alfalfa in 24 inch rows.

Source	D.F.	Sum of Squares	Mean Square	F
Replications	2	1.634	.817	
Spacing	2	2.672	1.336	
Error a	4	5.625	1.406	
Total main plots	8	9.931		
Rate	1	4.176	4.176	1.48
Rate and spacing	2	3.362	1.681	
Error b	6 .	16.888	2.8147	
Total	17	34.357		

Row and spacing study alfalfa and orchardgrass

During this second harvest year of orchardgrass-alfalfa hay seeded in rows 6, 12, and 24 inches apart at two seeding rates no significant yield differences were obtained.

The greatest yield for a single treatment was produced by a seeding of three pounds orchard grass with three pounds of alfalfa in twelve inch rows.

A comparison of yields and response to treatment of the three mixtures in the study shows best yields seeding rates and spacings for the three to be as follows:

Variety or Mixture	Seeding grass	Rate alfalfa	Spac ing	Tons/Acre
Alfalfa Brome-alfalfa Orchard-alfalfa	4½ 3	6 1½ 3	12 24 12	4.4 5.5 5.6

Most interesting is the comparative protein and phosphate percentages as determined by chemistry research, M. S. C.

	Protein %	Phos. %
Orchard and alfalfa in 6" rows	11.3	.17
Orchard and alfalfa in 12" rows	12.1	.17
Orchard and alfalfa in 24" rows	16.2	.18

Table LXXII. Row spacing and seeding rate for Orchard-alfalfa hay 1956.

Spacing Inches	Rate 1	Rate 2	Sum	Total Pounds
			the state of the s	
6				
	22.06	21.64	43.70	
12	24.84	21.16	46.00	
24	21.92	21.69	43.61	133.31
6	23.89	23.00	46.89	
		23.75	49.34	
				143.63
24	23.50	23.04	47.40	145.05
6	25.50	23.69	49.19	
		24.02	48.11	
24	21.53	22.25	43.78	141.08
	212.98	205.04	418.02	418.02
	12 24 6 12 24	24 23.56 6 25.50 12 24.09 24 21.53	24 23.56 23.84 6 25.50 23.69 12 24.09 24.02 24 21.53 22.25	24 23.56 23.84 47.40 6 25.50 23.69 49.19 12 24.09 24.02 48.11 24 21.53 22.25 43.78

Analysis of Variance

Source	D.F.	Sum of Square	Mean Square	F
Replication	2	9.632	4.816	3.56
Spacing	2	6.298	3.149	2.33
Error a	4	5.406	1.3515	
Total main plots	8	21.336		
Rate	1	3.5030	3.503	5.23
Rate and spacing	2	3.427	1.7135	2.58
Error b	6	3.9838	.66397	
Total	17	32.2498		

Table LXXII a. Row spacing, and seeding rate for alfalfa-orchard hay 1956.

Spacing Inches	Rate 1	Rate 2	Total	Tons Per Acre	Two year Average T/Acre
6	71.45	68.33	139.78	5.29	5.27
12	74.52	68.93	143.45	5.42	5.66
24	67.01	67.78	134.79	5.10	5.49
Sums	212.98	205.04	418.02		
Tons Per Acre	5.37	5.17			

Best rate and spacing this years test: Three pounds grass with three pounds alfalfa in twelve inch rows.

Weed Control

Two detailed chemical control plots were established in 1956. One on the control of wild oats ($\underline{\underline{Avena}}$ fatua) and the other on Quackgrass ($\underline{\underline{A}}$ repens).

Control of wild oats in field crops with chemicals was the purpose of the first study. Plot size used was 8 x 20 feet with two crops, alfalfa and peas; two chemicals, Karmex (CMU) and I.P.C. A fallow plot treated with I.P.C. was included and it is to be seeded to spring wheat in 1957. To measure the amount of control, plant counts of wild oats, were made and crop stand estimated in percentages.

Little control of wild cats was obtained with Karmex in alfalfa, and plant stands were greatly reduced. Table LXXIII. I.P.C. had little effect on pea stands and only a small percent of control. See Table LXXIII for complete details of this trial. Counts of wild oats showed 95,832 plants per acre as a mean population.

A natural stand of quackgrass was used in this chemical control study. Six different chemicals were used each at three rates in single plots. Stands were estimated in percent. application of C.M.U. was made April 21, before any growth of grass, all other applications were made when grass was eight to ten inches tall. Three weeks after application these plots were plowed, and harrowed. Reading of kill was made, July 8, 1956. Broad leaf weeds were found in the T.C.A. plots. Highest percentage of kill was found in C.M.U. at 30 and 40 pounds per acre and the T.C.A. plots. Table LXXIV.

Control was obtained with four of the chemicals varying with the amount used. No control was obtained with I.P.C. or M. H. See table LXXIV.

Table LXXIII. Chemical control of wild oats, (Avena fatua) with two compounds and in two crops and fallow.

Rate in			Crop Stand Ave. In Percent in		Wild Plants Per Sq.ft.				Plants Per		
#/A.	Material	Crop	1_	2	3	%	1	2	3	Ave.	Acre
2	Karmexl	Alfalfa	40	10	50	33.3	1	5	2	2.7	74,052
3	Karmex	Alfa lfa	20	5	30	18.3	2	4	4	3.3	143,748
4	Karmex	Alfalfa	10	40	5	18.3	3	1	2	2.0	87,120
Check		Alfalfa	30	5	70	35.0	4	2	2	2.7	117,612
4	I.P.C.	Peas	95	95	95	95	1	1	0	.7	30,492
B	I.P.C.	Peas	95	95	95	95	1	3	3	2.3	100,188
12	I.P.C.	Peas	95	95	95	95	1	3	0	1.3	56,628
Check		Peas	95	95	95	95	2	4	2	2.7	117,612
3	I.P.C.	Fallow					2	3	3	2.7	117,612
6	I.P.C.	Fallow					2	3	2	2.3	100,188
9	I.P.C.	Fallow					1	2	2	1.7	74,052

1C.M.U. Du pont

Table LXXIV. Chemical Control of quackgrass at Creston, Montana 1956. Six chemicals.

C.M.U. applied 4/21/56

Other chemical applied 5/21/56

Plot Number	Chemical	Rate in Pounds Per Acre	Percent Killl
1	c.M.U. ²	20	98
2	C.M.U.	30	100
3	C.M.U.	40	100
4	Dalapon ³	10	20
5	Dalapon	10	20
6	Dalapon	20	30
7	Dalapon	30	70 /
8	Weedazol4	4	70
9	Weedazol	6	95
10	Weedazol	8	90
11	M. H. ⁵	4	0
12	N. H.	6	0
13	M. H.	8	0
14	Check	0	0
15	I.P.C.6	6	0
16	I.P.C.	9	0
17	I.P.C.	12	0
18	T.C.A.7	40	95
19	T.C.A.	60	95
20	T.C.A.	80	90

¹¹⁰⁰ equal all plants killed. 23-(p-chlorophenyl)-1, 1-dimethylurea

^{32,2} dichloropropionic Acid

⁴⁽³ amino - 1,2,4,-Triazole)

⁵Maleic Hydrazide

⁶ Isopropyl-n-Phenylcarbamate

⁷Trichloro Acetic Acid

General Farm

General farm spraying this year consisted of the following operations.


C.M.U. application in fence rows (see map page 118).

2-4, D. $\frac{1}{2}$ pound per acre on all cereal crops.

2-4, D. 1 pound per acre on thistles in pasture and roadways.

In all applications of 2-4,D good weed control was obtaind. C.M.U. applications gave poor control of quackgrass in fence rows. This is due in part to too light of rate per acre.

PLOT LOCATION CRESTON STATION

South

Influence of Seed Size, Spacings, and Nitrogen Rates, on Size, Set, and Yield of Irrigated Netted Gem Potatoes.

The potatoes were planted May 24-26. The Nitrogen in the amounts shown was side-dressed at seeding time, together with uniform 300 pounds of treble super phosphate application to all plots.

The potatoes were irrigated, July 10, August 1, and August 21, with a total of eight inches.

Seed pieces were very carefully cut so as to vary as little as possible from the stated weight, using a postal scale to check the work.

Plots harvested were 1/100 acre in size. Single 40 inch rows, 130 feet long. Total weight figures were actual totals for each plot. Set, and yield of each size was determined by counting 100 pounds selected at random in the plots, sorting this 100 pound sample and weighting the sorts, then multiplying total plot weight by these percentage figures.

Killing frost September 2, very effectively killed the vines and stopped furthur growth. Harvest dates were October 1 to 4.

Nitrogen and spacings have a greater effect this year than last, otherwise the responses are very much the same.

Table H-1.

		Yields in Cwt per Acre								
Number of Plot	Treatment	Total No. 1	No. 1	No. 1 - 8 oz.	Field Run Total	Tubers Per Hill				
36	Phosphate, No N	211.1	82.0	129.1	241.1	4.38				
36	Phosphate, 10 N	237.5	97.6	139.9	273.1	4.85				
36	Phosphate, 20 N	249.0	85.6	163.4	281.2	5.43				
36	Phosphate, 40 N	273.3	105.3	168.0	304.8	5.56				
72	All plots $1\frac{1}{4}$ oz seed	238.6	107.9	130.7	269.7	4.60				
72	All plots $2\frac{1}{2}$ oz seed	246.9	77.4	169.5	280.4	5.51				
48	9 inch spacing	251.7	80.6	171.1	284.3	4.32				
48	12 inch spacing	233.2	95.7	137.5	268.3	4.85				
48	15 inch spacing	241.2	101.6	139.6	272.6	5.99				
72	Manured plots	254.5	101.7	152.8	289.1	5.20				
72	Non-manured plots	231.0	83.6	147.4	262.3	4.91				

Yields per plot in pounds. Single row plots, 130 feet long three replications of irrigated potatoes. Seed yield of tubers under 8 ounces grown in manured soils. Table H-2.

L	spu						7.0 21.+		0.65-1	
Tota	Pounds		935 725 787 2447		969 772 816 2557		1191 796 947 2934		1212 989 861 3062	
seed	Sum		535 420 420 1375		587 430 <u>504</u> 1521		648 441 538 538		700 581 1703	
omuce	田		179 155 138 472		169 131 144		196 131 187 514		242 260 172 674	
one-half	D		197 154 130 481		240		236 167 548		287 118 160 565	
two	A	ue Sc	159 111 152 422	ogen	178 137 219 534		216 143 206 565		171 203 90 464	
seed	Sum	e no Nitrogen	400 305 367 1072	te 10 Nitrogen	382 342 31.2 1036	te 20 N	543 355 409 1307	e 40 N	512 408 439 1359	
th ounce	图	Phosphate	106	Phosphat e	89 104 1111 304	Phosphate	185 106 121 121	Phos phate	151	
one-fourth	0		129 98 134 361		175 104 101 380		173 133 149 455		159 159 1468	
one	A		165 117 119 401		118 134 100 352		185 139 440		202 88 1744 1744	
	ings		Sum		Sum		Sum		Sum	
	Spacings		9 12 15		9 12 15		15 12		15 15	
Row	No.		1 5 10		296		77		12	

Table H-2 a.

Seed Piece Size		spacing	in inches	15	Average for seed size All spacings
		O Nit	rogen		
$1\frac{1}{2}$ ounce $2\frac{1}{2}$ ounce	Average	133.3 178.3 155.8	101.7 140.0 120.9	122.3 140.0 131.2	119.1 152.8 136.0
		10 Ni	trogen		
1 ounce 2 ounce	Average	127.3 195.7 161.5	142.0 143.3 142.7	104.0 168.0 136.0	124.4 169.0 146.7
		20 Ni	trogen		
la ource 22 ource	Average	181.0 216.0 198.5	118.0 147.0 132.5	136.3 179.3 157.8	145.1 180.8 162.92
		40 Ni	trogen		
$1\frac{1}{2}$ ounce $2\frac{1}{2}$ ounce	Average	170.7 233.3 202.0	136.0 193.7 164.9	146. 3 140.7 143. 5	151.0 190.4 170.73
Average o Nitrogen		179.5**	140.3	142.1	154.1
L.S.D. sp L.S.D. sp				Average s	eed piece size 1 134 eed piece size 2 173

Summary to grow seed stock plant

spacing and forty pounds Nitrogen.

 $2\frac{1}{2}$ ounce seed in nine inch

**Significantly higher in yield than 12" spacing 1%.

L.S.D. seed piece size (5%) 30.8 L.S.D. seed piece size (1%) 41.4

1Significantly higher in yield than 1 ounce seed piece size 5%.

L.S.D. Nitrogen level (5%) 21.7 L.S.D. Nitrogen level (1%) 29.3

2Significantly higher in yield than O Nitrogen 5%. 3Significantly higher in yield than O Nitrogen 1%.

Varation due to	D.F.	Sum of Square	Mean Square	0-	F
Blocks	2	1,170.5	585.25		
Nitrogen level	3	14,495.3	4,831.766		4.72**
Seed piece size	1	25,973.9	25,973.9		25.39**
Spacing	2	29,282.5	14,641.25		14.31**
Spacing x Nitrogen level	6	5,229.8	871.63		
Spacing x Seed piece size	2	1,616.7	808.35		
Spacing x Nitrogen level x seed piece size	6	1,091.0	181.83		
Nitrogen level x seed piece size	3	4,421.8	1,473.93		2.16
Blocks x Nitrogen level	6	6,473.2	1,078.87		1.06
Blocks x seed piece size	2	4,984.2	2,492.1		2.44
Blocks x Nitrogen level x seed pie ce size	6	650.1	108.35		
Error	32	32,727.0	1,022.72	31.97999	
Total	71	128,116.0			

spacing
$$\frac{\sigma}{\sqrt{24}} = \frac{31.97999}{\sqrt{24}} = \frac{31.97999}{4.89898} = \frac{6.5279 \times \sqrt{2}}{2} = 9.2318 \times T = 5\% = 18.8 \times T = 18.8 \times T = 5\% = 18.8 \times T = 18.8$$

No. 1 tubers 8 ounces and over from irrigated plots with green manure and barnyard manure, 1956. Table H-3.

Total	Pounds		420 581 654 1655		578 705 2026		470 616 597 1683		64,1 606 711,1 1958	7322
	Sum		220 276 207 703		277 293 296 866		230 249		310 302 842 842	2067
seed	되		37 163 163		84 78 265		87 37 209		21873	854
onno	٥	en	88 85 260 260 260	en	74 102 92 268	en en	64 73 57 194	ue	87 87 87 87	962
22 A	A	O Nitrogen	101 98 81 280	10 Nitrogen	119	20 Nitrogen	79 91 253	40 Nitrogen	157 112 116 385	1251
Sum	Odli	Phos phat e	200 305 4447 952	Phosphate	301 447 0311	Phosphat e	240 367 420 1027	Phospha.te	331 376 409 1116	4255
seed		Н	72 87 315 315	н	72 102 134 308	Н	63 103 80 80	14	99 132 118 349	1218
c onuce s			3316		111 154 173 173		96 161 183 440		129 147 399	1593
A			1222		156		81 103 157 341		103 121 144 368	1444
Spacing			9 12 15 Sum		9 12 15 Sum		9 12 15 Sum		9 12 15 Sum	Total
Nos.			10		0.00		11		78	

Table H-3 a.

size			in Inches		Average for Seed size
ounce	es	9	12	15	All spacings
		(Nitrogen		
1½ 2½	Aver age	66.6 73.3 70.0	101.7 92.0 96.9	149.0 69.0 109.0	105.8 78.1 92.0
		10) Nitrogen		
14 21/2	Aver age	100.3 92.3 96.3	137.3 <u>97.7</u> 117.5	149.0 98.7 123.9	128.9 96.2 112.62
,		20	Nitrog en		
1½ 2½	Average	80.0 76.7 78.4	122.3 83.0 102.7	140.0 59.0 99.5	114.1 72.9 93.5
		40	Nitrog en		
11 21/2	Average	110.3 103.3 106.8	125.3 76.7 101.0	136.3 100.7 118.5	124.0 93.6 108.8 ²
	Average all N lewel	87.9**	104.5	112.7	101.7

L.S.D. spacing 5% 10.7 L.S.D. spacing 1% 14.4 Average for seed piece $1\frac{1}{4}$ oz. 118.2 Average for seed piece $2\frac{1}{2}$ oz. 85.2

**Significantly lower in yield than the 12" spacing 1%.

L.S.D. seed piece size 5% 17.4 L.S.D. seed piece size 1% 23.5

1Significantly lower in yield than 11 ource seed piece 1%

L.S.D. Nitrogen level 5% 12.3 L.S.D. Nitrogen level 1% 16.6

2Sig nificantly higher in yield than O Nitrogen 1%.

Summary, under these conditions to raise bakers plant $1\frac{1}{4}$ ounce seed in 15 inch spacing with 10 pounds nitrogen.

Analysis of Variance

Varation due to	D.F.	Sum of Square	Mean Square	<u>-</u>	F
Blccks	2	8,903.00	4,451.50		13.61**
Nitrogen level	3	5,946.30	1,982.10		6.06**
Seed piece size	1	19,602.00	19,602.00		59.92**
Spacing	2	7,683.70	3,841.85		11.74**
Spacing x Nitrogen level	6	2,636.30	439.383		1.34
Spacing x seed piece size	2	10,399.60	5,199.80		15.89**
Spacing x Nitrogen x seed piece size	6	3,312.60	552.10		1.69
Nitrogen level x seed piece size	3	462.10	154.03		
Blocks x Nitrogen level	6	1,167.00	194.50		
Blocks x Seed piece size	2	4,060.80	2,030.40		6.21**
Bl∝ks x Nitrogen level x seed piece	size 6	5,517.40	919.57		2.81*
Error	32	10,468.50	327.141	18.0870	
Total	71	80,159.30			

spacing
$$\frac{0}{24} = \frac{18.0870}{4.89898}$$
 3.69199 x $\sqrt{2} = 5.2213$ x 2.04 = 10.7 = 5% 2.75 = 14.4 = 1%

seed pie ce
$$\frac{\sigma}{9} = \frac{18.0870}{3} = 6.029 \text{ x} / 2 = 8.5263 \text{ x} 2.04 = 17.4 = 5% 2.75 = 23.3 = 1%$$

Nitrogen
$$=$$
 18.0870 = 4.2633 x /2 = 6.0292 x 2.04 = 12.3 -5% level /18 4.24264 2.75 = 16.6 -1%

Table H-4. No. 1 Tubers under eight ounces from irrigated plots with green manure and no barn-yard manure. 1956.

E	Pounds		812 703 686 2201		899 805 776 2480		1121 919 907 2947		1175 890 921 2986	10,614
	Sum		466 396 361 1223		547 461 472 1480		536 476 518 1530		643 503 1744	5977
700	F		163 159 475		195 145 169 509		240 148 174 562		258 163 167 588	21.34
0	Z ounce s	ue	140 126 64 330	cen	187 194 530	cen s	145 145 165 455	Nitrogen	162 173 242 577	1892
	B	O Nitrogen	163 117 138 418	10 Nitrogen	165 122 154 441	20 Nitrogen	151 183 179 513	N 07 pue	223 167 189 579	1951
	Sum	Phos phate	346 307 325 978	Phospha.te	352 344 304 1000	Phosphate	585 443 389 1417	Phosphate	532 387 323 1242	4637
70	F		108		120		182 126 111 419		186 139 110 435	1541
	D D		88 118 117 323		130		183		156	1465
	B		113 117 311		108 108 324		220 169 163 552		136	1631
200	Inches		Sums		Sums		Sums		Sums	Total
Sugar	Inches		12 15 15		9 12 15 15		9 12 15		9 12 15	
Rote	No.		100		296		17 33		487	

Table H-4 a.

size		120	ng in inches		Average for seed piece
ounc	es	9	12	15	all spacings
			O Nitrogen		
14 21/2	Average	115.3 155.3 135.3	102.3 132.0 117.2	108.3 120.3 114.3	108.6 135.9 122.3
		1	10 Nitrogen		
1½ 2½	Average	117.3 182.3 149.8	114.7 153.7 134.2	101.3 157.3 129.3	111.1 164.4 137.82
		2	0 Nitrogen		
14 21 22	Average	195.0 178.7 186.9	147.7 158.7 153.2	129.7 172.7 151.2	157.5 170.0 163.83
		40	Nitrog en		
22	Average	177.3 214.3 195.8	129.0 167.7 148.4	107.7 199.3 153.5	138.0 193.8 165.9 ³
	Average all Nitrogen levels	167.0*	138.2	137.1	147.4

Spacing L.S.D. 5% - 13.4 Spacing L.S.D. 1% - 18.1 Average for seed piece size $1\frac{1}{4}$ oz. 128.8 Average for seed piece size $2\frac{1}{2}$ oz. 166.01

*Significantly higher in yield than the 12" spacing 1%.

Seed piece size L.S.D. 5% - 21.9 Seed piece size L.S.D. 1% - 29.5

lSignificantly higher in yield than $1\frac{1}{4}$ ounce seed piece 1%.

Nitrogen level L.S.D. 5% - 15.5 Nitrogen level L.S.D. 1% - 20.9

²Significantly higher in yield than 0 nitrogen 5%. 3Significantly higher in yield than 0 nitrogen 1%.

Summary, under these conditions to raise seed stock plant 2 ounce seed in 9" spacing and 40 Nitrogen.

Variation due to	D.F.	Sum of Square	Mean Square o	F
Blocks	2	2,227.7	1,113.85	2.15
Nitrogen level	3	23,975.3	7,991.67	15.41*
Seed piece size	1	24,938.8	24,938.8	48.07*
Spacing	2	13,762.7	6,881.35	13.26*
Spacing x Nitrogen level	6	2,142.8	357.13	
Spacing x Seed piece size	2	1,637.0	818.50	1.58
Spacing x Nitrogen level x seed piece size	6	9,454.0	1,575.67	3.04*
Nitrogen level x seed piece size	3	1,484.9	494.97	
Blocks x Nitrogen level	6	4,042.1	673.68	1.30
Blocks x Seed piece size	2	1,557.0	778.50	1.50
Blocks x Nitrogen level x seed piece size	6	7,806.0	1,301.0	2.51*
Error	32	16,601.2	518.788 22.7769	
Total	71	109,629.5		
$\sqrt{24}$ 4.89898 seed o- = 22.7769 piece $\sqrt{9}$ 3	= 7.59	923 x /2 = 10	.5751 x 2.04 = 13.4 - 2.75 = 18.1 - .7371 x 2.04 = 21.9 - 2.75 = 29.5 -	1% 5% 1%
Nitrogen \circ = 22.7769 = 1evel / 18 4.24264	5.368	$38 \times /2 = 7.5$	$926 \times 2.04 = 15.5 - 5$ $2.75 = 20.9 - 1$	

No. 1 tubers eight ounces and over from irrigated plots with green manure, no barnyard manure. Table H-5.

Row	Spacing	jug	14	onnce seed				anc e	seed		Total	
No.	Incl	les	8	Q	-	Sums	B		F	Sums	Pounds	
						Phosphate	and O Nitrogen	trog en				
102	9 12 15	mng/	51 95 310 310	63 132 278	35 70 78 183	149 248 374 771	107 71 62 240	45 122 122	59 48 164	207 193 126 526	356 441 500 1297	
						Phosphate	and 10	Nitrog en				
296	9 12 15	Sum	95 153 156 384	46 85 124 255	63 94 221	205 281 374 860	111 85 85 85	59 34 143	66 80 78 224	236 199 194 629	441 480 568 1489	
						Phosphate	e and 20	Nitrogen				
11	15 15	Sum	82 111 159 352	54 73 242	74 87 240	210 271 353 834	93 80 240	76 57 189	35 135 135	204 193 167 564	414 464 520 1398	
						Phosphate	07 pue e	Nitrogen				
12	12 15	Sum	115	86 143 98 327	86 111 293 296	287 396 364 1047	82 113 294 294	111 76 <u>52</u> 239	67 117 69 253	260 306 220 786	547 702 584 1833	
		Total	1470	1102	076	3512	1036	663	911	2505	2109	

Table H-5a.

	d piece e in		ng in inches		Average for seed size
oun	ces	9	12	15	all spacings
		. 0	Nitrogen		
1½ 2½	Average	50.0 69.0 59.5	82.7 64.3 73.5	124.7 42.0 83.4	85.8 58.4 72.1
		10 N	it rog en		
14 2章	Average	68.3 78.7 73.5	94•3 66•3 80•3	124.7 64.7 .94.7	95.8 69.9 82.8
		20	Nitrogen		
11 22	Average	70.0 68.0 69.0	90 • 3 64 • 3 77 • 3	117.7 55.7 86.7	92.7 62.7 77.7
		40	Nitrogen		
1是2章	Average	95•7 86•7 91•2	132.0 102.0 117.0	121.3 73.3 97.3	116.3 87.3 101.8 ²
	Average all Nitrogen levels	73•3*	87.0	90.5	83.6

L.S.D. spacing (5%) 11.1 L.S.D. spacing (1%) 15.0 Average for seed piece size $1\frac{1}{4}$ -97.7 Average for seed piece size $2\frac{1}{4}$ -69.61

*Significantly lower in yield than 12" spacing 5%.

L.S.D. seed piece size 1 ounce 18.1. L.S.D. seed piece size 2 ounce 24.5

 1 Significantly lower in yield than $1\frac{1}{4}$ ounce seed piece 1%.

L.S.D. Nitrogen level (5%) 12.9. L.S.D. Nitrogen level (1%) 17.4.

2Significantly higher in yield than O Nitrogen 1%.

Summary- under these conditions to raise bakers plant l_+^1 cunce seed in 15" spacings with 40 Nitrogen.

Variation due to	D.F.	Sum of Square	Mean Square	<u>o-</u>	F
Blocks	2	15,775.90	7,887.950		22.13**
Nitrog en level	3	9,030.64	3,010.213		8.45*
Seed piece size	1	14,084.00	14,084.00		39.54**
Spacing	2	3,984.20	1,992.10		5.59**
Spacing x Nitrogen level	6	2,294.96	382.493		1.07
Spacing x seed piece size	2	13,862.91	6931.456		1.95
Spacing x Nitrogen le x seed piece size	vel 6	1,713.33	285.555		
Nitrogen level x seed piece size	3	49.66	16.553		
Blocks x Nitrogen level	6	820.26	136.710		
Blocks x seed piece size	2	1854.88	927.440		2.60
Blocks x Nitrogen x seed piece size	6	2328.96	388.160		1.09
Error	32	11,398.00	356.188	18.8729	
Total	71	77,197.70			

Spacing
$$\sigma = 18.8729 = 3.8524 \times / 2 = 5.4481 \times 2.04 = 11.1$$

 $\sqrt{24}$ 4.89898 2.75 = 15.0

Seed piece
$$\frac{\sigma}{\sqrt{9}} = \frac{18.8729}{3} = 6.291 \text{ x} / 2 = 8.8968 \text{ x} 2.04 = 18.1}{2.75 = 24.5}$$

Nitrog en
$$0^-$$
 = 18.8729 = 4.4484 /2 = 6.3419 x 2.04 = 12.9 le vel 18 /18 4.24264 2.75 = 17.4

Influence of Seed Size, Spacings, and Nitrogen Rates, on Size Set, and Yield of Dryland Netted Gem Potatoes

The potatoes were planted May 24-26. The Nitrogen in the amounts shown was side-dressed at planting time, together with 200 pounds of treble super phosphate which was uniformly applied to all plots.

The potatoes were harvested Oct. 1-4. Plots were 1/100 acre in size, 130 feet of 40 inch row. Total weight of each plot was determined by weighing the total production of the plot. Set was calculated from the count of tubers in 100 pounds from each plot. Size and yield of each size was determined by sorting 100 pounds, weighing the sorts, and multiplying total plot weight by this percentage.

Killing frost stopped growth on September 2. Favorable summer precipitation in addition to good soil moisture at planting time resulted in rather high total yields, response to fertilizer, and production of higher percentages of large tubers than were obtained a year ago, in spite of the short growth period.

Table H-6.

No. Plot	Treatment	Yield F Total No. 1	No. 1	in Cwt. No.1 -8	Field Run Per Acre	No. of Tubers Per Hill
36	Phosphate and O Mitrogen Phosphate 10 Mitrogen Phosphate 20 Mitrogen	155.0	63.8	91.2	180.9	4.6
36		167.6	75.6	92.0	195.6	4.8
36		170.9	77.8	93.1	201.5	4.9
54	All plots with $1\frac{1}{4}$ oz.	156.6	83.1	73.5	190.1	4·3
54	All plots with $2\frac{1}{2}$ oz.	171.6	61.7	109.9	195.2	5·2
36	12 in. spacing 18 in. spacing 24 in. spacing	178.1	60.6	117.5	209.1	3.9
36		165.5	75.8	89.7	193.6	5.0
36		147.2	80.8	66.4	175.4	5.5
54	Green manure	169.3	74.7	94.6	196.4	4.9
54	No green manure	159.6	70.0	89.6	189.1	

Table H-7. Dryland with green manure.

	Spac-	No	$1\frac{1}{4}$ oz.	e oz.		No	2½ oz.			
Row	ing	A	С	E	Sum	A	C	E	Sum	Total
				Ph	osphate	and O	Nitroge	n		
1 4 7	12 18 24 Sum	87 71 <u>53</u> 211	106 62 55 223	115 145 50 310	308 278 158 744	133 103 <u>76</u> 312	198 141 <u>67</u> 406	92 65 269	443 336 208 987	751 614 <u>366</u> 1731
				Ph	osphat (e and 10) Nitrog	en		
2 5 8	12 18 24 Sum	89 66 <u>45</u> 200	110 91 79 280	97 60 <u>35</u> 192	296 217 159 672	133 158 <u>70</u> 361	148 132 71 351	129 105 72 306	410 395 213 1018	706 612 372 1690
				Ph	ospha te	and 20) Nitrog	en		
369	12 18 24 Sum	98 50 59 207	102 49 75 226	47 76 56 179	247 175 190 612	159 123 87 369	204 122 <u>83</u> 409	133 90 76 299	496 335 246 1077	743 510 436 1689
	Totals	618	729	681	20.28	1042	1166	874	3082	5110

Table H-7a. No. 1 tubers under 8 ounces from dryland plots with green manure.

Seed				Average seed	
piece		g in inches	21	piece size	
size	12	0 Nitrogen	24	All spacings	
1½ 2½ Averag	102.7 147.7 125.2	92.7 112.0 102.4	52.7 69.3 61.0	82.7 109.7 96.2	
		10 Nitrogen			
1½ 2½ Avera	98.7 136.7 ge 117.7	72.3 131.7 102.0	53.0 71.0 62.0	74.7 113.1 93.9	
		20 Nitrogen			
1½ 2½ Avera	82.3 165.3 ge 123.8	58.3 111.7 85.0	63.3 82.0 72.7	68.0 119.7 93.8	
Average a	122.2	96.5*	75.2*	94.6	

Average seed piece size $1\frac{1}{4}$ oz. 75.1 Average seed piece size $1\frac{1}{2}$ oz. 114.21

Spacing L.S.D. 5% 11.7 Spacing L.S.D. 1% 16.0

*Significantly lower in yield than 12" spacing 1%.

Seed piece size L.S.D. 5% 16.6 Seed piece size L.S.D. 1% 22.6

1 Significantly higher in yield than 1 ounce seed piece 1%.

Nitrogen level L.S.D. N.S.

Summary, to grow seed size tubers under these conditions plant $2\frac{1}{2}$ ounce seed in 12 inch spacing and no nitrogen.

Variation due to	D.F.	Sum of Square	Mean Square o	F
Blocks	2	3,367.60	1,683.80	5.76**
Nitrogen level	2	63.82	31.91	
Seed piece size	1	20,572.50	20,572.50	70.39**
Spacing	2	29,329.93	14,664.965	50.18**
Spacing x Nitrogen level	4	1,809.15	452.286	1.55
Spacing x seed piece size	2	3,339.67	1,669.835	5.71**
Spacing x Nitrogen level x seed piece size	4	1,786.75	446.688	1.53
Nitrogen level x seed piece size	2	1,371.38	685.69	2.35
Blocks x Nitrogen level	4	1,141.48	285.370	
Blocks x seed piece size	2	2,093.80	1,046.90	3.58**
Blocks x Nitrogen level x seed piece size	4	3,206.02	801.51	2.74
Error	24	7,014.50	292.271 17.0959)
Total	53	75,096.60		
	<u>.0959</u> 24264	= 4.0295 x /2	= 5.6986 x 2.06 = 11 2.80 = 16	
I mo	0959 3	= 5.6986 x /2	8.059 x 2.06 = 1 2.80 = 2	

Table H-8. Dryland with green manure.

	Spac-	$\begin{array}{ccc} & 1\frac{1}{4} \text{ ounce} \\ & 8 \text{ No. 1} \end{array}$					2½ ounce + 8 No. 1			Total
Row	ing	A	С	E	Sum	A	C	E	Sum	Pounds
				I	Phosphate	O Nit	rogen			
1 4 7	12 18 24 Sum	60 76 91 227	61 67 134 262	52 56 86 194	173 199 <u>311</u> 683	70 58 68 196	40 56 58 154	63 38 64 165	173 152 190 515	346 351 501 1198
				Phos	phate 10	Nitrog	gen			
2 5 8	12 18 24 Sum	79 91 83 253	68 89 106 263	122 112 111 345	269 292 300 861	56 55 67 178	62 78 67 207	46 63 71 180	164 196 205 565	433 488 505 1426
				Pho	sphate 2	Nitro	gen			
3 6 9	12 18 24 Sum	83 93 120 296	85 87 <u>97</u> 269	85 93 80 258	253 273 297 823	54 76 <u>75</u> 205	31 94 88 213	38 60 72 170	123 230 235 588	376 503 532 1411
	Tota 1	s 776	794	797	2367	579	574	515	1668	40 35

Table H-8 a. No. 1 tubers 8 ounces and over, dryland with green mamure.

Seed piece size		Spaci	ng in inches		Average for seed piece size All spacings	
in c	unces	12 18		24		
		0	Nitrogen			
1½ 2½	Average	57.7 57.7 57.7	66.3 50.7 58.5	103.7 63.3 83.5	75.9 57.2 66.7	
		1	O Nitrogen			
1년 2년	Average	89.7 54.7 72.2	97.3 65.3 81.3	100.0 68.3 84.2	95.7 62.8 79.22	
		20	Nitrogen			
1是2章	Average	84.3 41.0 62.7	91.0 <u>76.7</u> 83.9	99.0 78.3 88.7	91.4 65.3 78.4 ²	
	age of all ogen levels	64.2	74.6*	85.5**	74.8	

Average seed piece size $l_{\frac{1}{2}}$ oz. 87.7 Average seed piece size $l_{\frac{1}{2}}$ oz. 61.7

Spacing L.S.D. 5% 8.3 Spacing L.S.D. 1% 11.2

*Significantly higher in yield than 12" spacing 5%.
**Significantly higher in yield than 12" spacing 1%.

Seed piece size L.S.D. 5% 11.7. Seed piece size L.S.D. 1% 16.0

Significantly lower in yield than 1 ounce seed piece 1%.

Nitrogen Level L.S.D. 5% 8.3 Nitrogen Level L.S.D. 1% 11.2

2Significantly higher in yield than O Nitrogen 1%.

Summary to grow bakers under these conditions plant $l^{\frac{1}{2}}$ seed, in 24 inch spacing with 10 pounds nitrogen.

Variation Due to	D.F.	Sum of Square	Mean Square o-	<u>F</u>
Block	2	95.51	47.755	
Nitrogen level	2	1,807.50	903.750	6.17**
Seed piece size	1	9,048.23	9,048.230	61.85**
Spacing	2	4,075.51	2,037.755	13.93**
Spacing x Nitrogen level	4	1,276.99	319.248	2.18
Spacing x seed piece size	2	235.36	117.680	
Spacing x Nitrogen level and seed piece size	4	1,713.10	428.275	2.92*
Nitrogen level x seed piece size	2	454.87	227.435	1.55
Block x Nitrogen level	4	1,536.39	384.098	2.63
Block x Seed piece size	2	214.66	107.33	
Blocks x Nitrogen level x seed size	4	1,717.74	429.435	2.94*
Error	24	3,511.04	146.293 12.095	52
Total	53	25,68690		

Spacing
$$\frac{o^{-}}{\sqrt{18}} = \frac{12.0952}{4.24264} = 2.8509 \text{ x}/2 = 4.0318 \text{ x} 2.06 = 8.3 - 5\%$$

$$2.80 = 11.2 - 1\%$$
Seed $\frac{o^{-}}{\sqrt{9}} = \frac{12.0952}{3} = 4.0317 \text{ x}/2 = 5.7017 \text{ x} 2.06 = 11.7$

$$2.80 = 16.0$$

Nitrogen
$$0^-$$
 12.0952 = 2.8509 x /2 = 4.0318 x 2.06 = 8.3 5%. level /18 4.24264 2.06 = 11.2 1%.

Table $\underline{H-9}$. Dryland, no green manure.

	Spac-	14	ounce s	eed		2	ounce			
Row	ing	В	D	F	Sum	В	D	F	Sum	Total
				Pł	nosphate	O Nit	trogen			
1 4 7	12 18 24 Sum	84 62 <u>51</u> 197	121 61 <u>49</u> 231	79 50 60 189	284 173 160 617	97 68 306	117 105 95 317	142 99 71 312	400 301 234 935	684 474 <u>394</u> 1552
				Pho	sphate	10 Nit	rogen			
2 5 8	12 18 24 Sum	88 81 63 232	88 65 <u>73</u> 226	107 79 <u>44</u> 230	283 225 180 688	133 97 65 295	172 109 <u>64</u> 345	119 105 70 294	424 311 199 934	707 536 379 1622
				Ph	os phat e	20 Ni	itrogen			
3 6 9	12 18 24 Sum	73 45 68 186	87 59 <u>54</u> 200	102 90 60 252	262 194 182 638	182 92 <u>78</u> 352	156 107 107 370	138 89 77 304	476 288 262 1026	738 482 444 1664
	Totals	615	657	671	1943	953	1032	910	2895	4838

Table H-9 a. No. 1 tubers under 8 ounces from plots without green manure, Dryland 1956.

	d piece e in ces	12	18	24	Average for seed piece size all spacings
		0	Nitrogen		
1½ 2½	Average	94•7 <u>133•3</u> 114•0	57.7 100.3 79.0	53.3 78.0 65.7	68.6 103.9 86.2
		1	Nitrogen		
1 2 2 2	Average	94.3 141.3 117.8	75.0 103.7 89.4	60.0 66.3 63.2	76.4 103.8 90.1
		2) Nitrogen		*
1 ¹ / ₄ 2 ¹ / ₂	Average	87.3 1 <u>58.7</u> 123.0	64.7 96.0 80.4	60.7 87.3 74.0	70.9 114.0 92.5
	rage for all rogen levels	118.3	82.9*	67.6*	89.6

Average for seed piece size $1\frac{1}{4}$ 72.0 Average for seed piece size $2\frac{1}{2}$ 107.21

Spacing L.S.D. 5% 10.2 Spacing L.S.D. 1% 13.9

*Significantly lower in yield than 12" spacing 1%.

Seed piece size L.S.D. 5% 14.5 Seed piece size L.S.D. 1% 19.7

1 Significantly higher in yield than 1 seed piece 1%.

Nitrogen level L.S.D. N. S. 5%. Nitrogen level L.S.D N. S. 1%.

Summary, to raise seed under these conditions plant $2\frac{1}{2}$ ounce seed, 12 inch spacing with no nitrogen.

Analysis of Variance

Variation Due to	D.F.	Sum of Square	Mean Square o-	F
Blocks	2	490.32	245.16	1.10
Nitrogen level	2	355.76	177.88	
Seed piece size	1	16,783.46	16,783.46	75.54**
Spacing	2	24,317.43	12,158.72	54.72**
Spacing x Nitrogen level	4	654,21	163.55	
Spacing x Seed piece size	2	2,473.91	1,236.96	5.57*
Spacing x nitrogen level x seed piece size	4	846.85	211.71	
Nitrogen level x seed piece size	2	560.08	280.04	1.26
Blocks x Nitrogen level	4	61.62	154.1	
Blocks x Seed piece size	2	549.32	274.66	1.24
Blocks x Nitrogen level x seed piece size	4	1,405.84	351.46	1.58
Error	24	5,332.30	222.179 14.9057	
Total	53	53,831.10		

Spacing $\frac{\sigma}{\sqrt{18}} = \frac{14.9057}{4.24264} = 3.5133 \times \sqrt{2} = 4.9685 \times 2.06 = 10.2 - 5\%.$ 2.80 13.9 - 1%.

Seed of piece $\frac{o^{-}}{9}$ $\frac{14.9057}{3}$ = 4.9686 x $\frac{7}{2}$ = 7.0266 x 2.06 = 14.5 5%. 2.80 19.7 1%.

Table H-10. Dryland no green manure.

			unce se			25	ounce :			
Row	Spac-	B	8 oz.	F	Sum	В	+ 8 c	F F	Sum	Total
				Phos	phate O	Nitrog	gen			
1 4 7	12 18 24	57 56 72	46 83 75	68 69 <u>94</u>	171 208 <u>241</u>	38 71 71	38 43 59	45 45 67	121 159 197	292 367 438
	Sum	185	204	231	620	180	140	157	477	1097
				Phos	phate 1	O Nitro	ogen			
2 5 8	12 18 24	74 84 78	59 105 <u>76</u>	76 81 1 <u>01</u>	209 270 255	34 99 68	40 72 69	58 52 70	132 223 207	341 493 462
	Sum	236	240	258	734	201	181	180	562	1296
				Phospl	nate 20	Nitrog	en			
3 6 9	12 18 24	105 70 92	100 109 <u>71</u>	68 88 63	273 267 226	33 79 62	39 111 79	50 69 103	122 259 244	395 526 <u>47</u> 0
	Sum	267	280	219	766	174	229	222	625	1391
	Total	688	724	708	21.20	555	550	559	1664	3784

Table H-10 a. No. 1 tubers 8 ounces and over, dryland conditions no green manure.

Seed size		Spa 12	cing in inche	s 24,	Average for seed piece size All spacings
		0	Nitrogen		
1½ 2½	Average	57.0 40.3 48.7	69 • 3 53 • 0 61 • 2	80.3 65.7 73.0	68.9 53.0 61.0
		10	Nitrogen		
1½ 2½	Average	69.7 44.0 56.9	90.0 <u>74.3</u> 82.2	85.0 69.0 77.0	81.6 62.4 72.02
		20	Nitrogen		
1½ 2½	Average	91.0 40.7 65.9	89.0 86.3 87.7	75.3 81.3 78.3	85.1 69.4 77.3 ²
	age all ogen level	57 • 2	77.0*	76.1*	70.1

Average for seed piece size $1\frac{1}{4}$ oz. 78.5 Average for seed piece size $2\frac{1}{2}$ oz. 61.61

Spacing L.S.D. 5% - 10.6 Spacing L.S.D. 1% - 14.4

*Significantly higher in yield than 12" spacing 1%.

Seed piece size L.S.D. 5% 15.0 Seed piece size L.S.D. 1% 20.3

¹Significantly lower in yield than $1\frac{1}{4}$ oz. seed piece 5%.

Nitrogen level L.S.D. 5% 10.6

2Significantly higher in yield than 0 nitrogen 5%.

Summary, to raise bakers under these conditions plant l^1_{\uparrow} ounce seed in 18" spacing with 20# nitrogen.

Analysis of Variance

Variation due to	D.F	. Sum of Squares	Mean Square	<u>~</u>	F
Blocks	2	29.46	14.73		
Nitrogen level	2	2,501.24	1,250.62		5.27*
Seed piece size	1	3,850.76	3,850.76		16.23**
Spacing	2	4,544.24	2,272.12		9.58**
Spacing x Nitrogen level	4	822.92	205.73		
Spacing x Seed piece size	2	1,347.90	673.95		2.84
Spacing x Nitrogen level x seed piece size	4	1,512.77	378.193		1.59
Nitrogen level x seed piece size	2	33.30	16.65		
Block x Nitrogen level	4	676.10	169.03		
Block x seed piece size	2	47.28	23.64		
Block x Nitrogen level x seed piece size	4	1,342.99	335.75		1.42
Error	24	5,694.84	237.285	15.4041	
Total	53	22,403.80			
Spacing <u>o-</u> <u>15.4041</u> = / 18	3.6	308 x /2 = 5		= 10.6 = 14.4	
Seed o 15.4041 piece /9 3	- 5	.1347 x /2 =	7.2615 x 2.06 2.80	= 15.0 = 20.3	
Nitrogen o- 15.4041 level /18 4.24264	=	3.6308 x /2		06 = 10.6 80 = 14.4	

Potato Varieties 1956

Potato variety studies this year were limited to single row plots of a few varieties thought to have some scab resistance as a part in our continuing search for an early red scab free potato with quality.

This seasons plots were on irrigated, medium texture loam soil that has not raised potatoes during recent years.

Ten varieties were planted, May 29, in 30 feet single forty inch rows with thirty, two ounce seed pieces. These were harvested September 29, and notes taken as shown below. Ten tuber samples of each variety were sent to M.S.C. for positive scab readings.

Table H-11. Potato variety notes.

Variety	Color	Ma- turity	Defects	Scab ob- servation Entire sample	Deep pits per Tuber ¹	Pounds Per 30 foot row
Manota	White	fair	Air			
marroom	1111110	10.11	Check	Moderate	2	50
Redburt	Red	fair		Heavy	10	69
Tawa	White	fair		Very light	0	25
Delus	White	fair		Light	1	28½
Sheridan	Red	good		Moderate	2	47
Kink	White	fair		Heavy	5	52½
Saco	White	fair	rough	Light	1	422
Redglo	Red	poor	air			
		•	check	Heavy	2	43
Merrimac	White	fair		Very light	0	37
Ea Gem	White	good	rough &			
			checks	None	0	35

Based on four washed tubers.

Obviously there is no early red potato in this group. Sheridan shows the most scab resistance and best maturity of the three red varieties tested. Neither is there much indication of a high producing white potato with scab resistance maturity and quality.

Sawdust Mulch for Raspberries

Six rows of Latham raspberries 100 feet long rows spaced seven feet apart that have become well established and have been used for fertilizer work in past years have been divided into four four row sections with one border row on each side, each section being comparable to each other section in previous treatment. Each row is considered a separate plot making four replications of present treatments.

This work was designed to determine which of four fertilizer treatments would be effective in maintaining and possibly increasing yields where sawdust mulch is used, and also to compare yields of mulched and clean cultivated plots.

On April 21, 1956 300 pounds per acre of treble super phosphate was drilled into the soil in all plots, as was one half the designated amount of nitrogen. On April 23, twenty bushel of fresh sawmill sawdust was scattered uniformly on each row in three sections. By weight this amounted to 24.8 tons per acre.

The sawdust was about three inches deep on the ground. The remaining nitrogen was then scattered on the sawdust.

The mulch restricted the growth of weeds to a few tall annuals.

Picking and weighing was done by members of a neighbors family who agreed to undertake the project for the fruit harvested. Through a misunderstanding, all four rows of a given treatment were weighed together rather than seperately.

Treatment	Ounces 420 foot row	Pounds Per Acre
Phosphate no mulch (check)	432	2100
Phosphate and mulch	597	2878
Phosphate, mulch and 300#/A Sulfate of Amon.	610	2956
Phosphate, mulch and 600#/A Sulfate of Amon.	625	3304

Activities 1956

Research is the primary purpose for which a Branch Station is established and should occupy the major portion of the time of Staff members. To be of the greatest value however, research must solve the problems of the area in which the Branch Station is situated. Problem solutions in the file of a research worker have little value until applied to the problems where and when they exsist. It is therefore a recognized function of a research worker to make the results of research known and to promote the application of solutions to problems. This gives rise to a phase of Branch Station work which we shall term activities.

Events participated in during 1956

Division of Agriculture Conference Soils Planning Conference Montana Seed Show Co-op Seed Growers Annual Meeting Flathead Wool growers Meeting Farmers School A.C.P. Meeting Potato Growers Meeting Pamona Grange Meeting		Bozeman Bozeman Kalispell Charlo Kalispell Polson Kalispell Corvallis LaSalle
Conservation Days at Polson, Libby, Eureka, Trout (Disease and Insect School Educators Conference State Hort Soc. Meeting	Creek, Hot	Springs, & Missoula Kalispell Kalispell East Shore
Crop Improvement Tour Summer Staff Conference Western Section Agronomy Society Missoula County Fair Sanders County Fair Garden Club Meeting County Planning for Management of Soil Bank and	Chester	to Conrad Moccasin Lethbridge Missoula Plains Bigfork
Conservation Reserves Station Advisory Committee Meeting		Kalispell Missoula

Persons and Groups Visiting Station on one or more occasions.

Flathead, Lake, Sanders, Missoula, Ravalli, Lincoln and Mineral County Agents. California Spray Co. Representatives. Soil Conservation Unit Leader, Lake County. Dow Chemical Co. Representative. International Harvester Co. Representatives. Dr. Purdy and Dr. Kendrick, Pullman, Washington. Consolidated Mining Representatives. 4-H livestock judging contest participants. Creston upper grades tour. Northrup King Representative. Anaconda Fieldmen, Green and Turner. Field Day group from seven Counties total of 221. Adventist Youth Group farm tour. From M.S.C. Stitt, Post, Hehn, Eslick, Mercer, Beers, Haun, Shaw, Asleson, Klages, Jacobson, Frahm, Harrington, Yeager, Isaac, and Tretsven. From Branch Stations Assheim, Richardson, Merkley. Montana Seed Growers representatives Tewes and Halveson.

Reports issued.

Annual Report
Progress Report
Monthly letter beginning in September.

FARM FLOCK RECORD N.W. BRA. STATION 1956

The gross return from this flock of 37 ewes on hand January 1, 1956, which includes thirteen ewe lambs, has been as follows:

Wool (inc. Gov't. payments)	\$263.52
Cull ewes	55.00
Lambs	245.11
Increse in Inventory-	
37 to 41, @ 10.00	40.00
	723.63

\$723.63 divided by 37 equals gross per head \$19.56. This compares to a gross of \$21.66 for 1955 and \$22.19 in 1954.

Nineteen of the 24 ewes over 1 year and one ewe one year old dropped 34 lambs. Twenty-six were weaned, eighteen of which were fat when weaned September 7, or in some cases earlier.

No trouble from worms was encountered this season. Worm control measures initiated this year include cross fencing pastures for rotation grazing, keeping phenothyazine-salt mixtures in pastures in steel barrel bunks, and giving each sheep one concentrated Pheno. capsule when turned out.

Certain other difficulties were encountered however. Five ewes over one year failed to breed. Eight lambs were lost at lambing time. Four ewes ruptured during pregnacy.

Eight ewes with twin lambs were kept in the feedlot, from May 5, to September 7 when the lambs were weaned and sold, to use silage and other feeds on hand. Feed used, grains, etc., are as follows:

12 tons hay (est.) @ 20.00 7 tons corn silage @ 6.00 1435 lbs grain @ 2.00 cwt	30.00 42.00 28.70
Total feed cost	\$100.70
Lamb weight into lot Lamb weight out of lot Gain	497 lb. Ave. 31 lb. 1341 lb. Ave. 83.8 lb. 844 lb. Ave. 52.8 lb.

Feed cost per 100 lbs. lamb gain \$11.94

Ten of these feed lot twins were fat when weamed. Five singles were sold as fat lambs on August 3, and three of five others were fat when weamed September 7.

The average grease weight of fleeces when shorn was 132 pounds.

Bad weather during breeding season may be partially responsible for the reduction in percent of lambs weaned from 157% in '55 to 105% in '56.

Summary of climatic data by months for the 1955-56 crop year (September to August) and averages for the period, 1949-1956, at the Agricultural Experiment Station, Creston, Montana. Table W-1

					1	117							- 1
	Sept.	0ct. 1955	Nov. 1955	Dec. 1955	Jan. 1956	Month 6 1956	Mar. 1956	Apr. 1956	May 1956	June 1956	July 1956	Aug. 1956	Total or Average Growing season
Precipitation (inches) Current year	1.64	1,64 1,89	1.97	2.38	1.76	1.53	.87	1.28	1.06	1.06 4.20	2,13	3.21	1
Ave. 1949 to 1955-56	.98	.98 1.64	1,18	1.69	1.69	1.17	1,00	1.00 1.18	1.57	3,21	1,83	1.70	18.98
Mean temperature (°F) Current year	52.5	52.5 44.6	23.5	21.8	23.3	80.9	31.5	44.2	54.3	59.0	8*19	62.0	77.90
Ave. 1949 to 1955-56	53.7	43.7	32.9	25.9	18.6	25.9	30.0	42.9	51.1	56.5	9.49	6.19	42,30
Last killing frost in spring*	1		1	1		May 3 (26°) 32° June 30	320	June 3	0				-
Ave. 1949-1956	1	1	1	1	May	May 29 (30°)	_						151
First killing frost in fall*	1 1 1	1	1 1 1	1 1 1	Septe	September 2	2 (32°)						-
Ave. 1949-1956	I I I	1	1	1	Septe	September 1	13 (29.60)	(09					
Frost free period	I I I	1	1	1	-122	Days							
Ave. 1949-1956	1 1	1	1	1	-106	Days							
Maximum summer temperature -	1	1	1	1	-900	-90° on July 22, 1956	22, 1	956					
Minimum temperature (winter) .	1	1		- I - I - I		25° below z	ero on	zero on Feb. 16, 1956	16, 19	99			

*In this summary 32° is considered a killing frost.