THIRTY-FOURTH ANNUAL REPORT 1982

Research Report No. 206

Northwestern Agricultural Research Center of the Agricultural Experiment Station Montana State University

> 4570 Montana 35 Kalispell, Montana 59901

Prepared By Vern R. Stewart Professor of Agronomy and Superintendent

> Leon E. Welty Associate Professor of Agronomy

Contents of this report may not be published or reproduced in any form without prior consent of the research workers involved.

ADMINISTRATION 750

In this project report are recorded personnel items and equipment purchased that may or may not be used in the office. Generally, this report is reflective on all center projects.

Below listed are employees, dates hired and when terminated if this is applicable.

Vern R. Stewart, Superintendent and Professor of Agronomy¹(April 1, 1952) Leon E. Welty, Associate Professor¹ (January 15, 1973) Jeanette Calbick, Secretary II (September 1, 1963) Todd Keener, Agric. Research Technician II (March 27, 1978) Glenn Fulbright, Ag Res. Tech. I (January 1 1979 thru June 30, 1982) Rocky Keller, Farm/Ranch Hand II (October 1980 thru February 10, 1982) Gary Haaven, Farm/Ranch Hand II (April 15, 1982) Ag Res. Tech. I (July 1, 1982)

Gerard Byrd, Laborer (June 14, 1982) Field Aide I (October 1982) 1/ Promoted in 1982

Summer Help:

Barbara Barton (June 14 thru September 15) Jeanne Borer (September 13 thru September 16) Jeffrey Borer (June 14 thru September 17) Mary Bowdon (April 1 thru May 7, parttime) Kristi Carda (June 14 thru September 10) LaVonne Gardner (April 23 thru May 25, parttime) John A. Hall (graduate student) (June 1 thru August 31) Stacy Isch (August 2 thru September 10) Russel Miller (March 29 thru September 30) Carl Norton (April 29 thru May 21, parttime) Sandra Perez (April 22) Sandra Schumacher (June 14 thru July 30) Robert Sharp (April 28 thru June 18, parttime) Barbara Trippet (June 14 thru September 10) Herbert Young (yard care)(August 26)

Youth Program:

Tony Buff (June 1 thru September 30)

Purchases:

An electric Kroy 80 lettering machine was purchased at a cost of \$629. It will be used in making signs.

At a cost of \$2950 we purchased a Royal photocopy machine, Model 115. This is a much needed piece of equipment and will enable us to make several copies of the same document in very little time. It will be a great addition to our office.

PHYSICAL PLANT 751

A new building, south of the Crops Research Building was built for the specific use of storage and dispensing of chemicals. The building is 12'x 14' and has a lab for mixing chemicals, storage shelves, and a concrete pad with drain to enhance the cleaning of equipment.

A new carpet was installed at Residence II in the living room. The old blue carpet was replaced with a warm brown colored one.

GENERAL FARM 752

Two pieces of equipment were purchased this year; a straw chopper for \$1483, and a forage plot harvester for \$3540. An irrigation pump was install- \swarrow ed for \$984.

ACTIVITIES FOR 1982

Date	Activity	Staff	Location
1/4	Soil Conservation Dist. Supervisor Meeting	Stewart	Kalispell
1/15	Kalispell Chamber Agricultural Meeing	Stewart	Kalispell
1/18 - 19	Research Review	Stewart	Missoula
1/25-27	MABA Meeting	weity Stewart	Billings
2/1	Kalispell Chamber Agricultural Meeting	Stewart	Kalispell
2/2	Federal Land Bank Annual Meeting	Stewart	Kalispell
2/11	Farmers Meeting	Welty	Creston
2/13	Equity Annual Meeting	Stewart	Kalispell
2/15-16	Glean Meeting with DuPont	Stewart	Denver, CO
2/16	N. W. Crop Meeting	Stewart	Kalispell
2/18	West. and N. W. Advisory Committee Meeting	Stewart	Allentown
2/19	Kalispell Chamber Agricultural Meeting	Stewart	Kalispell
2/27	Farmer Union Annual Meeting	Stewart	Kalispell
3/1-5	Planning Conference	Stewart	Bozeman
3/5 3/8-10 3/11 3/14-16 3/18 3/19 3/24 3/26 3/27 3/30	TCK Smut Meeting Weed Science Meeting Mint Growers Res. Infor. Study Comm. & Private meetings Equity Supply Fertilizer Meeting Kalispell Chamber Agricultural Meeting Kalispell Feed & Grain Meeting Eastside Grange (gave talk) Annual Meeting Electric Cooperative County Agents Up-Dating Meeting	Welty Stewart Stewart Stewart Stewart Stewart Stewart Stewart Stewart Stewart Stewart Welty	Spokane, WA Denver, CO Kalispell Bozeman Kalispell Kalispell Creston Kalispell Ronan
4/14	Budget Meeting	Stewart	Bozeman
4/16	Kalispell Chamber Agricultural Meeting	Stewart	Kalispell
5/11 5/21 5/28	Cherry Orchard Sale Kalispell Chamber Agricultural Meeting 4-State Wheat Meeting	Stewart Stewart Stewart Welty	Polson Kalispell Creston
6/3	Research Center Study Comm.	Stewart	Bozeman
6/17	N. W. Crops Improvement Assn.	Stewart	Kalispell
6/22	SCS Representatives Tour	Welty	Creston
6/30	Pea & Lentil Meeting	Welty	Moscow, ID
7/8	Make Tapes @ KGVO, KYSS & KPAX-TV	Stewart	Missoula
7/13	Northern Seedman's Assoc.	Stewart	Kalispell

Activities 1982 (con't)

Date	Activity	Staff	Location
7/16 7/17	75th Anniversary @ Central Agric. Res. Cnt. Weed Fair	Stewart Stewart	Moccasin Missoula & Ravalli Co.
7/19-22	Field Day & Fnd. Seed Comm. Meeting	Stewart Welty	Sidney
7/29	Field Day at N. W. Agric. Res. Center	Stewart Welty	Creston
8/5	Legume Tour	Stewart	Creston
8/20	Second Wind Organization Tour	Stewart	Creston
10/7 10-14-15 10-21-22	CARE Meeting Superintendents Meeting Conferences w/Staff-Dean's Adv. Council	Stewart Stewart Stewart	Missoula Lewistown Bozeman
11/13 11/19 11/28- 12/2	Meeting to prepare for Adv. Comm. Meeting Kalispell Chamber Agricultural Meeting ASA Convention	Stewart Stewart Stewart Welty	Missoula Kalispell Anahiem, CA
12/8 12/9 - 10	Advisory Council Meeting Research Center Faculty Meeting	Stewart Stewart Welty	Bozeman Bozeman

VISITORS:

Date	Visitor	Representing	Address
1/ 4/82	John Zalman	Farmer	Kalispell
1/ 5/82	Bill Dopp	Weed District Supt.	Kalispell
1/ 5/82	Floyd LaBrant	Farmer	Kalispell
1/ 7/82	Ron Richwine	Neighbor	Kalispell
1/ 7/82	Les Shirley	Neighbor	Kalispell
2/ 5/82	Bruce Benson	Farmer	Missoula
2/ 8/82	Bruce Benson	Farmer	Missoula
2/10/82	Luther Lalum	SCS	Kalispell
2/12/82	John Sheldon	Farmer	Kalispell
2/17/82	Dick Snellman	Ronan Co-op	Ronan
2/17/82	Jim LeFevan	Job Applicant	
2/19/82	Dick Lund	MSU	Bozeman
3/ 5/82	Ivan Tyler	Frontier Airlines	Salt Lake City, UT
3/ 8/82	Roger Morin	Farmer	Arlee
3/15/82	Clyde Pederson	Farmer	Kalispell
3/16/82	Bill Ambrose	Farmer	Kalispell
3/21/82	Keith Johnson	Chem. Rep. DuPont	Bismarck, ND
3/21-22	Jack Saladine	Chem. Rep. DuPont	Denver, CO
3/29/82	Brett Bradburg	Job Applicant	Bigfork
3/31/82	Gary Haaven	Job Applicant	Kalispell
3/31/82	Mark Lalum	Vo-Ag Teacher	Kalispell
4/ 1/82	Don Graham	West. Ag. Res. Cnt.	Corvallis
4/ 1/82	Grange Alves	San Francisco Ranch	Ronan
4/ 1/82	Carla Heintz	N.W. Mont. Human Res.	Kalispell
4/ 5/82	C. R. Hunt	Monsanto	Great Falls
4/ 5/82	Kim Richwine	Student	Kalispell
4/7/82	Nancy Callan	W. Ag. Res. Cnt.	Corvallis
4/7/82	Jerry Williams	Farmer	Kalispell
4/7/82	Kermit Welty	Retired	Sidney
4/ 9/82	George Darrow	Farmer	Bigfork
4/13/82	Carl Heintz	N.W. Mont. Human Res.	Kalispell
4/20/82	Roger Joy	W. Ag. Res. Cnt.	Corvallis
4/21/82	Don Walker	Cenex	Seattle, WA
4/21/82	Harlen Johnson	Cenex	Billings
4/21/82	Jim Lensky	Cenex	St. Paul, MN
4/21/82	Bruce Huffine	Cenex	Polson
4/28/82	Dan Casazza	Farmer	Eureka
5/ 3/82	Dan Toya	Stauffer Chemical	Blackfoot, ID
5/ 5/82	Deana Power	Job Applicant	Kalispell
5/12/82	Jim Krall	MAES – MSU	Bozeman
5/12/82	Wes Roath	Retired Supt.	Bigfork
5/20/82	Leonard Stanley	Job Applicant	Kalispell
5/26/82	Carla Heintz	N.W. Mont. Human Res.	Kalispell
5/27/82	Dr. & Mrs. W. Solonar	M.D.	Havre
6/ 2/82	Carla Heintz	N.W. Mont. Human Res.	Kalispell
6/ 8/82	Li Then Qi	N.W. Coll. of Ag.	Wugon,Shaanxi,China
6/8/82	Mareike Reinhold	Plant Pathology-MSU	Bozeman
6/ 8/82	Bernard Sally	Plant Pathology-MSU	Bozeman
6/14/82	Agnar Berg	Student MSU	Norway

Visitors (con't)

Date	Visitor	Representing	Address
6/18/82 6/21/82 6/29/82 6/30/82 6/30/82 6/30/82 7/ 3/82 7/10/82 7/10/82 7/10/82 7/12/82 7/12/82 7/14/82 7/16/82 7/21/82 7/23/82 7/28/82 7/28/82 8/ 2/82 8/ 3/82	Art Jenson Darrell Logan Jim Buechle C. R. Humt Mr. & Mrs. Jay Yocum Kathy Stewart Jenifer Bennet Roger Stewart Gene Hockett Tom Greenway Joan Speelman Dan Toya Michael Smith Everett Hamann Mark Bronsom Charles White Keith Johnson Mark Holston Jim Hoffman Lloyd Hall	American Cyanmid Farmer Farmer Monsanto Retired farmers Minister (Youth) Student SRS-USDA USDA-MSU Vander Hav Kalispell Weekly News Stauffer Chem. U of C Ag. Center Farmer Dailey InterLake Kal. Feed & Grain DuPOnt KCFW USDA-ARS Farmer	Orinda, CA Kalispell Kalispell Great Falls Huntley, WY Sacremento, CA Minneapolis, MN Washington D.C. Bozeman England Kalispell Blackfoot, ID Paso Robles, CA LaGrande, OR Kalispell Bismarck, ND Kalispell Logan, UT Kalispell
8/ 5/82 8/ 9/82 8/10/82 8/11/82 8/15/82 8/16/82 8/18/82 8/18/82 8/18/82 9/23/82 9/23/82 9/28/82 10/12/82 10/12/82 10/12/82 10/27/82 11/ 2/82 11/ 4/82 11/ 9/82	Don Graham Bernard Sally Ivan Lorentzen Gary Graham George Evans Ed & Joan Mink Oakfield Bain Barbara Mullen Nancy Callan Larry Alexander Al Luke Harold Small C. R. Hunt Jack Walden Mareike Reinhold Bernard Sally Dr. Li Barry Hembry Andy VanTeylingen Larry Hendricks Arne Grob Bill Walker	<pre>W. Ag. Res. Cnt. Plant Pathology-MSU Farmer MSU Plant & Soils-MSU County Agent MT Dept. of Ag. MT Dept. of Ag. W. Ag. Res. Center USDA-ARS Union Carbide Farmer Monsanto USDA-ARS Plant Pathology-MSU Plant Pathology-MSU Visiting Plant Path. MSU Faculty Planning-MSU BASF Farmer-Contractor Farmer</pre>	Corvallis Bozeman Kalispell Bozeman Grangevill, ID Helena Helena Corvallis Bozeman Idaho Falls, ID Kalispell Great Falls Pullman, WA Bozeman Bozeman Bozeman Bozeman Bozeman Minneapolis, MN Kalispell

TABLE OF CONTENTS

Project No.	arease addresses and a second states and the states of the second states of the	Page No.
	DISTRIBUTION	. 1
	CLIMATOLOGY	. 2
754	WEED INVESTIGATIONS	
	Chemical control of wild oats (<u>Avena fatua</u>) in small grains	. 14
6.11.5	Chemical control of broadleaf weeds in small grains.	. 21
	Chemical Weed Control in Lentils	• 34
	Chemical Weed Control in Chickpeas	. 42
	Chemical Weed Control in a New Seeding of Alfalfa	. 46 —
	Chemical Weed Control in Peppermint	. 51
	Total Vegetation Control	• 56
755	FORAGE INVESTIGATIONS	
	Alfalfa Harvest Management Study	. 60
	Statewide Cooperative Study to Develop Annual Legume/Cereal Grain Rotations for Montana	. 68
758	MISCELLANEOUS CROPS INVESTIGATIONS	
	Garbanzo Bean Seed Treatment Trial	• 77
756	SMALL GRAIN INVESTIGATIONS	
	Spring Barley	. 78
	Spring Oats	• 94
	Spring Wheat	. 98
	Winter Wheat	. 106
	Evaluation of growth regulator ethephon (Ethrel) on spring barley varieties under irrigated conditions .	. 126

£ -

and the

DISTRIBUTION OF THE

1982 NORTHWESTERN AGRICULTURAL RESEARCH CENTER REPORT

Copies	
2	Office of Director, Montana Agricultural Experiment Station
1	Plant and Soil Science Department - Dr. Dwane G. Miller
4	Research Staff at Northwestern Agricultural Research Center
	V. R. Stewart L. E. Welty Library (2)
11	County Extension Agents in Northwestern Montana
	Program Coordinator - Bill Peterson Deer Lodge-Powell - David Streufert Flathead - Darrell Fenner Granite - Lyle Niederklein
	Lake - G. Edward Bratton Lincoln - Robert Wilson Mineral - Wilfred Huot
	Missoula- Gerald MarksRavalli- G. Robert JohnsonSanders- Donald NicholsonSilver Boy- Alan Knudsen
2	Northwest Montana Banks
	First Interstate Bank of Kalispell Western Montana National Bank - Missoula
1	Agricultural Stabilization and Conservation - Audrey Fenske
1	Farmers Home Administration - Marvin Jones
1	Soil Conservation Service - Tim Wiersum
l	Federal Land Bank Association - Bernie Herman
4	Feed Mills
	Co-op Supply Inc Ronan Equity Supply Company - Kalispell Kalispell Feed & Grain Supply Inc Kalispell Western Seed & Supply Company - Ronan

1

CLIMATOLOGICAL DATA NORTHWESTERN AGRICULTURAL RESEARCH CENTER Kalispell, MT

The weather data has been observed since 1949 when the Northwestern Agricultural Research Center first began. This is done in cooperation with the National Climatic Center at Asheville, North Carolina. The maximum, minimum air temperatures, soil temperatures and precipitation are recorded at 8 a.m. daily.

SUMMARY OF THE 1981-82 CROP YEAR

The precipitation total from September 1981 throught August 1982 was below normal. In May and June, when precipitation is so important to the emerging crops, precipitation was below normal. July was above normal, but again in August the precipitation was .50 inch below normal.

The mean temperature, 43.2°F was the same as the long time average. The warmest day was 97°F on August 8, which is below the average daily maximum temperatures over the 33 year period. The coldest days were February 9 and 10 when the mercury dipped to 23°F below zero. The cropping season of 1981-82 was about average, see Table 1.

After the record breaking frost free period we experienced in the crop year of 1980-81 of 142 days, the 108 days experienced this crop year seemed very short. However, it was closer to the long time average of 111 days.

For more detailed information on the weather at the Northwestern Agricultural Research Center for the crop years 1949-82 see Tables 2 through 5. Precipitation for each day of 1982 is found in Table 6. In Tables 7 through 10 you will find a summary of the climatic data from 1950 through 1982.

Item	Sept. 1981	0et. 1981	Nov. 1981	Dec. 1981	Jan. 1982	Feb. 1982	Mar. 1982	Apr. 1982	May 1982	June 1982	July 1982	Aug. 1982	Total or Average
Precipitation (inches) Current Year	•77	. 56	1.49	1.91	2.38	1.48	1.16	1.60	1.25	2.41	2.08	1.17	18.26
Ave. 1949 to 1981-82	1.45	1.38	1.42	1.69	1.62	1.16	1.07	1.37	2.22	2.90	1.42	1.68	19.38
Mean Temperature (F) Current Year	55.3	43.2	36.0	27.0	21.6	24.5	37.5	39.4	49.8	59.8	61.1	63.0	43.2
Ave. 1949 to 1981-82	53.8	43.6	32.9	26.5	21.5	28.0	33.3	43.0	51.6	58.3	64.1	62.9	43.3
Last killing frost in sp 1982 Ave. 1949-82	pring*			Мау Мау	7 30 (31 7 2 7	L°F)							
Fir s t killing frost in f Ave. 1949-82	all*			Ser Ser	otember otember	15 (23° 13	ΡF)					•	
Frost free period													
1982				108	days								
Ave. 1949-82				111	L days								
Maximum summer temperatu	re	919	F on A	ugust 8	, 1982								
Minimum winter temperatu	ire	239	23°F below zero February 9 and 10, 1982										

Table 1. Summary of climatic data by months for the 1981-82 crop year (September to August) and averages for the period 1949-82 at the Northwestern Agricultural Research Center, Kalispell, MT.

* In this summary 32 degrees is considered a killing frost.

3

-2-

Table 2.

Summary of temperature data at the Northwestern Agricultural Research Center on a crop year basis, September 1, 1949 thru August 31, 1982.

Year 3 1949-50 1950-51 1951-52	54.1 53.8 50.6	Oct. 41.5 45.9	Nov. 38.5	Dec.	Deg Jan.	rees F Feb.	Mar	eit					x for
Year \$ 1949-50 1950-51 1951-52	54.1 53.8 50.6	0ct. 41.5 45.9	Nov. 38.5	Dec.	Jan.	Feb.	Mar				and and a second se		
1949-50 1950-51 1951-52	54.1 53.8 50.6	41.5 45.9	38.5	05 6			1.121.	Apr.	May	June	July	Aug.	Year
1949 - 50 1950 - 51 1951 - 52	54.1 53.8 50.6	41.5	30.5	1 11 11	1. 0	05 6	21 0	1.7 0	10 7		(1, 0	(0 F	1.7 0
1950 - 51 1951 - 52	53.0	45.9	21 5	25.0	4.2	25.0	31.2	41.9	49.1	51.0	64.0	62.5	41.3
1951-52	56.0	1.0 0	31.7	29.7	20.2	21.1	21.0	42.1	50.0	54.2	64.1	60.4	42.3
1050 50	20.0	40.0	30.0	10.9	10.0	20.0	29.3	42.0	2.4	50.1	61.0	62.0	41.0
1952-53	56.0	42.2	30.4	21.0	30.0	32.9	31.2	41.2	49.5	54.0	64.3	63.1	44.9*
1953-54	50.1	40.2	31.0	31.3	21.1	31.2	29.0	40.0	52.5	54.9	63.4	60.1	43.(*
1954-55	52.9	41.5	30.0	20.0	27.1	22.1	24.7	39.I	41.1	50.0	62.1	62.2	42.1
1955-50	52.5	44.0	23.5	21.0	23.3	20.9	31.5	44.2	54.0	59.0	64.0	62.0	41.0
1950-51	55.2	44 · 1	30.9	20.5	10.2	23.4	33.3	43.1	55.0	59.1	65.4	62.4	42.1
1951-50	55.0	41.4	32.1	32.4	29.1	30.4	32.2	43.0	29.0	62.3	63.2	61.9	40.0*
1950-59	22.2	44.0	32.0	20.2	24.1	23.1	37.3	47.2	40.1	59.9	64.5	61.0	43.0*
1959-60	53.0	43.9	25.5	21.0	19.4	27.2	32.3	44.3	50.0	59.0	60.0	60.6	42.0
1960-61	55.0	47.2	34.4	24.9	2(.0	31.0	30.3	42.0	52.0	64.1	60.2	61.0	40.3*
1961-62	49.0	42.3	20.2	23.0	11.4	25.1	30.9	41.2	51.5	50.0	62.1	62.1	41.6
1962-63	54.1	44.	30.0	32.5	11.0	33.1	30.1	43.2	51.4	59.4	03.0	64.9	44.0*
1963-64	50.1	4(.4	35.0	24.0	20.5	20.3	30.6	42.0	51.1	50.1	64.3	50.9	44.1*
1904-05	51.2	43.1	33.1	22.1	30.2	20.1	20.0	42.2	50.0	51.0	64.0	03.0	43.3*
1905-00	40.4	4(.0	32.0	20.0	20.3	21.1	34.5	42.9	54.3	50.0	64.5	61.1	43.0*
1960-01	59.3	43.4	33.4	30.2	31.0	33.2	32.9	40.0	2.2	59.4	00.1	61.2	47.1"
1961-00	DI.U	47.9	33.0	27.1	23.3	32.0	41.2	42.0	49.0	59.0	64.0	62.6	45.0*
1960-09	53.0	42.9	33.4	19.9	13.1	24.0	29.0	41.1	23.9	50.0	62.3	03.0	41.9
1969-70	20.0	40.0	37.2	21.1	21.9	29.9	32.0	40.2	53·2	62.0	64.0	62.0	43.9*
1970-71	40.1	40.1	21.3	20.2	23.0	29.0	23.C	43.0	52.5	54.9	61.9	66.2	42.0
1070 72	49.7	40.4	34.1	22.2	20.7	21.3	30.7	40.0	51.9	79·3	01.7	6) 5	42.4
1072 7)	52 2	40.5	20.2	19.9	20.1	21.0	22.6	42.2	18 0	51.5	61 8	61 6	42.0
1913-14	23.3	44.2	29.3	30.0	21.0	$32 \cdot 3$	33.0	42.1	40.0	01.J	60 1	01.0 E0 8	43.0"
1075 76	52.0	43.0	34.0	30.1 37 E	21.7	21.7	29.9	121.0	40.0	5).9 E). E	62 1	59.0	42.1
1975-70	55 0	42.9	32.4	21.7	21.1	29.9		43.4	107	54.5 61 E	62.6	60 8	43.4"
1077 78	51 7	42.4	20 h	20.0	20.0	26 1	34.4	42.0	49.1	50 1	62.0	60.2	43.9"
1078 70)1.1 52 7	42.)	30.4	18 8	21.0	20.1	24.2	43.1	40.1 51 5	59.1	65.4	65 1	41.9
1970-19	56 0	43.1	21.2	22.0	16 2	24.9	22 6	42.5	51.8	56 0	62 5	58 6	40.9
1080 81	5) 1	40.0	25 8	22.0	20.1	27.0	22.0	4 [• 1),), E	50 E	50.9	62 9	66 1	43.0"
1081 80	55 2	42.3	26.0	27 0	21 6	$21 \cdot 2$	27 5	20 1	108	50.8	61 1	62 0	47.0*
TAOT-05	52 0	43.6	30.0	26.5	21.0	24.7	22 2	12 0	49.0 51 6	58 2	6) 1	62.0	43.2
x Maan t))•0	40.00	for all	20.)		20.0	22.2	43.0	71.0	10.3	04.1	02.9	

* Denotes years above average temperature.

-3-

5

Table <u>3</u>. Summary of temperature data obtained at the Northwestern Agricultural Research Center on a crop year basis, September 1, 1949 thru August 31, 1982.

	Average maximum temperature by month and year												
Year	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	x for Year
1949-50	71.4	52.4	45.7	32.1	14.4	34.6	38.4	52.3	63.1	70.1	78.6	79.5	52.7
1950-51	70.9	55.8	38.2	36.3	28.7	36.6	37.3	57.9	63.2	66.6	82.4	77.0	54.2
1951-52	64.2	47.5	37.2	23.6	25.9	35.7	39.5	61.8	65.7	70.2	79.2	79.5	52.5
1952-53	73.4	62.6	40.6	33.2	41.3	39.1	46.8	51.5	62.5	66.8	83.3	79.5	56.7*
1953-54	72.3	61.0	45.6	36.7	29.1	38.4	40.0	51.0	67.2	67.0	80.1	74.4	55.2*
1954-55	66.4	53.4	45.9	34.9	31.8	31.2	33.9	48.1	60.5	74.7	76.9	82.4	53.3
1955-56	67.6	55.5	30.8	29.2	30.7	30.1	39.7	57.4	67.5	73.3	81.2	77.8	53.4
1956-57	71.0	53.7	37.6	35.5	19.0	33.2	43.3	55.3	70.2	72.4	82.1	80.0	54.4
1957-58	74.3	50.5	40.1	38.5	33.7	37.9	43.5	54.4	77.5	75.7	80.8	85.5	57.7*
1958-59	69.7	57.9	39.6	34.1	31.8	31.9	43.9	57.9	61.5	74.3	83.2	76.3	55.2*
1959-60	64.0	53.6	33.9	33.3	27.5	34.1	43.4	56.1	63.0	74.8	88.7	74.1	53.9
1960-61	72.1	57.8	41.1	29.8	35.0	43.1	48.2	51.6	65.3	82.0	83.7	86.3	58.0*
1961-62	62.3	53.3	35.1	30.4	26.0	33.4	40.5	60.7	62.7	74.2	79.2	77.5	52.9
1962-63	71.7	54.7	43.8	37.9	19.9	41.4	48.9	55.7	67.1	71.8	79.6	82.5	56.2*
1963-64	74.6	59.4	43.4	30.2	35.1	37.7	39.7	53.3	63.5	71.4	80.3	72.9	55.1*
1964-65	63.9	55.0	41.0	28.9	35.1	36.9	41.0	57.6	64.3	71.4	80.8	77.1	54.4
1965-66	57.5	61.1	42.6	35.4	31.8	35.3	45.4	54.8	69.8	69.1	81.2	78.4	55.2*
1966-67	74.9	55.1	41.1	35.8	36.7	40.9	41.3	52.6	66.0	73.3	84.8	87.2	57.5*
1967-68	78.9	55.8	41.3	30.8	31.5	40.8	52.6	54.2	63.4	72.2	82.7	75.7	56.F*
1968-69	65.9	53.1	40.6	27.3	20.8	32.5	40.9	59.5	68.7	72.0	78.9	83.0	53.0
1969-70	70.4	49.7	43.0	32.8	28.5	36.2	42.5	49.7	67.9	75.5	79.1	80.9	54.7
1970-71	62.5	52.2	40.0	34.1	30.6	38.6	41.6	56.2	66.4	67.3	78.0	87.5	54.6
1971-72	64.2	53.1	41.2	30.9	27.1	35.9	47.9	51.7	64.7	72.4	76.9	83.3	54.1
1972-73	64.0	51.3	41.4	28.6	30.6	38.5	47.7	53.8	65.8	69.6	83.7	83.2	54.9*
1973-74	67.6	56.3	36.8	36.5	28.5	39.6	43.5	53.1	59.2	76.2	80.3	77.6	54.6
1974-75	70.9	61.4	43.2	37.4	32.0	31.5	39.4	48.1	61.2	68.5	85.5	73.0	54.3
1975-76	69.4	52.3	40.4	35.1	36.2	37.6	40.1	54.3	66.2	66.3	79.0	74.4	54.3
1976-77	73.2	57.7	42.1	36.1	28.0	39.1	42.7	60.2	61.9	77.0	76.6	77.4	56.0 *
1977-78	64.7	55.4	38.5	29.4	28.8	35.5	45.5	54.3	58.1	72.6	77.5	74.2	52.9
1978-79	65.7	59.2	35.9	28.2	13.7	33.2	45.3	52.5	64.3	73.9	81.5	82.8	53.0
1979-80	74.1	59.5	37.8	39.2	25.2	35.9	40.8	60.4	66.9	69.0	77.0	73.2	54.9*
1980-81	66.9	59.0	43.9	39.2	34.0	38.9	49.7	54.8	63.3	63.8	78.1	85.0	56.4*
1981-82	70.8	54.1	44.9	34.2	29.7	33.3	45.8	50.5	62.5	74.3	75.0	80.6	54.6
x	68.8	55.5	40.4	33.2	29.1	36.3	43.1	54.7	64.9	71.8	80.5	79.4	
Mean	temper	ature	for al	l year	s = 54	.8							

* Denotes years above average.

-5--

.....

Table <u>4</u>.

0

Summary of temperature data obtained at the Northwestern Agricultural Research Center on a crop year basis, September 1, 1949 thru August 31, 1982.

6

Average minimum temperature by month and year													
					Deg	rees F	ahrenh	neit					x for
Year	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Year
1. See . 17													
1949-50	36.7	35.0	31.2	17.8	-6.0	16.6	23.9	31.5	36.3	43.9	49.4	45.5	30.2
1950-51	36.6	36.0	24.8	22.6	11.7	18.8	16.6	26.2	36.7	41.7	46.9	43.7	30.2
1951-52	37.0	34.0	24.4	10.1	10.0	17.4	19.1	29.8	39.1	43.1	44.3	46.1	29.5
1952-53	38.6	28.3	20.2	21.9	30.6	26.7	27.5	30.9	36.5	42.3	45.3	46.7	33.0*
1953-54	39.8	31.4	28.4	25.9	13.1	24.0	19.2	30.6	37.7	42.8	46.7	45.7	32.1*
1954-55	39.3	29.5	31.6	22.7	19.5	13.0	15.0	30.0	34.9	42.8	48.5	42.0	30.7
1955-56	37.3	33.6	16.1	14.4	15.9	11.7	23.3	30.9	40.5	44.7	48.2	46.1	30.2
1956-57	39.4	34.4	24.2	21.5	1.4	13.6	23.2	32.0	40.9	47.0	48.7	44.8	30.9
1957-58	37.2	32.3	24.1	26.2	24.5	22.8	20.9	32.8	41.7	48.8	49.5	50.3	34.3*
1958-59	41.2	31.2	26.0	22.2	17.5	14.2	26.6	32.4	34.7	45.4	45.8	45.6	31.9*
1959-60	42.0	34.1	17.0	21.8	11.2	16.3	21.1	32.4	38.1	44.3	48.8	47.0	31.2
1960-61	37.9	32.5	27.6	19.9	20.6	30.9	28.4	32.3	39.8	47.4	48.7	49.2	34.6*
1961-62	36.8	31.2	21.2	16.8	8.7	17.9	21.2	33.7	40.3	43.0	45.0	46.6	30.2
1962-63	37.6	34.6	32.2	27.1	3.7	24.7	28.4	30.6	35.7	47.0	46.4	46.9	32.9*
1963-64	42.7	35.3	28.1	17.7	21.8	18.9	21.4	32.2	38.6	46.0	48.3	44.9	33.0*
1964-65	38.4	32.3	26.4	15.3	25.3	20.4	16.2	32.7	36.9	43.8	48.4	50.0	32.2*
1965-66	35.2	34.0	27.4	22.1	20.8	20.0	23.6	30.9	38.7	42.8	47.7	45.0	32.4*
1966-67	43.6	31.7	25.6	24.6	25.3	25.5	24.5	28.6	38.4	45.4	47.4	47.2	34.0*
1967-68	43.1	35.9	26.3	19.4	15.0	24.8	29.7	29.8	36.1	45.7	46.4	46.8	33.3*
1978-69	41.7	32.6	26.1	12.5	5.4	15.4	18.2	34.6	39.0	45.5	45.7	43.5	30.0
1969-70	41.6	30.3	27.4	22.6	15.3	23.4	23.0	30.7	38.5	48.2	50.5	44.3	33.0*
1970-71	34.9	27.9	22.5	18.3	16.5	21.0	24.8	31.0	38.6	42.3	45.7	48.8	31.0
1971-72	34.7	27.6	26.9	13.5	7.7	18.6	29.0	29.0	39.2	46.3	45.8	48.5	30.6
1972-73	36.4	29.2	25.9	11.1	11.0	17.4	27.8	29.6	36.4	44.4	46.5	45.8	30.1
1973-74	38.9	32.0	21.8	25.2	13.5	25.1	23.6	32.4	36.7	46.9	49.5	45.6	32.6*
1974-75	34.7	25.7	26.3	22.9	10.9	11.5	20.4	27.1	36.1	43.3	52.7	46.5	29.8
1975-76	34.7	33.4	30.3	20.0	19.1	22.2	22.0	32.4	37.6	42.6	47.8	48.3	32.5*
1976-77	37.2	27.2	24.1	21.1	12.0	22.6	26.1	29.9	37.4	46.0	48.5	48.2	31.7
1977-78	38.6	29.5	22.2	14.6	14.5	16.7	23.2	33.1	38.1	45.6	49.2	46.4	31.0
1978-79	41.7	28.3	18.4	9.3	-5.6	16.5	24.0	32.1	38.7	44.9	48.5	48.0	28.7
1979-80	39.7	33.7	23.6	26.8	7.5	22.1	24.5	33.7	42.7	44.7	50.0	44.0	32.8*
1980-81	41.3	31.6	27.7	25.1	26.2	23.8	27.2	34.2	41.7	43.7	47.6	47.8	34.8*
1981-82	39.7	32.2	27.0	19.8	13.5	15.7	29.2	28.4	37.2	45.3	47.3	45.4	31.7
x	38.7	31.8	25.2	19.8	13.9	19.7	23.4	31.2	38.2	44.8	47.8	46.4	
Mean	temper	ature	for al	l year	s = 31	.7							

* Denotes years above average temprature.

7

Total precipitation in inches by month and yea													
Year	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Total
1949-50	1.03	1.05	1.67	.92	2.62	1.13	2.31	.84	.15	3.90	3.12	.75	19.49*
1950-51	.52	2.30	1.16	2.48	•94	1.29	.62	2.32	3.77	2.26	1.03	2.86	21.55*
1951-52	1.49	5.62	1.01	3.31	1.03	•98	.97	.17	1.32	3.95	.56	.69	21.10*
1952-53	.13	.05	.60	.98	1.84	1.14	•98	2.07	2.00	3.31	Т	1.62	14.72
1953-54	.71	.03	.87	1.30	2.65	.79	.83	.79	1.52	2.98	2.91	3.79	19.17
1954-55	1.09	.54	1.00	.43	1.00	1.31	.44	.82	1.18	1.86	3.08	.00	12.75
1955-56	1.64	1.89	1.97	2.38	1.76	1.53	.87	1.28	1.06	4.20	2.13	3.21	23.92*
1956-57	1.16	1.10	.53	.96	1.47	1.14	.75	1.22	1.75	2.51	.52	.78	13.89
1957-58	.10	1.59	.96	1.76	1.56	2.67	.97	1.47	2.20	2.56	.84	.58	17.26
1958-59	1.99	1.16	2.90	2.77	1.95	1.33	.75	1.62	4.10	1.75	Т	.91	21.23*
1959-60	4.22	3.36	4.32	.34	1.67	1.10	1.01	1.23	3.27	.69	.13	2.43	23.77*
1960-61	.55	1.44	1.72	1.24	.65	1.46	1.96	2.26	4.02	1.45	.76	.64	18.15
1961-62	3.40	1.22	1.77	2.09	1.33	1.15	1.59	.96	2.59	1.15	.11	.72	18.08
1962-63	.58	1.85	1.13	.91	1.69	1.21	.85	1.07	.57	5.00	1.44	2.10	18.58
1963-64	1.46	.75	.95	1.70	1.46	.41	1.57	.87	3.33	3.86	3.01	1.64	21.01*
1964-65	2.27	.85	1.62	3.62	2.25	.64	.24	2.55	.81	2.30	1.15	4.74	23.04*
1965-66	1.72	.21	1.31	.55	1.42	.67	.53	.76	1.18	6.57	2.49	1.64	19.05
1966-67	.79	1.34	3.33	1.68	1.50	.62	1.27	.99	1.30	2.53	.02	.01	15.38
1967-68	.91	1.88	.62	1.16	.79	1.15	.68	.57	3.92	2.22	1.00	3.42	18.30
1968-69	4.51	2.39	1.59	3.12	3.05	.75	.69	1.39	1.19	5.21	.70	.09	24.60
1969-70	1.54	1.90	.31	1.14	3.10	.89	1.49	.76	1.97	4.37	3.08	.44	20.99*
1970-71	1.79	1.38	1.75	.99	1.84	.77	.69	.58	2.45	4.42	1.31	1.11	19.08
1971-72	.94	.87	1.70	1.62	1.10	1.65	2.11	.95	1.48	3.28	1.77	.98	18.45
1972-73	1.38	1.84	.80	2.19	.52	.56	.70	.45	1.13	2.14	.01	.63	12.35
1973-74	1.37	1.41	2.95	1.94	1.35	1.32	1.40	3.36	1.82	1.80	1.01	.62	20.35*
1974-75	.80	.12	1.10	1.31	1.56	1.08	1.50	1.27	1.50	1.40	1.08	4.26	16.98
1975-76	1.18	2.96	.85	1.39	.91	1.12	.34	1.92	1.90	2.49	1.49	3.42	19.97*
1976-77	.96	.62	.73	.86	.83	.71	1.40	.41	2.90	.52	3.60	1.50	15.04
1977-78	2.84	.56	1.62	4.10	2.15	.99	.72	2.54	3.56	2.63	3.90	3.34	28.96*
1978-79	1.90	.15	.96	.91	1.70	1.45	.82	2.33	2.67	1.23	.40	1.79	16.31
1979-80	1.03	1.75	.50	1.03	1.53	2.03	.97	1.88	5.48	3.89	1.08	2.45	23.62*
1980-81	1.20	.82	.78	2.58	1.18.	1.85	2.17	1.75	3.86	4.70	1.17	.96	23.66*
1981-82	.77	.56	1.49	1.91	2.38	1.48	1.16	1.60	1.25	2.41	2.08	1.17	18.26
x	1.45	1.38	1.42	1.69	1.62	1.16	1.07	1.37	2.22	2.90	1.42	1.68	
Mean	precip	itatio	n for	all cr	op yea	rs = 1	9.38						

* Denotes years above average precipitation.

Date	Sept. 1981	Oct. 1981	Nov. 1981	Dec. 1981	Jan. 1982	Feb. 1982	Mar. 1982	Apr. 1982	May 1982	June 1982	July 1982	Aug. 1982
1	.08	.08		.02	.09	.04	Т	.06			.14	
2	.08			.21		.06	.12				.15	.14
3				Т	.04	Т	.03	.06			.11	.08
4					.11		.05	.12	.09	.04	.20	.23
5					.12		.01	.25	Т	.11	.03	
6				.14	Т	.02		Т		.15	.09	
7				.06	Т	.06	.01		.04	.30		
8		.04		.03	Т	.01			.05		.33	
9		.03					.31	.08	Т		.02	.25
10		.08		.06					Т			.18
11		.06	.04		.31			• 32				
12			.08		.02	.04	Т	.26				
13			.23		.03	.09		.03	Т		.02	
14			.22	.21		.22		.14			.64	.06
15						Т	.06	Т			Т	.20
16			.03	• 34	T	.11	.13	.06		.12	.29	.01
17			.24		.42					.04	.04	
18			• 38		Т			.10	.07		Т	
19	Т		.05	.05	Т	.15	.16	.10	.16			
20	.08			.07	.02	.42	Т					
21	.02		.01		.04	.07	Т					
22	.05		.05		.02	.12	Т					
23	.02				.41				.29	.03		
24			.15	.11	.63	.07						
25	.03	.03	.01	.11								
26	.08								Т			
27	.20	.09		.22		- 14	Т		.40	.09		
28	.08	.02		.21			Т		.07	.05		
29	.05	.03		.04	Т		.12		.08	.19		
30		.10		Т	Т		Т	.02	Т	1.29	.02	.02
31				.03	.12		.16					Т
Total	•77	.56	1.49	1.91	2.38	1.48	1.16	1.60	1.25	2.41	2.08	1.17

Table <u>6</u>. Precipitation by day for crop year, September 1, 1981 thru August 31, 1982. Northwestern Agricultural Research Center, Kalispell, MT. 8

r		ĸ.	
٩.,	4	÷	
2	3	в.	

June 18

May

May

May

May

May

May

May

May

July

May

May

May

May

May

June 13

June

Table	<u>7</u> . Frost F from 19	ree period 50 thru 19	at the Northwester 82.	rn Agricultural	Research Center
Year	Date Last Freeze	Temperat Degrees	ure Date F First Freeze	Temperature Degrees F	Frost Free Season
1950	June 10	32	Sept. 11	29	93
1951	June 1	29	Sept. 15	29	106
1952	June 14	32	Sept. 8	29	86
1953	May 23	32	Sept. 16	31	116
1954	May 29	31	Sept. 30	26	124
1955	May 25	28	Sept. 13	31	111
1956	May 3	26	Sept. 2	. 32	122
1957	May 23	30	Sept. 9	30	109
1958	May 14	31	Sept. 27	31	136
1959	June 11	32	Aug. 30	30	80

Sept.

Sept.

Sept.

Sept. 12

Sept. 18

Sept. 11

Sept. 30

Sept. 23

Sept. 21

Sept. 6

Sept. 10

Sept. 14

Sept. 12

Sept.

Sept.

Sept.

Sept. 12

Sept. 27 May May Sept. 17 Oct. May Sept. 24 June Sept. 24 May 1982 . May Sept. 15 x for all Sept. 13 years May 27

	Minim	num	Maximum			
Voon	Data	Temperature	Data	Temperature Degrees F		
1050	Jan 30		Aug 31	88		
1051	Jan. 28	-25	Aug. 2	02		
1052	Jan. 1	-2)	Aug. 21	92		
1053	Jan 6	8	July 12	90		
1954	Jan. 20	-32	July 6	90		
1955	Mar. 5	-20	June 22	96		
1956	Feb. 16	-25	July 22	90		
1957	Jan. 26	-34	July 13	91		
1958	Jan. 1	2	Aug. 11	94		
1959	Nov. 16	-30	July 23	96		
1960	Mar. 3	-32	July 19	98		
1961	Jan. 2	0	Aug. 4	100		
1962	Jan. 21	-32	Aug. 16	92		
1963	Jan. 30	-24	Aug. 9	94		
1964	Dec. 17	-28	July 8	91		
1965	Mar. 24	-10	July 31	89		
1966	Mar. 4	- 7	Aug. 2, 25	91		
1967	Jan. 24	2	Aug. 19	95		
1968	Jan. 21	-23	July 7	94		
1969	Jan. 25	-13	Aug. 24	97		
1970	Jan. 15	-14	Aug. 21, 25	92		
1971	Jan. 12	- 8	Aug. 6, 9	96		
1972	Jan. 28	-24	Aug. 9, 10	92		
1973	Jan. 11	-22	July 11	97		
1974	Jan. 5	-18	June 16, 20	93		
1975	Jan. 12, Feb. 9	-16	July 12	96		
1976	Feb. 5	<u> </u>	July 27	90		
1977	Dec. 31	-11	June 7	91		
1978	Dec. 31	-31	July 16	91		
1979	Jan. 1	-31	July 20	97		
1980	Jan. 29	-20	July 23	92		
1981	Feb. 21	-21	Aug. 26, 27	97		
1982	Feb. 9, 10	-23	Aug. 8	91		

Table 8. Temperature extremes at the Northwestern Agricultural Research Center, Kalispell, MT from 1950 thru 1982.

-9-

U

1.11	Average Temperature by Month and Year Degrees Fahrenheit						x for						
Date	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Year
Date 1950 1951 1952 1953 1954 1955 1956 1957 1958 1960 1961 1962 1963 1964 1965 1965 1966 1967 1968 1969 1970 1971 1973 1974 1975 1977 1978 1977 1978 1979 1980 1981 1981	Jan. 4.2 20.2 18.0 36.0 21.1 25.7 23.3 10.2 29.1 24.7 19.4 27.8 17.4 11.8 28.5 30.2 26.3 31.0 23.3 13.1 21.9 23.6 17.4 20.2 22.0 27.7 20.0 21.6 4.1 16.3 30.1 21.6	Feb. 25.6 27.7 26.6 32.9 31.2 22.1 20.9 23.4 23.1 25.2 37.0 25.7 33.1 28.3 24.0 29.9 27.8 32.3 24.0 29.9 27.8 32.3 21.5 29.9 20.9 21.2 29.9 27.8 32.3 21.5 29.9 20.9 21.2 29.0 31.2 29.0 31.2 29.0 31.2 29.0 30.4 29.0 31.2 29.0 30.4 29.0 20.9 20.9 20.9 20.4 20.9 20.7 33.1 28.3 24.0 29.9 20.9 20.9 20.9 20.9 20.9 20.9 20.9 20.9 20.9 20.9 20.7 20.9 20.0 20.9 20.0 20.9 20.0	Mar. 31.2 29.3 29.3 29.5 32.2 24.5 32.2 32.2 32.2 32.2 32.2 32.2 32.2 32	Apr. 41.9 42.1 45.8 40.8 12.7 43.6 43.7 43.6 43.6 43.7 43.6 43.7 43.6 43.7 43.6 43.7 43.6 43.7 43.6 43.7 43.6 43.7 43.6 43.7 43.6 43.7 43.7 43.7 43.7 43.7 43.7 43.9 43.7 43.9 43.7 43.9 43.7 43.9 43.7 43.9 43.7 43.9 43.7 43.9 43.7 43.9 43.7 43.9 43.7 43.9 43.7 43.9 43.7 43.9 43.7 43.9 43.7 43.9 43.7 43.7 43.7 43.7 43.7 43.7 44.9 43.7 44.9	May 49.70 52.55706616541632892595069715858 45.59.455555555555555555555555555555555	June 57.02 54.76980739676455555555555555555555555555555555555	July 64.07 64.78 6	Aug. 62.5 60.4 62.6 62.0 62.0 62.0 62.0 62.0 62.0 62.0	Sept. 53.8 50.0 56.1 52.5 55.5 55.5 55.5 55.5 55.5 55.5 55	45.8 5.2 5.6 1.4 6.9 2.3 7.4 7.6 4.9 9.0 1.4 4.4 1.4 4.3 5.2 5.6 1.4 4.4 1.4 4.3 5.2 3.7 4.7 3.7 5.2 0.0 1.4 0.4 3.2 2.3 7.4 7.6 4.9 9.0 1.4 0.4 3.2 2.2 3.6 5.3 1.0 1.5 9.4 5.7 6.3 2.0 1.4 4.4	Nov. 31.5 30.8 30.4 37.0 38.8 23.5 30.9 32.1 32.8 25.5 34.2 35.0 33.4 35.2 31.3 35.2 31.3 35.2 31.3 35.4 35.6	Dec. 29.5 16.9 27.6 31.3 28.8 21.8 28.5 32.4 28.5 24.0 23.6 24.9 23.6 24.9 23.6 24.9 23.6 24.9 23.6 24.0 22.1 19.9 27.7 26.2 29.9 30.8 30.1 27.5 28.6 24.0 19.9 30.8 30.1 27.5 28.6 22.0 19.9 30.8 32.2 20.9 27.6 22.0 25.1 28.8 20.5 22.1 28.8 22.1 22.1	Year 41.4 40.5 42.7 45.8 40.5 42.7 45.8 43.0 44.0 43.0 44.0 45.0 83.8 44.0 45.7 44.0 45.7 44.0 45.7 44.0 45.7 44.0 45.7 44.0 45.7 44.0 45.7 44.0 45.7 44.0 45.7 44.0 45.7 44.0 45.7 44.0 45.7 44.0 45.7 44.0 45.7 44.0 45.7 44.0 45.7 44.0 45.7 45.0 45.7 45.0 45.7 45.0 45.7 45.0 45.7 45.0 45.0 45.7 45.0 45.7 45.0 45.0 44.0 45.7 45.0 45.7 45.0
Mean	n temp	eratur	e for	all ye	ars =	43.3							

Table 9. Summary of temperature records obtained at the Northwestern Agricultural Research Center, January 1950 thru December 1982.

* Denotes years above average mean.

11

12

				- 1 D			·) here N		- V -			Total
Date	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Ior Year
1050	0.(0	1 10	0.01	0).	15	2 00	2 10	75	 F0	0.20	1 16	0 10	01 09*
1950	2.02	1.13	2.31	.04	•17	3.90	1 02	2.86	1 40	2.50	1.10	2.40	21.20"
1050	•94	1.29	.02	2.52	1 20	2.20	1.05	2.00	12	05	1.01	2.21	11 12
1952	1.03	.90	• 91	• 11	1.04	2.97	• 50	1 60	• 1)	.0)	.00	.90	15 87
1051	2.65	1.14	.90	2.01	1 52	2.08	2 01	2 70	1 00	.05	1 00	T. 20	10 22
1954	2.07	•19	.05	•19	1 18	1 86	2.91	2.19	1.64	1 80	1.00	- + 5	17 57
1955	1.00	1 52	.44	1 08	1.10	1.00	3.00	2 01	1 16	1 10	1.91	2.30	10 70*
1970	1.10	1 1	.01	1.20	1.00	4.20	2.13	J.21 78	1.10	1 50	• 25	.90	1) 55
1971	1.41	1.14	• 12	1 17	1.17	2.71	• 72	. 10	.10	1 16	.90	1.10	14.77
1950	1.50	2.01	•91	1.41	2.20	2.70	•04	• 20	1.99	1.10	2.90	2.11	21.01"
1959	1.95	1.33	• ()	1.02	4.10	1.17	12	.91	4.22	3.30	4.32	• 34	24.07"
1960	1.01	1.10	1.01	1.23	3.21	.09	• 13	2.43	• >>	1.00	1.77	1.24	10.40
1961	.07	1.40	1.90	2.20	4.02	1 15	• 10	.04	5.40	1.22	1 21	2.09	21.00*
1962	1.33	1.17	1.79	.90	2.79	1.17	• ± ±	.12	·)0	1.07	1.31	• 91	19 70
1903	1.09	1.21	.07	1.01	• 21	2.00	1.44	2.10	1.40	• ()	• 97	1.10	10.19
1964	1.46	• 41	1.51	.01	3.33	3.00	3.01	1.04	2.21	.07	1.02	3.02	10 17
1965	2.25	.64	.24	2.77	.01	2.30	1.17	4. (4	1.12	·21	1.31	• 77	10.41
1966	1.42	.01	• > 3	. (0	1.10	0.51	2.49	1.04	• 19	1 00	3.33	1.00	22.40*
1967	1.50	.02	1.21	• 99	1.30	2.53	.02	.01	· 91	1.00	.02	1.10	12.01
1960	.19	1.15	.60	• 21	3.92	2.22	1.00	3.42	4.51	2.39	1.59	3.12	27.30*
1969	3.05	•15	.09	1.39	1.19	5.21	.10	.09	1.54	1.90	• 31	1.14	11.90
1970	3.10	.89	1.49	. 16	1.97	4.31	3.08	.44	1.19	1.30	1.15	.99	22.01*
1971	1.84	• [[.69	• 50	2.45	4.42	1.31	1.11	.94	.01	1.70	1.62	10.30
1972	1.10	1.65	2.11	• 95	1.48	3.20	1.11	.98	1.30	1.04	.80	2.19	19.53*
1973	.52	.56	.70	.45	1.13	2.14	.01	.63	1.31	1.41	2.95	1.94	13.01
1974	1.35	1.32	1.40	3.36	1.82	1.80	1.01	.62	.80	.12	1.10	1.31	16.01
1975	1.56	1.08	1.50	1.27	1.50	1.40	1.08	4.26	1.10	2.96	.05	1.39	20.03*
1976	.91	1.12	• 34	1.92	1.90	2.49	1.49	3.42	.96	.62	.13	.86	10.76
1977	.83	.71	1.40	• 41	2.90	•52	3.60	1.50	2.84	.56	1.62	4.10	20.99*
1978	2.15	• 99	.73	2.54	3.56	2.63	3.90	3.34	1.90	•15	• 96	.91	23.76*
1979	1.70	1.45	.82	2.33	2.67	1.23	.40	1.19	1.03	1.15	.50	1.03	16.70
1980	1.53	2.03	.97	1.00	5.40	3.89	1.08	2.45	1.20	.83	. 78	2.58	24.70*
1981	1.81	1.85	2.17	1.75	3.06	4.70	1.17	.96	• ((. 56	1.49	1.91	23.00*
1982	2.38	1.48	1.16	1.60	1.25	2.41	2.06	1.17	2.37	• 15	1.39	1.60	19.62*
х	1.62	1.16	1.07	1.37	2.22	2.90	1.42	1.68	1.49	1.37	1.41	1.71	

Table 10. Summary of precipitation records obtained at the Northwestern Agricultural Research Center, Kalispell, MT, January 1950 thru December 1982.

Mean annual precipitation for 33 yeaars = 19.42

* Denotes years above average.

-11-

TITLE:	Chemical control of wild oats (Avena fatua) in small grains
PROJECT:	Weed Investigations MS 754
YEAR:	1982
LOCATION:	Northwestern Agricultural Research Center
PERSONNEL:	Leader - Vern R. Stewart Technician - Todd K. Keener

Cooperators - Weed Research Committee Montana Wheat Research & Marketing Committee Chemical Company Research & Development Reps. KS VKS

1

OBJECTIVES:

- 1. Evaluation of properly applied, recommended herbicides for efficacy of wild oat control in spring and winter wheat.
- 2. To determine the effect of herbicides on spring and winter wheat yields and grain quality.
- 3. To determine the effect of a seed treatment "safner"
- in protecting spring wheat from high rates of triallate.

MATERIAL AND METHODS:

Three studies were conducted in 1982 to evaluate chemicals for wild oat control in spring and winter wheat.

Wild oat control in spring wheat (1)

The primary objective of this study was to observe the effects of labeled wild oat herbicides when applied at various stages of growth of the wild oat. Herbicides used and growth stages when applied are found in the tabular data.

Newana spring wheat was seeded in strips 12 ft. wide, 300 ft. long at 70 lbs/a. This was done with a 12 ft. press drill. Herbicides were applied perpendicular to the drill strips in a 10 ft. swath giving a plot area of 120 sq. ft. Each treatment was replicated four times in a complete randomized block design. To control broadleaf weeds a uniform application of bromoxynil + MCPA was applied.

Fargo (triallate) "Safner" study on spring wheat (2)

Injury to the semi-dwarf types spring wheat from the herbicide triallate have been noted. To protect wheat seed from injury a safner was applied to Newana spring wheat. The products used were coded by Monsanto Chemical as MON5000 and MON5500. These materials were applied directly to the spring wheat as a seed treatment. Rates used are found in the tabular data. Seeding technique, plot layout are described in the previous experiment. Fargo applications were applied prior to seeding and incorporated with a vibra shank cultivator which had a mulcher attached. Fargo rates and dates of application are found in the tabulated data.

Herbicides were applied to Experiment 1 and 2 with a research type tractor mounted sprayer. Plots were harvested with a Hege 125B plot combine. Plot size and harvest areas varied with each experiment.

No-Till Fargo (triallate) Test (3)

This study was conducted in an established field of Luke winter wheat. Various formulations of Fargo (triallate) were used in this study and are given in the tabulated data. Techniques of application were also evaluated. These techniques are explained under results and discussion.

RESULTS AND DISCUSSION:

Ks VRS

Wild Oat Control in Spring Wheat (1)

Dr. Pete Fay of Montana State University coordinated this study statewide. He had published an application chart for use by the growers in determining the stage of growth of wild oats thus pinpointing more finely the time to make the application of the herbicide per labeling instructions.

The data presented here bares out the necessity of making the application of post emergence herbicides at the specified time.

Avenge was applied to the test when the wild oats were in the four leaf stage and air temperatures were quite high. This resulted in some crop injury which accounts in part for the reduction in yields with this treatment. Table 2

Fargo (triallate) "Safner" Study in Spring Wheat (2)

The Monsanto safner MON5000 and MON5500 provided good protection to germinating spring wheat that had been treated with high rates of Fargo (triallate). Where seed treatments were not used in conjunction with high rates of Fargo, yields were decreased as the rates of Fargo increased. Plant counts also diminished as Fargo rates increased in non-protected plots. The safners decreased the loss of stand due to chemical injury, however populations were less at the higher rates of Fargo in safner treated plots. Wild oat control was good throughout the study indicating the safners do not interfere with season long wild oat control. Test weights from Fargo plots not treated with safners decreased with an increase in the Fargo rate. This variation was not observed in the safner plots.

Plant stand numbers indicated the higher Fargo rates diminished stands dramatically. This was readily apparent in the non-safner treatments and was observed to have slightly effected the safner treatments.

It was also found that the safners without Fargo also decreased yields and plant counts. It is the synergistic effect of the combined chemicals which provided season long wild oat control and protection from higher rates of Fargo. Table 3

No-till Fargo Test (3)

The fall and spring Fargo applications to winter wheat were carried out using a Volmar air spreader, low volume flat fan nozzles, Micro Max^R CDA applicators and normal gallonage flat fan nozzles. The location of the study offered varied stands throughout and therefore unpredictable yields. Also, there was no weed pressure at all in which to gauge the herbicide efficacy of each treatment. Fall applications of granules seemed to provide better plot yields in this study than spring applied treatments. The new flowable formulation of Fargo tried in this study, did not seem any more injurious to the crop than other formulations. Stand variation and no weed pressure prevented through evaluation of the application techniques involved. Table $\frac{1}{4}$

-3-

Ks VRS

1

VRS 47

Table 1. Chemicals used in wild oat studies on small grains.

Common Name	Trade Name	Chemical Name	Company
barban	Carbyne	4-chloro-2-butynyl-m-chloro-carbanilate	Velsicol
diclofop	Hoelon	2-[4-(2,4-dichlorophenoxy)pheonoxy propanoic acid	American Hoechst
difenzoquat	Avenge	1,2-dimethyl-3,5-diphenyl-1 \underline{H} pyrazolium	American Cyanamid
triallate	Fargo	S-(2,3,3-trichloroallyl)diisopropylthio- carbamate	Monsanto
	MON 5000	seed treatment safner (no chemistry available)	Monsanto
	MON 5500	seed treatment safner (no chemistry available)	Monsanto

Table_2_. Asronomic data from the wild oat herbicide application study. Northwesrtern Asricultural Research Center cooperation with Dr. Pete Fay of Montana State University. Flot size: 48 sq ft VRS

1

		Dat	e seed	ed: May	12, 1982	Date harvested	: Serter	ber 20, 1982
TREATMEN	٩T	RATE LB/A	STG	YIELD BU./A	T.₩. LB./BU	<pre># W.O.PANICLES AT HARVEST/FT²</pre>	WILD 0/ 7-20	AT CONTROL 1/ 8-27
CARBYNE	9.83	.375	2 LF	68.57a	57.08	7,50b	9.6	7.9
HOELON		1.0	2 LF	79.02a	58.47a	10.00b	9.1	8.9
AVENGE		1.0	2 LF	65,42a	56.73	13.255	7.9	4.1
CARBYNE		.375	3 LF	76.35a	58.40a	6.50b	9.8	9.3
HOELON		1.0	3 LF	81,40a	58.30a	8.505	9.1	9.3
AVENGE		1.0	3 LF	73.57a	56.58	7.00b	9,9	9.3
CARBYNE		.375	4 LF	76.27a	58.77a	8.755	8.5	8.5
HOELON		1.0	4 LF	80.38a	59.30a	2.755	9.9	7.8
AVENGE		1.0	4 LF	66,75a	58.20a	14.255	2.6	5.0
CARBYNE		.375	5 LF	75.05a	58.67a	9.505	8.3	6.8
HOELON		1.0	5 LF	77.723	59.08a	6.255	'9 <u>1</u> 9	9.9
AVENGE		1.0	5 LF	80.20a	58.882	4.50b	7+6	9.5
CHECK			83	53.95	56.18	18.00	0.0	0.0
		LS	X F/2 SEX D(.05)	73.44 3.495** 4.196 9.197 5.217	58.07 3.248** .586 1.284	8.81 13.10** 1.194 2.619		

1/ WILD DAT CONTROL RATINGS, SCALE OF 0-10; 0=ND CONTROL, 10 = COMPLETE
2/ F VALUE FOR TREATMENT COMPARISON, ** INDICATES STATISTICAL SIGNIFICANCE AT THE .01 LEVEL.

APPLICATION DATA

			The second se				
APPLN, STAGE OF WILD OATS	DATE	TEMPS.(F) AIRSOIL	WIND(MPH)	RELATIVE	CLOUD COVER	SOIL Moist	WILD OAT DENSITY
			·				
2 LEAF	5-27	60 52	4 1/2	24%	CLDY	V.WET	9/FT
3 LEAF	6-1	65 65	0-2	4%	SUNNY	DRY	7.5/FT
4 LEAF	6-8	56 60	0	55%	HAZY	INTER.	8/FT
5 LEAF	6-14	78 75	0	23%	SUNNY	DRY	8/FT

-5-

Ks VRS

1

Table 3. Effect of MON5000 and MON5500 on yield of spring wheat (Newana) sprayed with triallate. Northwestern Agricultural Research Center, Kalispell, MT in 1982. Field R-13.

> Date seeded: 5/4/82 Date harvested: 9/20/82 Size of Plot: 48 sq. ft.

MON5000 MON5000 Rates Check 1/8 1/4 1/8 1/4 Vield (bu/a) Vield (bu/a) Vield (bu/a) 55.97 55.97 1.0 74.97 71.70 71.10 65.93 73.97	x 59.73 71.53 65.37 64.21 63.72 6) 17
Rates Check 1/8 1/4 1/8 1/4 Yield (bu/a) Yield (bu/a) 55.97 53.03 54.23 55.97 1.0 74.97 71.70 71.10 65.93 73.97	x 59.73 71.53 65.37 64.21 63.72 6) 17
Yield (bu/a)0.073.1762.2753.0354.2355.971.074.9771.7071.1065.9373.97	59.73 71.53 65.37 64.21 63.72 6) 17
0.073.1762.2753.0354.2355.971.074.9771.7071.1065.9373.97	59.73 71.53 65.37 64.21 63.72 61.17
0.073.1762.2753.0354.2355.971.074.9771.7071.1065.9373.97	59.73 71.53 65.37 64.21 63.72
1.0 74.97 71.70 71.10 65.93 73.97	71.53 65.37 64.21 63.72
	65.37 64.21 63.72
1.5 69.37 71.87 64.43 60.60 60.60	64.21 63.72
2.0 62.60 67.77 64.47 62.63 63.60	63.72
2.5 56.90 70.53 70.87 61.80 58.50	611 17
3.0 52.47 69.43 65.50 67.70 65.73	()
$x_1 64.91 68.92 64.90 62.15 63.06$	64.77
F 5. (02* 1.44 (NS 3.301NS .04 (NS .00 (NS	
Plant Counts ² (wheat)	
2 1 R. H. 1992 S. 1992 S. 1993	
0.0 14.8 11.8 11.2 10.7 9.6	11.62
1.0 13.4 12.2 9.1 9.6 10.2	10.90
1.5 11.1 11.3 9.6 10.2 10.2	10.48
2.0 10.8 10.1 9.9 11.6 7.9	10.06
2.5 9.0 8.3 7.7 11.0 8.9	8.98
3.0 7.0 8.3 9.6 9.6 9.5	8.80
x 11.02 10.33 9.52 10.45 9.38	10.14
Wild Oat Weed Control ³	
21.0 Y Y I BY Y I BY Y Y B Y Y B Y Y B Y Y B Y Y B Y Y B Y Y B Y Y B Y Y B Y Y B Y Y B Y Y B Y Y B Y B Y B Y B	
0.0 .67 0.0 0.0 0.0 0.0	.13
1.0 9.70 8.0 9.8 9.8 8.7	9.20
1.5 9.70 10.0 9.8 10.0 9.8	9.86
2.0 9.70 7.8 9.8 9.8 9.8	9.38
2.5 9.50 10.0 10.0 10.0 10.0	9.90
3.0 9.8 9.7 9.8 10.0 9.0	9.66
x 8.1 7.6 6.5 8.3 7.9	8 00

1/ F - value for treatment comparison

2/ Plants per two feet of linear row

3/ Scale 0-10: 0 = no control; 10 = complete control

Indicates statistical significance at the .05 level

APPLICATION DATA:

*

All Fargo (triallate) applications were made PPI (pre plant incorporated) being incorporated l_2^1-2 inches with a spike tooth harrow at right angles.

The safners MON5000 and MON5500 were applied by seed treatment method just prior to planting on May 4, 1982.

46°F Date: 5/4/82 Air Temperature: 48°F Soil Temperature: Velocity: 4-6 mph Humidity: 51%

-6-

Table <u>4</u>. Evaluation of several triallate formulations and application techniques on no-till Luke winter wheat yields and test weight. Northwestern Agricultural Research Center, Kalispell, MT in 1982. Field No. R-7c.

> Date seeded: September 29, 1981 Date harvested: August 23, 1982 Size of plot: Approximately 375 sq. ft.

The second	Conception Configure 102 11	Constant and the second second	Rate	Yield	Test Wt
Treatment/Time	Technique	Form	Lb ai/A	Bu/A	Lbs/Bu.
Triallate/Fall	Granular Applicator	10G	1.2	70.00a	59.0
Triallate/Fall	Granular Applicator	10G	1.5	63.4a	59.3
Triallate/Fall	Granular Applicator	10G	2.0	56.3a	60.0
Check				37.5	59.3
Triallate/Fall	Flat Fan,5 gpa	Flowable	1.5	26.7	57.7
Triallate/Fall	Flat Fan,5 gpa	Flowable	3.0	44.6	58.7
Triallate/Fall	Micro, 5 gpa	Flowable	1.5	28.6	55.3
Triallate/Fall	Flat Fan, 10 gpa	Flowable	1.5	21.90	57.4
Triallate/Fall	Micro, 10gpa	Flowable	1.5	24.50	57.0
Triallate/Fall	Micro, 10gpa	Flowable	3.0	31.5	54.4
Check				26.0	56.0
Triallate/Spring	Granular Applicator	10G	1.2	44.5	57.2
Triallate/Spring	Granular Applicator	10G	1.5	35.7	55.5
Triallate/Spring	Granular Applicator	10G	2.0	25.8	57.5
Check	CALLER DEFENDING			38.1	58.0
Triallate/Spring	Flat Fan, 22.26gpa	Flowable	1.5	28.1	57.2
Triallate/Spring	Flat Fan, 22.26gpa	Flowable	3.0	56.9a	60.4

x ₁	38.8	57.6
F	26.07**	1.232NS
S.E.x	5.7848	1.519
L.S.D.(.05)	13.007	3.415
C.V. %	7.54	2.635

ΛS

VRS 1

1/ F - value for treatment comparison

****** Indicates statistical significance at the .01 level

a/ Values significantly greater than check at .05 level

b/ Values significantly less than check at .05 level

NOTE: Yields varied due to dramatic field stand variation

APPLICATION DATA:	Date	Air Temperature	Soil Temperature	Wind(mph)	Humidity
Fall	10/20/81	43°F	50°F	2-4	24%
Spring	4/ 5/82	41°F	40°F	1-3	30%

Granules applied via Volman Air Machina (granulator) Micro applications done with Micro Max applicator Flat Fan applications - 5 gpa low volume nozzles or 22.26 gpa, 8003 nozzles

-7-

illenter baidate	
TITLE:	Chemical control of broadleaf weeds in small grains
PROJECT:	Weed Investigations MS 754
YEAR:	1982
LOCATION:	Northwestern Agricultural Research Center, Kalispell Joe Holland Farm, Plains, MT
PERSONNEL:	Leader - Vern R. Stewart Technician - Todd K. Keener Cooperators - Weed Research Committee MAES Montana Wheat Research & Marketing Committee Chemical Research & Development Representatives

-8-

OBJECTIVES:

VRS

Evaluation of herbicides and herbicide combinations for efficacy in weed control.

MATERIALS AND METHODS:

Six broadleaf herbicide studies were conducted in 1982, five on station and one in Sanders County on the Joe Holland farm. The 1982 studies included:

- 1. Glean plant back study, spring barley first crop
- 2. Broadleaf herbicide evaluations on Newana spring wheat
- 3. Dryland/irrigated spring wheat herbicide study
- 4. Dryland/irrigated winter wheat herbicide study
- 5. Broadleaf herbicide evaluations on Luke winter wheat
- 6. Off station winter wheat herbicide study

Herbicides used in this experiment are listed in Table 1.

In studies No. 2 and 3 spring wheat was seeded in 12 ft. strips using an International press drill at 70 lbs/a. The herbicides were applied perpendiclar to the strips in a swath 10 ft. wide, providing a treated area of 120 sq. ft. Each treatment was replicated four times in a randomized block design. The broadleaf herbicide study (No. 2) was treated with diclofop to control wild oats.

The remaining broadleaf herbicide studies (No.'s 1, 4, 5 & 6) were conducted in established stands of spring barley or winter wheat.

Three application techniques were utilized throughout these six experiments.

1. Post Plant Incorporated (PPI) - Used in test No.'s 2, 3, 4 and 5 concerning SSH0860, R40244 and trifluralin. PPI applications were incorporated with a spike tooth harrow in tests No. 3 and 4 and lightly incorporated by hand rake in tests No. 2 and 3. 2. <u>Pre Emergence Surface (PES)</u> - Used in tests No.'s 1, 2 and 5 for R40244, Glean and linuron.

3. Post Emergence (POST) - Used in tests No.'s 1, 2, 5 and 6. Post applications were timed according to weed stages or the developmental stages of grain.

All Herbicides were applied with a research type tractor mounted sprayer. Plot areas were harvested using a Hege 125B plot combine. Plot sizes, harvest areas and observations taken varied for each study. The following discussions and tables will list and describe the characteristics of each test.

Weeds evaluated in each study are listed below:

Common Name	Scientific Name	Test No's
Blue mustard	Chorispora tenella	6
Gromwell	Lithospermum arvense	4,5,6
Cheatgrass	Bromum secalinus	6
Henbit	Lamium amplexicaule	1,2,6
Wild buckwheat	Polygonum convolvulus	1,3,4
Tumble mustard	Sisymbrium altissimum	4,5
Wild oats	Avena fatua	3
False flax	Camelina satira	3
Fanweed	Thlaspi arvense	1,2,3,5
Chickweed	Stellaria media	1,2,3
Silene	Silene noctiflora	1,2,3
Nightshade	Solanum nigrum	1
Lambsquarter	Chenopodium album	5

RESULTS & DISCUSSION:

Experiment No. 1 - Glean plant back study.

Several rates of Glean (chlorsulfuron) and a related compound were tested at various rates and applications on spring barley. All treatments resulted in good to excellent weed control. Post emergence applications provided better weed control at the lower rates. The addition of a surfactant offered no additional weed control. Yields throughout the study did vary significantly, however post emergence applications had higher yields than most of the pre emergence surfact applications. Several of the test weights from PES treatments were significantly less than the check. Both compounds tested had slightly better overall performances than the standard herbicide applications of bromoxynil + MCPA. Table 2

In another plant back study conducted during the 1981-82 season it was found that subsequent plantings of lentils, alfalfa, potatoes, and corn were injured by Glean (chlorsulfuron) carryover. Most susceptible were alfalfa, lentils, and potatoes which were effected at all rates tested (.0625 - 1.0 oz ai/A). Corn populations were thinned out at the higher rates. Barley was the only crop which showed no phytotoxcity when planted into ground previously treated with Glean.

Experiment No. 2 - Broadleaf herbicide applications on Newana spring wheat.

Spring wheat yields were significantly less in the metribuzin treatments (Table 3). These plots, as well as others produced test weights significantly lower than the check. Broadleaf weed control was good to very good for all herbicides tested. The best performance in yield was seen with R40244, PES at .25 lb ai/A. Table 3

Ks VRS

Experiment No. 3 - Dryland/irrigated spring wheat herbicide study.

Ks VRS

Field conditions varied between the dryland and irrigated locations of this study. Higher yields were obtained from the dryland study. Yields within the dryland location did not vary significantly but R40244 at .5 lb/a provided the highest yield. R40244 was weak in wild buckwheat control at both rates and demonstrated just fair control of chickweed at the low rate. SSH0860 exhibited fair to good control of chickweed and performed well in respect to all other weeds. Table $\frac{4}{4}$

Yields in the irrigated site for spring wheat did not vary significantly. R40244 was weak in controlling wild oats, wild buckwheat and pigweed at the lower rate. SSH0860 was effective in controlling all weeds except wild oats. Table 5

Experiment No. 4 - Dryland/irrigated winter wheat herbicide study.

Field positioning contributed to varied stands within this study which resulted in higher yields being taken from the dryland location. Dryland yields were good, although not varying significantly, with SSH0860 at 1.0 lb ai/A giving the highest yield. SSH0860 provided good control of the weeds observed, whereas R40244 was weak on wild buckwheat and did not control gromwell. Table 6

Irrigated yields were less than dryland yields. The treatment yields were found to be non-significant. SSH0860 at 2.0 lbs ai/A provided the highest yield. All SSH treatments demonstrated excellent weed control. Again R40244 proved to be a little weak controlling gromwell and wild buckwheat. Table 7

Experiment No. 5 - Broadleaf herbicide evaluations on Luke winter wheat.

Yields within this study did not vary significantly when statistically analyzed, but high yields were taken from plots treated with DPX4189 (Chlorsulfuran) and bromxoynil. Test weights were high and uniform throughout the whole study. Good to excellent weed control was observed for all treatments except where linuron was applied. For weeds observed see Table 8.

Experiment No. 6 - Off station winter wheat herbicide study.

This study was established in a field of Nugaines winter wheat that had severe weed pressure from blue mustard and gromwell. Good yields were observed with all treatments and all were significantly higher than the check. Glean (chlorsulfuron) provided excellent control of all weeds except at the lower rates. The bromoxynil and bromoxynil plus MCPA or dinoseb combinations were not as effective controlling cheatgrass, henbit and gromwell. Most treatments seemed to fail in season-long gromwell control except for Glean at the high rate, bromoxynil + MCPA + dinoseb, bromoxynil + R40244, and bromxoynil + MCPA. Seasonal control of blue mustard was accomplished by all treatments. Table 9

Common Name	Trade Name	Chemical Name	Company
bromoxynil	Buctril or Brominal+	3,5-dibromo-4-hydroxybenzonitrile	Rhone/ Poulenc Union Carbide
chlorsulfuron	Glean	2-chloro- <u>N[[(4-methoxy-6-methyl-1,3,5-</u> triazin-2-yl)amino]carbonyl]benzene- sulfonamide	duPont
diclofop	Hoelon	2-[4-(2,4-dichlorophenoxy)phenoxy]pro- panoic acid	American Hoechst
dinoseb	Premerge 3	2-sec-buty1-4,6-dinitrophenol	Dow
	DPX-T6376	Methyl 2-[[[((4-methoxy-6-methyl-1,3, 5-triazin-2-yl)amino]carbonyl]amino] sulfonyl]benzoate	duPont
linuron	Loroxe	3-(3,4-dichlorophenyl)-1-methoxy-1- methylurea	duPont
MCPA	MCPA	[(4-chloro-o-tolyl)oxyl]acetic acid	Amchem
metribuzin	Sencor	4-amino-6- <u>tert</u> -butyl-3-(methylthio)- <u>as</u> -triazin-5(4 <u>H</u>)one	Mobay
	R 40244	1-(<u>m</u> -trifluoromethylphenyl)-3-chlor- 4-chloromethyl-2-pyrrolidone	Stauffer
	R 40244/ R 29148	R 40244 + antidote	Stauffer
	SSH 0860	1-amino-3-(2,2-dimethylpropyl)-6- (ethyl-thio)-1,3,5-triazine-2,4(1 <u>H</u> ,	Mobay

α,α,α-trifluror-2,6-dinitro-<u>N,N</u>-dipropyl-<u>p</u>-toluidine

3H)-dione

trifluralin

Treflan

Table 1. Chemicals used in the broadleaf herbicide trials in small grains.

Elanco

Ks VRS

2

20

Ks VRS 25

2

Table 2. Evaluation of DPX4189 (Glean) and related compounds at various rates, applications and mixtures with surfactants in spring barley. Northwestern Agricultural Research Center, Kalispell, MT in 1982. Field No. R-13.

> Planting Date: May 10, 1982 Size of Plot: 88 sq. ft.

Harvest Date: September 17, 1982

	Rate							1	1	
	lbs ai/a	Yield	Test Wt	%	Weed Control ^{1/}				/	
Treatment	oz ai/a*	bu/a	lbs/bu	Plump	FW	Sil	BW	NS	HB	CW
DPX-T6376 PES	.0625*	75.03	50.07b	81.33	6.0	6.7	8.7	8.7	7.0	5.7
DPX-T6376 PES	.125*	76.77	50.470	84.67	8.7	7.1	7.1	8.3	9.7	10.0
DPX-T6376 PES	.25*	69.80	50.17b	79.00	10.0	10.0	10.0	9.6	10.0	10.0
DPX-T6376 PES	.50*	62.53	49.00Ъ	80.67	10.0	10.0	9.7	10.0	10.0	10.0
DPX-4189(Glean) PES	.0625*	76.97	50.60	81.00	6.3	7.3	7.5	9.8	9.2	8.3
DPX-4189(Glean) PES	.125*	69.23	49.830	78.67	9.8	10.0	9.8	9.7	10.0	10.0
DPX-4189(Glean) PES	.25*	77.73	50.30b	81.00	10.0	10.0	10.0	9.3	10.0	10.0
DPX-4189(Glean) PES	.50*	77.70	50.70	82.33	10.0	10.0	9.0	9.5	10.0	10.0
Check		78.43	50.93	85.00	2.3	1.7	2.3	2.7	2.0	1.7
DPX-T6376 POST EM	.0625*	80.20	50.20Ъ	83.33	9.8	10.0	10.0	10.0	10.0	10.0
DPX-T6376 POST EM	.125*	86.13	50.90	84.67	10.0	10.0	9.0	10.0	10.0	10.0
DPX-T6376 POST EM	.25*	79.40	50.37	81.00	9.3	9.7	10.0	9.8	9.3	9.7
DPX-T6376 POST EM	.50*	77.37	50.23b	80.67	10.0	10.0	10.0	10.0	10.0	10.0
DPX-4189(Glean)POST EM	.0625*	83.23	51.03	83.33	10.0	9.3	9.5	10.0	10.0	10.0
DPX-4189(Glean)POST EM	.125*	78.77	51.07	85.67	10.0	10.0	10.0	10.0	10.0	10.0
DPX-4189(Glean)POST EM	.25*	79.60	50.63	85.33	10.0	10.0	10.0	10.0	10.0	10.0
DPX-4189(Glean)POST EM	.50*	80.60	50.87	84.00	10.0	10.0	10.0	10.0	10.0	10.0
DPX-T6376+Surf POST EM	.0625*	84.37	50.57	83.33	10.0	10.0	9.7	10.0	10.0	10.0
DPX-T6376+Surf POST EM	.125*	60.60	50.57	84.33	10.0	10.0	10.0	10.0	10.0	10.0
DPX-4189(Glean) +										
Surf POST EM	.0625*	80.13	50.17	86.57	10.0	9.8	9.8	10.0	10.0	10.0
DPX-4189(Glean) +										
Surf POST EM	.125*	84.00	50.57	85.00	10.0	10.0	10.0	10.0	10.0	10.0
Bromoxynil +	·375 +									
MCPA POST EM	.375	76.67	49.77b	83.00	10.0	9.7	10.0	10.0	7.7	9.2
DPX-T6376 +	.0625* +									
diclofop POST EM	.75	77.40	49.430	79.33	10.0	10.0	10.0	9.8	10.0	10.0
Check (weedy)		78.90	51.10	86.00	0.0	0.0	0.0	0.0	0.0	0.0

		\overline{x}_{F^2/F^2} 77.15 50.40 82.89 1.12NS 4.055** .83NS
		S.E.x 5.03 .250 2.57 L.S.D.(.05) 16.58 .534 7.32
		C.V. % 7.55 .51 3.10
1/	Weed Control	Scale 0-10: 0 = no control; $10 = complete control$
	Weed Code:	FW = fanweed (<u>Thlaspi</u> <u>arvense</u>)
		Sil= Silene (<mark>Silene noctiflora</mark>)
		BW = wild buckwheat (Polygonum convolvulus)
		NS = nightshade (Solanum nigrum)
		HB = henbit (Lamium amplexicaule)
		CW = chickweed (Stellaria media)
2/	F-value for	treatment comparisons
**	Indicates sta	atistical significance at the .01 level
21	Malue aimi	ficently less then the sheet of OF level

b/ Values significantly less than the check at .05 level

NOTE: Surfactant added in designated treatments was X-77 at .125% V/A

Ks VRS 2

26

Table ____. (con't)

Application Data:

	Pre emergence	Post emergence
Date Air Temperature Soil Temperature Humidity Wind Velocity	5/13/82 68°F 77°F 17% 3-5mph	6/8/82 62°F 63°F 36% 4-9mph

Kalispell, MT in 1982. Field No. R-13

Planting Date: May 12, 1982

Harvest Date: September 20, 1982 Size of Plot: 48 sq. ft.

		Rate		Yield	Test Wt		Stan	1,	I	Veed Con	trol2/		
Treatment	1	lbs ai/a		bu/a	lbs/bu	$Phyto^{1}$	Loss	<u>L</u> /	FW	Sil	CW	HB	
R 40244	POST	.25		70.9	57.0b	2.3	17.	5	10.0	10.0	10.0	10.0	
R 40244 + MCP	POST	.25 + .375		75.4	57.7b	2.1	16.	3	10.0	9.9	10.0	10.0	
R 40244 + bromoxynil	POST	.25 + .25		74.1	57.6b	2.3	13.	8	10.0	10.0	10.0	10.0	
R 40244 + metribuzin	POST	.25 + .25		56.6b	50.8b	5.6	28.	8	10.0	10.0	10.0	10.0	
R 40244	PES	.25		85.5	58.3b	1.3	8.	8	10.0	8.5	9.0	9.9	
R 40244	PES	.50		74.8	56.6b	1.4	7.	8	10.0	10.0	10.0	10.0	
R 40244 + DPX-4189 (chlorsulfuron)	PES	.25 + .031oz		77.5	58.5	1.3	7.5		10.0	10.0	10.0	10.0	
R 40244 + Trifluralin	PEI	.25 + .25		71.9	58.4ъ	1.5	8.3		9.9	8.5	6.8	8.3	
Metribuzin	POST	.25		64.9b	53.2Ъ	3.4	12.	0	10.0	10.0	10.0	10.0	
Bromxoynil	POST	.25		73.8	58.5	1.4	6.0		10.0	10.0	9.8	9.9	
MCPA -	POST	.375		72.6	58.5	1.4	5.8		9.4	7.5	4.0	4.9	
DPX-4189 (chlorsulfuron)	POST	.125oz		77.7	58.3Ъ	1.6	5.8		10.0	10.0	10.0	10.0	L
DPX-4189 (chlorsulfuron)	PES	.031oz		80.9	59.0	1.3	4.0		10.0	10.0	10.0	10.0	Ŧ
Bromoxynil + MCPA	POST	.375 + .375		76.2	58.1b	1.1	4.3		7.5	9.8	9.1	9.6	
Bromoxynil + MCPA + dinoseb	POST	.375 + .375 + .3	75	76.3	58.3b	1.5	8.3		10.0	9.6	9.3	9.9	
Bromoxynil + dinoseb	POST	·375 + ·375		76.9	57.8b	1.5	9.3		9.9	10.0	10.0	10.0	
Dinoseb	POST	.375		73.1	59.0	1.5	7.8		7.8	3.8	4.3	3.3	
Check				77.1	59.5	1.3	4.5	토립	0.0	0.0	0.0	0.0	
		x_3/		74.23	57.49								
		F_, _		1.953	16.76**								
		S.E.X	05)	4.385	.5236								
		L.S.D.(.05)	18.929	1.066								
		C.V. %		5.91	.911		_						
$\underline{1}$ / Phyto = Phytotoxicity rat	tings 0	-10: 0 = no phyto	; 10	= dead p.	lants due	to chemi	cal or	mecha	inical	injury.	•		
Stand Loss = ocular estin	mate of	percent stand the	inne	d									
2/Weed Control scale 0-10;	0 = no	control; 10 = con	mple	te control	l, rated 6	5/25/82.							
Weed Codes: FW = fanweed	d (Thla	spi arvense)			APPLICATI	ION DATA:							
SIL= Silene	(<u>Silen</u>	e noctiflora)					Т	emper	ature				
CW = chickweight HB = henbit	eed (<u>St</u> (Lamiu	ellaria media)			Applica	ation	Date	Air	Soil	Wind(mp	oh) Hu	umidity	-
3/ F - value for treatment	compari	son			PES	5 5/	13/82	68°F	$77^{\circ}F$	3-5		17%	
** indicates statistical si	gnifica	nce at .01 level			PEI	I 5/	13/82	68°F	77°F	3-5		17%	
b values significantly les	s than	check at .05 leve	1		POS	ST 6/	8/82	60°F	58°F	4-6		35%	

3

-

Table 4. Effect of herbicides on dryland spring wheat yields. Northwestern Agricultural Research Center, Kalispell, MT in 1982. Field R-13.

5/12/82

-15-

Size of Plot: 48 sq. ft. Weed Control Si-% Less Yield Rate Wild False Buck- Fan-Chick-2 lene Phyto ai/A Oats Flax wheat weed weed Stand

Date harvested:

9/20/82

SSH0860	1.0	9.6	4.5	10.0	10.0	5.5	9.3	0.0	2.8	56.63	57.9
SSH0860	1.5	6.0	5.3	8.6	10.0	6.8	10.0	0.3	2.5	54.65	58.3
SSH0860	2.0	8.4	6.0	9.8	10.0	7.6	8.8	0.6	6.3	59.83	58.4
R 40244	0.25	7.1	3.6	2.3	8.3	5.8	8.0	0.9	6.3	57.93	58.9
R 40244	0.50	9.1	4.5	5.6	10.0	7.0	10.0	0.0	5.0	60.63	58.2
Check	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.3	52.64	59.1

x,	57.05	58.46
F	.537NS	.575NS
S.E.x	4.166	.598
L.S.D.(.05)	12.255	1.759
C.V. %	7.303	1.023

UD 28^{VRS} 2

Test Wt

Lbs/Bu

Bu/A

Weed control rating 0-10 scale: 0 = no control; 10 = complete control11 Wild Oats (Avena fatua)

False Flax (Camelina satira)

Date seeded:

Treat-

ment

Wild Buckwheat (Polygonum convolvulus)

Fanweed (Thlaspi arvense)

Chickweed (Stellaria media) Silene (Silene noctiflora)

Phyto = Phytotoxicity 0-10 scale: 0 = no phyto; 10 = dead plants due to 2/ chemical injury

3/ F - value for treatment comparison

NOTE: Poor field stands and wild oat pressure resulted in lower yields in irrigated versus dryland plots.

APPLICATION DATA: (All treatments post plant incorporated)

Date:	5/13/82
Air Temperature:	68°F
Soil Temperature:	77°F
Humidity:	17%
Wind Velocity:	3.5 - 7.5 mph
Volume:	26.86 gpa
Nozzle:	8003
Pressure:	32 psi
Incorporation	
Technique:	$l_2^{1"}$ incorporation w/2 passes of spike tooth harrow

Table <u>5</u>. Effect of herbicides on irrigated spring wheat yields. Northwestern Agricultural Research Center, Kalispell, MT in 1982. Field R-13.

Date harvested: 9/20/82

				T.T.	1 0							
Treatment	Rate ai/A	Wild Oats	False Flax	Buck- wheat	Fan- weed	Lambs- quarter	Silene	Pig- weed	Phyto ²	% Less Stand	Yield Bu/A	Test Wt Lbs/Bu
SSH 0860	1.0	5.0	8.5	9.4	8.9	10.0	7.1	7.5	0.9	7.5	41.64	58.0
SSH 0860	1.5	5.8	9.1	9.6	10.0	9.8	9.3	8.8	0.9	5.0	42.02	58.1
SSH 0860	2.0	8.2	8.4	7.5	10.0	10.0	9.8	4.9	2.0	15.8	55.74	58.1
R 40244	0.25	3.1	5.6	6.1	9.8	7.6	9.0	5.8	0.3	0.0	38.93	56.6
R 40244	0.50	3.6	8.7	5.5	10.0	9.5	9.3	9.5	0.0	4.5	41.81	58.1
Check	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	40.10	57.7
						6			x	3	43.37	57.76

Size of Plot: 48 sq. ft.

1/ Weed control rating 0-10: 0 = no control; 10 = complete control
Weeds: Wild oats (Avena fatua)

False flax (<u>Camelina sativa</u>) Wild buckwheat (<u>Polygonum convolvulus</u>) Fan weed (Thlaspi arvense)

an weed (maspi arvense)

Date seeded: 5/12/82

Lambsquarter (Chenopodium album) Silene (Silene noctiflora)

Silene (Silene noculiora)

Pigweed (<u>Amaranthus</u> retroflexus)

2/ Phyto = Phytotoxicity 0-10: 0 = no phyto; 10 = dead plants due to chemical injury

3/ F - value for treatment comparison

NOTE: poor field stands and wild oat pressure resulted in lower yields in irrigated versus dryland plots.

APPLICATION DATA: (All treatments post plant incorporated)

Date: 5/13/82 Air Temperature: 68°F Soil Temperature: 77°F Humidity: 17% Wind Velocity: 3.5-7.5 mph Volume: 26.86 gpa Nozzle: 8003 Pressure: 32 psi Incorporation Technique: 1¹/₂" incorporation w/2 passes of spike tooth harrow 16

VRS 2

23
Table	6.	Effects	of various	herbicid	es on	dryland	Luke	winter	wheat	yields
		and weed	control i	n 1982.	Field	No. R-	3a.			

			We	ed Contro)1		
Treatment	Rate Lb/A	% Less Stand	Gromwell	Buck- wheat	Tumble Mustard	Yield Bu/A	Test Wt Lbs/Bu
SSH 0860	1.0	11.3	7.6	10.0	10.0	79.42	60.8
SSH 0860	1.5	12.5	8.3	10.0	10.0	65.69	60.2
SSH 0860	2.0	18.8	8.3	10.0	10.0	70.09	59.7
R 40244	0.25	7.5	0.0	7.5	10.0	55.83	59.3
R 40244	0.50	11.3	1.3	6.3	10.0	66.52	60.5
Check	0.0	5.0	0.0	0.0	0.0	56.93	59.5
			2	x F S	2 .E.x .S.D.(.05)	65.75 1.420NS 7.343 21.497	59.99 1.401NS .481 1.407

C.V. %

11.169

.801

Date seeded: 9/24/81 Date harvested: 8/19/82 Size of Plot: 64 sq. ft.

1/ Weed control scale 0-10: 0 = no control; 10 = complete control
Weeds: Gromwell (Lithospermum arvense)

	"C	~~	. ui	oma		pot man at v	01100/
			W	ild 1	ouckwheat	(Polygonum	convolvulus)
			Tι	umble	e mustard	(Sisymbrium	altissimum)
2/	F	-	value	for	treatment	comparison	in workshipping in

APPLICATION DATA:

Date:9/27/81Air Temperature:52°FSoil Temperature:56°FHumidity:63%Wind Velocity:0 mphVolume:23.9 gpaNozzle:8003Pressure:32 psi

All applications post plant pre emergence and incorporated with spike tooth harrow.

-18-

Table 7. Effects of various herbicides on irrigated Luke winter wheat yields and weed control in 1982. Field No. R-3a.

Date seeded: 9/24/81 Date harvested: 8/19/82 Size of Plot: 64 sq.ft.

			We	ed Contro	1		
	Rate	% Less	-2012	Buck-	Tumble	Yield	Test Wt
Treatment	Lb/A	Stand	Gromwell	wheat	Mustard	Bu/A	Lbs/Bu
SSH 0860	1.0	21.3	10.0	9.9	10.0	46.79	59.5
SSH 0860	1.5	22.5	10.0	10.0	10.0	43.69	60.2
SSH 0860	2.0	26.3	10.0	10.0	10.0	47.49	59.7
R 40244	0.25	22.5	7.3	8.3	10.0	42.94	59.7
R 40244	0.50	23.8	7.0	7.6	10.0	43.16	59.4
Check	0.0	13.8	0.0	0.0	0.0	39.61	60.1
		alist alista (j. 1981)			x F ² S.E.x	43.95 .786Ns 3.235	59.75 .447NS .472

7.36

.790

C.V. %

1/ Weed control 0-10: 0 = no control; 10 = complete control
Weeds: Gromwell (Lithospermum arvense)
Wild bucktheat (Polyconum convolution)

			W_	LTa t	Juckwneau	(FOLYgonum	convorvarus)	
			Tu	umble	e mustard	(Sisymbrium	altissimum)	
2/	F	_	value	for	treatment	comparison		

APPLICATION DATA:

9/27/81 Date: 52°F Air Temperature: 56°F Soil Temperature: Humidity: 63% Wind Velocity: 0 mph Volume: 23.9 gpa Nozzle: 8003 Pressure: 32 psi

All applications post plant pre emergence and incorporated with spike tooth harrow.

-19-

Table 8.

_. Evaluation of several herbicides in Luke winter wheat for control of weeds. Northwestern Agricultural Research Center, Kalispell, MT. Field R-7a.

Weed Control Yield Rate Fan-Tumble Lambs-Test Wt weed Mustard quarter Gromwell Bu/A Lbs/Bu Treatment Lb/A Lentils SSH 0860 4.0 8.8 85.47 62.68 0.75 9.5 9.8 7.8 SSH 08601 6.4 9.8 10.0 10.0 90.44 62.40 1.00 10.0 SSH 0860 1.50 10.0 10.0 10.0 10.0 91.99 62.33 7.0 R 40244 2.00 6.6 10.0 10.0 10.0 10.0 90.59 62.35 R 40244 0.25 2.8 10.0 10.0 9.3 10.0 84.04 62.93 R 40244 86.07 0.50 4.0 10.0 10.0 9.5 10.0 62.37 R 40244 5.8 10.0 89.14 63.27 1.00 10.0 10.0 9.9 DPX 4189 0.625oz 7.5 9.3 10.0 10.0 8.5 83.37 62.95 DPX 4189 0.125oz 5.8 10.0 10.0 9.8 10.0 94.46 62.83 DPX 4189 0.25oz 7.3 10.0 10.0 10.0 10.0 89.17 63.20 DPX 4189 8.8 0.50oz 10.0 10.0 10.0 10.0 93.56 62.55 R 40244 + 0.25 + 10.0 10.0 10.0 91.19 62.63 linuron 0.50 1.3 7.3 Linuron 0.50 2.5 3.5 6.3 5.0 7.3 89.40 63.18 Check 0.0 0.5 0.0 0.0 0.0 2.5 84.31 62.95 R 40244/ R29148 10.0 10.0 8.0 88.47 62.98 0.50 2.3 10.0 7.8 7.8 9.8 9.6 Bromoxynil 0.375 10.0 93.23 63.33 $\bar{\mathbf{x}}_{\mathrm{F}}$ 3 62.81 89.06 1.26 .73 S.E.x 4.12 .31 L.S.D.(.05) 11.73 .87 C.V. % 4.63 .49 1/ Shallow incorporation w/hand rake. 2/ Weed control 0-10: 0 = no control; 10 = complete control Weeds: Lentils (volunteer) Fanweed (Thlaspi arvense) Tumble mustard (Sisymbrium altissimum) Lambsquarter (Chenopdoium album)

Date seeded: 9/30/81 Date harvested: 8/25/82 Size of Plot: 64 sq. ft.

3/ F - value for treatment comparison

Gromwell (Lithospermum arvense)

APPLICATION DATA:	PPI	DPX	Bromoxynil
Date:	10/1/81	4/16/82	4/21/82
Air Temperature:	68°F	39°F	55°F
Soil Temperature:	62°F	34°F	45°F
Humidity:	10%	50%	18%
Wind Velocity:	3-7 mph	4 mph	5 mph
Volume:	23.9 gpa	22.3 gpa	22.3 gpa
Nozzle:	8003	8003	8003
Pressure	32 psi	32 psi	32 psi

VRS 2

Ks

Table_9_.

Ks VRS 33

2

Evaluation of sring applied herbicides to Nugaines winter wheat. Northwestern Agricultural Research Center and Joe Holland Farm, plains, MT. 1982. Plot size: 64 sq. ft.

	Date	seeded:	September	20,1	1981	Har	vested	Ausus	t 10,198
TREATMENT	RATE AI/A	YIELD BU./A	TEST WT. LBS./BU	BM	MAY GW	WEE1 19,19 CG	D CONTI B2 HB	ROL 1/ JULY BM	9,1982 GW
ROMOXYNIL	.375	87.1a	59,5	8.2	6.0	5.0	2.3	10.0	7.3
ROMOXYNIL+ MCPA	•375+ •375	88.9a	60.0	8.8	9.7	5,8	6.3	10.0	9.0
ROMOXYNIL+ DINOSEB	.375+ .375	69,63	60.3	7,5	6.3	3.3	3.3	10.0	6.0
ROMOXYNIL+ MCPA+ DINOSEB	•375+ •375+ •375	73.9a	59.5	9.5	8.8	9.8	7.0	10.0	10.0
40244	,25	82.1a	59.1	6.3	5,7	6.0	9.8	10.0	4.0
40244+ BROMOXYNIL	•25 •25	77 . 6a	59.9	9.8	9.2	10.0	10.0	9.0	9.0
LEAN	1/16	79.83	59.2	9.8	5.5	6.7	9.7	10.0	1.0
LEAN	1/8	82.1a	59.7	9.9	9.5	9.5	8.8	10.0	5.3
LEAN	1/4	80.8a	60.2	10.0	8.5	9.2	9.5	10.0	6.3
LEAN	1/2	85.5a	59.9	10.0	9.8	9.2	9.9	10.0	10.0
HECK		43.1	59.0	0	0	0	0	0	0
X F SE LS C,	2/ X D(.05) V. %	77.3 4.94** 5.669 14.81 7.36	59.7 1.021 .445 1.159 .746						
/ WEED CONT WEED CODE	ROL SCA S: BM= GW= CG= HB=	LE 0-10; BLUE MU GROMWEL CHEATGR HENBIT	0= NO CO STARD Cho L Lithos ASS Brom Lamium	NTROL Drisp Permu US Se ample	ora t ora t m arv calir xica	COMF cenell vense us us	LETE (CONTROL	
/ F VALUE	FOR TRE ** a/ DATA:	ATMENT C INDICATE INDICATE CHECK AT	OMPARISONS S STATIST S VALUES S THE .05 I	S. ICAL SIGNI LEVEL	SIGNI FICAN	FICAN	ICE AT REATER	THE .C THAN)1 LEVEL THE
ALL TREAT APPLIED 4	HENTS -7-82	TEMPS: S	AIR 44 WI DIL 40	IND (M 2-4	PH)	REL H	IUM. N	RTLY-C	CLDY,
IZE OF PLOT ARVESTED AR	S: 10' EA: 64	X 24' SQ. FT.							

-20-

TITLE: Chemical Weed Control in Lentils

PROJECT: Weed Investigations MS 754

YEAR: 1982

LOCATION: Northwestern Agricultural Research Center

PERSONNEL: Leader - Vern R. Stewart Technician - Todd K. Keener Cooperators - Weed Research Committee MAES Research & Development Representatives from Chemical Companies

<u>OBJECTIVES</u>: 1. Evaluation of herbicides for effective weed control in lentils and determination of their effect on yields.

2. Evaluation of several rates and applications of metribuzin on lentils.

MATERIALS AND METHODS:

The following lentil herbicide experiments were conducted in 1982:

- 1. Evaluation of herbicides on lentil yields and weed control.
- 2. Evaluation of several rates of metribuzin in combination with triallate on lentils. Sandy loam soil.
- 3. Evaluation of several rates of metribuzin in combination with triallate on lentils. Silty loam soil.
- 4. Evaluation of herbicides for wild oat control and the effects on lentil yields.

Tests #1 and #2 were conducted in a solid seeded stand of lentils. Plots were 10' x 20', or 200 sq. ft. in size. In tests #3 and #4 lentils were seeded in 12' strips, and herbicide treatments were applied perpenicular to the strips. Plot area in test #3 and #4 were 10' x 12' or 120 sq. ft. All studies were replicated four times in a randomized block design. Herbicides were applied with a research type tractor mounted sprayer. Pre plant incorporated treatments in test #1 and #3 were incorporated with a spike tooth harrow whereas in test #4 they were lightly incorporated with a hand rake. Pre emergence and post applications were made based on weed or crop stage of growth.

Weed scores and growth observations were taken throughout the season. Twenty-five square feet was harvested from each plot by hand, field dried and threshed with a Hege 125B combine.

RESULTS AND DISCUSSION:

Experiment #1 - Evaluation of herbicides on lentil yields and weed control.

-21-

Ks VRS

Results and Discussion (con't)

Ks

3

The aphid population throughout the valley was so severe an emergency (or special local need) use permit was granted for cygon (dimethoate) systemic insecticide. Yields were near average this year even with an aphid infestation during the season. Of thirty treatments evaluated on lentils two produced significantly higher yields than the check. Those treatments producing significantly less in yield were PPI treatments with trifluralin, pendimethalin, ethalfluralin + EPTC, and pre emergence surface applications of oxyflurorfen. Oxyfluorfen was phytotoxic to lentils at all rates and in all combinations. None of the metribuzin treatments were injurious to the lentils this year which was due in part to precipitation patterns.

Plant counts were significantly higher in the higher yielding plots as were the three treatments where triallate was used in combination with another herbicide. Stand reductions were noted in plots treated with propham, metolachlor, EPTC and oxyflurorfen.

Excellent weed control was observed in the following treatments: 1) triallate + metribuzin; 2) triallate + R40244; 3) pendimethalin + dinoseb; 4) R40244 and 5) oryzalin + metribuzin. Table 2.

Experiment #2 - Evaluation of several rates of metribuzin in combination with triallate for weed control in lentils. Field R-4b, 3.3% organic matter.

Contrasted to last years results, when we had a high degree of phytotoxicity from metribuzin applications, there was no apparent crop injury in 1982. This could be due in part to a higher soil organic matter level or rainfall patterns which were quite different. Weed control was good in all treatments except the post application of metribuzin at the high rate. Table 3.

Yields were depressed due to a severe aphid outbreak and high broadleaf weed pressure. There were no significant differences in yield and plant counts in this study. No phytotoxic symptoms were observed for any of the metribuzin applications. Broadleaf herbicide control was best at the .5 lb PES application of metribuzin. Lambsquarter and fanweed were the only weeds effectively controlled by the post applications of metribuzin. Table 4.

Experiment #4 - Evaluation of herbicides for wild oat control and the effects on lentil yields.

Sethoxydim, barban, and diclofop all offered good wild oat control in lentils. Difenzoquat, barban and pendimethalin provided good <u>Setaria</u> sp control throughout the season. The yields from this study were low and did not vary significantly. Metribuzin plus either sethoxydim, diclofop, or barban was a good combination for wild oat control in lentils. Table 5.

		-	
 9	n		0
а	D	_	
	-	_	-

1. Chemicals used in the lentil herbicide studies.

Common Name	Trade Name	Chemical Name	Company
barban	Carbyne	4-chloro-2-butyryl-m-chlorocarbanilate	Velsicol
diclofop	Hoelon	2-[4-(2,4-dichlorophenoxy)phenoxy] propanoic acid	American Hoechst
difenzoquat	Avenge	1,2-dimethyl-3,5-diphenyl-l <u>H</u> -pyrazolium	American Cyanamide
dinoseb	Permerge 3	2-sec-buty1-4,6-dinitropheno	Dow
EPTC	Eptam	S-ethyl dipropylthiocarbamate	Stauffer
ethalfluralin	Sonalan	N-ethyl-N-(2-methyl-2-propenyl)-2,6- dinitro-4-(trifluoromethyl)benzenamine	Elanco
metolachlor	Dual	2-chloro- N -(2-ethyl-6-methylphenyl)- N -(2-methoxy-1-methylethyl)acetamide	Ciba - Geigy
metribuzin	Sencor Lexone	4-amino-6-tert-butyl-3-(methythio)- as-triazin-5(4 <u>H</u>)-one	Mobay duPont
oryzalin	Surflan	3,5-dinitro- $\underline{N}^{4}, \underline{N}^{4}$ -dipropylsulfanilamide	Elanco
oxyfluorfen	Goal	2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4- (trifluoromethyl)benzene	Rhom and Haas
pendimethalin	Prowl	\underline{N} -(1-ethylpropyl)-3,4-dimethyl-2,6- dinitrobenzenamine	American Cyanamide
propham	Chem-Hoe	isopropyl carbanilate	PPG
	R 40244	l-(<u>m</u> -trifluoromethyl phenyl)-3-chlor- 4-chloromethyl-2-pyrrolidone	Stauffer
sethoxydim	Poast	2-[1-(ethoxyimino)butyl]-5-[2-(ethyl- thio)propyl]-3-hydroxy-2-cyclohexen-1-on	BASF e
triallate	Fargo	S-(2,3,3-trichloroallyl)diisopropylthio- carbamate	Monsanto
trifluralin	Treflan	α,α,α-trifluoro-2,6-dinitro- <u>N,N-</u> dipropyl- <u>p</u> -toluidine	Elanco

-23-

107.0gs.1 .1

36

Ks VRS

Table <u>2</u>. Evaluations of herbicides on lentil yields and weed control. Northwestern Agricultural Research Center, Kalispell, MT in 1982. Field No. R-4c.

> Planting Date: May 5, 1982 Hax Size of Plot: 25 sq. ft.

Ks VRS

3

Harvest Date: August 17, 1982

		1 3 5 6	1-1203-2	Plants	and the second				,	2/
		Rate	Yield	per 3'	% Stand*	Phyto*	We	ed Cor	ntrol-	<u>*</u>
Treatment		lbs ai/a	lbs/a	of row	Reduction	1/	SW	LQ	Set	FW
in example (200		1 05	7(0) 5		0.0	0 0	0 0	0 0		10.0
Triallate	PPI (1.25	1684.5a	17.4a	0.0	0.0	8.8	8.0	9.3	10.0
Triallate +	PP1/	1.25 +	1 = 1 0	-0.0				~ (
metribuzin	PES	.125	1514.3	18.3a	0.0	0.0	1.5	9.6	9.3	10.0
Triallate +	PPI/	1.25 +		- (0						
metribuzin	PES	.1875	1585.4	16.8	0.0	0.0	9.8	9.3	9.3	10.0
Triallate +	PPI/	1.25 +	and the second second							
metribuzin	PES	.25	1339.5	15.7	0.0	0.0	3.5	6.9	9.4	10.0
Triallate +	PPI/	1.25 +	1.01							
dinoseb	PRE	3.0	1484.7	17.2a	0.0	0.0	7.6	7.5	9.3	10.0
Triallate +	PPI	1.25 +								
R 40244	PPI	•5	1361.8	19.4a	0.0	0.0	5.8	6.8	10.0	10.0
Triallate +	PPI/	1.25 +	100015-01	6. ¹⁰ 10-673			111.2			
R 40244	PES	• 5	1100.6	13.8	0.0	0.0	9.6	9.5	9.3	10.0
Triallate +	PPI	1.25 +	1-6- (XC)20							
, trifluralin	PPI	•75	1140.9	15.9	0.0	0.0	5.5	9.8	9.8	9.1
Propham	PPI	3.0	1141.7	15.3	2.5	2.5	3.8	8.5	9.5	8.8
Propham	PPI	4.0	1251.5	14.9	0.0	0.0	3.0	8.8	9.5	7.8
Trifluralin	PPI	.75	992.2Ъ	13.9	0.0	0.0	7.5	10.0	10.0	7.5
Trifluralin +	PPI/	.75 +								
dinoseb	PES	3.0	1038.0	14.0	0.0	0.0	6.0	10.0	10.0	5.0
Trifluralin +	PPI/	.75 +								
EPTC	PPI	2.0	1029.5Ъ	14.0	0.0	0.0	4.5	7.0	10.0	4.8
Trifluralin +	PPI	.75 +								
metolachlor	PPI	.5	1283.8	15.4	1.3	2.5	5.0	10.0	9.8	9.3
Pendimethalin	PPI	1.0	960.4b	14.5	0.0	0.0	5.3	9.8	10.0	8.8
Pendimethalin	PPI/	1.0 +								
dinoseb	PES	1.5	1334.9	13.4	0.0	0.0	8.5	10.0	10.0	10.0
Ethalfluralin	PPI	.75	1467.4	16.7	0.0	0.0	6.8	9.3	10.0	9.8
Ethalfluralin/	PPI	.75 +						-		
EPTC		2.0	836.30	13.2	1.3	0.0	6.1	10.0	9.5	9.5
Metolachlor	PPI	3.0	1334.9	13.3	0.0	0.0	5.3	10.0	10.0	6.0
Metolachlor +	PPI	3.0 +					/ 5			
EPTC	PPT	2.0	1113.2	13.7	6.3	0.0	0.5	9.5	9.5	9.4
EPTC	PPT	2.0	1331.8	14.7	0.0	0.0	0.0	7.5	8.5	7.8
R 40244	PES	.25	1427.1	16.0	0.0	0.0	8.3	5.0	6.0	10.0
в 10211	PES	.50	1281 1	15.5	0.0	0.0	10.0	93	8.6	10 0
R 40244	PET	.50	1440.5	16.2	0.0	0.0	2.0	1.8	L 3	10 0
10 TULTT	+ +	•			0.0	0.0	2.0	U	J	10.0

Table 2 . (con't)

			Plants						2/
	Rate	Yield	per 3'	% Stand*	Phyto?	• Wee	ed Cor	ntrol-	<u> </u>
Treatment	lbs ai/a	lbs/a	of row	Reduction	1/	SW	LQ	Set	FW
Oryzalin PES	.75	1366.8	17.0	0.0	0.0	8.8	8.8	6.3	9.4
Oxyfluorfen PES	.375	370.7Ъ	14.6	16.3	0.0	8.8	8.1	8.8	7.5
Oxyfluorfen PES	.5	146.0ъ	8.7b	77.5	0.0	10.0	10.0	9.0	10.0
Oxyfluorfen + PES	.375 +								
oryzalin PES	.75	369.70	12.6b	41.3	0.0	9.8	8.8	7.5	10.0
Oryzalin + PES	.75 +								
metribuzin PES	.125	1653.7a	19.9a	0.0	0.0	8.6	10.0	9.3	10.0
Check		1313.8	14.9	0.0	0.0	0.0	0.0	0.0	0.0
									1.1
x ₂ /		1190.1	15.2						
F-3/		5.81*	** 3.28	3**					
S.E.x		39.620	1.209)					
L.S.D.	(.05)	284.111	L 2.25	7					
C.V.%		12.789	7.955	5					
1/ Phyto = phytotox:	icity rati	ings 0-10): 0 =	no phyto;	10 = d	lead r	olants	due	to
					С	hemio	al in	jury	
2/ Weed Control Scal	le 0-10:	0 = no c	ontrol	10 = comp	olete c	ontro	ol	0 0	
Weed Codes: GW	= gromwel	Ll (Litho	ospermun	arvense)					
LQ	= lambsqu	arter (0	Chenopod	lium album)				
Set	= Setaria	a (Setari	la virid	lis)					

FW = fanweed (Thlaspi arvense)

3/ F - value for treatment comparison

** Indicates statistical significance at the .01 level

a/ Values significantly greater than the check at .05 level

b/ Values significantly less than the check at .05 level

Application Data:

		Tempe:	rature		
Application	Date	Air	Soil	Wind(mph)	Humidity
PPI	5/5/82	45°F	47°F	0-3	22%
PRE	5/6/82	48°F	45°F	0	32%
PES	5/6/82	48°F	45°F	0	32%

Soil ph = 7.5

Soil Organic Matter = 3.7%

NOTE: Plant counts were made - 6/16/82

* Stand estimates, phyto readings and weed control scores were recorded - 7/21/82 38

Ks VRS 3 Table <u>3</u>. Evaluation of several rates of metribuzin in combination with triallate for weed control in lentils. Northwestern Agricultural Research Center. Kalispell, MT in 1982. Field No. R4c.

> Planting Date: May 5, 1982 Harvest Date: August 17, 1982 Size of Plot: 32 sq. ft.

			13 A. 161 A			See 1 and	01
					We	ed Contr	·012/
	Rate	Yield	Plants/	1/	Wild	Grom-	1211
Treatment	lbs ai/a	lbs/a	3' of row	Phyto-/	Oats	well	Setaria
승규에서 승규의 이 것은 지원에서							
Triallate + PPI/	1.25 +						
metribuzin PES	.125	1218.9	19.5	0	10.0	6.3	10.0
Triallate + PPI/	1.25 +						
metribuzin PES	.25	1279.2	18.3	0	9.5	10.0	10.0
Triallate + PPI/	1.25 +						
metribuzin PES	.375	1662.2	16.9	0	10.0	9.3	10.0
Triallate + PPI/	1.25 +						
metribuzin PES	.50	1520.1	16.0	0	10.0	10.0	10.0
Triallate + PPI/	1.25 +						
metribuzin POST	.125	1274.2	17.3	0	10.0	10.0	10.0
Triallate + PPI/	1.25 +						
metribuzin POST	.189	1366.4	15.2	0	10.0	7.0	6.7
Triallate(check)PPI	-	1622.2	17.6	0	10.0	0.0	0.0
	t <u>t</u>	8 00 T J	<u>- 0.1-0.00000000000000000000000000000000</u>		10.0001	100	
		1420.6	17.3				

X ₂ /		1420.6	11.3	
F-3/		2.564NS	2.016NS	
S.E.x		96.16	1.024	
L.S.D.	(.05)	316.29	3.329	
C.V. %		6.845	5.930	

1/ Phyto = Phytotoxicity rating 0-10: 0 = no phyto; 10 = dead plants due to chemical injury 2/ Weed control scale 0-10: 0 = no control; 10 = complete control

Weeds rated: Wild oats (<u>Avena fatua</u>) Gromwell (Lithospermum arvense)

Sataria (<u>Setaria viridis</u>) foxtail grass

 $\underline{3}$ / F - value for treatment comparison

Application Data:

Ks

VRS

3

3

		Temper	rature		
Application	Date	Air	Soil	Wind (mph)	Humidity
PPI or PES POST	May 14 June 11	68°F 78°F	77°F 80°F	3 - 5 0	17% 12%

Soil pH = 7.5

Soil organic matter = 3.3%

Table <u>4</u>. Evaluation of several rates of metribuzin in combination with triallate for weed control in lentils. Northwestern Agricultural Research Center, Kalispell, MT in 1982. Field No. R-13.

									2/	
	Rate	Yield	Plants	s/	1/	all here	Weed C	Contro	1-1	
Treatment	lbs ai/a	lbs/a	3' of 1	row	Phyto-'	LQ	FW	BW	WO	Sil
Triallate + PPI/	1.25 +									
metribuzin PES	.125	259.4	5.2		0	2.3	8.7	0.7	5.7	3.5
Triallate + PPI/	1.25 +	- 1								
metribuzin PES	.25	140.9	6.1		0	2.3	5.8	2.3	5.3	3.0
Triallate + PPI/	1.25 +									
metribuzin PES	.375	120.4	5.8		0	3.7	8.7	5.0	8.7	7.7
Triallate + PPI/	1.25 +									
metribuzin PES	.50	166.4	5.4		0	6.3	10.0	8.7	8.8	9.2
Triallate + PPI/	1.25 +									
metribuzin POST	.125	154.9	5.6		0	10.0	9.0	7.0	5.7	5.0
Triallate + PPI/	1.25 +									
metribuzin POST	.189	134.4	5.0		0	9.5	7.3	5.0	5.0	3.3
Triallate(check)PPI	-	203.6	6.3		0	0.0	0.0	0.0	7.2	0.0
	a da Palit	0 2 5	-							
\bar{x}_{F3} / 165.7 5.6 \bar{x}_{F3} / 1.096NS .933NS S.E. \bar{x} 40.405 .420										
L.S.	D. (.05)	131.42	1.366	0						
C.V.	10	34.38	1 7.458	3						
$\underline{1}$ / Phyto = Phytotox	icity rati	ng 0-10	: 0 = no	o ph	yto; 10 =	dead chemi	plants cal in	due jury	to	
2/ Weed Control scal	le 0-10: 0	= no c	ontrol;	10 :	= complet	e cont	rol			
Weed Codes: LQ	= lambsqua	rter (C	henopodi	ium a	album)					
FW	= fanweed	(Thlasp	i arvens	se)						
BW :	= wild buc	kwheat	(Polygor	num (convolvul	us)				
WO :	= wild oat	s (<u>Aven</u>	a fatua))						
Sil	= silene	(Silene	noctifl	Lora)					
3/ F - value for tre	eatment co	mpariso	n							
Application Data:		Tem	perature	2						

		rempe.	racure		
Application	Date	Air	Soil	Wind (mph)	Humidity
PPI or PES	May 5	48°F	45°F	0	32%
POST	June 11	78°F	80°F	0	12%

Soil pH = 7.7

Soil organic matter = 4.2%

.

Ks VRS

3

-28-

Table <u>5</u>. Evaluation of herbicides for wild oat control and the effect on lentil yields. Northwestern Agricultural Research Center, Kalispell, MT in 1982. Field No. R-13

Planting Date: May 13, 1982 Size of Plot: 25 sq. ft. Date Harvested: August 20, 1982

						Weed	Control 1/
				Rate	Yield	Wild	
		Treatment		lbs ai/a	lbs/a	Oats	Setaria
2 - S - S - S						r _a r is	
Metribuzin			PES	.125	130.6	2.0	7.3
Metribuzin			PES	.25	146.0	3.8	, 8.0
Metribuzin	+	difenzoquat	PES/POST	.125 + .75	102.8	2.9	9.5
Metribuzin	+	sethoxydim	PES/POST	.125 + .25	196.9	6.6	7.5
Metribuzin	+	sethoxydim	PES/POST	.125 + .50	158.5	10.0	7.5
Metribuzin	+	diclofop	PES/POST	.125 + .75	195.0	8.9	8.0
Metribuzin	+	barban	PES/POST	.125 + .375	138.3	9.1	9.6
Metribuzin	+	pendimethalin	PES/POST	.125 + 1.0	148.9	3.3	10.0
Metribuzin	+	triallate	POST/PPI	.125 + 1.25	166.1	7.3	5.0
Metribuzin	+	propham	POST/PPI	.125 + 3.0	147.9	3.8	2.5
Check				18.2 Sid	168.1	0.0	0.0
			Lines.	Shi Panasa i			

 \bar{x}_{4} 154.4 F^{-} 1.029NSS.E. \bar{x} 26.86L.S.D. (.05)61.54C.V. %17.395

<u>1</u>/ Weed control 0-10 scale: 0 = no control; 10 = complete control Weeds rated July 20, 1982: Wild Oats (Avena fatua)

Setaria (Setaria viridis)

2/ F - value for treatment comparison

Application Data:

Ks

VRS

3

41

		Tempe	rature		
Application	Date	Air	Soil	Wind (mph)	Humidity
PPI or PES	5/13	68°F	77°F	3-5	17%
Wild oats 2 leaf	5/27	60°F	52°F	4	24%
Wild oats 3 leaf	6/1	65°F	65°F	0-2	4%
Metribuzin POST	6/11	78°F	80°F	0	12%

PPI treatments incorporated $1\frac{1}{2}-2$ inches using a hand rake Soil pH = 7.7 Soil organic matter = 4.2%

Ks VRS

TTTTT OTTOTTOTTOTTOTTOTTOTTOTTOTTOTTO	TITLE:	Chemical	Weed	Control	in	Chickpeas
---------------------------------------	--------	----------	------	---------	----	-----------

PROJECT: Weed Investigations MS 754

YEAR:

1982

LOCATION: Northwestern Agricultural Research Center

PERSONNEL: Leader - Vern R. Stewart Technician - Todd K. Keener Cooperators - Weed Research Committee MAES Chemical Company Research & Development Representatives

<u>OBJECTIVES</u>: 1. Evaluation of herbicides for effective weed control in chickpeas.

2. Evaluation of the effect of herbicides on yields.

MATERIALS AND METHODS:

Twenty-seven treatments were applied to chickpeas using pre plant incorporate, pre emergence surface, or post application techniques. The PPI treatments were applied prior to planting and incorporated 2-3 inches using a tractor mounted rototiller. A seedbed was prepared and UC-5 chickpeas were seeded using a research type plot seeder. The seeding rate was 150 lbs/a. Plots were four rows spaced 1 ft. and 18 ft. long. Pre emergence herbicides were applied immediately after seeding. Post sprays were applied according to crop or weed stage of growth. All applications were made using a tractor mounted research type sprayer. The ratings and observations were taken throughout the season. Table 2. Yields were obtained by hand harvesting 15 ft. of the four row plot. These harvest samples were allowed to air dry and threshed with a Vogel thresher.

RESULTS AND DISCUSSION:

Metribuzin + difenzoquat (.125 + .75 lb/a), ethalfluralin + EPTC (.75 + 1.5 lb/a), and pendimethalin (1.0 lb/a) treatments exceeded 800 lbs/a. Of these three combinations all but metribuzin + difenzoquat gave good overall weed control. Oxyflurorfen at 1.0 lb/a had good yields and weed control as did trifluralin + EPTC (.50 + 1.5 lb/a), and trifluralin (.50 lb/a).

This year the dinoseb (PES and PES/Post) reduced yields. This was due in part to the high air temperatures when it was applied. The dinoseb treatments last year resulted in good yields, which were applied at cooler air temperatures.

Oxyflurofen, dinoseb sequential and 2,4-DB applications caused significant reduction in stands. Table 2.

Common Name	Trade Name	Chemical Name	Company		
bentazon	Basagran	3-isopropyl-1 <u>H</u> -2,1,3-benzothiadiazin-4 (3H)-one 2,2-dioxide	BASF		
bromoxynil + MCPA	Brominal+ or Bronate	3,5-dibromo-4-hydroxybenzonitrile + [(4-chloro- <u>o</u> -toly)oxy]acetic acid	Union Carbide Rhone-Poulenc		
diclofop	Hoelon	2-[4-(2,4-dichlorophenoxy)phenoxy] propanoic acid	American Hoechst		
difenzoquat	Avenge	1,2-dimethyl-3,5-diphenyl-l <u>H</u> pyrazolium	American Cyanamide		
dinoseb	Premerge 3	2-sec-buty1-4,6-dinitrophenol	Dow		
EPTC	Eptam	S-ethyl dipropylthiocarbamate	Stauffer		
ethalfluralin	Sonalan	\underline{N} -ethyl- \underline{N} -(2 methyl-2-propenyl)-2, 6-dinitro-4-(trifluoromethyl)benzenamin	Elanco e		
metolachlor	Dual	2-chloro- \underline{N} -(2-ethyl-6-methylphenyl)- \underline{N} -(2-methoxy-1-methylethyl)acetamide	Ciba-Geigy		
metribuzin	Sencor Lexone	4-amino-6-tert-butyl-3-(methylthio)- as-triazin-5($4H$)-one	Mobay duPont		
oryzalin	Surflan	3,5-dinitro- $\underline{N}^{4}, \underline{N}^{4}$ -dipropyl sulfanil- amide	Elanco		
oxyflourfen	Goal	2-chloro-1-(3-ethoxy-4-nitrophenoxy)- 4-(trifluoromethyl)benzene	Rhom & Haas		
pendimethalin	Prowl	\underline{N} -(1-ethylpropyl)-3,4-dimethyl-2,6- dinitro-benzenamine	American Cyanamide		
profluralin	Tolban	\underline{N} -(cyclopropylmethyl)- α , α , α -trifluoro- 2,6-dinitro- \underline{N} -propyl- \underline{p} -toluidine	Ciba Geigy		
sethoxydim	noxydim Poast 2[1-ethoxyimino)butyl]-S-[2-(ethylthio) propyl]-3-hydroxy-2-cyclohexen-1-one		BASF		
triallate	Fargo	\underline{S} -(2,3,3-trichloroallyl)diisopropyl- thio-carbamate	Monsanto		
trifluralin	Treflan	α,α,α-trifluoro-2,6-dinitro- <u>N,N</u> - dipropyl- <u>p</u> -toluidine	Elanco		
	2,4-DB	4-(2,4-dichlorophenoxy)butyric acid	Union Carbide		

Table 1. Chemicals used in garbanzo bean herbicide study.

RS 43

Table_2_.

1

Asronomic data from the chickpea herbicide study. Northwestern Asricultural Research Center, Kalispell,MT. 1982 Ks VRS

4

	Date	plante	ed: May 6	, 1982 I	Date har	vested: S	Septemb	er 9,	1982
TREATMENT	AFFLN	RATE AI/A	% STAND REDUCT.	FHYTO 1/	YIELD LBS/A	FLANTS/ SQ. FT.	WEED GW I	CONTI	ROL 2/ 1 BW
TRIALLATE	PPI	1.25	0	+2	306.0	3.1	9.7	10.0	•7
METRIBUZIN	PES	.125	6.7	.8	332.1	2.6	8.5	8.0	7.3
TRIALLATE +	PPI/	1.25							
METRIBUZIN	PES	.125	0	0	659.3	2.8	9.8	10.0	7.0
TRIALLATE +	PPI/	1.25							
METRIBUZIN	FES	+25	0	.3	371.3	3.4	9.7	10.0	9.2
METRIBUZIN	PES	.25	5.0	1.0	462.9	2.9	10.0	9.0	9.0
METRIBUZIN +	PES	.125							
SETHOXYDIM	POST	.50	0	0	294.6	2.4	7.2	10.0	6.7
METRIBUZIN +	PES	.125							
DIFENZOQUAT	FOST	.75	0	.5	940.5	3.1	7.0	2.8	2.7
METRIBUZIN +	PES	.125							
DICLFOP	POST	.75	0	1.3	649.3	3.9	4.0	10.0	5.7
OXYEL UOREEN	PES	.375	0	.7	525.0	2.8	10.0	10.0	10.0
OXYFLUORFEN	PES	.50	8.5	•8	796.2	3.7	10.0	10.0	8.7
OXYFLUORFEN +	PES/	.375							
DRYZAL IN	PES	.50	0	.8	655.9	2.9	10.0	8.7	10.0
ORYZAL IN	PES	.50	0	1.7	313.2	2.7	9.0	7.8	7.0
ORYZALIN	PES	.75	õ	.5	559.8	3.0	10.0	8.7	5.7
DRYZALIN +	PES/	.75	1		00,10	0.00	1000	017	017
METRIBUTIN	PES	.125	0	0	553.7	3.4	10.0	10.0	9.3
PENDIMETHAL IN	PPT	1.0	ő	ŏ	824.2	2.9	6.0	9.0	9.5
PENDIMETHALIN.	L PPT/	1.0	v	•	02112	2	0.0	/••	/.5
FPTC	PPT	1.5	0	.2	541.7	3.2	10.0	10.0	10.0
ETHALEL UPAL TN	PPT	.75	õ	.9	597.8	2.7	9.0	10.0	0 7
ETUAL EL HEALTN.	DDT/	-75	v	•0	377.0	2 + 7	0+0	10.0	7.3
EINHLFLUKHLINT	PDT	1.5	0	0	057 7	7 5	10 0 1	0 0	0 7
TOTEL HOAL TH	PPT	50	0	.0	754 1	7 1	10+0 1	0 5	10 0
TRIFLURALIN	FF1	+ 30	U	•2	/34+1	3+1	7 . /	7+3	10.0
INIFLUKALIN T	PP1/	.50	1 7		740 1	2.0	10.0	10.0	10.0
EFIL	PPI	7 0	1.7	•0	/40+1	2+7	10.0	10.0	10.0
	FF1 CD7	3.0	7 7	+0	00/+7	3+1	0.0	10.0	0./
METULAUHLUK	PPI	2.0	3+3	• 8	373+4	2.6	5+/	7.8	5+0
PRUFLUKALIN	PPI	.5	0	0	613+/	2.5	8.3	8.0	6+/
DINUSEB	PE5	8.9	0	• 2	470.4	3.3	/+/	1.3	3./
DINUSEB	PES/	8.9				~ ~			
SEQUENTIAL	PUST	2.0	11./	3./	614.6	2.9	10.0	8.5	6+1
BENTAZUN	PUST	•2	0	• 3	560.5	2.8	3.0	6.7	2.3
2,4-DB	PUST	. •75	13.3	6.0	219.0	2.7	6+6	5.0	5.0
CHECK			0	0	473.5	3,1	0	0	0
		,		X	282.8	9.03			
				F 3/	1.637	1.653			
			· .	SEX	148.62	.832			
				LSD(.05)	296.36	1,658			
				C.V.Z	26.224	9.211			

Ks VRS 4	45					-32-					
		Tabl F001	e <u>2</u> . (com Notes from	n't) TABL	E 1						
		()) -	.73 .28 . 6			1 (8/					
		1/	PHYTOTOXIC	ITY R	ATINGS	ARE C	N A 0-	10 5	CALE; O=	NO PHYTO, 10=PLA To che	NTS DEAD DUE MICAL INJURY
		2/	WEED CONTR WEED	OL RA Codes	TINGS, : GW=	0-10 GROMWE	SCALE;	0=N EAT	O CONTRO THEIF))L, 10= COMPLETE Lithospermum ar	CONTROL
	•				BW=	WILD H	UCKWHE	AT	Polysonu	m convolvulus	
		3/	F VALUE FO	R TRE	ATMENT	COMPA	RISONS	: *	INDICAT AT THE	ES STATISTICAL S .05 LEVEL.	IGNIFICANCE
		Size	of plot:	32 sa	. ft.			a/	INDICAT GREATER	ES VALUES SIGNIF	ICANTLY .05 LEVEL).
		APPL	ICATION DA	TA				07	LESS TH	IAN THE CHECK(.05	LEVEL).
		APPL	N. DATE	TEMP AIR	(F) SOIL	₩IND MPH	REL.H	UM.	CLOUD COVER		
		PPI	5-6-82	62	53	4-6	12		SUNNY		
		PES	5-6-82	52	52	6	66		SUNNY		
		POST	6-15-82	73	72	0-2	36		SUNNY & Hot		
											5 A
		8 - 1 5 - 1 0								25 0 - 22 CHE CS	
				525 8-4 1-8-1		2					
						1.3					0

2

.

TITLE:	Chemical Weed Control in a New Seeding of Alfalfa
PROJECT:	Weed Investigations MS 754
YEAR:	1982
PERSONNEL:	Leader - Vern R. Stewart Technician - Todd K. Keener Cooperators - Weed Research Committee MAES Chemical Company Research & Development Representatives
LOCATION:	Northwestern Agricultural Research Center, Kalispell
OBJECTIVE:	Evaluation of herbicides for effective weed control in a new legume seeding.

MATERIALS AND METHODS:

Several pre plant and post emergence herbicides were evallated this year on a new seeding of Thor alfalfa. Pre plant treatments were applied to a prepared seedbed and then immediately incorporated three to six inches with a tandem disc. Alfalfa was then seeded and subsequent post emergence applications were applied according to crop or weed stages. All herbicides were applied using a research type tractor mounted sprayer. Plots were 10' x 24' or 240 sq. ft.

First cutting samples were harvested and yields determined from a 48 sq. ft. area within each plot using a Rehm forage harvester. From this a 500 gram subsample was secured in which to make weed composition counts of broadleaf and grassy weeds. These separated subsamples were then dried and percent composition of each plant component determined. The study was irrigated two times during the season.

RESULTS AND DISCUSSION:

First cutting yields were a little above average compared to a similar study done last year. All preplant applications, without sequential post applications, produced yields above the two ton mark. There were a few combination treatments (those treatments with post applications included) which yielded above two tons also. Bromoxynil, and in some cases 2,4-DB, post applications caused a decline in yields when combined with other chemicals. This phytotoxic response, was noted in the height of the alfalfa plants. Many of the treated plots which were stunted in growth at first grew out of that chemical reaction and were not detectable at harvest. This was especially true of some of the 2,4-DB treatments. The highest yield was taken from a plot that had been treated with sethoxydim alone. Only 84% of the hay was alfalfa however. The three treatments yielding above two tons per acre with greater than 95% alfalfa were; ethalfluralin (1.0 lb/a), EPTC + 2,4-DB (3.0 + 1.0 lb/a) and sethoxydim + 2,4-DB (.5 + .75 lb/a). Where bromoxynil or 2,4-DB was not used the alfalfa compostion dropped down to about 80%. The check had the highest forage yield and also the highest percentage of broadleaf weeds.

Results and Discussion (con't)

Ks VRS

5

Broadleaf weed control was good in all treatment combinations that included bromoxynil or 2,4-DB. <u>Setaria</u> sp (green foxtail) control was weak in plots treated with ethalfluralin, bromoxynil and 2,4-DB alone or ethalfluralin plus 2,4-DB.

Ks VRS 5

48

Common Name	Trade Name	Chemical Name	Company
bromoxynil	Buctril Brominal	3,5-dibromo-4-hydroxybenzoni- trile	Rhone-Poulenc Union Carbide
EPTC	Eptam	S-ethyl dipropylthiocarbamate	Stauffer
EPTC/R33865	Eptam + extender	Same chemical as above with extender	Stauffer
ethalfluralin	Sonalan	<u>N-ethyl-N-(2-methyl-2-propenyl)</u> $\overline{2,6-dinitro-4-(trifluoromethyl)}$ benzenamine	-Elanco
sethoxydim	Poast	2-[1-(ethoxyimino)buty1]-5-[2- (ethylthio)propy1]-3-hydroxy-2- cyclohexen-1-one	BASF
	2,4-DB	4-(2,4-dichlorophenoxy)butyric acid	Union Carbide
		P-set (S. Colling	5 - J. &. 5
×			
	riber i sele aste seur		

Table 1_. Chemicals used in the alfalfa herbicide study.

able	2.	Agrono	omic	data	from	the	alfalfa	herbi	cid	e study	, North	nwest	tern	Agricul-
		tural	Rese	earch	Cente	er, H	Kalispell	, MT	in	1982.	Field	No.	Y-3.	

Date Seeded: April 14, 1982 Size of Plot: 48 sq. ft.

Date Harvested: August 5, 1982

(1 cut only)

	Contraction of the	Yield		Percent	Composit	$\frac{3}{-}$
	Rate	Total	Alfalfa			Broad-
Treatment	lb ai/A	Hay	Ton/A	Alfalfa	Grass	leaves
$EPTC_{1}^{1}$	3.0	2.19a-c	1.76	80.9e	1.7	17.4ab
EPTC ¹ /	4.0	2.28a-b	1.77	78.3ef	.2	21.5ab
$EPTC/R33865^{\perp}$,	3.0	2.22a-c	1.93	87.0b-e	.2	12.8bc
$EPTC/R33865^{\pm}$,	4.0	2.14a-d	1.82	85.4c-e	.2	14.4bc
Ethalfluralin $\frac{1}{2}$,	.75	2.14a-d	1.78	84.1d-e	.0	15.9ab
Ethalfluralin $\frac{1}{2}$,	1.0	2.10a-d	2.00	95.6a-b	.2	4.2cd
Ethalfluralin ¹	1.5	2.18a-c	1.74	80.3e-f	.0	19.7ab
$EPTC_{1}^{\perp}$ + bromoxynil ₂	3.0+.25	1.97b-e	1.95	99.0a	.0	1.0d
$EPTC^{\perp} + bromoxynil^{\geq}$	3.0+.375	1.87c-f	1.86	99.6a	- 4	0.0d
Bromoxynil ² /	.375	1.81d-f	1.78	98.4a	1.4	.2d
Ethalfluralin tbromoxynil	1.0+.25	1.88c-f	1.79	94.8a-c	4.1	1.1d
Ethalfluralinbromoxynil	1.0+.375	1.58f	1.57	99.2a	• 3	.5d
$EPTC_{1}^{\perp} + 2, 4-DB_{2}^{\perp}$	3.0+.75	2.16a-d	2.08	95.9a-b	.0	4.lcd
$EPTC^{\perp}$ \pm 2,4-DB ^{\leq}	3.0+1.0	2.13a-d	2.11	99.2a	.2	.6d
$2,4-DB^{2/2}$	1.0	2.07a-d	1.90	92.9a-d	3.5	3.6cd
Ethalfluralin $\frac{1}{1}$, 4-DB $\frac{2}{2}$,	1.0+.75	1.89c-f	1.87	98.7a	• 7	.6d
Ethalfluralin 42,4-DB-	1.0+1.0	1.66e-f	1.63	98.3a	.8	.9d
Sethoxydim ² /	.20	2.34a	1.96	84.0d-e	.0	16.0a
Sethoxydim $\frac{2}{2}$ + 2,4-DB $\frac{2}{2}$.20+.75	1.94b-e	1.92	98.9a	.2	.9d
Sethoxydim ² + 2,4-DB ²	.5+.75	2.04a-d	2.03	99.4a	.2	.4d
Check	-	2.28a-b	1.61	70.4f	5.0	24.6a
			- 01-5			- (()
x14/		2.04	1.849	91.4	.913	7.664
F		2.602**	1.507NS	6.139**	1.452N	5 6.629**
S.E.x	-)	.127	.118	3.586	1.209	3.325
L.S.D. (.0	5)	.250	.231	7.049	2.377	6.535

6.231

6.357

3.923

135.5

43.378

1/ Pre plant incorporated

2/ Post emergence to weed pressure

 $\frac{3}{4}$ Percent composition determined by weight $\frac{1}{4}$ / F - value for treatment comparison

C.V. %

** Indicates statistical significance at .01 level. Means within a column followed by the same letter are not significantly different at the 5% level.

T

Table 3. Weed control data from the alfalfa herbicide study, Northwestern Agricultural Research Center, Kalispell, Mt in 1982. Field No. Y-3.

Date seeded: April 14, 1982

Date harvested: August 5, 1982

Size of Plot: 48 sq. ft.

				6/	25/82	2/				7/21/82). (
			1.6.2		Weed Con	itrol				Weed Con	trol-"	
	Rate		Height	Fan-	Lambs-	Pig-		Height	Fan-	Lambs-	Pig-	
Treatment	lb ai/A	Phyto	Inches	weed	quarter	weed	Setaria	Inches	weed	quarter	weed	Setaria
$EPTC_{\frac{1}{2}}^{\frac{1}{2}}$	3.0	.1	9.0	0.0	7.5	7.5	7.5	18.0	•5	7.5	4.6	9.6
EPTC ¹	4.0	.4	9.0	1.5	8.8	9.8	10.0	17.8	.0	7.3	8.3	10.0
$EPTC/R33865\frac{1}{2}$	3.0	1.1	8.8	2.3	6.0	7.5	10.0	18.0	1.3	3.5	7.3	10.0
EPTC/R338651/	4.0	.6	8.5	4.0	8.8	9.3	10.0	17.8	1.5	3.3	7.9	10.0
Ethalfluralin $\frac{1}{1}$	•75	.6	6.1	1.0	10.0	10.0	10.0	18.0	.0	7.3	9.5	10.0
Ethalfluralin $\frac{1}{2}$	1.0	.3	8.5	2.0	10.0	10.0	10.0	18.0	2.0	10.0	10.0	9.5
Ethalfluralin ¹	1.5	• 3	8.3	1.5	10.0	10.0	10.0	17.8	.0	10.0	9.9	7.4
$EPTC \frac{1}{1}$, bromoxynil $\frac{2}{2}$	3.0+.25	3.4	5.5	9.9	10.0	10.0	10.0	16.3	6.8	10.0	10.0	10.0
$EPTC \stackrel{\perp}{\rightarrow} bromgxynil^{\leq}$	3.0+.375	4.3	5.0	10.0	10.0	10.0	10.0	16.0	9.8	10.0	10.0	10.0
Bromoxynil ² /	.375	3.5	4.9	9.9	10.0	10.0	10.0	17.1	9.8	9.8	10.0	5.1
Ethalfluralin $\frac{1}{1}$ bromoxynil $\frac{2}{2}$	1.0+.25	2.9	6.3	9.8	10.0	10.0	7.5	17.0	9.9	10.0	10.0	7.5
Ethalfluralinbromoxynil	1.0+.375	4.4	4.4	10.0	10.0	10.0	10.0	16.0	6.9	10.0	10.0	9.3
$EPTC_{1}^{\pm} + 2, 4 - DB_{2}^{\pm}$	3.0+.75	1.8	7.5	7.0	10.0	10.0	10.0	18.0	7.1	10.0	10.0	10.0
$EPTC^{\pm \prime}$ \pm ,2,4-DB ^{$\geq \prime$}	3.0+1.0	2.5	6.1	7.8	10.0	10.0	10.0	18.0	9.4	10.0	10.0	9.5
$2,4-DB^{2}$	1.0	2.4	5.4	8.4	10.0	10.0	10.0	18.0	9.1	10.0	10.0	7.8
Ethalfluralin $\frac{1}{1}$ + 2,4-DB $\frac{2}{2}$	1.0+.75	1.9	6.9	7.8	10.0	10.0	8.8	17.9	9.5	10.0	10.0	7.5
Ethalfluralin ^{\pm} + 2,4-DB ^{\leq}	1.0+1.0	2.1	6.3	7.9	10.0	10.0	10.0	17.8	8.5	10.0	10.0	10.0
Sethoxydim2/	.20	0.0	8.8	0.0	6.8	7.5	10.0	18.0	.0	.0	5.0	10.0
Sethoxydim $\frac{2}{1}$ + 2,4-DB $\frac{2}{1}$.20+.75	1.9	6.8	8.0	10.0	10.0	10.0	17.9	6.0	6.0	6.0	9.9
Sethoxydim ² + 2,4-DB ²	.5+.75	2.0	7.1	7.5	10.0	10.0	10.0	17.8	9.9	10.0	10.0	10.0
Check	-	6.0	9.0	0.0	0.0	0.0	0.0	18.0	0.0	0.0	0.0	0.0

Preplant incorporated 1

2/3/ Post emergence to weed pressure

Ratings taken 6/25/82

Phyto = phytotoxicity ratings: 0 = no phyto; 10 = plants dead due to chemical injury

Weed Score 0-10: 0 = no control; 10 = complete control

Fanweed (Thlaspi arvense)

Lambsquarter (Chenopodium album)

Pigweed (Amaranthus rectroflexus)

Setaria (Setaria viridis)

Ratings taken 7/21/82 (see same weeds as above) 4/

۱ 37-

50

VRS 5

TITLE: Chemical Weed Control in Peppermint

PROJECT: Weed Investigations MS 754

YEAR: 1982

KS.

VRS

6

51

PERSONNEL: Leader - Vern R. Stewart Technician - Todd K. Keener Cooperators - Weed Research Committee MAES Chemical Company Research & Development Representatives

LOCATION: Henry Ficken Farm, Lower Valley, Somers, MT

<u>OBJECTIVE</u>: Evaluation of several herbicides for weed control and phytotoxicity on peppermint.

MATERIALS AND METHODS:

Pre emergent sprays were applied to a mint field severely infected with canada thistle when the weeds were $l_2^1 - 2"$ tall and the crop had not yet emerged. Post emergence sprays were applied when the weeds were l2" (as tall as the mint), and sequential treatments were applied 10 days after that. All treatments were applied with a tractor mounted research type sprayer with boom heights being altered to accomodate crop or weed height. Weed and vigor scores were taken August 13, 1982. No yield samples were taken.

RESULTS AND DISCUSSION:

The mint stand and weed pressure varied dramatically in this study. The only weed present and rated was canada thistle. Many of the herbicides evaluated were injurious to the mint, however the crop seemed to grow out of these leaf burns as the season progressed (see Table 2 for vigor notes). The weed pressure from canada thistle was so great that no treatment provided total weed control. Two treatments that gave fair control were the Bentazon sequential treatments and 2,4-DB at 1.0 lb/a.

Table 1. Chemicals used in mint herbicide study.

Common Name	Trade Name	Chemical Name	Company
bentazon	Basagran	3-isopropyl-1 <u>H</u> -2,1,3-benzothia- diazin-4(3 <u>H</u>)-one 2,2 dioxide	BASF
bromoxynil	Brominal Buctril	3,5-dibromo-4-hydroxybenzoni- trile	Rhone-Poulenc Union Carbide
diuron	Karmex	3-(3,4-dichlorophenyl)-1,1- dimethylurea	duPont
napropamide	Devrinol	$2-(\alpha-naphthoxy)-\underline{N},\underline{N}-diethylpropion-amide$	Stauffer
oryzalin	Surflan	3,5-dinitro- \underline{N}^{4} , \underline{N}^{4} -dipropylsulfanil- amide	Elanco
oxyflurorfen	Goal	2-chloro-1-(3-ethoxy-4-nitrophen- oxy)-4-(trifluoromethyl)benzene	Rhom & Haas
paraquat	Paraquat	1,1'-dimethyl-4,4'-bipyridium ion	Chevron
sethoxydim	Poast	2-[1-(ethoxyimino)buty1]-5-[2- (ethylthio)propy1]-3-hydroxy-2- cyclohexen-1-one	BASF
terbacil	Sinbar	3- <u>tert</u> -buty1-5-chloro-6-methyluracil	duPont
trifluralin	Treflan	α,α,α-trifluoro-2,6-dinitro- <u>N,N</u> - dipropyl- <u>p</u> -toluidine	Elanco
	2,4-DB	4-(2,4-dichlorophenoxy)butyric acid	Union Carbide

Ks VRS 6

-3

Ks VRS 6

Table 2. Evaluation of herbicides on peppermint. Northwestern Agricultural Research Center and the Henry Ficken Farm, Somers, MT in 1982.

		Rate	Mir	it_/	Canada Thistle-			
Treatment		lbs ai/a	Stand	Vigor	Frequency	Vigor	Control	
19 10 17 19 10 10 10 10 10 10 10 10 10 10 10 10 10		eff (andreed)					1998 ()	
Diuron	PRE	3.0	1.9	6.8	3.3	9.3	3.8	
Paraguat + X-77*	PRE	.75	1.8	7.5	2.3	7.3	4.5	
Napropamide	PRE	3.0	2.5	7.5	3.3	10.0	3.5	
Napropamide + terbacil	PRE	3.0+1.5	2.0	7.5	4.0	10.0	0.8	
Orvzalin	PRE	1.5	2.1	7.5	3.5	9.9	2.1	
Orvzalin	PRE	3.0	2.3	10.0	2.0	6.3	6.6	
Orvzalin + terbacil	PRE	1.5+1.5	3.0	10.0	2.8	10.0	4.8	
Oryzalin + triflurglin	PRE	1.0+75	1 8	10.0	1.3	0.5	2.3	
Oryzalin +	PRE	1.0+	1.0	10.0	J	9.)	2.5	
nonnonemide + torbacil	DDF	2 0+1 0	2 1	10 0	28	0.2	28	
napropamide + terbacii	FLE	2.071.0	2.1	10.0 g 1	2.0	10.0	3.0	
Oxiluorien	PRE	1.0	3.0	0.1	4.0	10.0	0.0	
Oxfluorfen	PRE	2.0	1.3	(.0	2.3	4.0	5.3	
Oxfluorfen + oryzalin	PRE	1.0+1.5	1.5	10.0	3.3	1.5	2.5	
Oxfluorfen + napropamide	PRE	1.0+3.0	1.3	9.8	4.0	8.8	1.8	
Oxfluorfen +	PRE	1.0+						
sethoxydim	POST	•5	1.5	10.0	3.5	8.9	3.0	
Oxfluorfen +	PRE	1.0+			mang, st nem	1	Sector Adjust	
paraquat + X-77*	PRE	.25	1.3	9.0	4.0	8.0	2.6	
Terbacil	PRE	1.5	1.6	10.0	2.0	4.3	6.3	
Terbacil +	PRE	1.0+						
sequential + X-77*	POST	1.0	4.1	10.0	3.5	6.5	4.5	
Terbacil + X-77*	POST	1.5	1.0	10.0	3.3	5.5	5.9	
Sethoxydim + oil* +	POST	.25+						
	SEQ.**	.50	1.8	10.0	3.5	8.8	4.3	
Bromoxynil	POST	1.0	1.3	9.4	2.8	5.3	7.1	
Bentazon + $surf(1 at/a)$	Early					1.2	1.1-	
	POST	2.0	2.4	9.5	2.3	4.5	7.5	
Bentazon + $surf(1 at/a)$ +	Early	2.0			2.5		1.7	
	POST	1 0+						
	GEO **	1 0	2)1	0 1	2 0	28	8 0	
	DLQ.	1.0	1 0	9.1	2.0	2.0	0.9	
2,4-DB	LODI	1.0	2.2	0.1	2.0	7 5	9.4	
Check			2.3	9.9	2.2	(•)	0.0	
1/ Mint: Stand = Scale (Vigor = Mint V	0-5: 0 = igor = S	none; 3 = cale 0-10:	fair; 0 = de	5 = ver ad plan	y good. ts; 10 = no	rmal he	althy	
2/ Thistles: Frequency	= denote	s degree o	f weed	pressur	e. Scale 0	-5:		
Vicon - vi	ror of +	face, f =	very ne	avy	10.			
	gor or t	mote pia		ol bool	tu.			
0 - dead p.		prous, ro		ar near	thy prants			
Control =	thistle	control.	Scale U	-10:				
0 = no cont	tro1; 10	= complete	e contr	01		-		
* Oil concentrate in set	thoxydim	l qt oc pe	er 35 g	als H ₂ 0	, X-77 with	Paraqu	at	
and Terbacil .5% V/V								
** Sequential application	n 10 day	s after pos	st appl	ication				
Thistle stages at certain	n applic	ations:	PRE		POST	SEQ	·	
			11 01		10!!	71.		
		1	12-2		12	14		
		near	vy in s	pors	neavy	bud s	Lage	

54 Ks VRS 6

Table _2. (con't)

Application Data:

		'l'emper	rature		
Application	Date	Air	Soil	Wind(mph)	Humidity
PRE POST SEQUENTIAL (10 day post)	4/30/82 6/18/82 6/28/82	58°F 92°F 78°F	54°F 85°F 71°F	0-2 0 0-3	17% 2% 43%

TITLE:	Total Vegetation Control
PROJECT:	Weed Investigations MS 754
YEAR:	1982
LOCATION:	Northwestern Agricultural Research Center, Field P-3
OBJECTIVE:	Evaluation of two herbicides at various rates to determine efficacy in total vegetation control.

MATERIALS AND METHODS:

Two experiments were conducted in a plot of ground that had been undisturbed for most of the season. A prolific and varied stand of weeds was established in this area at the time of application and are given below.

	Common Name	Scientific Name	Approx. Height
1.	Fanweed	Thlaspi arvense	14"
2.	Lambsquarter	Chenopodium album	14"
3.	Canada thistle	Cirsium arvense	1012"
4.	Black medic	Medicago lupulina	10"
5.	Orchardgrass	Dactylis glomerata	12"
6.	Quackgrass	Agropyron repens	14"
7.	Common plantain	Plantago major	10"
8.	Wild buckwheat	Polygonum convolvulus	10-12"
9.	Smartweed	Polygonum pensylvanicum	10-12"
LO.	Red clover	Trifolium pratense	12"
11.	Willow weed	Epilobium watsonii	10"
12.	Alfalfa	Medicago sativa	10"
L3.	Sow thistle	Sonchus arvensis	12"

Predominent weed species were numbered 1-8, while other species were less frequent or spotty in distribution.

One experiment was an evaluation of Stauffer's SC-0224 and Monsanto's glyphosate in rope wick applications. After 10'x10' plots had been staked out applications were made using a hand held 'walk-a-wick" apparatus. Solutions of 1:3 and 1:6 dilutions were applied to existing plants traveling across each plot twice, in perpendicular directions. Applications were made July 7, 1982 and control observations taken on July 21, 1982.

A second experiment was designed to evaluate the above mentioned chemicals as spray applications. Various rates were evaluated as well as a combination treatment with a surfactant. Herbicides in this experiment were applied to 10' x 20' plots using a research type, tractor-mounted sprayer. The spray boom was raised to accomodate the weed canopy height (see Table 1 for spray data).

-1-

RESULTS AND DISCUSSION:

<u>Walk-a-wick</u> Study - Only the top canopy of weeds, those contacting the herbicide wand, were controlled. The low growing or prostrate weeds were not effected at all. Effective control of the target weeds (taller vegetation) was achieved in all treatments. Some partial control of fanweed was seen in the plots treated with SC-0224 at the 1:3 dilution. Total control was demonstrated on almost all weeds concerned. There were a few areas in which only partial kill was observed on sow thistle with 1:3 dilutions of SC-0224, and buckwheat at both dilutions of SC-0224. From visual observations made in July no treatment or rate provided better weed control than another. Dilution rates given are chemical to water.

<u>Spray Application Study</u> - All treatments in this study performed equally well in total vegetation control. The orchardgrass/quackgrass complex was only partially controlled in the glyphosate plots as well as one SC-0224 plot. Weed control in those plots however, was very good. No single treatment, rate, or combination with surfactant performed better than any other treatment (Table 1).

Table 1. Agronomic data from the total vegetation control studies performed on the Northwestern Agricultural Research Center, Kalispell, MT in 1982.

- 2

50

		1		Weed ,Co	ontrol ^{1/}	/		
Treatment	Dilution	LQ	ST	OG/QG ²⁷	FW	BW	PT	BM
		Walk	-a-Wick	Study				
SC-0224	1:3	С	C/P ^{3/}	С	C/P	С	С	C/P
SC-0224	1:6	С	C	С	С	С	С	C/P
Glyphosate	1:3	С	С	С	С	C	С	C
Glyphosate	1:6	C	С	С	С	С	С	C
Check		0	0	0	0	0	0	0

Spray Application Study

BM
С
C
C
С
С
С
C
С

1/ Weed control rating: C = complete, P = partial, C/P = in the plots rated some plants were completely controlled whereas others were only partially burnt back or stunted. Weed Codes: LQ = lambsquarter, ST = sow thistle, OG/QG = orchardgrass/

quackgrass, FW = fanweed, BW = wild buckwheat, PT = common plantain, BM = black medic.

2/ OG/QG = orchardgrass/quackgrass rated together.

3/ C/P = partial weed control of some species within plot.

4/ S = surfactant (X-77) added .5% v/v.

APPLICATION DATA:

Date: Air temperature: Soil temperature: Volume: Nozzles: Weather:

7/7/82 68°F 65°F 26.86 gpa 8003 partly cloudy - warm OBJECTIVES:

TITLE:

1. Determine effect of early spring cutting on yield, quality stand persistance and later harvest dates of alfalfa.

Ks LEW

- 2. Determine effect of multiple cutting on yield, quality and stand persistance of alfalfa.
- 3. Determine effect of fall management on yield, quality and stand persistance of alfalfa.

PERSONNEL:

Leon E. Welty Ray Ditterline Pete Moss Gil Stallknecht

PROCEDURES:

An irrigated 'Apollo' alfalfa stand established in 1980 was subjected to early spring cutting, multiple cutting and different fall_harvest managements in 1981 and 1982. Harvest area in both years was 26 ft². Subsamples, 500 grams in size, were taken for shrink determinations and quality analyses. On May 28, 1981 the nursery was fertilized with 180 lbs/a of P $_{0_{5}}$ and 45 lbs/a of S0. The nursery was sprinkler irrigated (1.8"/irrigation)² four times in 1981 and five times in 1982. Number of frost free days were 142 in 1981 and 108 in 1982.

RESULTS AND DISCUSSION:

In 1981, yields were depressed when the alfalfa was cut four times at the prebud stage (Table 1). Yields were greatest when the alfalfa was harvested on the 10% or 50% blossum schedule. Two cuttings at about 50% bloom yielded more protein per acre than the two major cuttings of any other harvest schedule. Delaying harvest until after several hard frosts resulted in lower protein levels.

In 1982, harvesting four times at prebud reduced yields (Table 2). Harvesting early (vegetation = 15 inches) on May 25 and then maintaining a 10% harvest schedule resulted in higher yields. Greatest yields for two major cuttings were obtained when alfalfa was harvested at 90% and then 70% bloom.

Yields were greater in 1982 than in 1981 (Table 3). Harvesting early in 1981 did not hurt stands or depress yields in 1982. Harvesting on the early, 10%, 10% bloom schedule may be an alternative harvesting method to allow farmers to delay the first major harvest until late July and avoid late June and early July rains.

At Huntley in 1982, the entire nursery was cut early to eliminate variability throughout the study. Yields were maximized when alfalfa was harvested on August 11 and then on November 4 (Table 4).

_		
1000		
18 13-	ST	
Sec. 2 #	1.00	

.....

读

100

The second

	1901.				6.
Harvest Schedule	Harvest	Yield	Height	Protein	In Vitro Digestion
201201-00 20 20000 2001-00	-date-	-tons/a-	-inches-	-percentage-	-percentage-
Early, 10% bloom, 10% bloom	5/20 7/23 9/9 Total	1.06 1.58 1.76 4.40bcd ¹ /	16.3 29.8 28.8	_ 17.3	- - 62.5
Early, 10% bloom, After Frost(AF)	5/20 7/23 10/13 Total	1.15 1.52 1.56 4.23abcd	17.0 29.8 31.3	22.5 16.8 14.1	75.0 61.0 57.0
Prebud, Prebud, Prebud, Prebud	6/5 7/15 8/19 9/22 Total	1.48 0.67 1.21 0.68 4.04abc	28.5 19.3 23.5 13.8	26.8	72.3
Prebud, Prebud, Prebud, AF	6/5 7/15 8/19 10/13 Total	1.57 0.71 1.11 0.49 3.88ab	28.3 19.3 23.0 14.0	17.3 22.8 22.7 21.7	66.5 71.0 59.0 68.3
Prebloom, Prebloom, Prebloom	6/24 7/24 9/19 Total	1.73 0.97 1.56 4.26bcd	34.5 24.0 26.3	_ 17.6	_ _ 55.8
Prebloom, Prebloom, AF	6/24 7/24 10/13 Total	1.74 0.99 1.27 4.00ab	33.5 24.3 28.0	15.6 21.8 14.2	62.3 71.5 57.0
10% bloom, 10% bloom, 10% bloom	6/30 8/12 10/1 Total	1.77 1.57 1.04 4.38bcd	35.8 30.0 24.3	- - 20.5	65.5
10% bloom, 10% bloom, AF	6/30 8/12 10/13 Total	1.79 1.69 1.06 4.54cd	34.5 28.5 23.0	16.8 20.0 16.7	61.0 60.8 64.3
50% bloom, 60% bloom	7/8 9/9 Total	2.21 2.49 4.70a	38.8 40.5	16.3	58.5
50% bloom, AF	7/8 10/13 Total	2.04 1.99 4.03abc	37.0 38.0	14.2 12.0	56.3 53.0

Table <u>1</u>. Effect of harvest management on yield and quality of Apollo alfalfa at Kalispell, MT in 1981.

Ks LEW

Table 1. (con't)

Harvest Schedule	Harvest	t Yield	Height	Protein	In Vitro Digestion
-central hteres-	-date-	-tons/a-	-inches-	-percentage-	-percentage-
90% bloom, 75% bloom	7/20 10/1 Total	2.11 2.04 4.15abc	42.8 35.0	15.0	56.5
90% bloom, AF	7/20 10/13 Total	1.98 1.75 3.73ª	43.0 38.5	14.2 13.0	55.3 52.3
10% bloom, Stockpile till AF	7/8 10/13 Total	1.96 2.04 4.00ab	38.3 40.8	15.8 11.9	58.8 49.5

. ,.

 $\underline{1}/$ Means not followed by the same letter are significantly different at the .05 level.

0.01 Sec.95 LEW 1

1123

Ks

Harvest Schedule	Harvest	Yield	Height
Reiseries Apply and	-date-	-tons/a-	-inches-
Early, 10% bloom, 10% bloom	5/25 7/27 9/7 Total	1.17 2.05 1.72 4.94abcd ¹ /	15.3 29.5 29.3
Early, 10% bloom, After Frost(AF)	5/25 7/27 10/19	1.34 2.23 1.15	17.0 30.3 24.5
	Total	4.72abcd	
Prebud, Prebud, Prebud, Prebud	6/8 7/12 8/10 10/1 Total	1.54 1.21 0.99 0.75 4.49a	20.0 20.8 22.8 13.8
Prebud, Prebud, Prebud, AF	6/8 7/12 8/10 10/19 Total	1.75 1.21 0.96 0.42 4.34a	21.5 21.3 21.5 11.5
Prebloom, Prebloom, Prebloom	6/21 8/2 9/14 Total	2.22 1.59 1.42 5.23cd	35.0 26.8 19.0
Prebloom, Prebloom, AF	6/21 8/2 10/19 Total	2.05 1.59 1.06 4.70abcd	32.0 27.5 20.0
15% bloom, 10% bloom, 1% bloom	6/28 8/10 10/1 Total	2.33 1.55 1.26 5.14bcd	40.3 31.3 18.3
15% bloom, 10% bloom, AF	6/28 8/10 10/19 Total	2.16 1.55 0.89 4.60abc	39.8 29.0 15.5
50% bloom, 50% bloom, Vegetative	7/6 8/25 10/1 .Total	2.71 2.10 0.38 5.19bcd	40.5 36.3 9.8
50% bloom, 50% bloom, AF	7/6 8/25 10/19 Total	2.87 1.93 0.11 4.91abcd	43.0 33.5 5.8

Table <u>2</u>. Effect of harvest management on yield of Apollo alfalfa at Kalispell, Mt in 1982.

-4-

Table 2. (con't)

Harvest Schedule		, Harvest	Yield	Height
-6\6393 -		-date-	-tons/a-	-inches-
90% bloom, 70% bloom	8518 7955	7/19 10/1 Total	3.36 1.97 5.33a	46.0 31.5
90% bloom, AF		7/19 10/19 Total	3.17 1.51 4.68abc	47.8 32.5
15% bloom, Stockpile till AF		6/29 10/19 Total	2.65 1.90 4.55ab	41.3 37.0

. ,.

<u>1</u>/ Means not followed by the same letter are significantly different at the .05 level.

•

LEW 1

F.A

Ks

* www.c.i · ·

Yield 1981	Harvest	Yield 1982
-tons/a-	-date-	-tons/a-
1.06	5/25	1.17
1.58	7/27	2.05
1.76	9/7	1.72
4.40bcd	Total	4.94abcd
1.15	5/25	1.34
1.52	7/27	2.23
1.56	10/19	1.15
4.23abcd	Total	4.72abcd
1.48	6/8	1.54
0.67	7/12	1.21
1.21	8/10	0.99
0.68	10/1	0.75
4.04abc	Total	4.49a
1.57	6/8	1.75
0.71	7/12	1.21
1.11	8/10	0.96
0.49	10/19	0.42
3.88ab	Total	4.34a
1.73	6/21	2.22
0.97	8/2	1.59
1.56	9/14	1.42
4.26bcd	Total	5.23cd
1.74	6/21	2.05
0.99	8/2	1.59
1.27	10/19	1.06
4.00ab	Total	4.70abcd
1.77	6/28	2.33
1.57	8/10	1.55
1.04	10/1	1.26
4.38bcd	Total	5.14bcd
1.79	6/28	2.16
1.69	8/10	1.55
1.06	10/19	0.89
4.54cd	Total	4.60abc
2.21 2.49	7/6 8/25 10/1	2.71 2.10 0.38
4.70d	Total	5.19bcd
2.04 1.99	7/6 8/25 10/19	2.87 1.93 0.11
	Yield 1981 -tons/a- 1.06 1.58 1.76 4.40bcd 1.15 1.52 1.56 4.23abcd 1.48 0.67 1.21 0.68 4.04abc 1.57 0.71 1.11 0.49 3.88ab 1.73 0.97 1.56 4.26bcd 1.74 0.99 1.27 4.00ab 1.77 1.57 1.04 4.38bcd 1.79 1.69 1.06 4.54cd 2.21 2.49 4.70d 2.04 1.99	YieldHarvest $-tons/a -date-$ 1.06 $5/25$ 1.58 $7/27$ 1.76 $9/7$ 4.40bcdTotal1.15 $5/25$ 1.52 $7/27$ 1.56 $10/19$ 4.23abcdTotal1.48 $6/8$ 0.67 $7/12$ 1.21 $8/10$ 0.68 $10/1$ 4.04abcTotal1.57 $6/8$ 0.71 $7/12$ 1.11 $8/10$ 0.49 $10/19$ 3.88abTotal1.73 $6/21$ 0.97 $8/2$ 1.56 $9/14$ 4.26bcdTotal1.74 $6/21$ 0.99 $8/2$ 1.27 $10/19$ 4.00abTotal1.77 $6/28$ 1.57 $8/10$ 1.04 $10/1$ 4.38bcdTotal1.79 $6/28$ 1.69 $8/10$ 1.06 $10/19$ 4.54cdTotal2.21 $7/6$ 2.49 $8/25$ $10/1$ 4.70dTotal2.04 $7/6$ 2.04 $7/6$ 1.99 $8/25$

Table 3	. Ef	fect	of	harvest	ma	anagement	on	vield	of	Apollo	alfalfa
	in	1081	00	1 1082	a+	Kelienell	1	ALL I			
	T 11	1901	L all	u 1902	au	VATTPhET	L , 1	· 11 •			

Ks LEW 1

C

Table 3. (con't)

Vermeet	Yield	Hammaat	Yield
narvest	1901	narvest	1902
-date-	-tons/a-	-date-	-tons/a-
7/20	2.11	7/19	3.36
10/1	2.04	10/1	1.97
Total	4.15abc	Total	5.33d
7/20	1.98	7/19	3.17
10/13	1.75	10/19	1.51
Total	3.73a	Total	4.68abc
7/8	1.96	6/29	2.65
10/13	2.04	10/19	1.90
Total	4.00ab	Total	4.55ab

1/ Means not followed by the same letter are significantly different at the .05 level.

- 10

LEW 1

Ks

under a co

٠.

0.897		Surger and		
Har	vest	-0105-	Yield	-1-
-da	te-	- Q.A.T TV112	-tons/a-	- R.
8 10 To	9/3 9/7 0tal		0.82 1.46 2.28ab ¹ /	
8 11 To	/3 ./4 tal		0.89 1.22 2.11a	
8 10 To	/6 /7 tal		1.12 1.60 2.72cd	
8 11 To	/6 /4 tal		1.22 1.44 2.66ca	
8 10 To	/11 /7 tal		1.32 1.65 2.97de	
8 11 To	/11 /4 tal		1.77 1.37 3.14e	
8 10 To	/13 /7 tal	<i></i>	1.20 1.62 2.82cde	
8 11 To	/13 /4 tal		1.30 1.40 2.70cd	
8 11 To	/16 /4 tal		1.42 1.37 2.79cd	
8 11 To	/16 /4 tal		1.66 1.17 2.83cde	
8 11 To	/18 /4 tal		1.58 1.01 2.59bc	
8 11 To	/18 /4 tal		1.55 1.22 2.77cd	
11,	/4		2.56bc	

Table <u>4</u>. Effect of harvest management on yield of Apollo alfalfa at Huntley in 1982.

<u>1</u>/ Means not followed by the same letter are significantly different at the .05 level.
PROGRESS REPORT RESEARCH AGREEMENT BETWEEN MONTANA AGRICULTURAL EXPERIMENT STATION AND MONTANA WHEAT RESEARCH AND MARKETING COMMITTEE

-1-

DATE: 13 JANUARY 1983

TITLE:

Statewide Cooperative Study to Develop Annual Legume/Cereal Grain Rotations for Montana

MAJOR PROJECT OBJECTIVES:

- A. Develop cereal-legume rotations for restoring the fertility and productivity of Montana soils.
- B. Compare annual legume-small grain rotations with small grain-small grain and fallow-small grain rotations.

PERSONNEL:

Leon E. Welty - Kalispell, MT) James R. Sims - Bozeman, MT) Ronald Lockerman - Bozeman, MT Gregory Kushnak - Conrad, MT Jerald Bergman - Sidney, MT Patrick Rardon - Moccasin, MT Ronald Larson - Huntley, MT

MATERIALS AND METHODS:

Selected food and forage legumes were grown in large whole plots at six locations (Kalispell - dryland, Sidney - dryland, Bozeman - dryland, Conrad - dryland, Moccasin - dryland, Huntley - irrigated) in 1982, along with whole plots of barley, wheat and fallow. In 1983, the entire plot area will be uniform cropped to Clark barley and nitrogen rates will be stripped across whole plots.

An example of replication one at Kalispell is as follows:

In 1983, by comparing grain yields on barley whole plots to 0 nitrogen rates for each annual legume, residual N for each annual legume may be measured.

In 1982, all annual legumes and cereals were seeded in 12 inch rows at the following seeding rates: faba beans = 150-180 lbs/a, lentils = 50-60 lbs/a, grain peas = 150-175 lbs/a, garbanzo beans = 150-200 lbs/a, Austrian winter peas = 100-120 lbs/a, soybeans = 70-80 lbs/a, pink beans = 50-60 lbs/a, safflower = 20 lbs/a, wheat = 60 lbs/a and barley = 60 lbs/a. All annual legumes were treated with the proper rhizobia prior to seeding. Lentils and grain peas were treated with a mixture of captan and lindane to control seed rot and seedling diseases. Garbanzo beans were treated with captan for control of Pythium ultimum (seed rot disease) at Kalispell and Bozeman, but not at the other locations.

Parameters measured in 1982 varied somewhat with location, but generally consisted of grain and forage yield, straw yield, stand establishment, seed weight, height, test weight, emergence date, bloom date and harvest date.

Grain, hay and straw samples from each whole plot at each location were sent to Dr. James Sims for nitrate analyses. Analyses on approximately 360 total samples are being conducted and will be completed shortly. In addition, soil samples were taken in each whole plot at each location in spring (2 per replication) and in fall (1 per whole plot) at three depths (0"-9", 9"-24", 24"-48"). Approximately 864 total samples are currently being analyzed by Dr. Sims.

RESULTS AND DISCUSSION:

Contribution of the annual legumes to the cereal grain rotation, of course, cannot be determined until 1983. However, agronomic performances of the various annual legumes were measured in 1982 at each location (Tables 1-6).

<u>Kalispell</u> - Stand establishment for all annual legumes and cereal grains was adequate (Table 1). Of all the annual legumes, grain peas and lentils performed the best. Garbanzo bean yields were low (About 50% of yields obtained in 1981), probably due to moisture stress occurring at different times throughout the growing season. Soil type for this experiment was a sandy loam so plants underwent moisture stress when precipitation was not timely. Faba beans were severely stunted by a moisture stress in late May from which they never recovered. Although garbanzo bean seed was obtained, quality, color and conformation of the seed was poor due to early autumn frosts. Austrian winter pea growth was exceptional. More than two tons/a of dry matter forage was plowed down in mid-July which should provide ample N for the subsequent barley crop in 1983.

<u>Bozeman</u> - Stand establishment was good for all annual legumes and wheat, but was inadequate for barley (Table 2). Yields of all crops tended to be low because of the delayed planting caused by excessive spring precipitation. Grain yields of wheat and barley were extremely low. Evidently the wheat and barley were more affected by the late planting than some of the annual legumes. As at Kalispell, hay and green manure from the Austrian winter peas was very high.

<u>Sidney</u> - Crop emergence was good for all crops except garbanzo beans (Table 3). The garbanzo bean seed was not treated with captan and as a result stands were reduced because of seed rot. Annual legume yields were surprisingly high for this dryland location. Garbanzo beans and grain peas had respectable yields, despite the fact that these two crops should be irrigated. Faba bean was the lowest pro-

-2-

ducing crop indicating its sensitivity to drought. Most surprising was the forage yield of the Austrian winter peas, equalling yields at Kalispell and Bozeman which had more than 18 inches of crop year precipitation as compared to that at Sidney of 13.4 inches. Soybeans did not mature at Sidney in 1982 so forage yields were obtained rather than grain yields.

<u>Moccasin</u> - Seedling establishment was excellent for all crops except garbanzo beans which had only a 30% stand (Table 4). Again stand loss in this crop was due to lack of <u>Pythium ultimum</u> seed rot control because the seed was not treated with a fungicide. In spite of the poor stands, garbanzo bean yields were comparable to faba bean yields. Generally, crop yields were lower than we would expect at a location receiving 18.5 inches of crop year precipitation. Evidently precipitation timing was a critical factor. At this location Austrian winter peas were allowed to mature and grain yields were obtained. However, plow down of the Austrian winter peas was done on schedule at about the seventh flowering node.

<u>Conrad</u> - Emergence was good for all species, except garbanzo beans (Table 5). Stand failure was due to not treating the seed. Annual legume yields were respectable at this location indicating the possibility for commercial production. Dry matter forage yield of the Austrian winter peas was about 50% of the other locations. Cereal grain yields were low due to hail damage incurred on August 10. Interestingly, the garbanzo beans and faba beans were not damaged by the hail. The lentils and grain peas were harvested before the hail storm.

<u>Huntley</u> - Stands were good for all crops except garbanzo beans (Table 6). As at other locatins, the garbanzo beans were not treated with a fungicide. The emergence of 1.5 seeds/ft was surprisingly high because <u>Pythium ultimum</u> infection is usually higher under heavy soil conditions prevalant at Huntley. Garbanzo and faba bean yields were the highest of all locations within the state. In excess of two tons/a of dry matter forage was plowed down for green manure in late July. Table 1. Yield and agronomic data of annual legumes and cereal grains grown at Kalispell in 1982.

	Grain	Straw	Seed	Test		Emergence		Harvest
Crop	Yield	Yield	Weight	Weight	Emergence	Date	Height	Date
	-lbs/a-	-lbs/a-	-No./lb-	-lbs/bu-	-plants/ft ² -		-inches-	
'UC-5' Garbanzo Bean	912	1021	1101		2.3	5/9	17	9/8
'Chilean-78' Lentil	1908	2375	8731		11.3	5/2	22	8/23
'Garfield' Grain Pea	2814	2084	2122		6.3	5/3	41	8/16
'Ackerperle' Faba Bean	1116	698	1802		4.0	5/7	26	9/3
'Melrose' Austrian ^{1/}								
Winter Pea (Hay)	4400				8.7	5/4	55	7/21
'Melrose'Austrian								21
Winter Peag(Green Manur	e)				8.9	5/4	55	7/2021
'Clark' Barley ^{3/}	3283	1277	9870	50.6	14.3	4/29	26	8/25
'Newana' Wheat	2562	1910	10810	62.5	20.3	4/30		8/25

F

1/ Hay harvest taken when majority of plants had 6 to 8 flowering nodes.

2/ Date of plow down

3/ Percent plump = 90.5

AGRONOMIC NOTES:

Planting Date: April 21 on barley recrop
Fertilization in 1982: Annual Legume - 0 lbs N/a; 50 lbs P₂0₅/a; 50 lbs K₂0/a; 30 lbs S0₂/a
Cereal Grains - 75 lbs N/a; 50 lbs P₂0₅/a; 50 lbs K₂0/a; 30 lbs S0₂/a
Herbicides in 1982: Hand Weeded
Crop Year Precipitation (September 1981 thru August 1982): 18.3 inches
Annual Legume Nodulation: Lentils, Grain peas and Austrian peas = good nodulation
Faba bean and Garbanzo bean = poor nodulation

and the second sec	Grain	The late	Emergence	Heading or	Harvest	
Crop	Yield	Emergence	Date	Bloom Date	Date	Height
Haren vita H	-lbs/a-	-plants/ft ² -				-inches-
UC-5 Garbanzo Bean	1533	2.6	6/18	7/26	10/12	20
Chilean-78 Lentil	778	9.3	6/17	7/25	8/31	16
Garfield Grain Pea	1633	7.2	6/17	7/26	8/26	29
Ackerperle Faba Bean	1146	3.0	6/17	8/4	10/11	32
'Viva Pink' Dry Bean	1095	3.4	6/19	7/26	9/17	12
Melrose Austrian						
Winter Pea (Hay)	4508	6.6	6/17	8/9	9/1	48
Clark Barley	919	4.1	6/17	8/9	10/13	21
Newana Wheat	854	9.4	6/17	8/4	10/13	23
	1005	· · · · · · · · · · · · · · · · · · ·				

Table 2. Yield and agronomic data of annual legumes and cereal grains grown at Bozeman in 1982.

1/ Hay harvest taken when majority of plants had 6-8 flowering nodes. Austrian green manure plow down was 8/9/82.

AGRONOMIC NOTES

Planting Date: May 11 Fertilization in 1982: None Herbicides in 1982: Hand Weeded Nodulation: All annual legumes were nodulated Crop Year Precipitation: 18.55 inches

	Grain	Seed	Test	10120100		Harvest
Crop	Yield	Weight	Weight	Emergence	Height	Date
dular, -	-lbs/a-	-No./lb-	-lbs/bu-	-plants/ft ² -	-inches-	
UC-5 Garbanzo Bean	935	1017	59.0	2.0	15	9/15
Chilean-78 Lentil	1237	8789	59.0	5.7	12	8/17
Garfield Grain Pea	1920	2179	63.5	4.1	24	8/17
Ackerperle Faba Bean	634	1698	65.9	4.1	24	9/3
Viva Pink Dry Bean,	957	2578	60.0	2.5	10	9/3
'McCall' Soy Bean ¹	1878			5.0	16	9/16
'Hartman' Safflower,	1188	16172	39.5	100%	23	11/3
Melrose Austrian 1/2/						
Winter Pea (Hay)	4355			4.5	28	8/9
Clark Barley	2641	14247	46.0	100%	23	8/17
Newana Wheat	1367	19486	56.5	100%	26	8/17

Table 3. Yield and agronomic data of annual legumes and cereal grains grown at Sidney in 1982.

1/ Forage dry matter/a

2/ Austrian hay harvested and green manure plowed down when majority of peas had 6-8 flowering nodes.

AGRONOMIC NOTES:

Planting Date: May 27 - June 2 on fallow Fertilizer: None Herbicides: Hand Weeded Nodulation: Poor for all annual legumes Crop Year Precipitation: 13.4 inches Barley Plumpness: 95.8% Safflower Oil Content: 43.3% on dry weight basis

Crop	Grain Yield	Straw Yield	Seed Weight	Test Weight	Emergence	Emergence Date	Height	Bloom or Heading Date	Harvest Date
- 54	-lbs/a-	-lbs/a-	-No./lb-	-lbs/bu-	-plants/ft ² -		-inches-		
UC-5 Garbanzo Bean	651	1235	1167	55.5	0.8	5/17	14	7/14	9/25
Chilean-78 Lentil	943	1137	9399	60.7	12.1	5/12	12	7/2	9/5
Garfield Grain Pea	1282	1310	2113	63.4	6.8	5/13	22	6/20	9/5
Ackerperle Faba Bean	640	1299	1468	57.7	7.0	5/15	20	6/22	8/27
Melrose Austrian		- 100.000000							, ,
Winter Pea	1231	1678	4299	64.3	11.8	5/13	23	6/18	9/5
Melrose Austrian									
Winter Pea. (Green	Manure)				11.3	5/13	22	6/18	7/271/
Clark Barlev ^{2/}	2141	4544	13353	48.1	11.9	5/8	22	7/1	9/18
Newana Wheat	1716	2899	15819	61.1	12.4	5/9	25	7/5	9/18
<pre>1/ Date of plow dow 2/ Percent plump = AGRONOMIC NOTES:</pre>	m. 86.1	i i a po faga		ente distante					
Planting Date: Fertilizer: Al	April 26 1 crops -	6 lbs N/a	a; 30 lbs 1	P_0_/a.					
Cereal grains - 20 lbs N/a before's Herbicides: Treflan (0.5 lbs AI/a) on 4/23 on a					legumes				
Ce Nodulation: Al Crop Year Preci	ereal grain l annual l pitation:	ns - hand legumes we 18.5 incl	weeded ere nodula [:] hes	ted					

Table 4. Yield and agronomic data of annual legumes and cereal grains grown at Moccasin in 1982.

÷

Table 5. Yield and agronomic data of annual legumes and cereal grains grown at Conrad in 1982.

	Grain	Straw	Seed	Test		Emergence		Bloom or	Harvest
Crop	Yield	Yield	Weight	Weight	Emergence	Date	Height	Heading Date	Date
	-lbs/a-	-lbs/a-	-No./lb-	-lbs/bu-	-plants/ft ² -		-inches-		
UC-5 Garbanzo Bean	765	897	1016	57.7	1.5		15		8/27
Chilean-78 Lentil	1691	1869	9342	59.1	8.5	5/16	15	7/3	8/5
Garfield Grain Pea	2323	2097	2143	65.2	5.9	5/17	37	7/3	8/5
Ackerperle Faba Bean	1631	1910	1432	65.7	2.9	5/17	33	7/1	8/17
Melrose Austrian ^{1/}									
Winter Pea (Hay)	2280				5.2	5/17	30	7/8	7/20
Melrose Austrian									21
Winter Pea, (Green	Manure)					5/17	30	7/8	7/202/
Clark Barley	1906	774		51.2	100%	5/14	25	7/3	8/16
Newana Wheat	1884	547		61.8	100%	5/15	27	7/7	8/18
Newana Wheat	1884	547		61.8	100%	5/15	27	7/7	8/18

0

1/ Hay harvest taken when majority of plants had 6-8 flowering nodes.

2/ Date of plow down.

3/ Percent plump = 82.8%

AGRONOMIC NOTES:

Planting Date	e: April 30 on barley recrop - soil temperature $(2\frac{1}{2}") = 47$ F	
	stubble burned and cultivated prior to seeding	
Fertilizer:	All crops - 11 lbs N/a; 51 lbs P_0O_5/a with seed	
	Cereal grains - 54 lbs N/a	
Herbicides:	Annual legumes - hand weeded	
	Cereal grains - Bronate and Hoelon	
Nodulation:	Faba bean, lentil, garbanzo bean - adequate	
	Grain pea, Austrian pea - not noted	
Crop Damage:	Hail on 8/10 reduced barley yield by 20-25%, wheat yield by	5-10%,
	but did not effect annual legumes.	
	- barley was affected by Net-Spot-Blotch	
	- garbanzo bean emergence was poor - also, plants were graze	d by
	rabbits, whereas other crops were not.	100

-8-

Grain Straw Seed Test Harvest Crop Yield Yield Weight Weight Emergence Height Date -lbs/a- -lbs/a- -No./lb- -lbs/bu- -plants/ft²- -inches-945 57.8 1945 1.5 9/8 UC-5 Garbanzo 3573 30 Chilean-78 Lentil 1413 2307 8902 58.6 7.8 18 9/2 Garfield Grain Pea 2615 2425 1965 64.2 4.7 39 8/10 Ackerperle Faba Bean 2383 4884 1431 5.1 54 8/20 McCall Soy Bean 1/ 56.6 4.8 2356 2924 2870 27 9/20 Melrose Austrian 4.6 Winter Pea (Hay) 7/26-27 4720 56

9478

51.6

Table 6. Yield and agronomic data of annual legumes and cereal grains grown at Huntley in 1982.

1/ Hay harvest taken when majority of plants had 8-9 flowering nodes.

6354

4166

2/ Date of plow down.

Winter Pea (Green manure)

AGRONOMIC NOTES:

Melrose Austrian

Clark Barley

Planting Date: May 3-4 Fertilizer: None Herbicides: Annual legumes - Treflan at 0.75 lbs AI/a Barley - hand weeded Irrigation: Two inches applied (flood) on 7/8, 8/10 and 9/3 Crop Year Precipitation: 14.37 inches Nodulation: All annual legumes were nodulated 76

7/282/

8/10

58

33

4.4

16.6

TITLE:

Garbanzo Bean Seed Treatment Trial

OBJECTIVES:

1. Determine effect of fungicide seed treatment on control of <u>Pythium ultimum</u> seed rot, and on emergence, yield, seed weight and nodulation of garbanzo bean. 2. Determine effect of timing of Rhizobia inoculation on establishment, yield and nodulation of garbanzo bean.

PROCEDURES:

UC-5' garbanzo bean treated with nine fungicides were seeded at Kalispell, Montana on April 29, 1982 at a seeding rate of 200 lbs/a. Each fungicide treatment (whole plot) was split into three sub-plots which consisted of inoculating UC-5 seed with Rhizobia 48, 24 and 3 hours before planting.

RESULTS AND DISCUSSION:

Inoculation timing main effect responses and the interaction between fungicide treatment and inoculation timing were not significant. The effects of fungicide treatment on stand, nodule weight, yield and seed weight of UC-5 garbanzo bean are presented in Table 1.

Table	1.	Garbanzo	Bean	Seed	Treatment	Trial
-------	----	----------	------	------	-----------	-------

	Stand	Nodule Wt	Yield	Seed Wt
Fungicide	pl/ft ²	gr/pl	lbs/a	No./lb
Ridomil	2.6a ^{1/}	4.04a ¹ /	928a ^{1/}	917a ^{1/}
Vitavax	2.3a	3.10b	851ab	948ab
Thiram	2.4a	3.34ab	833ab	956abc
Captan	2.4a	1.14c	735bc	985bcd
Maneb	1.3b	1.58c	637cd	1007cde
Demosan	1.3b ".	1.24c	565de	1032de
PCNB	0.8ъ	1.02c	501def	1036de
Campogran	1.1b	1.38c	475def	1016de
Control ²⁷	1.0b	1.80c	411ef	1068e
Terra , Çoat	1.0b	0.92c	363f	1063e
Check ³⁷	1.5b	0.32d	297f	1046de

1/ P < 0.05 by SNK

2/ No fungicide

3/ No fungicide or Rhizobia

Ridomil, Vitavax, Thiram and Captan all controlled <u>Pythium</u> <u>ultimum</u> and resulted in adequate stands. Ridomil, Vitavax and Thiram did not have an adverse effect on nodulation, whereas the other fungicides did. Stand, nodule weight and yield were all positively related. Seed weight was negatively associated with the other three parameters.

PERSONNEL:

L. E. Welty, Montana Agric. Exp. Stn., Kalispell, MT J. A. Hall, Plant and Soil Science, MSU, Bozeman, MT D. E. Mathre, Plant Pathology, MSU, Bozeman, MT

R. H. Lockerman, Plant and Soil Science, MSU, Bozeman, MT

TITLE:	Spring	Barley
--------	--------	--------

PROJECT: Small Grains Investigation MS 756

YEAR: 1982

PERSONNEL: Leader - Vern R. Stewart Technician - Todd K. Keener Cooperating Agencies - Montana Agric. Exp. Stn. MSU USDA-SEA-AR Cooperative Extension Service

- LOCATION: Northwestern Agricultural Research Center and off station locations.
- <u>OBJECTIVES</u>: 1. To determine the adaptability of new and introduced barley varieties in western Montana.
 - 2. To assist in the state breeding program for the development of varieties with increased straw strength and disease resistance.

1982 EXPERIMENTS:

- 1. Dryland Intrastate Yield Nursery
- 2. Stiff Straw Nursery
- 3. Off Station Yield Nurseries located in
 - a) Lake County Art Mangles Farm Polson
 - b) Missoula County Rodney Vannoy Farm Greenough
 - c) Ravalli County Bob Bailey Farm Stevensville
- 4. Bonneville 2-6 Row Near Isogenic
- 5. Nuja Erectoides Yield Trial

(Experiments 4 and 5 are not discussed in this report, but were conducted as a cooperative effort with E. A. Hockett and R. F. Eslick)

RESULTS AND DISCUSSION:

Dryland Intrastate Spring Yield Nursery

Yields from the Intrastate Nursery were good yet were not as high as last year. The low yields may be a result of below normal rainfall in the months of May, June and August. There were no varieties which yielded significantly higher than the check variety (Purcell) although five varieties were significantly lower (Table 1).

Test weights were normal with about half of the varieties having a significantly higher test weight than Purcell.

Percent plumps were a little higher than normal. Several varieties produced grains with a plump count exceeding 94%.

The mean heading date was one day earlier than the preceeding year for this nursery.

-1-

Spring Barley (con't)

Lodging was light to moderate throughout the nursery. More than one-third of the nursery showed susceptibility to lodging. There were two hard driving rains this summer which also contributed to increased lodging pressure.

-2-

Scald (<u>Rynchosporium secalis</u>) was detected in all barley varitieties except Westbred 501. Scald severity was high in some varities and no doubt effected yields in many cases.

Stiff Straw Nursery

All varieties within the stiff straw nursery showed severe lodging. Two rain storms during the summer plus irrigation provided severe lodging pressure.

A high yield of 105 bu/a was recorded from ELT 15. The average yield for the test was 82 bu/a. Test weights were quite low with the majority of the varieties being below 46 lbs/bu. The low percent plump ratings could be due in part to the severe lodging. The moist environment provided by lodged grains provided a perfect environment for barley scald (<u>Rynchosporium secalis</u>). All varieties were found to be susceptible to the disease.

Off Station Yield Nurseries

a) <u>Lake County</u> - Good yields were obtained from the Lake County location although lodging was prevalent. Lodging may have been a factor in yield reduction and some effect on test weights. Karla, a tall 6-row barley, was the only variety in this nursery which showed complete resistance to lodging. This factor may have contributed to the high yield of Karla. As can be imagined percent plump numbers were lower than recording from previous years.

b) <u>Missoula County</u> - Stands were light in the nursery at the Vannoy farm. Summit was the highest yielding entry (59.9 bu/a), and had a test weight of 52.6 lbs/a. Yields were a little light for this location, whereas percent plump figures this year averaged about 8% better than last year. Test weights were normal for this location.

c) <u>Ravalli County</u> - Excellent yields were obtained in this location. Hector had the highest yield at 129.2 bu/a. The mean for the test was 116.2 bu/a. These are some of the highest nursery yields from this location in five years. Test weights were also very good ranging from 50.5 lbs/bu (Glenn) to 51.2 lbs/bu (Hector and Piroline). Percent plumps were good in this study (Table 6). Hector, Summit, Piroline and Menuet all had high yields and excellent test weights.

A four location summary of off station nurseries is shown in Tables 7 and 8. Karla was the highest in yield for all locations. Menuet and Summit had the highest test weights when averaging four locations. Height and percent plump averages are provided in Table 8.

SPRING BARLEY VARIETIES

80

```
SPRING BARLEY VARIETIES RECOMMENDED FOR WESTERN MONTANA
Six-row Type

    Unitan - dryland and irrisated

    2. Steptoe - dryland and irrisated
    3. Horsford - dryland
    4. Stepford - dryland and irrigated
      Karla - irrisated or high moisture
    5.
Two-row Type
1. Firoline - dryland and irrisated
    2. Purcell - dryland
      Summit - dryland and irrisated
    3.
    4. Georgie - irrigated and high rainfall
    5. Ingrid - irrigated
    6. Lud - irrisated
    7. Shabet - irrisated or high rainfall
    8. Ershabet - dryland or irrisated
    9. Menuet - high rainfall or irrisated
    10. Ridawn - dryland or irrisated
    11. Clark - dryland feed barley with malting potential under
              irrisation
    12. Bridser 82 - irrisated or high moisture
CHARACTERISTICS OF RECOMMENDED VARIETIES
```

```
1. Unitan
```

```
-----
```

```
a. Six-row
```

- b. Hish yielding ability
- c. Moderare lodsing resistance
- d. Early maturity
- e. Dryland or irrisated
- f. Medium kernal size
- s. Godd test weisht

2. Stertoe

- a. Six-row
- b. High yielding ability
- c. Good lodsing resistance
- d. Early maturity
- e. Dryland or irrisated
- f. Larse kernal size
- s. Low test weight

3.	Horsford 200 dom code (Medala 200000000000000000000000000000000000
	a. Six-row b. Low grain yielding ability - primarily used for has c. Good lodging resistance d. Early maturity e. Dryland f. Medium kernal size g. Moderate test weight
4.	Stepford
	a. Adapted for has production only b. Hooded six-row c. Large ketnal size d. Susceptible to stem rust
ET +	Karla
	a. Six row type b. High yielding ability c. Very good lodging resistance d. Early maturity e. dryland or irrigated f. Good shattering resistance g. Moderate test weight
Ó •	a. Two-row
	 b. High yielding ability c. Good lodging resistance d. Mid-season maturity e. Dryland or irrigated f. Good kernal size g. Good test weight
7.	Purcell a. Two-row b. High gielding ability c. Good lodging resistance
	d. Mid-season maturity e. Dryland f. Large kernal size

Recommended Spring Barley Varieties (cont'd)

8. Summit

- a. Two-row
- b. High gielding ability
- c. Good lodsing resistance
- d. Mid-season maturity
- e. Dryland or irrisated
- f. Large kernal size
- s. Good test weight
- 9. Georgie
 - -----
 - a. Two-row
 - b. Hish yielding abliity c. Good lodsing resistance
 - d. Late maturity

 - e. Irrisated
 - f. Larse kernal size
 - s. Good test weisht

10. Insrid -----

- a. Two-row
- b. Hish sieldins ability
- c. Good lodsing resistance

- d. Late maturity
- e. Irrisated
- f. Larse kernal size
- s. Good test weight
- 11. Lud ---
 - a. Two-row
 - b. Hish yielding ability
 - c. Good lodsing resistance
 - d. Late maturity
 - e. Irrisated
 - f. Large kernal size
 - s. Good test weight
- 12. Shabet
 - ----a. Two-row Samulates

 - b. Hish yielding ability
 - c. Moderate lodging resistance
 - d. Late maturity
 - e. Irrisated
 - f. Medium kernal size
 - s. Good test weight

-6-Recommended Spring Barley Varieties (cont'd) 13. Ershabet -----

```
a. Two-row
```

- b. Hish yielding ability
- c. Fair lodsing resistance
- d. Mid-season maturity
- e: Irrisated or dryland
- f. Good test weisht

14. Menuet

a. Two-row b. Hish sieldins ability c. Good lodsing resistance d. Late maturity e. High rainfall or irrigated f. Medium kernal size s. Good test weisht f. Susceptible to leaf rust and scald

15. Ridawn

----a. Two-row

- b. Adapted for has production
- c, Good yielding ability
- d. Dryland or irrisated

** *

16. Clark

- -----
- a. Two-row b. Dryland feed barley with malting potential under irrisation
- c. High vielding ability
- d. Moderate resistance to leaf spot and net blotch

· contract and

- e, Mid-season maturity
- f. Good lodsing resistance
- s. Mid-size kernal

17. Bridser-82

```
-----
```

- a. Two-row type
- b. High yielding ability
- c. Good lodging resistance
- d. Mid-season maturity
- e. High moisture or irrigated
- f. Good test wiesht

Table_1__. Asronomic date from the Dryland Intrastate Barley Nursery grown on the Northwestern Agricultural Research Center, Kalispell, MT. in 1982. Field No. A-3, randomized block design, four replications. Size of harvested plot: 32 sq. ft.

Date seeded: April 9, 1982 Date harvested: August 31, 1982

VARIETY	YIELD	TEST WT	X	HEADING	HEIGTH	LODGING	LODGING	SCALD2/	SCALD2/
I CANCE AND FREE	BU/A	LB/BU	PLUMP	DATE	INCHES	ANGLE	7.	PREV.	SEVER.
MT 38223 HECTOR/KLAGES	99.25	52.77a	93,50a	176.00a	23.925	.00b	,00b	47.50b	8,75b
CI 15229 STEPTOE	94.58	46.80b	94.75a	170,75b	25.30	2.00	43.75	27.505	3.00b
NA 9 TETON	94.25	46,15b	91.00	171.50b	25.79	2.50	62.25	30.005	4.005
MT853287 HPN/UIT //FLD	93.89	50.85	94.75a	175.50	28.35	.75b	1.25b	31.25b	5.00b
MT547123 HECTOR/KLAGES	93.67	52.10a	91.00	176.75a	26.38	.00b	.00b	42.500	7.756
FM 1 TRIUMPH	93.14	51,43a	95.75a	176,50a	24.11b	.00b	.00b	20,005	5.500
WA969175 KLAGES/ZEPHYR	91.41	51.48a	91.50	176.00a	25.89	.005	.00b	86.25	32.50
MT 38212 HECTOR/KLAGES	91.33	51.97a	90.50	173.25	24,80	.00b	.005	26.25b	5.255
MT 73708 SCASHABET	91.30	49.85	84.00	175.75a	27.26	3.25	32.50	12.505	1.755
WP 1020 MONT BLEND 1020	89.42	47.05b	94.50a	172,75	23.13b	.50b	20.00	26.25b	4.00b
MT312620 SUMMIT/HECTOR	89.02	51.75a	87,75	173.25	25.49	.00b	.00b	58.75	13.755
MT 41279 KIMBERLY/MT547143	88,97	51.68a	94.50a	175.00	23.720	.00b	.00b	56.25	11.25b
MT853231 HPN/UIT // HCR	88.86	51,20a	95,00a	172.25	28.15	.75b	2.505	60.00	15.00
CI 15514 HECTOR	88.09	51.92a	89.50	174.50	26.57	1.00	18.75	40.005	12.50b
CI 10083 INGRID	87.63	52.20a	94.25a	178.50a	25.89	.00b	.00b	90.75	43.75
MT313104 SUMMIT/HECTOR	87.47	52.08a	90.25	173.25	24.216	.00b	.00b	75.00	17,50
CI 15478 KLAGES	87.16	51.10a	87.75	178.75a	25.00	.00b	.005	62.25	22.50
CI 15857 CLARK	86,86	51.58a	94.00a	175.00	26.38	·75b	3.75b	68.50	32.50
MT311031 KLAGES/SUMMIT	86.53	51,85a	93.00a	175.25	25.20	,50b	22.50	65.00	17,50
MB731540 NORBERT, TR206	86.08	51.20a	93.25a	177.00a	25.79	.005	.00b	83.75	23.75
CI 16181 PURCELL 1/	85.81	50.15	86.50	173.75	27.07	2,75	43.75	84.75	36.25
HT 729 SUMMIT	85.80	51.63a	89.00	175.50	25.49	.00b	.00b	78.50	53.75
MT311576 KLAGES/SUMMIT	85.41	51.18a	89.50	174.25	27.17	.25b	20.00	77.25	30.00
MT 31972 KLAGES/SUMMIT	85,13	51.43a	90.50	177.00a	25.49	.00b	.00h	83.50	30.00
VD 13078 CANOVA/MENUET	84,95	52.10a	93.25a	174.50	26.18	.00b	.00b	88.25	55.00
CI 15860 KARLA	84.81	48.356	89.75	173.75	27.56	.00b	.00b	76.25	32.50
CI 13827 SHABET	83.73	50.45	89.50	177.00a	27.36	.50h	20.00	47.50h	26.25
CI 15773 MOREX	83.55	49.85	96.25a	171.756	31.40a	.50h	6.25h	28.75h	7.75b
WP 501 WESTBRED 501	83.52	49.10b	93,25a	174.00	17.72h	.00h	.00h	.00h	.00b
CI 15865 AZURE	82.97	47.30b	94.75a	173.00	28.44	.50h	5.00h	85.75	48.75
NA 12 NA 12	82.94	50.95	92.00	176.50a	25.39	.00b	.00b	72.50	35.00

-7-

Table 1. (con't)

	YIELD BU/A	TEST WT LB/BU	Z PLUMP	HEADING DATE	HEIGTH INCHES	LOD. Ang.	LOD. X	SCALD PREV.	SCALD SEVER.	
ES 7 LG SEEDED BZ	82.72	50.60	88.00	175.75a	27.85	2.00	28.75	83.75	38.75	
CI 15861 KRIS	82.48	51.23a	91.50	175.50	26.28	.00b	.00b	68.75	25.00	
MT657399 STEPTOE/KLAGES F6	82.23	49.020	93.50a	176.75a	27.26	.00b	.00b	17.50b	4.005	
MT853183 BZ AWN BYT/KGS	81.30	49.50	85,25	177.25a	19.000	.00b	.00b	81.00	23.75	
HT853320 HPN/UIT //UNION/B	81,20	49.47	95.75a	175.00	27.56	.00b	.00b	28.755	3.000	
MT853284 HPN/UIT //FLD	80.02	50.45	92.75	172.00	25.59	.75b	10.00	35.00b	4.005	
VD 3 MENUET	79.73	52,45a	96.00a	176.75a	24.21	.00b	.00b	69.75	37.50	
WP 63 GUS	79.56	47.025	90.75	173.50	18.805	.00b	.00b	40.000	13.75b	
VD 22872 PISTON	79.13	51.5Sa	94.50a	177.00a	24.025	.005	.00b	47.50b	18.75	
MT853242 HPN/UIT // HCR	78.61	50.23	93.00a	172.75	30.31a	1.00	7.50b	47.50b	11.25b	
VD 21778 BTT/ARAMIR//UNIVE	78.02	51.12	96.50a	177,75a	24.315	.00b	.00b	79.75	28.75	
VD 23878 ANDANTE	76.98	52,12a	95.50a	177.50a	24.90	.00b	.00b	45.005	15.00	
ES 10 LG SEEDED BZ	74.64	50.18a	83.00	176.50a	25.39	.75b	18.75	70.00	22.50	
MT853260 HPN/UIT // HCR	72.81	49.50	94.00a	172.50	26.28	.00b	.00b	40.005	7.75b	
VD 8477 VDH 084-77	71.50	51.23a	93.75a	178,50a	24.61b	.00b	.00b	57.50	15.00	
MT853345 HPN/UIT//SMT	70.05	48.855	84.75	170.255	24.61b	1.00	23.75	35.005	6.50h	
CI 10421 UNITAN	66.550	46.705	93.50a	171.755	29.92a	1.50	35.00	16.25h	3.00b	
CI 9558 PIROLINE	64.83b	48.525	89.75	177.75a	24.315	4.00	25.00	95.50	52.50	
WP 777 BFP 77-7	64.72b	50.70	54.755	177.25a	27.66	6.50a	50.00	69.75	23.75	
CI 5438 COMPANA	64.625	48.25b	89.00	176.25a	25.10	2.75	27.50	93.00	63.75	
MT853333 HPN/UIT//SMT	64.08b	50,33	85.7 5	169.75	24.61b	.005	.00b	57.50	21.25	
		251201		1.10.129		1949D				
X	82,95	50.36	90.88	174.93	25.64	.71	10.16	56.00	20.81	
F 3/	2.10**	26.61**	7.51**	10.08**	8.22**	3.28**	2.16**	5.26**	4.00**	
S.E.X.	5.80	.33	2.24	.71	.86	.70	10.66	10.80	8.02	
L.S.D.(.05)	16.21	.92	6.26	2.00	2.41	1,95	29.77	30.18	22.40	
C.V.%	6.99	.65	92.46	.41	3.36	8.86	104.85	19.29	38.51	
1/ Check variety										

2/ Scald prevalence = % plot infested with barles scald (Renchosporium secalis)

Scald severity = % flas leaf area infected with barley scald

3/ F value for variety comparison

a/ Values significantly greater than the check at the .05 level

b/ Values significantly less than the check at the .05 level

** Indicates statistical significance at the .01 level

-8-

Table 2. Ten year summary of yields for the spring dryland intrastate barley nursery grown at the Northwestern Agricultural Research Center, Kalispell, MT 1972-1982 (no data for 1980).

a T												01	đ
C.I. or	1	1070	1071	1075	107(1000	1070	1070	1001	7 0 0 0	•	Sta	/0
State No	Variety 1972	1973	1974	1975	1976	19.1.1	1918	19.19	1961	1982	Ave.	Irs	Piroline
CI 10421 CI 9558	Unitan 88.9 Piroline 57.1	62.1 61.8	75.2 87.1	62.9 61.2	101.9 80.8	55.6 61.9	94.5 88.1	73.4 67.5	90.0 75.4	66.6 64.8	77.1 70.6	10 10	109 100
CI 5438	Compana 44.2	50.3	76.8	49.7	72.7	55.8	82.9	52.9	83.1	64.6	63.3	10	90
CI 13827	Shabet 62.6	61.4	84.2	43.7	87.2	56.3	88.7	80.4	84.2	83.7	73.2	10	104
CI 15514	Hector 68.1	59.4	80.8	52.1	78.5	57.1	91.4	64.9	90.4	88.1	65.8	10	93
CI 15229	Steptoe 75.9	69.1	83.2	69.0	105.8	68.1	96.6	74.7	131.0	94.6	84.1	10	119
MT 729	Summit 70.0	62.9	77.8	44.6	93.3	67.6	86.3	78.5	76.9	85.8	74.4	10	105
CI 15478	Klages	62.1	82.2	51.0	96.0	63.1	93.4	71.5	83.1	87.2	76.6	9	106
CI 10083	Ingrid	53.6	82.0	45.4	83.5	62.3	86.6	65.2	79.1	87.6	71.7	9	99
CI 16181	Purcell 83.2	-	-	-	82.0	65.4	88.9	76.9	87.7	85.8	81.4	7	115
VD 3	Menuet					64.3	87.4	63.5	85.5	79.7	76.1	5	106
VD 22872	Piston						89.8	71.8	88.0	79.1	82.2	4	111
CI 15773	Morex						83.8	64.8	79.8	83.6	78.0	4	105
MT547123	Hector/Klages							69.7	92.1	93.7	85.2	3	123
CI 15857	Clark							65.7	82.7	86.9	78.4	3	113
NA 9	Teton								123.0	94.3	108.7	2	155
MT853320	HPN/UIT//Union/	BZ							97.0	81.2	89.1	2	127
MT312620	Summit/Hector								92.1	89.9	90.6	2	129
NA 12	NA 12								91.2	82.9	87.1	2	124
MT657399	Steptoe/Klages	F6			5. 2.12	8			89.2	82.2	85.7	2	122
MT311031	Klages/Summit								88.5	86.5	87.5	2	125
ES 7	LG seed Betzes		5- 10 ×						86.3	82.7	84.5	2	121
CI 15861	Kelly (ID 72 36	933)Kr	is						85.9	82.5	84.2	2	120
MT313104	Summit/Hector								84.9	87.5	86.2	2	123
MT 73708	Scashabet								83.0	91.3	87.2	2	124
MT 31972	Klages/Summit								82.7	85.1	83.9	2	120
M1853183	BZ AWN BYT/KGS								81.0	01.3	81.2	2	116
VD 04//	VDH U04-((80.9	(1.)	10.2	. 2	109
ED 10	LG Seeded BZ	00)							78 7	(4.0 g), g	81 8	2	
UL 15000	Karla (ID /2 43	502)							10.1	04.0	82 0	2	120
WA90911576	Klages/Zephyr Klages/Summit								75 2	91.4	80 1	2	115
MB7215)0	Norbert TR 206								72 2	86 1	70.2	2	113
MT 38223	Hector/Klages								12.2	00.1	00 3	1	153
MT583287	HPN/IITT//FLD									93.9	93.9	1	145
FM 1	Triumph									93.1	93.1	1	144
MT 38212	Hector/Klages									91.3	91.3	1	141
WP 1020	Mont Blend 1020									89.4	89.4	1	138
MT 41279	Kimberly/MT5471	43								89.0	89.0	1	137
MT853231	HPN/UIT//HCR									88.9	88.9	1	137
MT311031	Klages/Summit									86.5	86.5	1	133
VD 13078	Canova/Menuet									85.0	85.0	1	131
WP 501	WP 501									83.5	83.5	1	129
CI 15865	Azure	,								83.0	83.0	1	128
MT853284	HPN/UIT//FLD				12.1					80.0	80.0	1	123
WP 63	Gus									79.6	79.6	1	122
MT853242	HPN/UIT//HCR									78.6	78.6	1	121
VD 21778	BTT/Aramir//UNI	VE								78.0	78.0	1	120
VD 23878	Andante				- 14 S					77.0	77.0	1	119
MT853260	HPN/UIT//HCR									72.8	72.8	1	112
MT853345	HPN/UIT//SMT									10.5	(0.5	1	109
WP 777	BFP 77-7									64.1	61.7	1	99
MI 05333	HPN/UIT//SMT									04.1	04.L	- L	77

Table 3.

3. Agronomic data from the irrigated stiff straw nursery grown at the Northwestern Agricultural Research Center, Kalispell, MT in 1982. Field No. Y-4.

Planting Date: April 22, 1982

, 1902 Harve

Harvest Date: September 9, 1982

Size of Plot: 32 sq. ft.

Scaldof C.I. or Yield Test Wt Heading Lodging Height Variety Bu/A Lbs/Bu State No. Plump Date (cm)Angle Cf Prev Sev. Ingrid1/ 63.58 48.62 182.5 CT 10083 89.5 8.5 80.8 7.8 70.00 15.3 86.725 80.5b 6.8 3 58.5 VD Menuet 50.17a 77.00a 179.0b 53.8 17.5 VD 22872 Piston 94.03a 49.37 66.00 180.0b 79.8b 7.8 99.0 22.8 9.0 81-48-63 63.50b 184.0a 85.8 82.3 40.3 BZ*5/Mountcalm T5-7c 65.77 47.73 8.0 10.3 81-48-67 67.75 BZ*5/Mountcalm T5-7c 48.39 45.800 186.5a 85.8 7.8 55.0 41.5 12.8 ELT M22/Blazer 69.71 46.250 69.50 180.5b 7.8 98.0 5 70.5b 35.0 10.0 ELT 6 M22/Blazer 88.78a 45.58b 68.25 179.5b 58.0b 6.5 72.0 37.8 9.0 76.8 ELT 7 M22/Blazer 92.53a 46.520 71.50 180.5b 72.5b 6.3 17.5 6.3 Cambrrinus/Hassan//OSB73188-1CB 68.8 ELT 90.03a 48.27 35.25b 178.8b 64.0b 8.5 99.0 16.3 10 Fb741204/Short Wocus 83.59a 40.58ъ 5.8 85.8 21.5 4.0 ELT 13 70.00 184.7a 75.3b Fb741204/Short Wocus 40.83b 22.5 6.5 ELT 14 81.65a 77.50a 181.7 72.8b 7.5 92.0 ELT FB741204/Short Wocus 104.91a 181.7 86.8 11.3 3.8 15 43.35b 66.25 71.5b 4.5 ELT 68.34 43.70b 66.50 28.8 6.3 78.5b 85.0 21 Iris/M907//Api/CM97 180.8b 8.5 ELT 22 Wish37-7-2-1/Wocus//Jotun Der. 85.09a 44.200 68.25 179.5b 8.3 98.0 23.8 5.3 75.3b 28.8 6.3 WP 501 Westbred 501 97.59a 47.00Ъ 80.00a 177.5b 65.3b 8.3 99.0 Michigan/Diamant 57.47 44.20b 55.00b 182.5 74.8b 8.8 93.0 56.3 13.8 1020 - Blend 6.8 85.8 16.5 5.3 WP 1020 94.09a 43.30b 77.75a 173.0b 70.0b BFC 78-40 66.65 42.200 8.5 99.0 21.3 10.0 77.25a 177.7b 78.OD 44.08b 8.8 BFB 79-22 85.22a 58.3b 98.0 72.5 21.3 73.50 179.0b BFP 78-77 46.12b 8.8 99.60a 74.50 178.8b 75.8b 8.0 83.3 23.8 BFP 78-63 94.22a 45.33b 6.8 81.0 85.50a 180.5b 69.5b 30.0 7.5 177.7b 8.8 63 92.03a 44.55b 76.00 69.50 99.0 17.8 4.0 WP Gus x F<u>3</u>/ 45.35 69.85 82.28 180.3 73.67 7.6 86.7 32.1 9.15 3.189** 16.19** 10.77** 29.32** 9.05** S.E.x .6399 3.089 135.23 .525 2.709 16.495 L.S.D. (.05) 1.249 6.027 1.025 5.287 C.V. % 10.276 1.411 4.442 .291 3.678

1/ Check vareity

2/ Scald ratings - Prev = prevalence w/i plot 0-99%

Sev = severity of flag leaf infection (% flag leaf covered)

3/ F-value for variety comparison

 \underline{a} / Values significantly greater than check at the .05 level

 \dot{b} / Values significantly less than the check at the .05 level

**. Indicates statistical significance at .01 level

Table 4

Agronomic data from the off station spring barley nursery grown on the Bill Hocker and Sons farm, Ronan, MT in 1982. Random block design, four replications.

Planting Date: 4/25/82 Harvest Date: 9/8/82 Size of Plot: 32 sq. ft.

***** VARIETY MEANS *****

		HADIETY		YIELD T	EST WT	7	HEIGTH L	ODGINGL	DDGING	
C T	150/0	VARIEIT		BU/A	LB/BU	PLUMP	INCHES	ANGLE	×	
	12890	KARLA		125.17 a	46.93b	73.50	b 35.93	.00	.00	
CI	15769	GLENN		110.00	49.18b	88.75	32.78	1.50	52.25	
CI	15773	MOREX		107.16	49.77b	86.25	36.42	7.75	44 00	
CI	15478	0221KLAGES		103.08	49.72h	64.50	h 74 07	5.75	00.00	
CI	16181	0221PURCELL		100.03	49.70h	44 00	77 17	J.2Ja	98.00	a
VD	3	022 MENUET 1/		00 04	51 07	07.00	33.1/	5./58	97.00	a
MB	731540	NORBERT. TROOM		70.74	51.77	82.00	36.02	2.25	45.00	
Un	22872	PICTON		76.33	50.40 b	73.25	b 37.30	4.00	77.00	
MT	73709	CACUADET		95.87	51.85	79.50	35.93	3.50	83.25	a
CK.	74777	SCASHABET		92.98	48.18b	59.751	36.52	5.25a	99.00	a
CT	/0333	NLAGES/5/2114	(TR 441	92.16	49.85b	76.00	32.97	4.25	99.00	a
LI.	7558	0221PIRULINE		91.72	50.48b	70.75	35.04	4.75a	99.00	a
	729	0221SUMMIT		91.22	51,15	63.501	34.74	3.25	76.75	~
CI	15514	0221HECTOR		89.30	50.42b	68.50	37.99	5.50%	99.00	0
CI	15857	0221 Clark		79.84 b	49.70b	67.251	34.37	5.750	00 00	a
								JiJa	77.00	a
			x,	98.13	49.92	72.68	35 51	2 01	77 88	
			F ² /	5 03**	1) 36**	12 10*	SJ.JT	5.91	(11**	
			S.E.X	1.87	25	72.10	1 62	5.90**	0.11**	
			$I \subseteq D (05)$	12.01		2.90	1.03	• [⊥	TT. (D	
			L.B.D. (.05)	13.94	1.01	1.33	4.67	2.02	33.63	
			C.V. 10	4.97	.71	3.52	4.60	18.05	15.10	

1/ Check variety

F-value for variety comparison

2/ a/ b/ Values significantly greater than check at the .05 level

Values significantly less than check at the .05 level **

Indicates statistical significance at the .01 level

29

Table__5. Asronomic data from the off station spring barley nursery grown on the Rodney Vannoy farm, Greenough, MT. in 1982. Random block design, four replications, size of plot:32 sq.ft.

Planting date: May 10,1982 Harvest date: September 22,1982

			YIELD	TEST WT	%	HEIGTH
	VARIETY		BU/A	LB/BU	PLUMP	INCHES
MT 729	SUMMIT		59.92	50.40a	93.50	24.02
CI 15514	HECTOR		58.91	48.65	94.75	25.598
CI 16181	PURCELL		55.50	48,62	95.25	22.05
VD 3	MENUET		55,28	48.37	97.25	21.16
CI 15478	KLAGES		55.16	47,43	94.50	25.003
CI 9558	FIROLINE		54.33	49.808	95,25	26.18a
MT 73708	SCASHABET		52.42	48,65	90.25b	27.663
VD 22872	PISTON		52.37	48,05	96.25	20.77
SK 76333	KLAGES/S72114 (TR	441	51.81	47.85	96.00	23.43
MB731540	NORBERT, TR206		51.36	47.73	95.75	26,288
CI 15857	CLARK		49.53	48,00	93.50	22.74
CI 15860	KARLA		48,30	46.555	93.256	24.51
CI 15773	MOREX		46.47	47.50	94,50	27.073
CI 15769	GLENN		45.47	45,706	91.00b	25.89a
		X	52.63	48,09	94.36	24.45
		F 2/_	.60	9.44*	*2.07*	3.13**
		S.E.X.	5.49	+ 39	1.35	1.23
		L.S.D.	15.72	1.11	3.87	3.52
		C.V. %	10.44	.80	1,43	5.03
1/ Check	variety					

2/ F value for variety comparison

a/ Values significantly greater than the check at the check at the .05 level b/ Values significantly less than the check at the .05 level

** Indicates statistical significance at the .01 level

Table 6.

Agronomic data from the off station barley nursery grown on the Robert Bailey farm, Corvallis, MT in 1982. Random block design, four replications.

Harvest Date: 8/26/82 4/23/82 Planting Date: Size of Plot: 32 sq. ft.

CI 15514 MT 729 CI 15860 CI 15478 CI 16181 SK 76333 CI 9558 VD 3 VD 22872 MB731540 CI 15769 MT 73708 CI 15857 CI 15773	VARIETY 0221HECTOR 0221SUMMIT KARLA 0221KLAGES 0221PURCELL KLAGES/S72114 (TR 441 0221FIROLINE 022 MENUET 1/ FISTON NORBERT,TR206 GLENN SCASHABET 0221CLARK MOREX	HEIGTH Z INCHES FLUMP 35.33 a 94.50 34.15 a 93.00 37.89 a 93.75 37.30 a 96.75 31.99 95.00 33.07 95.50 33.96 a 95.50 31.20 97.25 32.18 95.75 37.40 a 96.25 36.91 a 95.50 37.70 a 91.50 36.52 a 91.75 38.48 a 96.25	YIELD BU/A 129.16 127.17 123.45 121.38 119.67 119.22 117.89 117.63 116.28 113.67 112.00 b111.08 b 99.23 98.83	TEST WTLO LR/RU A 55.15 55.00 51.20 ^b 54.47 54.05 54.60 55.15 55.05 54.23 54.23 54.15 50.50 ^b 53.00 ^b 53.00 ^b 53.60 ^b 52.33 ^b	DGINGLE 1.00 .00 1.75 1.75 .50 1.75 .00 .00 .00 4.00 3.	DDGING 20.00 .00 24.75 49.50 a 10.00 48.50 a .00 .00 .00 .00 81.00 a 57.00 a 24.75
	x _F 2/ S.E.x L.S.D. (.05) C.V. %	35.29 94.87 7.72** 2.07* .90 1.23 2.56 3.53 2.54 1.30	116.19 2.98* 5.17 14.78 4.45	53.75 * 13.05** .41 1.17 .76	1.00 2.31* .85 2.42 84.57	22.54 2.61* 16.49 47.17 73.17

1/ Check variety 2/ F-value for variety comparison a/ Values significantly greater than the check at the .05 level

b/ Values significantly less than the check at the .05 level
Indicates statistical significance at the .05 level

Indicates statistical significance at the .05 level

** Indicates statistical significance at the .01 level

-14-

Table _7. Summary of yield and test weight from irrigated spring barley nurseries in Lake, Missoula, Ravalli and Flathead Counties in 1982.

CI. or		38134	Yie	ld Bu/A	in fragment	251	1. 3.4	Te	st Wei	ght	
State No	o. Variety	1/	2/	3/	4/	Ave.	1/	2/	3/	4/	Ave.
CI 1586 CI 1577 CI 1577 CI 1547 CI 1618 VD MB 7315 VD 2287 MT 7370 SK 7633 CI 955 MT 72	5. Variety 50. Karla 59 Glenn 73 Morex 78 Klages 51 Purcell 3 Menuet 54 Norbert, TR206 72 Piston 58 Seashabet 53 Klages/S72114 58 Piroline 59 Summit	125.2 110.0 107.2 103.1 100.0 98.9 96.3 95.9 93.0 92.2 91.7 91.2	48.3 45.5 46.5 55.2 55.5 55.3 51.4 52.4 52.4 51.8 54.3 59.9	123.5 112.0 98.8 121.4 119.7 117.6 113.7 116.3 111.1 119.2 117.9 127.2	4/ 84.8 83.6 87.2 85.8 79.7 93.3 79.1 91.3 - 85.8	Ave. 95.5 89.2 84.0 91.7 90.3 87.9 88.7 85.9 87.0 87.7 88.0 91.0	46.9 49.2 49.8 49.7 49.3 52.0 50.4 51.9 48.2 49.9 50.5 51.2	46.6 45.7 47.5 47.4 48.6 48.4 47.7 48.1 48.7 47.9 49.8 50.4	51.2 50.5 52.3 54.5 54.1 55.1 54.2 54.2 54.2 54.2 54.6 55.2 55.0	47 48.4 49.9 51.1 50.2 52.5 51.2 51.6 49.9	Ave. 48.3 48.5 49.9 50.7 50.6 52.0 50.9 51.5 50.0 50.8 51.8 52.1
CI 1585	7 Clark	79.8	49.5	99.2	86.9	78.9	50.4 49.7	40.(48.0	55.2	51.9	51.6
	x F ⁵ /	98.1 5.03	52.6 ** .60	116.2 2.98	86.0 **2.10	88.2 **	49.9 14.36	48.1 **9.44	53.8 **	50.9 26.61	50.7 **
1/ Lake	S.E.x L.S.D.(.05) C.V.%	4.87 13.94 4.97	5.49 15.72 10.44	5.17 14.78 4.45	5.80 16.21 6.99		·35 1.01 .71	·39 1.11 .80	13.05 .41 1.17 .76	• 33 • 92 • 65	

2/ Missoula County

3/ Ravalli County

4/ Flathead County

5/ F - value for variety comparisons

** Indicates statistical significance at the .01 level

CI	or			Heigh	t (inc	hes)	7		%	Plump		
Sta	te No.	Variety	1/	2/	3/	4/	Ave.	1/	2/	3/	4/	Ave.
CI CI CI CI VD MB VD MT SK CI MT CI CI	15860 15769 15773 15478 16181 3 73154 22872 73708 76333 9558 729 15514 15857	Karla Glenn Morex Klages Purcell Menuet Norbert,TR206 Piston Scashabet Klages/S72114 Piroline Summit Hector Clark	35.9 32.8 36.4 36.0 33.2 36.0 37.3 35.9 36.5 33.0 35.0 34.7 38.0 36.3	24.5 25.9 27.1 25.0 22.1 21.2 26.3 20.8 27.7 23.4 26.2 24.0 25.6 22.7	37.9 36.9 38.5 37.3 32.0 31.2 37.4 32.2 37.4 32.2 37.7 33.1 34.0 34.2 35.3 36.5	26.6 31.4 25.0 27.1 24.2 25.8 24.0 27.3 - 25.5 26.6 26.4	31.5 31.9 33.4 30.8 28.6 28.2 31.7 28.2 32.3 29.8 30.2 31.0 31.4 30.5	73.5 88.8 86.3 64.5 64.0 82.0 73.3 79.5 59.8 76.0 70.8 63.5 68.5 67.3	93.3 91.0 94.5 95.3 97.3 95.6 96.3 90.3 96.0 95.3 93.5 94.8 93.5	93.8 95.5 96.3 96.8 95.0 97.3 96.3 95.3 95.5 95.5 95.5 93.0 94.5 91.8	89.8 96.3 87.8 86.5 96.0 93.3 94.5 84.0 - 89.0 - 89.0 - 89.5 94.0	87.6 91.8 93.4 85.9 85.2 93.2 89.6 91.5 81.4 89.2 87.7 83.3 86.8 86.7
		x F ⁵ S.E.x L.S.D. (.05	35.5 .95 1.63) 4.67	24.5 3.13 1.23 3.52	35.3 **7.72 .90 2.56 2.54	25.6 **8.22 .86 2.41 3.36	30.2 **	72.7 12.10 2.56 7.33	94.4 **2.07 1.35 3.87	94.9 2.07 1.23 3.53	90.9 **7.51 2.24 6.26	88.2 **

Table 8. Summary of height and percent plump from irrigated spring barley nurseries in Lake, Missoula, Ravalli and Flathead Counties in 1982.

1/ Lake County

2/ Missoula County

Ravalli County 3/

4/ Flathead County

5/ F - Value for variety comparison

** Indicates statistical significance at the .01 level

TITLE: Spring Oats

PROJECT: Small Grains Ivestigations MS 756

YEAR: 1982

PERSONNEL: Leader - Vern R. Stewart Technician - Todd K. Keener Cooperators - Feed Crops Committee MAES, MSU USDA-AR

LOCATION: Northwestern Agricultural Research Center

<u>OBJECTIVE</u>: To determine the adaptability of new or introduced oat varieties in Montana.

SUMMARY OF 1982 RESULTS:

Due to severe lodging resulting from heavy summer rains yields could not be taken from the 1982 oat nursery. The varieties Ogle and CI 9409 showed the least lodging tendency within the nursery.

Heading dates were approximately four days ahead of last year.

Height for all varieties was normal this year and varied according to variety differences.

SPRING DAT VARIETIES

SPRING DAT VARIETIES RECOMMENDED FOR WESTERN MONTANA 1. Casuse - irrisated or dryland Park - irrisated or high moisture conditions Basin - dryland Otana - irrisated or high moisture conditions 5. Border - irrisated CHARACTERISTICS OF RECOMMENDED VARIETIES 1. Casuse a. Pale green plant color, sellow kernals at maturity, developed in New York b. High yielding ablility c. Low test weight d. Maturity - early to mid-season e. Very good straw strength f. Resistant to Victoria blight and Helminthosporium blight s. Tolerant to 'red leaf' disease of oats 2. Park ---a. White, plump, short kernals, developed by Idaho and Montana b. High yielding ability c. High test weight d. Maturity - mid-season e. Strong straw strength f. Susceptible to Victoria blight s. Resistant to prevalent stem rust races 3. Basin ---a. White, short, plump kernals, with occassional weak awns, developed in Montana b. High vielding ability c. High test weight d. Maturity - mid-season e. Strong straw strength f. Resistant to loose and covered smut S. Resistant to most common stem rust races (not to races) 7 and 7a) h. Excellant oat for combining

- 05

Recommended Oat Varieties (cont'd)

4. Otana -----

a. Kernal white and plump

b. Dark blue-green foliage

c. Hish vieldins

d. Excellant test weight

e. Medium to strong straw f. Maturity mid-season

g. Resistant to Victoria blight

5. Border

a. Kernal white and plump

b. High yielding ability

c. Good straw strensth

d. Good test weight

e. Mid-season maturity

f. Frotein levels equal to Casuse

s. Susceptible to red leaf

Table_1	Asronomic da nursery srow Center, Kalis	ta from the L h at the Nort spell, MT. in	Iniform No hwestern 1982, F	orthweste Agricul Field No	ern State tural Re • Y-4•	es Oats searc'
	Date seeded: Size of plot	April 22,198 32 sq. ft.	12 (No)	narvest f	taken)	
V	ARIETY	ana Seata yo Seata	HEADING DATE	HEIGHT INCHES	LODGING ANGLE	LODGING %
WA 6159 CI 9297 WA 6394 ID742608 ID784122 CI 9252 ID742300 ID 75861 CI 6611 OT 307 OT 308 P 70408E CI 9266 ID751170 OT 726 CI 9263 CI 9409 CI 8263 CI 9409 CI 8263 CI 9408 CI 2053 ID766843 CI 9401 CI 9081	CI2874/CAYUSE WA 6014 MINN.II-22-220/0 CAYUSE/OTANA CAYUSE/OTANA OTANA/COKERX848 CAYUSE/OTANA PARK S 7884 (GEMINI/0 S 7886 (GEMINI/0 S 7886 (GEMINI/0 S 7886 (GEMINI/0 S 7886 (GEMINI/0 S 7886 (GEMINI/0 STOUT/P623 CAYUSE/ORBIT CAYUSE/OTANA CASCADE (RANDON/ MENOMINEE SEL NY COMPOSITE CAYUSE ORBIT//CI6936/CL MARKTON K71299/3/OTANA/2 OGLE RANDOM	CAYUSE 	186.33 186.33 185.67 185.33 185.00 184.67 184.67 184.67 184.67 184.67 184.33 184.00 184.00 184.00 184.00 184.00 183.67 183.67 183.67 183.67 183.67 183.67 182.67 182.67 182.75 182.75 179.005	48.23 45.08 46.26 48.03 44.49 48.23 45.67 49.80 44.49 50.00 48.03 48.62 47.05 48.62 47.05 48.82 50.98 47.44 43.50 42.13 46.65 52.76 42.52 45.87 46.46	7.00 6.00 5.33 7.00 6.00 5.67 6.67 7.33 5.67 5.00 5.67 5.00 5.67 5.00 5.67 5.00 5.67 5.00 5.67 5.00 5.67 5.00 5.67 5.00 5.67 5.00 5.67 5.00 5.67 5.00 5.67 5.00 5.67 5.00 5.67 5.00 5.67 5.00 5.67 5.00 5.67 5.00 5.67 5.00 5.67 5.00 5.00 5.00 6.67 4.33 7.67 5.33 7.00 6.33 7.67 5.33 7.00 6.33 7.67	50.00 73.33 75.00 45.00 66.67 68.33 53.33 61.67 70.00 40.00 46.67 66.33 45.00 63.33 41.67 78.33 66.33 80.00 65.00 80.00 71.67 25.00 83.33
1/ Check	variety	X F 2/ S.E.X. L.S.D. C.V.%	183.48 5.00** .75 2.15 .41	47.00 9.33** 31.22 91.56 66.41	5.94 .73 .99 2.82 16.64	61.57 .62 14.20 40.49 23.07

2/ F value for variety comparison

b/ Values significantly less than the check at the .05 level

** Indicates statistical significance at the .01 level.

-4-

TITLE: Spring Wheat

PROJECT: Small Grains Investigations MS 756

YEAR: 1982

PERSONNEL: Leader - Vern R. Stewart Technician - Todd K. Keener Cooperators - Wheat Research Committee MAES USDA-SEA-AR Montana Wheat Research & Marketing Comm.

- <u>OBJECTIVES</u>: 1. To determine the adaptability of new and introduced spring wheat varieties and selections.
 - 2. To aid in basic genetic research programs in spring wheat.

EXPERIMENTS FOR 1982:

- 1. Private Variety Nursery
- 2. Western Regional Spring Wheat Nursery

RESULTS AND DISCUSSION:

Good yields were recorded from the Private Variety Nursery with five varieties yielding significantly higher than the check variety, Newana. Seven other varieties tested produced above the 100 bu/a mark. Thirteen varieties yielded significantly less than the check variety, eleven of those due to severe lodging problems. Test weights were above normal throughout the study and only three varied significantly from the check variety. Heading dates were about equal to last year with those dates and heights varying because of variety differences. The majority of the taller varieties (over 39.5 inches) were susceptible to lodging. All varieties were reported to have some level of tan spot (Pyrenophora trichostonia) with seven varieties having significantly less infection than Newana (15%).

Western Regional Spring Wheat Nursery - Excellent yields were harvested from the Western Regional Spring Wheat Nursery. Of the seven varieties producing yields significantly higher than the check (Owens) six were white. The Washington Potam 7/WA6021 K790 crosses were all significantly high yielders in this study. Almost three-fourths of this nursery yielded above 103 bu/a.

Test weights were slightly above normal (last 3 years average) with the average being 55.86 lbs/bu.

Tan spot was recorded in all varieties, but did not get above a 15% infection level as was reported in WA6826 and UT541777.

Lodging was most prevalent in those varieites which produced significantly less than the check. Two Idaho varieties (ID246 and ID172) were susceptible to lodging, yet still yielded satisfactorily.

-1-

09

SPRING WHEAT VARIETIES

SPRING WHEAT VARIETIES RECOMMENDED FOR WESTERN MONTANA

Wood, Recentrels & Storage ins. Court-

Hard Red Varieties

1. Borah - non-irrisated and irrisated

Fortuna - dryland

Newana - dryland and irrisated

4. Pondera - dryland and irrisated

5. Marbers - dryland and irrisated

Soft White Variety

1. Owens - dryland and irrisated

CHARACTERISTICS OF RECOMMENED VARIETIES

Hard Red Varieties

1. Borah

a. Bearded variety b. Very high vielding ability c. Semi-dwarf type d. Medium maturity e. Low to fair test weight f. Resistant to shattering g. Resistant to stripe rust h. Susceptible to leaf rust i. Resistant to stem rust

2. Fortuna

a. Bearded variety

b. Good yielding ability

.c. Medium to tall height

d. Medium maturity

e. Hish test weisht

f. Poor to fair lodsing resistance

s. Somewhat susceptible to shattering

h. Resistant to most common races of stem rust

i. Resistant to to most common races of leaf rust

j. Fair to sood milling and baking quality

100

Recommended Spring Wheat Varieties (cont'd)

3.	N	e	W	8	٢ı	9	

- a. High yielding ability
- b. Semi-dwarf variety
- c. High test weight
 - d. Hish lodsing resistance
 - e. Good shattering resistance
 - f. Resistance to stem rust
 - s. Moderately susceptible to leaf rust

4. Fondera

- a. Hish yieldins ability
- b. Semi-dwarf variety
- c. Hish test weisht
- d. Mid-season maturity
- e. Resistance to stem and stripe rust
- f. Moderately resistance to leaf rust

5. Marbers

- ----
 - a. Good sieldins ability
 - b. Semi-dwarf variety
 - c. Good test weight
 - d. Mid-season maturity
 - e. Resistance to stem rust
 - f. Moderately susceptible to leaf rust
 - s. Moderately resistant to stripe rust

Soft White Varieties

1. Owens

- a. Bearded variety from Idaho
- b. Very high yielding ability
- c. Semi-dwarf type
- d. Medium maturity
- e. Fair test weight
- _f. Good straw strensth
- g. Good shattering resistance
- h. Resistant to stem and stripe rust

TABLE ____1_...

Asronomic data from the Private Variety Spring Wheat Nursery grown on the the Northwestern Asricultural Research Center, Kalispell,MT, in 1982, Field no, Y-4. Random block design, four replications. t

101

-4-

Date seeded: April 22,1982 Date harvested: September 22,1982 Size of plot: 32 sq. ft.

5			 							
			YIELD	TEST WT	HEADING	HETGTH		LODGING	7 TAN	
		VARIETY	BU/A	LB/BU	DATE	INCHES	ANGLE	7	SPOT	37
CI	17903	0122MCKAY	117,268	57.27	181.75	37.892	.00	. 00	7.005	
MN	70170	0122WALDRON/ERA	115.41a	57.68	180.005	36.22	.00	.00	23.75	
CI	17911	WAVERLY	114.21a	54.085	182.50	36.02	.00	.00	10.50	
NK	2631	0122755 2631	114.19a	57.50	182.50	40.752	.00	.00	2.005	
NA	79561	NA 79561	110.79a	56.15	180.255	35.93	.00	.00	10.50	
CI	17904	01200WENS	109.77	56.52	181.00	37.50a	2.00	28.75	5.75	
NA	18374	0122NHS 183-74	108.30	55.58	177.005	34.35	.00	.00	12.50	
CI	17691	0122WAMPUM (WA6105)	106.40	55.03b	181.25	41.63a	.00	.00	7.75	
WB	1	0122AIM (WPB)	105.21	57.67	179.750	35.73	.00	.00	23.75	
AG	1	SOLAR	104.50	57,27	182,75a	37.70a	.00	.00	3.25b	
NK	55114	755 5511-4	104.00	58.22	181.00	38,48a	.00	.00	6.75	
WS	4194	WS 4194	103.79	56.20	179.000	39.17a	.50	2.50	2.255	
CI	17438	0124CANDO (DURUM)	99.51	55.77	181.50	33.17	.00	.00	14.25	
CI	17430	0122NEWANA, MT 7156	98.02	56.73	181.50	34.45	.00	.00	15.00	
AG	2634	0122WALERA	95.39	56.83	182.25	35.43	.00	.00	10.00	
CI	17407	0122PRODAX/MT 34	90.71	53.80b	180,50	36.81	.75	5.00	12.50	
CI	17789	0124VIC(DURUM)	90.71	57.18	180.75	44.098	1.50	21.25	9.00	
CI	15892	0124WARD (DURUM)	89.36	57.50	179.506	42.328	1.25	20.00	4.255	
CI	17829	0122MARBERG	88.17	56.25	177.756	36.12	.50	18.75	25.00	
CI	17790	0122LEN (ND543)	85.14b	56.40	179.00b	35.53	.00	.00	28.75a	
CI	15930	01220LAF	84.71b	55.65	178,500	35.53	1.00	18.75	25.00	
C1	17282	0124CROSBY	83.976	56.40	179.756	41.73a	2.50a	36,25a	4.00b	
WS	4093	WS MP 4093	79.04b	54.185	178.50b	34.15	4.00a	85.00a	32.50a	
CI	17286	0122TIOGA	79.006	57.48	181.00	42.328	5.50a	95.75a	5.50	
CI	10003	0122THATCHER	78.055	55.75	179.756	44.29a	6.00a	87.25a	6.75	
CI	17910	0122ALEX (ND 550)	76.356	56.30	180.50	42.13a	4.00a	72.25a	5.50	
CI	17681	0122BUTTE	74.825	57.10	178.50b	39.57a	4.25a	58.75a	10.50	
RL	4352	COLUMBUS	73.305	55.90	182.50	44.983	6.25a	72.50a	11.50	
SD	2868	CENTA	70.71b	55.58	177.255	39.57a	6.75a	91.25a	3.25b	
CAL	NADA	LEADER	70.50b	55,23	180.75	39.57a	5.25a	72.25a	9.00	
CI	13596	0122FORTUNA	36.31b	54.12	180.255	40.85a	7.00a	93.25a	7,75	
I	17429	0122LEW, MT 711	66.460		181.75	42,728	6.50a	89.75a	5,50	

1 Table 1. (con't) 92.33 56.31 180.33 X 38.65 2.05 30.29 11.16 14.35** 3.88** 15.68** 17.45**11.65**12.67** F 3/_ 5.02** .55 .39 4.20 S.E.X .80 .75 10.41 3.71 11.79 1.54 2.24 L.S.D. (.05) 1.11 2.10 29.25 10.43 .98 .22 C.V. % 4.55 2.07 36.52 34.38 33.27 1/ Check variety 2/ Tan spot (Pyrenophora trichostoma) Ocular rating, % flag leaf infected. 3/ F value for variety comparison a/ Values significantly greater than the check at the .05 level b/ Values significantly less than the check at the .05 level ** Indicates statistical significance at the .01 level A> . . ' .

Table_2_. Asronomic data from the Western Resional Sprins Wheat Nursers grown on the Northwestern Asricultural Research Center, Kalispell, MT. in 1982. Field No. Y-4. Random block design, four replications.

Date seeded: April 22, 1982 Date harvested: September 16,1982 Plot size: 32 ft

YIELD TEST WT HEADING HEIGTH % TAN LODGING LODGING VARIETY BU/A LB/BU DATE INCHES SPOT ANGLE X 236 0120FLR/5/BBII/4/7*SFL/3/ ID 3/ 131.31a 57.80 182.75a 42.72a 4.25 .00 .00 ID 247 COMPLEX PEDIGREE 21 129.76a 57.08 181.75a 39.17a 2.00 .00 .00 POTAN 70/WA 6021,K790 WA 6919 128.95a 31 58.02a 180.00 37.40 5.00 .00 .00 WA 6920 POTAM 70/WA 6021,K790 31 127,59a 57.90 180.75 37.50 5.25 .00 .00 6918 WA POTAM 70/WA 6021,K790 127.02a 31 57.73 180.00 36.12 7.50 .75 6.25 POTAM 70/WA 6021,K790 WA 6917 126.62a 31 58.58a 181.00 37.60 7.50 .00 .00 6916 WA POTAM 70/WA 6021,K790 31 126.57a 57.60 179.00b 36.52 6.25 .00 .00 ID 234 0120FLR/5/BBII/4/7*SFL/3/ 31 122.50 56.77 182.50a 42.428 4.00 1.25 7.50 ID 235 0120FLR/5/BBII/4/7*SFL/3/ 31 122.10 56.75 183.75a 40.16a 4.00 .00 .00 ID 172 0120HYSLOP/FIELDER 31 119.68 56.67 182.00a 37,60 5.00 .75 22.50 224 0120FIELDER/5/BB II/4/7*S ID 3/ 119.00 55.43b 182.75a 38.39a 6.25 .00 .00 233 0120FLR/5/BBII/4/7*SFL/3/ ID 116.35 31 56.68 4.00 183.00a 42.133 .00 .00 UT 209 UTAH W498-259/PROSPUR 21 116.04 56.50 179.50 41.93a 5.50 .75 18.75 CI 17904 01200WENS 1/ 3/ 114.72 56.83 180.50 36.32 7.75 .00 .00 ΙŪ 246 COMPLEX PEDIGREE 31 112.91 53.12b 178.75b 37.40 11.25 2.75a 36.25a 6830 0120PDTAM 70/WA6021 WA 21 112.30 55.38b 180.25 37.70 12.50 .00 .00 CI 17903 0122MCKAY 21 112.01 57.45 180.75 37.70 9.00 .00 .00 WA 6826 0120PDTAM 70/WA6021 180,75 21 111.90 56.70 38.88a 15.00a .00 .00 UT541774 0122BANNOCK/738-274-1 21 111.28 56.95 179.255 38.29a 15.00a .00 .00 WA 6831 0120POTAM 70/WA6021 21 109.12 55.10b 180.75 37.30 11.25 .00 .00 UT541777 0122BANNOCK/738-274-1 21 107.72 56.00 178.755 37.80 12.50 .00 .00 CI 17911 WAVERLY 31 106.67 52,55b 181.00 35.73 7.75 .00 .00 190 0120ID0046/7/ID0045/6/ ID 31 103.64b 55.35b 181.25 39.07a 12.50 .00 .00 UT 1655 UTAH W498-165/PRODAX 21 99.91b 53.05b 180.75 38.48a 8.75 .75 24.75 227 ID COMPLEX PEDIGREE 31 99.650 52.00b 181.25 36.61 11.25 .00 .00 UT 391 UTAH W498-165/PEAK 72 21 98.795 57.83 180.75 39.96a 4.00 2.00a 15.00 WA 6921 LIFN#2-N1220/POTAM 70 31 98.295 55.83 178.505 37.11 12.50 3.00a 61.00a 232 0120ID0118/DASIS/3/5*TWIN ID 31 94.425 51.52b 180.25 37.80 12.50 1.25 7.50 UT 2746 UTAH W498-165/BORAH 2/ 89.515 55.38b 180.50 36.42 6.50 2.50a 43.50a ID 238 COMPLEX PEDIGREE 21 85.34b 54.935 177.25b 34.94 5.00 .75 24.75 SD 8015 JAMES/DAWN 21 80.11b 57.90 176.75b 37.11 8.75 1.50 31.25 CI 4734 0120FEDERATION 31 59.26b 50.256 179.75 38.19 7,75 2.25a 48.50a

6

Table _2.	(con c)			YIELD	T.W.	HEADING	HT.	TAN SPOT	L.A.	LOD.%
		Х		110.03	55.86	180.52	38.20	8.06	. 63	10.86
		F 5/	(17.48**	28.78**	16.25**	7.73**	2.25**	1.92**	1.88*
		S.E.X.		3.90	.39	.39	.70	2.39	.68	12.40
		L.S.D.(.05)	10.94	1.11	1.10	1.96	6.71	1.90	34.82
		C.V. %		3.58	.71	.22	1.82	29,62 10	06,98	114.17
									3.2.7	
4 / / 1	and and the second reserves									

-1

1/ Check variety

.

2/ Hard red spring wheat variety

3/ Soft white spring wheat variety

4/ Tan spot (Pyrenophora trichostoma) Dcular rating, % flag leaf infected

5/ F value for variety comparison

* Indicates statistical significance at the .05 level

****** Indicates statistical significance at the .01 level

a/ Values significantly greater than the check (.05 level)

b/ Values significantly less than the check (.05 level)

A>
		Northwestern Agriculture	L. Kese	earch C	enter,	Kalispel.	L, MT 1	979-198	2.
С.	I. or					4 () 3 (3)		Sta.	70
St	ate No.	Variety	1979	1980	1981	1982	Ave.	Yrs.	Owens
CI	4734	Federation	78.2	45.2	42.4	59.3	56.3	24	57
CI	17904	Owens (ID 0185)	114.8	93.9	73.5	114.7	99.2	4	100
CI	17903	Mckay (ID 0167)		98.1	93.9	112.0	101.3	3	108
UT	541774	Bannock/738-274-1		92.2	65.1	111.3	89.5	3	95
UT	541777	Bannock/738-274-1		83.7	65.5	107.7	85.6	3	91
ID	172	Hyslop/Fielder		69.5	51.6	119.7	80.3	3	85
WA	6831	Potam 70/WA 6021			95.0	109.1	102.1	2	108
WA	6830	Potam 70/WA 6021			94.1	112.3	103.2	2	110
WA	6826	Potam 70/WA 6021			92.0	111.9	102.0	2	108
ID	232	ID0118/Oasis/3/5*Twin/II)		83.7	94.4	89.1	2	95
ID	236	FLR/5/BBII/4/7*SFL/3/AS			74.2	131.3	102.8	2	109
ID	235	FLR/5/BBII/4/7*SFL/3/AS			73.4	122.1	97.8	2	104
ID	190	ID 0046/7/ID 0045/6/			70.6	103.6	87.1	2	93
ID	224	Fielder/5/BBII/4/7			66.5	119.0	92.8	2	99
ID	233	FLR/5/BBII/4/7*SFL			65.9	116.4	91.2	2	97
ID	234	FLR/5/BBII/4/7*SFL			61.3	122.5	91.9	2	98
ID	247	Complex Pedigree				129.8	129.8	1	113
WA	6919	Potam 70/WA 6021, K790				129.0	129.0	1	112
WA	6920	Potam 70/WA 6021, K790				127.6	127.6	1	111
WA	6918	Potam 70/WA 6021, K790				127.0	127.0	1	1
WA	6917	Potam 70/WA 6021, K790				126.6	126.6	1	110
WA	6916	Potam 70/WA 6021, K790				126.6	126.6	1	110
UT	209	Utah WA498-259/Prospur				116.0	116.0	1	101
ID	246	Complex Pedigree				112.9	112.9	1	98
CI	17911	Waverly				106.7	106.7	1	93
UT	1655	Utah W498-165/Prodax				99.9	99.9	1	87
ID	227	Complex Pedigree				99.7	99.7	1	87
UT	391	Utah W498-165/Peak 72				98.8	98.8	1	86
WA	6921	LIFN*2-N1220/Potam 70				98.3	98.3	1	86
UT	2746	Utah W498-165/Borah				89.5	89.5	1	78
ID	238	Complex Pedigree				85.3	85.3	1	74
SD	8015	James/Dawn				80.1	80.1	1	70

Table <u>3</u>. Summary of the Western Regional Spring Wheat Nursery yields grown at t Northwestern Agricultural Research Center, Kalispell, MT 1979-1982.

-1-

TITLE: Winter Wheat

PROJECT: Small Grain Investigations MS 756

YEAR: 1982

PERSONNEL:

Leader - Vern R. Stewart Technician - Todd K. Keener Cooperators - G. A. Taylor, Plant and Soil Science, MSU J. A. Hoffman, USDA-ARS, Logan, UT Cooperating Agencies - Montana Wheat Research Committee Montana Agricultural Experiment Station Montana Wheat Research & Marketing Committee Montana Cooperative Extension Service

LOCATIONS:

Northwestern Agricultural Research Center Lance Claridge Farm, Kalispell Ross McInyre Farm, Stevensville Joe Holland Farm, Plains Arthur Mangles Farm, Polson Bill Lucier Farm, Missoula

OBJECTIVES:

- 1. To obtain information necessary to make varietal recommendations and evaluate new varieties and selections.
- 2. To obtain from a cooperative program with the USDA-ARS in the Pacific Northwest wheat germ plasm or varieties that have resistance to dwarf smut (<u>Tilletia controversa Kuhn</u>) and stripe rust (<u>Puccinia striiformis West.</u>)

INTRODUCTION:

The winter of 1982 was near normal for temperature, however precipitation levels were higher than normal in December, January and February. Because this precipitation came mainly as snow we did have relatively good snow cover during the winter season, and during the period when dwarf smut infections would be developing. With this snow cover we did not have the level of dwarf smut that I would have anticipated in the Stillwater area.

Precipitation levels were below normal in May and June and quite low in August. Somewhat higher in July, however the pattern was such that we did not have a high level of stripe rust or other foliar diseases developing in winter wheat.

In September and October of 1982 we established a new study to evaluate the effects of tillage on the levels of dwarf smut over a long period of time. In this study we will be evaluating three tillage types in our dwarf smut field laboratory located on the Lance Claridge farm northwest of Kalispell. This study is planned to run a minimum of five years, but we would prefer a 10 year period to determine the effect of tillage methods on dwarf smut inoculum levels.

1982 EXPERIMENTS:

- Western Regional Hard Red Winter Wheat Nursery

 (a) Kalispell
 - (b) Stillwater
- 2. Western Regional White Winter Wheat Nursery (a) Kalispell
 - (b) Stillwater
- 3. USDA-ARS Cooperative Studies Stillwater
 - (a) Fungicide Evaluations
 - (b) Breeding Lines Tested for Smut Resistance
 - (c) Cooperative Dwarf Bunt Study with the Peoples Republic of China
- 4. Off Station Variety Nurseries
 - (a) Ross McIntyre Farm, Stevensville, Ravalli County
 - (b) Bill Lucier Farm, Missoula, Missoula County
 - (c) Art Mangles Farm, Polson, Lake County
- Preliminary Evaluations of Hard Red Winter Wheat

 (a) Kalispell

1982 RESULTS:

Western Regional Hard Red Winter Wheat Nursery - Kalispell

In 1982 the yields were considerably higher than in 1981. This is in part due to timeliness of rain, and a less foliar disease problem than we had in 1981. The highest yielding variety in the test was OR7921 (115.3 bu/a) which was significantly higher than the variety Crest used as a check. It was not statistically higher than Winridge, a newly released variety. The Oregon variety did have 1.12% smut factor which could be a little high for a light smut year, when compared to Karkof 5.5%. The variety has good straw strength and has an earlier heading date than Winridge, but somewhat later than Crest. There were 10 entries that exceeded 100 bu/a in this test, but only one of those showed fair smut resistance (OR 7930 -.62%). MT77066 yielded 100 bu/a, shows good smut resistance, but has a very weak straw. Weston, an Idaho variety, shows good smut resistance as does UT125327. These varieties yielded 98 plus bu/a.

The evaluation for smut resistance is just fair in this test. The smut level of Karkof, a very susceptible variety, was only 5.5% and a variety having 1% would be suspect as far as being smut susceptible under a heavy infestation. UT125327, ID0243, ID002616 and UT125512 had zero dwarf smut readings. Table 1

Test weights were somewhat below the standard 61 lbs/bu. Only ORCR8107 exceeded the standard weight.

Lodging was quite severe. There are a few varieties that have sufficient straw strength for this location. WA6816 and OR7921 had fair straw strength. Most of the Idaho and Montana lines are very susceptible to lodging.

Western Regional Hard Red Winter Wheat Nursery - Stillwater

Yields continue to increase each year in this location. The mean for this year was 83 bu/a with a range of 94.1 to 64.79 bu/a. UT125327 is the highest yielding entry in the nursery and has good smut resistance in this test. In the Kalispell location it showed no smut, whereas in the Stillwater location it showed .12% smut. Winridge, a new release yielded 92.5 bu/a which is not significantly higher than Crest, and shows a fair degree of smut resistance. ID0215 and ID0216 are the only two varieties that show no smut in this location.

Winridge had a test weight of 62.5 lbs/bu which is about the mean level of the entire experiment.

Dwarf smut at this location was light to moderate and Karkof, a very susceptible variety only had 2.25% whereas Wanser, probably equal in susceptibility, is 3.5%. MT 77002 was 5% which indicates to the author that this variety is even more susceptible than Karkof. With the snow cover at this location, we would have anticipated higher levels of dwarf smut than we found, however this is due in part because snow cover did not come early in the fall of 1981.

Six varieties showed a degree of lodging, from moderate to severe, in this study. This is in contrast to the Kalispell location where lodging was severe in most entries in the test. Table 2

Western Regional White Wheat Nursery - Kalispell

Luke was the high yielding entry in this nursery with 140.9 bu/a which is 23 bu/a greater than the mean. Lewjain, a newly released variety, was approximately 10 bu/a less in yield, however this difference was not statistically significant. There were 10 varieties or lines that exceeded 130 bu/a in this study. Yields ranged from 59.7 bu/a to 140.5 bu/a.

Test weight mean was 58.56 lbs/bu. The variety Daws had the highest test weight at 62.37 lbs/bu. Luke reached the standard of 60 lbs/bu and Lewjain was 59.4 lbs/bu.

Smut levels were moderate at this location. The susceptible variety Karkof had a reading of 5.25%. WA6696 was close behind (4.75%), Luke and Lewjain both had 1% plus dwarf smut levels. It should be noted that not a variety in this test was 100% smut free.

Lodging evaluation are significant. We have differential lodging in this experiment between varieties. Moro, Elgin and Karkof were severely lodged, Luke was lightly lodged, about 12%, whereas Lewjain showed no indication of lodging in this location. Table 3

Western Regional White Wheat Nursery - Stillwater

Yields at this location are quite high for the white wheats. Using Luke as the check (101.11 bu/a) we only find four varieties that are significantly higher in yield than Luke. The mean for the nursery was 91.73 bu/a. This illustrates a rather high productive level of these varieties in this test. Test weights are lighter than we would have anticipated for this loca-

tion.

Karkof had a smut level of 4.75% which is relatively light. It is interesting to note that Nugaines had approximately the same level of dwarf smut (4%) as we found in Karkof. Table 4

Off Station Nurseries

Four off station nurseries were planted in the fall of 1981. These were located in Missoula, Ravalli, Lake and Sanders Counties. Of the four planted only two were harvested in the fall of 1982.

<u>Missoula County</u> - In this location the nursery was seeded in a field that had been prepared for winter wheat. The operator then seeded the remaining part of the field and seeded through the nursery. In my 30 years of experience, I do not think this has ever occurred in my cooperative work.

Ravalli County - This was located on the Ross McIntyre Farm in Ravalli County. A grower we have worked with for many years. The nursery was located in a fallowed area with no crops seeded around it. Wild game found the seeding and selectively grazed varieties, thus destroying any possibility of obtaining data.

Sanders County - This nursery was located on the Joe Holland farm near Plains, MT. Luke was the high yielding variety in the nursery with 114.3 bu/a. Crest was the lowest with 58.62 bu/a. Winridge, a newly released hard red variety yielded 75.2 bu/a and was significantly lower in yield than the variety Luke.

No variety was entirely free of dwarf smut, however the level was not high, 4% reading. Lewjain and Winridge had the lowest smut readings in the test. Luke was somewhat higher than Lewjain with 1.8%.

Test weights varied from about 61 lbs/bu to 56 lbs/bu with a mean of 58.7 lbs/bu. Luke and Lewjain came close to meeting the 60 lbs/bu standard.

Lodging was quite high in the hard red winter varieties with no real severe problem in the soft whites except Luke had 24% lodging compared to Lewjain with 12%. Table 5

Lake County - This nursery was grown on the Art Mangles farm near Polson, MT. Yields were quite low, but understandably so in this rather light sandy soil. The mean was 43.46 bu/a. Luke was the high yielding variety in the test. Test weights were quite good in this location with a mean of 60.2 lbs/bu, with a range of 61.75 lbs/bu down to 57.8 lbs/bu. All the varieties were quite short. Table 6

Preliminary Yield Evaluation Nursery - Kalispell

This nursery contains preliminary lines developed by Dr. Allan Taylor, Montana State University winter wheat breeder. We evaluated these lines for yield and smut resistance primarily. The mean yield of this nursery was 67.6 bu/a. The test weights were quite good, with a mean of 61 lbs/bu. Lodging was light to moderate with some varieties lodging severely, particularly those with Yogo background. -5-

Smut was light to moderate throughout the nursery and it should be noted there was not a variety that was free of dwarf smut in this study. Considering the parentage of the material in the test we would not have anticipated any degree of smut resistance. Table 7

RETTERATE GRADUTES

. .

WINTER WHEAT VARIETIES

WINTER WHEAT VARIETIES RECOMMENDED FOR WESTERN MONTANA

Hard Red Varieties

- 1. Crest dryland 2. Winalta - dryland 3. Cheyenne - dryland
- 4. Winridse dryland

Soft White Varieties

1. Luke - Dryland or irrisated

CHARACTERISTICS OF RECOMMENDED VARIETIES

1. Crest

- a. Bearded variety, developed in Montana
- b. High yielding potential in dwarf smut and stripe rust areas
- c. Tall type
- d. Maturity early to mid-season
- e. Good test weight
- f. Weak straw strength
- s. Moderate shattering resistance
- h. Resistant to stripe rust
- i. Moderate resistance to dwarf smut
- j. Susceptible to stem rust and sawfly infestation
- k. Not extremely winter hardy
- 1. Adequate milling and baking quality
- 2. Winalta

a. Bearded variety
b. Fair yielding
c. Tall type
d. Maturity - early to mid season
e. Good test weight

- f. Weak straw strength
- s. Good shattering resistance
- h. Susceptible to dwarf smut and sawfly infestations
- i. Resistant to stripe rust
- J. Moderate rsistance to stem rust

-6-

Recommended Winter Wheat Varieties (cont'd)

3. Chevenne

- -----
 - a. Bearded variety
 - b. Good vielding
 - c. Tall type
 - d. Maturity early to mid season
 - e. Good test weisht
 - f. Weak straw strensth
 - s. Susceptible to shattering
 - h. Moderate resistant to stripe rust
 - i. Susceptible to dwarf smut, stem rust and sawfly infestation
 - J. Good milling and baking qualities

4. Winridse

- ------
 - a. Hish yielding ability
 - b. Tall type
 - c. Good test weight
 - d. Resistant to shattering
 - e. Resistant to lodsing
 - f. Resistant to dwarf smut, stripe rust and cephalosporium stripe
 - s. Winter hardy
 - h. Acceptable protein, milling and baking qualities

Soft White Variety

1. Luke

- a. Bearded variety
- b. Good yielding
- c. Semi-dwarf type
- d. Maturity mid season
- e. Fair test weight
- f. Poor to fair straw strength
- s. Resistant to shattering
- h. Resistant to dwarf smut and stripe rust
- i. Foot rot tolerant
- J. Good baking and milling quality for cake flours

Table 1.

Asronomic data from the Western Resional Hard Red Winter Wheat Nursers srown on the Northwestern Asricultural Research Center at Kalispell, MT. in 1982. Random block design, four replications. Field No. E-2. -3

Date seeded: September 22, 1981 Size of plot: 32 sq.ft.

Date harvested: september 1,1982

	UADIETY		YIELD	TEST WT	HEADING	HEIGTH	SMUT	LODGING	LODGING
00 7004	VARIETY		BU/A	LB/BU	DATE	INCHES	% 2/	ANGLE	X
UR 7921	0112BEZ/SPRAGUE_SEL18-24	(115.32a	59.18	168,25a	36.22	1.12	.50b	1,25b
UK 7925	0112CLAR/FEN/WA5836 SEL27		111.21	56,405	168.25a	30.71b	1.12	1.75b	12.50b
WA 6913	0112CERC0/CI17271,N780240)	110.12	60.25a	168.75a	43.418	2.50	3.000	15.00b
CI 17902	0112 WINRIDGE		10,9.57	59.52	171.25a	38.58	1.00	7.255	95.50
WA 6816	0112ID5012/WA5866		105.86	56.685	170.50a	35.33	1.25	.00b	.00b
UR 7930	0112BEZOSTAJA/REW		103.44	58.90	170.25a	35.63	.62	5,75b	61.00b
ORCR8107	0112ALBA/GNS//FN/SONORA64		101.70	61.75a	166.25a	33.760	2.50	3.505	13.75b
ID 3518	0112WA4765/3/BZ//BURT/178		101.25	56.730	174.25a	33.17b	1.12	.75b	6.25b
WA 3817	0112WA5840/CERCO		100.78	57.58	170.00a	33.765	3.12	2.50b	7.50b
MT 77066	0112C61-9/WLT//CRT		100.60	59.65	171.75a	41.34a	.25	7.25	77.25
CI 17727	0112 WESTON		98.96	60.623	166.25	43.113	.12	6.00	80.75
UT125327	0112DLM/PI173438//CLM/3/D		98.74	57.60	168.75a	34.45	.00	9.00	99.00
OR 792	0112TRIUMPH/LCR SEL126		98.07	56.585	168.25a	38.88	1.75	5.75b	85.75
WA 6815	0112LIND SEL.		95.44	59.25	169.75a	40.55	2.75	6.00	89.50
MT 77002	0112FRD/BEZO		95.96	58.55	167.00	41.83a	.75	7.25	98.00
CI 13880	0112 CREST 1/		94.74	58.37	166.75	37.40	.12	9.00	93.00
UT125911	0112NAJAH/HNL//BGR/CI1383		90.17	58.45	165.75	42,728	.25	9.00	99.00
ID 0244	0112JEFF//COULEE/ID0033		86.89	58.85	168.503	35.53	.62	8.50	80.75
ID 0217	0112A667W-46/RANGER		85.30	59.25	170.002	43.502	25	8.75	94 75
ID 0243	0112CI14106/CLM//MC/3/RGR		84.32	55.70b	170.502	44.492	.00	9.00	00.70
ID 51021	0112BEZ0//BURT/178383/3/A		83.07	59,10	165.50	41.24=	. 25	6.00	99.00
ID 0242	0112SM4/TD//3*IT/178383		81.55	57.67	170.75=	44.143	.17	9.00	00 00
ID 0215	0112CNN#2/178383/3/WRR//K		80.14	57.77	171.25.2	40,103	.12	9.00	99.00
ID 51022	0112BEZ0//BURT/178383/3/A		79.37	58.12	145 75	44 44 3	50	5 755	99,00
CI 13844	0112 WANSER		76.57	57.45	147 75	10,100	2 47	3.730	70.JU
ID 0245	0112TI60-155/CT14106//MC/		77 005	55 475	140 75-	41 54.5	2+03	7,30	93,30
ID 0216	01125M4/TD//3#TT/178383		73.770	54 055	127.733	41+348	.20	9.00	99.00
CI 1442	0112 KHARKOF		47 405	54 705	171 00-	44+/83	.00	0+/5	74+20
UT125512	011201M/PI173438//CLM/3/D		07+420 15 705		1/0 00	40.003	5.003	8.25	A2+20
we to do dou hat hat als	offenul (11/0400/) 0FU/0/1		00+/20	08.83	128+00	43.603	+00	7.50	99.00

8

	10101000 10101000	Yield	Τ.Ψ.	Heading	Ht.	%Smut	Lod<	Lod %
	x costrano	92.06	58.21	196.01	39,95	1.05	6.18	70.77
	F 3/	3.86**	9.68*	* 18.08**	15.41*	* 1.37	6.82**	19.01**
	S.E.X.	6.96	. 47	.50	1.14	1.10	1.10	8.54
	L.S.D.(.05)	19.58	1.34	1.40	3.20	3.09	3.09	24.01
	C.V. %	7.56	•82	.30	2.85	104.43	17.76	12.06
Check unsisted								
Y South - Y TEK (Till	atia anatanyana	Kaba A aa			20.			
E uslue for usricture	etia controversa	NONN) SM	ut per	Plot by o	cular r	ating		
I ABIDE IDI ABITECA C	0028115011							
indicates statistical	cidnificance at	the .05 le	1101					
indicates statistical indicates statistical	significance at	the .05 le	vel					
indicates statistical indicates statistical values significantly	significance at significance at greater than the	the .05 le the .01 le check at t	vel vel he .05	level				
indicates statistical indicates statistical values significantly values significantly	significance at significance at greater than the less than the ch	the .05 le the .01 le check at t eck at the	vel vel he .05 .05 lev	level el				
indicates statistical indicates statistical values significantly values significantly	significance at significance at greater than the less than the ch	the .05 le the .01 le check at t eck at the	vel vel he .05 .05 lev	level el				
indicates statistical indicates statistical values significantly values significantly	significance at significance at greater than the less than the ch	the .05 le the .01 le check at t eck at the	vel vel he .05 .05 lev	level el			1009 132 1009 1009	
indicates statistical indicates statistical values significantly values significantly	significance at significance at greater than the less than the ch	the .05 le the .01 le check at t eck at the	vel vel he .05 .05 lev	level el			1009 132 1009 1009 1000	
indicates statistical indicates statistical values significantly values significantly	significance at significance at greater than the less than the ch	the .05 le the .01 le check at t eck at the	vel vel he .05 .05 lev	level el			* 0 0 9 * 5 2 * 0 0 P * 0 0 P * 0 0 0 * 0 0 P	
indicates statistical indicates statistical values significantly values significantly	significance at significance at greater than the less than the ch	the .05 le the .01 le check at t eck at the	vel vel he .05 .05 lev	level el			* 0 0 P * 0 0 P	-9-
indicates statistical indicates statistical values significantly values significantly	significance at significance at greater than the less than the ch	the .05 le the .01 le check at t eck at the	vel vel he .05 .05 lev	level el			1009 132 1009 1009 1009 1009 1009	-9-
indicates statistical indicates statistical values significantly values significantly	significance at significance at greater than the less than the ch	the .05 le the .01 le check at t eck at the	vel vel he .05 .05 lev	level el			5000 52 5000 5000 5000 5000 5000 5000 5	-9-
indicates statistical indicates statistical values si⊴nificantly values si⊴nificantly	significance at significance at greater than the less than the ch	the .05 le the .01 le check at t eck at the	vel vel he .05 .05 lev	level el			900 52 50 90 90 90 90 90 90 90 90 90 90 90 90 90	- 9-
indicates statistical indicates statistical values si⊴nificantly values si⊴nificantly	significance at significance at greater than the less than the ch	the .05 le the .01 le check at t eck at the	vel vel he .05 .05 lev	level el			500 52 50 50 50 50 50 50 50 50 50 50 50 50 50	- 9-
indicates statistical indicates statistical values significantly values significantly	significance at significance at greater than the less than the ch	the .05 le the .01 le check at t eck at the	vel vel he .05 .05 lev	level el			1009 152 1009 1000 1009 1009 1009 1009 1009 100	-9-
indicates statistical indicates statistical values significantly values significantly	significance at significance at greater than the less than the ch	the .05 le the .01 le check at t eck at the	vel vel he .05 .05 lev	level el			52 52 000 000 000 000 000 000 000 000 00	-9-
indicates statistical indicates statistical values significantly values significantly	significance at significance at greater than the less than the ch	the .05 le the .01 le check at t eck at the	vel vel he .05 .05 lev	level el			900 52 900 900 900 900 900 900 900 900 900 90	-9-

enteren in 1. der Frieden führ Wilchen im Mehr underschieden Stein Mannapie Minnen immenden. Ber gehönden im Line Christiation Basis underschlichen im Beschlich im Minnenschie Minnenschie. Liefenzeiten im Sunne Freichenford under Steine der Bebereiten sonsensenden 355 abei Frei-

÷

Table_2_.

Asronomic data from the Western Resional Hard Red Winter Wheat Nursers srown on the Lance Claridse farm at Kalispell, MT. in 1982. Random block design , four replications. Size of plot harvested: 32 sq. ft.

Date seeded: September 22,1981 Date harvested: September 1, 1982

		HEIGTH	YIELD	TEST WT	SMUT	LODGING	LODGING
	VARIETY	INCHES	BU/A	LB/BU	% 2/	ANGLE	7.
UT12532	7 0112DLM/FI173438//CLM/3/D	35.04	94.11	60.97	.12	.00b	.00b
WA 681	6 0112ID5012/WA5866	32.87	93.47	55.97b	1.50	.00b	.005
ID 024	4 0112JEFF//COULEE/ID0033	35.43	92.91	61.35	1.12	.00b	.00b
CI 1790	2 0112 WINRIDGE	38.78a	92.51	60.25	.87	.00b	.005
MT 7706	6 0112C61-9/WLT//CRT	40,45a	90.75	60.10	.50	.00b	.005
OR 792	1 0112BEZ/SPRAGUE SEL18-24	29.92b	90.12	59.70b	2.75	.00b	.00b
WA 691	3 0112CERCO/CI17271,N780240	41,14a	89.89	60.45	4.50a	.00b	.00b
OR 793	0 0112BEZDSTAJA/REW	35.53	89.76	59.405	2.37	.00b	.00b
ID 024	3 0112CI14106/CLM//MC/3/RGR	43.11a	89.07	60.45	1.38	.00b	.00b
10 024	5 0112II60-155/CI14106//MC/	37.80	87,05	62.00a	.50	.00b	.00b
CI 1772	7 0112 WESTON	42.03a	86.81	63.00a	1.62	.00b	.00b
OR 79	2 0112TRIUMPH/LCR SEL126	36.81	86.81	60.68	1.00	.00b	.005
CI 1388	0 0112 CREST 1/	35.14	86.65	60.80	1.00	3.50	83.25
ID 021	7 0112A667W-46/RANGER	39.37a	86,15	62.75a	.50	.75b	25.005
CI 1384	4 0112 WANSER	40.45a	82.80	61.97a	3.50	.00b	.00b
WA 681	7 0112WA5840/CERCO	30.41	82.72	58.336	3.50	.00b	.00b
ID 021	5 0112CNN*2/178383/3/WRR//K	46.563	82,15	60.35	.00	3.00	73.25
ID 351	B 0112WA4765/3/BZ//BURT/178	30.61	81.77	56.805	.25	.00b	.00b
OR 792	5 0112CLAR/FEN/WA5836 SEL27	27.766	81.45	57.60b	3.37	.00b	.00b
MT 7700	2 0112FRD/BEZO	39.17a	81.35	61.25	5.00a	.000	.00b
ID 021	6 0112SM4/TD//3*IT/178383	40,45a	80.56	60.65	.00	1.755	42.505
UT12591	1 0112NAJAH/HNL//BGR/CI1383	39.27a	80.05	61.95a	.37	.00b	.00b
ID 5102	1 0112BEZ0//BURT/178383/3/A	35.93	79.77	61.43	.37	.005	.00b
UT12551	2 0112DLM/PI173438//CLM/3/D	41.63a	78.74	61.33	.25	.005	.00b
WA 681	5 0112LIND SEL.	39.17a	78.67	60.70	1.12	.00b	.00b
ID 024	2 0112SM4/TD//3*IT/178383	41.83a	76.19	61.12	.12a	2,25b	52.50b
ORCR810	7 0112ALBA/GNS//FN/SONORA64	27.266	71.760	60.60	5,75	.00b	.00b
CI 144	2 0112 KHARKDF	46.568	69.670	59.000	2.25	.505	24.75b
ID 5102	2 0112BEZO//BURT/178383/3/A	39.27a	64.790	60.25	.75	.00b	.00b
						55.0× 14.0×0.12.0×	

-10-

Л

Table _2. (con't)

		Ht.	Yield	Τ.Ψ.	%Smut	Lod ≺	Lod %
	x F 3∕ S.E.X. L.S.D. (.05)	37.58 26.41** .98 2.75	83.74 2.03** 5.08 14.30	60.39 30.98** .29 .81	1.60 1.86* 1.18 3.31	.41 12.45** .27 .76	10.39 8.16* 8.10 22.77
Check variety % Smut = % TCK F value for var Indicates stati Indicates stati Values signific	(Tilletia controversa iety comparison stical significance at istical significance at cantly greater than the	Kuhn) s the .05 the .01 check at	mut per a level level the .05	⊳lot by (level	ocular	rating	
values signific	antly less than the che	eck at the	,05 lev	el			521 - 7431 1449 Front

-11-

10

117

Table_3_. Asronomic data from the Western Resional White Winter Wheat Nursery sr on the Northwestern Asricultural Research Center, Kalispell,MT. in 1982. Random block design, four replications. Field No.E-2, harvested plot size: 32 so.ft

Date seeded: September 22, 1981 Date harvested: August 24, 1982

F-3

	 f	VARIETY	YIELD BU/A	TEST WT LB/BU	HEIGTH	% 2/ SHUT	LOD. ANGLE	LOD.	HEADING DATE
6			140 49		77 //	1 00	2 00 1	2 50	177 50
adder	00000117	LUNE 1/	140+47	50 07	33+00	1.00	2.00 1	2,30	1/3.30
lo	URC#8113	5FN//03187-00-/1/8E2	A 177 1A	50 05	32,40	9,238	2.00	7 50	177 75
~	WH 0712	VANUTI / UVCI DD	177 74	50 47	33+07	2.01	2.00	/+30	172.70
AUCTO	UK 00007	DAUG /UA 5000, UUA701	4 172.40	41.473	30+02	4.750	.00	.00	172.30
	WH 0070	UAA74511 DUDT/DT 179	1 132.00	59.97	33.27	2 12	.00	.00	170 255
	10/43310 ND 7004		171.07	58.375	75.14	1.97	2.00 1	5.00	177 75
	CT 17040	NIGATNES	130.95	41.25	72.49	2.75	2.00 1	.00	171.255
	CT 17419	DAUS	130.76	62.37=	32.58	1.12	.00	.00	172.50
	CT 17909	I FULATN	130.48	59.40	32.18	1.25	.00	.00	174.00
	NR 794	YAYI A/YMH//RBS/YMH/3	/ 127.28	59.00	37.402	4.75a	1.00	4.25	172.005
	LA 6914	SCT/101//3469/178383	127.20	61.02	34.25	1.50	.00	.00	170.50b
	DECUS114	SPN//AURORA/YMH	126.31	56.000	32.09	1.50	.00	.00	170.505
	NR 7954	DRC/48.0WW48109-IM4.	R 125.41	56.450	35.24	1.00	.00	.00	174.25
	JA 6911	WA6240/NORCO.V.1080 1	2 124.87	59.20	33.66	.25	.00	.00	173.25
	CT 17590	FARG	124.86	55,505	34.25	2.87	2.00 1	2.50	149.505
	4 4915	SPRAUGE/LUKE//498.87	7 124.86	57.655	32.09	2.00	3.50 4	0.00=	172 0
	CT 17773	TYFE	124.15	54.90b	34.35	3.00	.00	.00	172 0
	8677 4	SH92/6#0/3/TSP/CT 11	1 122.27	59.87	36.322	3.25	.00	.00	173.00
	18 835	1523 DRC/RBS	119.515	58.98	32.58	2.75	.00	.00	174.75
	CT 17596	STEPHENS	119.01b	59.43	32.48	1.62	.00	.00	169.005
	A 6910	MARIS HUNTMAN/UH7452	1 118,895	57.98h	34.25	4.50=	.00	.00	172.75
	T 17951	CREW	118,20h	57.635	34.35	1.52	1.00	4.25	172.50
	IR CP04	1523 DRC/RBS	117.885	58,225	30.915	3.00	.00	.00	175.752
	IR 7794	REW/LUKE SEL 305	112.025	59.85	37.892	1.25	4.75 4	2.50>	149.755
100	10 4817	LIKE/UH74375	108.485	59.10	37.50=	4.75.	7.50 25	5.00	172.005
	1R 797	CT14482/MORO SEL E10	9 / 107,21b	58.625	35.04	1.12	1.25 11	2.50	149.005
	IRCW8110	1523 DRC DWT/YMH	99.51b	54.305	32.78	1.50	1.25	6.25	173.00
	IR 7792	PAHA/086857 SEL 204	98.705	54.50b	39.07=	. 87	6.502 90	1.75.2	173.00
	A 4819	C.I. CLUB/SPRAGUE	93.845	58.585	32.38	1.87	3.75 4	7.25.2	171.505
	T 13740	MORO	84.805	54.705	40.85>	. 42	7.75 - 91	7.005	171.005
	T 11755	FLGIN	43.225	55.505	79,703	2 75	0 50 - 9/	1 75-	172.75
	T 1442	KHARKOF	59.495	59.375	19 21 -	5.255	9 50 - 90		172 008
						J+2J8			172,000
		x	117.75	58,56	34.91	2.36	1.30 18	3,36	172.08
		F 3/	7.82**	14.51**	14.15**	1.99**	6.96**14	4.23**	7,98*
		S.E.X	. 6.96	.48	.89	.96	1,00 8	3.21	.53
		L.S.D	.(.05) 19.55	1.36	2,50	2.70	2.81 23	5,06	1.48
		C.V.Z	5,91	.83	2.55	40.75	55.68 44	.73	.31
1	/ Check	variety							
	2/ % Sm.	it = % TCK (Tilletia	controversa Ku	uhn) smut	t per pl	ot by of	cular rat	ing	
	/ F val	ue for variety company	rison						
i	/ Value	s significantly great	ter than the cl	neck at th	ne .05 1	evel			
1	Value	s significantly less	than the check	at the	.05 leve	1			

****** Indicates statistical significance at the .01 level

Table <u>3a</u>. Ten year summary of yields for the Western Regional White Winter Wheat Nursery grown at the Northwestern Agricultural Research Center, Kalispell, MT 1973-1982.

CI	or	Variety	1072	107)	1075	1076	1077	1078	1070	1080	1 081	1082	Ave	Sta.	% Nucrines
500	ate No.	variety	1913	1914	1912	1910	1911	1910	1919	1900	1901	1902	Ave.	115.	Nugarnes
CI	1442	Kharkof	45.3	27.7	37.4	61.1	50.7	16.9	78.1	55.5	40.7	59.7	47.3	10	64
CI	11755	Elgin	50.9	59.2	42.3	67.6	57.8	21.3	94.1	68.5	42.5	63.2	56.7	10	76
CI	13740	Moro	65.6	60.3	44.0	69.8	57.0	27.8	96.3	67.4	62.5	84.8	63.6	10	86
CI	13968	Nugaines	68.5	77.9	51.8	80.2	66.0	18.9	93.7	75.3	79.1	130.9	74.2	10	100
CI	17596	Stephens	61.6	81.2	52.3	82.1	60.6	23.4	100.2	99.3	79.8	119.0	76.0	10	102
CI	17590	Faro		85.4	53.5	74.9	65.2	25.4	94.2	80.6	66.5	124.9	74.5	9	99
CI	17419	Daws		89.0	56.3	,92.8	68.7	22.9		-	90.9	130.8	78.8	7	109
OR	68007	Yamhill/Hyslop				.92.1	75.5	25.1	94.4	100.4	84.0	133.3	86.4	7	111
CI	17909	Lewjain					70.2	34.2	104.8	109.7	85.3	130.5	89.1	6	115
ID	745318	WA4765//Burt/PI178383						25.3	99.4	105.9	75.9	132.2	87.7	5	110
CI	17951	Crew						30.1	102.9	93.1	72.6	118.2	83.4	5	105
CI	14586	Luke'						30.0	114.2	19.2-3	83.1	140.5	92.0	4	114
CI	17773	Туее							114.6	82.2	91.1	124.1	103.0	4	109
WA	6698	Allan Sel. A7815								107.7	54.0	122.3	94.7	3	100
OR	797	CI14482/Moro, Sel. E109								100.3	82.6	107.2	96.7	3	102 L
WA	6696	Daws/WA5829/VH078141								96.3	81.4	132.6	103.4	3	109 W
OR	7794	Rew/Luke/Sel., 305								91.9	79.8	112.0	94.6	3	99
WA	6813	Luke/VH76375									84.7	108.5	96.6	2	92
OR	7792	Paha/OR6857,Sel.,204									77.9	98.7	88.3	2	84
OR	794	Yayla/YMH//Rieb/YMH/3/RE									74.9	127.3	101.1	2	96
OR	CW8113	SPN//63189-66-71/BEZ										138.5	138.5	1	106
WA	6912	BUR/CI15923/NGS, VH074										137.4	137.4	1	105
OR	7996	HYS/YAYLA//WA4995/3/										131.7	131.7	1	101
WA	6914	SCT/101//3469/178383										127.2	127.2	1	97
OR	CW8114	SPN//AURORA/YMH										126.3	126.3	1	96
OR	7956	DRC/68,0WW68109-IM6,R										125.4	125.4	1	96
WA	6911	WA6240/NORCO, VJ08012										124.9	124.9	1	95
WA	6915	Sprauge/Luke//498,B77										124.9	124.9	1	95
OR	835	1523 DRC/RBS										119.5	119.5	1	91
WA	6910	Maris Huntman/VH74521										118.9	118.9	1	91
OR	CP04	1523 DRC/RBS										117.9	117.9	1	90
OR	CW8110	1523 DRC DWT/YMH										99.5	99.5	1	76
WA	6819	CJ Club/Sprague										93.8	93.8	1	72

-14-

Table__4_.

REF

Asronomic data from the Western Resional White Winter Wheat Nursery grown on the Lance Claridse farm at Kalispell, MT. in 2 1982. Random block design, four replications. Plot size 32 ft.

Date seeded: September 22,1981 Date harvested: September 2,1982

	VARIETY	YIELD	TEST WT%	HEIGTH	SMUT	
		BU/A	LB/BU	INCHES	% 2/	
WA 6915	SPRAUGE/LUKE//498,877	104.66	58.60a	30.22	.25	
CI 14586	LUKE	101.11	56.52	32.48	.12	
WA 6914	SCT/101//3469/178383/	100.88	61.25a	30.51	1.87	
OR 794	YAYLA/YMH//RBS/YMH/3/	99.19	57.20	34.84a	.87	
OR 68007	YAMHILL/HYSLOP	98.34	58.62a	31.79	1.87	
CI 17590	FARD	97.77	57.33	28.445	1.62	
ORCW8113	SPN//63189-66-71/BEZ	96.55	58,22	30.71	1.87	
CI 17951	CREW	96.00	57.90	29.43b	1.25	
CI 17773	TYEE	95.30	56.60	30.41	2.63a	
WA 6910	MARIS HUNTMAN/VH74521	94.26	57.52	31.10	+62	
OR 7996	HYS/YAYLA//WA 4995/3/	94.07	55.90	32.28	1.12	
OR 7794	REW/LUKE SEL 305	94.02	60.97a	34.35	1.50	
OR 835	1523 DRC/RBS	93.09	56.58	30.61	1.38	
WA 6912	BUR/CI15923/NGS,VH074	92.56	57.70	29.045	1.00	
CI 13968	NUGAINES	92.42	61,48a	27.46b	4.00a	
WA 6911	WA6240/NORCO,VJ080 12	92.17	58.45a	30.41	.75	
WA 6819	CJ CLUB/SPRAGUE	92.16	58.50a	30.91	.87	
WA 6813	LUKE/VH76375	92.15	57.55	34.55	1.25	
CI 13740	MORO	92.12	58.02	35.24a	2.12	
ID745318	WA476511 BURT/PI 1783	92.03	59.03a	30.41	.37	
DR 7792	PAHA/OR6857 SEL 204	91.47	59.27a	36.12a	.87	
CI 17596	STEPHENS "	91.07	57,85	29.43b	1.87	
OR 7956	DRC/68,0WW68109-IM6,R	90.20	53.35b	32.38	1.50	
OR 797	CI14482/MORD SEL E109	89,61	58,88a	30.22	.50	
WA 6696	DAWS/WA 5829, VH07914	88.94	61.63a	28.845	1.12	
OR CP04	1523 DRC/RBS	88.84	55.70	28.74b	1.75	
CI 17419	DAWS	87.67	60.40a	28.74b	1.62	
WA 6698	SW92/6#0/3/TSF/CT L11	86.87	59.438	28.355	1.50	
CI 17909	LEWJAIN	86.72	55.85	30.31	.37	
ORCW8114	SPN//AURORA/YMH	85.076	54.056	27.956	1.50	
DRCW8110	1523 DRC DWT/YMH	82.675	55.77	29.135	2.00	
CI 11755	ELGIN	80.366	58.75a	34.55	3.75a	
CI 1442	KHARKOF	66.77b	58.75a	49.61a	4.75a	
	이 이 것 같은 것 같 것 것 않는 것 같아.					
	X	91.73	57.99	31.50	1.53	
	F 3/	1.62*	9.72**	24.31**	1.89*	
	S.E.X	5.42	.64	.81	.76	
	L.S.D. (.05)	15.21	1.80	2.26	2.12	
	C.V. X	5.91	1.11	2.56	49.43	
1/ Check	variety					
2/ % Smu	t = % TCK (Tilletia controve	rsa Kuhn) smut pe	er plot	by ocular	ratins
3/ F valu	ue for variety comparison					
* Indica	ates statistical significance	at the .	05 level			
** Indica	ates statistical significance	at the .	01 level			
a/ Values	s significantly greater than	the check	at the .	05 leve	1	

b/ Values significantly less than the check at the .05 level

Table 5. Agronomic data from the off station winter wheat nursery grown on the Joe Holland farm, Plains, MT in 1981-82. Radom block design. Four replications.

> Planting Date: Size of Plot:

9/23/81 Harvest Date: 32 sq. ft. '

8/10/82

120

C.I.	or		Yield	Test Wt	Height	Lod	ging	<u>m2/</u>
Stat	e No.	Variety	Bu/A	Lbs/Bu	Inches	Angle	%	Smut
CI	14586	Luke ^{1/}	114.3	59.60	38.1	2.3	24.8	1.8
OR	68007	Yamhill-Hyslop 3M6	109.9	59.37	38.6	0.0Ъ	0.0ъ	2.0
WA	6696	Daws/WA5829,VH079141	108.1	60.08	36.1	0.0b	0.0ъ	1.4
CI	17596	Stephen	107.0	58.40ъ	36.3	0.0Ъ	0.0Ъ	1.1
OR 6	80073	Yamhill/Hyslop 3M6	106.7	59.10	38.3	0.0Ъ	0.0ъ	1.5
CI	17419	Daws	106.3	58.98	37.0	0.0b	0.0ъ	2.4
CI	17909	Lewjain "WA6363"	105.7	59.85ъ	36.7	1.8	12.5	0.4
ID 7	45318	WA4765//Burt/PI178383	101.3b	57.70ъ	37.3	3.5	15.0	1.0
CI	17730	WA4765//Burt/PI178383	98.67ъ	56.43b	36.0ъ	6.0a	62.3a	0.1
CI	17590	Faro	96.800	56.75b	38.3	2.8	33.8	2.8
CI	17773	Туее	96.57ъ	56.85ъ	39.6	0.8	1.3b	3.0
MT '	77066	C61-a/WLT/CRT	92.00Ъ	59.50	46.3a	6.5a	86.8a	1.1
OR	7930	Boz/Ren Sel 42-31	89.450	58.43ъ	42.3a	1.3	2.5b	4.4
CI	17727	Weston	87.92ъ	61.38a	45.9a	6.3a	89.8a	0.5
MT	77077	Winridge	75.200	59.93	42.8a	6.5a	96.8a	0.4
CI	13880	Crest	58.62ъ	56.850	42.5a	7.8a	99.0a	4.0
		x ₃ /	97.17	58.70	39.5	2.828	32.77	

x _{F3} /	97.17	58.70	39.5	2.828	32.11
	6.880**	14.64**	10.92**	6.618*	*13.99**
S.E.x L.S.D. (.05)	119.5 10.98	•565 •733	27.58 2.018 2.615	1.107 2.161	10.599 20.685

 $\frac{1}{2}$ Check variety $\frac{2}{2}$ Smut readings = % smut heads per plot $\frac{3}{2}$ F-value for variety comparison

a/ Values significantly greater than the check .05 level
 b/ Values significantly less than the check .05 level
 ** Indicates statistical significant in the check .05 level

Indicates statistical significance at the .01 level

Table 6 . Agronomic data from the off station winter wheat nursery grown on the Art Mangle farm, Polson, MT in 1981-82. Random block design. Four replications.

> Planting Date: 9/24/81 Harvest Date: 9/8/82 Size of Plot: 32 sq. ft.

C.I. or State No.	Variety	Yield Bu/A	Test Wt. Lbs/Bu	Height Inches
CI 14586	Luke ¹ /	59.45	60.93	24.23
CI 17909	Lewjain	57.35	60.95	25.30
OR 7930	Boz/Ren Sel 42-31	51.40	60.10ъ	28.65a
OR 68007	Yamhill/Hyslop 3M6	46.950	59.43ъ	26.77a
OR 680073	Yamhill/Hyslop 3M6	46.60ъ	59.05Ъ	26.40a
ID 745318	WA4765//Burt/PI178383	46.55ъ	59.150	26.58a
CI 17773	Tyee	44.87ъ	58.750	22.15b
MT 77066	C61-9/WLT/CRT	43.350	60.80	29.02a
CI 17730	WA4765//Burt/PI178383	40.83ъ	59.00ъ	26.10a
WA 6696	Daws/WA5829,VH079141	40.50ъ	61.75	25.30
MT 77077	Winridge	39.02Ъ	61.12	28.35a
CI 17727	Weston	37.98ъ	63.03a	33.88a
CI 17596	Stephen	37.08ъ	59.00ъ	25.20
CI 17419	Daws	35.80ъ	62.48a	25.62
CI 17590	Faro	34.72ъ	57.80ъ	21.450
CI 13880	Crest	32.92Ъ	60.20	29.10a
	x F ² / S.E.x L.S.D05 C.V. %	43.46 2.797** 4.625 9.027 10.642	60.22 58.96** .1891 .369 .314	26.51 10.95** .8921 1.741 3.365

 $\frac{1}{2}$ Check variety $\frac{2}{2}$ F-value for variety comparison

 \overline{a} / Values significantly greater than the check .05 level

b/ Values significantly less than the check .05 level

** Indicates statistical significance at the .01 level

Table <u>6a</u>. Summary of agronomic data from off-station winter wheat nurseries grown in Sanders, Lake and Flathead Counties in 1982.

C.I	. or			Yiel	ld (bu,	/a)		Te	est Wi	. (11	bs/bu)	1	Heigh	t (ind	ches)			7	5 Sm	ıt	
Sta	te No	Variety	2/	3/	4/	5/	Ave.	2/	3/	4/	5/	Ave.	2/	3/	4/	5/	Ave.	2/	3/	4/	5/	Ave.
CI : OR	14586 68007	Luke ^{1/} Yamhill-Hyslop	114.3	59.5	140.5	101.1	103.9	59.6	60.9	60.2	56.5	59.3	38.1	24.2	33.7	32.5	32.1	1.8		1.0	.1	1.0
WΔ	6696	3M6 Daws/WA5829.	109.9	47.0	133.3	98.3	97.1	59.4	59.4	59.5	58.6	59.2	38.6	26.8	36.0	31.8	33.3	2.0		2.4	1.9	2.1
	00)0	VH079141	108.1	40.5	132.6	88.9	92.5	60.1	61.8	61.6	61.6	61.3	36.1	25.3	33.3	28.8	30.9	1.4		4.8	1.1	2.4
CI	17596	Stephens	107.0	37.1	119.0	91.1	88.6	58.4	59.0	59.4	57.9	58.7	36.3	25.2	32.5	29.4	30.9	1.1		1.6	1.9	1.5
ORD	00013	3M6	106.7	46.6	<u>1</u> 1		76.7	59.1	59.1		0_29	59.1	38.3	26.4		21_	32.4	1.5				1.5
CI CI	17419 17909	Daws Lewjain	106.3	35.8	130.8	87.7 86.7	90.2 95.1	59.0 59.9	62.5	62.4 59.4	60.4	61.1 59.1	37.0	25.6	32.6	28.7	31.0	2.4		1.1	1.6	1.7
ID7	45318	WA4765//Burt/ PI178383	101.3	46.6	132.2	92.0	93.0	57.7	59.2	58.8	59.0	58.7	37.3	26.6	33.7	30.4	32.0	1.0		2.1	• 4	1.2
CI	17730	WA4765//Burt/ PI178383	98.7	40.8			69.8	56.4	59.0		<u></u>	57.7	36.0	26.1		20	31.1	.1				.1
CI	17590 17773 77066	Faro Tyee C61_2 /WLT/CBT	96.8 96.6	34.7 44.9	124.9	97.8 95.3	88.6 90.3	56.8 56.9	57.8 58.8	55.5 56.9	57.3 56.6	56.9 57.3	38.3 39.6	21.5	34.3 34.4	28.4 30.4	30.6 31.7	2.8	, 	2.9	1.6 2.6	2.4
OR	7930	Boz/Ren Sel	92.0	43.4	100.0	90.0	01.1		60.0	59.0	50.1	50.0	40.5	29.0	41.0	40.7	59.5	±•±		• • •	.)	.0
CI	17727	42-31 Weston	89.5	38.0	103.4 99.0	89.7	83.5	58.4	60.1	58.9	59.4	59.2 62.0	42.3	28.7	35.6	35.5	35.5	4.4		.6 .1	2.4	2.5
MT CI	77077 13880	Winridge Crest	75.2 58.6	39.0 32.9	109.6 94.7	92.5 86.7	79.1 68.2	59.9 56.9	61.1 60.2	59.5 58.4	60.3	60.2 59.1	42.8	28.4 29.1	38.6 37.4	38.8 35.1	37.2 36.0	.4 4.0		1.0	.9 1.0	.8 1.7
		x _F 6/	97.2 6.8	43.5 8**	117.8 7.8 **	91.7 ** 1.6	2**	58.7 14.6	60.2 **	58.6 14.5	58.0 **9.7	**	39.5 10.9	26.5 **	34.9 14.2 **	31.5 ** 24.3	**	1.7		2.4	1.5	
		S.E.x L.S.D.(.05) C.V. %	120.0 10.9 5.6	4.6 9.0 10.6	7.0 20.6 5.9	5.4 15.2 5.9		•5 •7 •6	7 .1 3 .3 4 .3	9 .5 7 1.4 1 .8	.6 1.8 1.1		27.6 2.0 2.6	.8 2 1.7 3.4	9 .9 2.5 2.6	.8 2.3 2.6	3 00					

1/ Check variety 2/ Joe Holland farm - Plains, MT - Sanders Co. 3/ Art Magles farm - Polson, MT - Lake Co. 4/ Kalispell - Western Regional White Winter Wheat Nursery 5/ Stillwater - Western Regional White Winter Wheat Nursery 6/ F - Value for treatment comparison ** Indicates statistical significance at the .01 level Table_7_.

Asronomic data from the Preliminary Evaluation Hard Red Winter Wheat Nursery srown at the Northwestern Asricultural Research Center, Kalispell,MT, in 1982. Field No. R3A, randomized complete block, four replications. Plot size: 32~so ft.

Date seeded: September 22, 1981 Date harvested: August 20,1982

	VARIETY		TEST WT LB/BU	HEADING Date	HEIGTHT INCHES	LOD. Angle	LOD. X	% DWARF Smut 2/	
MT 8039	LCO/FRD/NE69559/WNK	84.82a	60.60	164.75	37.11	.00	.00	8.25	-
MT 80179	105006/5*CNN	84.80a	61.30	168.75a	34.65b	.00	.00	5.50	
MT 80181	1D5006/5*CNN	84.53a	61.00	168.00a	35.335	.00	.00	5.50	
MT 80145	YG1231/6#CNN	82,47a	60.00	167.75a	30.915	.00	.00	5.50	
MT 80171	ID5006/5*CNN	80.27a	60.20	169.75a	30.81b	.00	.00	3.75b	
MT 80152	YG1231/6*CNN	77.63a	60.30	167.258	30.815	.00	.00	8,50	
WS775201	CNOS/INIAS//HNVII	77,408	59.60	166.50a	31.00b	.00	.00	3.00b	
MT 80275	REDWIN SEL 104	75.53a	62.60	167.75a	39.27	1.25	2.50	6.50	
MT 76144	FRD/OLESEN	74.92	61.50	167.00a	41.14a	3.00	36.25	3.50b	
MT 80122	SS63283/6#CNN	74.82	62.00	167.75a	34.15b	.00	.00	6.75	
MT 80169	ID5006/5*CNN	74.13	60.10	170.75a	30.12b	.00	.00	4.87	
MT 7956	LANCOTA/WNK//NE68510/	74.02	63.20	162.000	29.435	.00	.00	4.75	
MT 80172	ID5006/5*CNN	73.77	62.00	170.25a	30.715	.00	.00	3,25b	
MT 80123	SS63283/6*CNN	73.75	60.60	167.25a	35.336	.00	.00	9.75	
MT 7929	CNN/FRD//SND/3/CTK	73.60	61.00	165.25a	40.55a	1.25	20.00	4.75	
MT 80147	YG1231/6#CNN	73.10	59.50	167.25a	28.74b	.00	.00	6.00	
MT 80119	SS43283/6#CNN	73.17	61.40	167.50a	35.335	.00	.00	5.50	
MT 80277	REDWIN SEL 121	73.00	63.40	167.75a	36.81	.00	.00	5.50	
MT 8056	CNN/FRD//SNK/3/CTK	72,85	61.40	167.50a	38.78	,75	2,50	3.50b	
MT 80165	ID5006/5*CNN	72.47	59.50	168.50a	28.745	.00	.00	7.25	
MT 80129	SS63283/6*CNN	72.32	61.50	167.50a	35.83	1.00	1.25	6.00	
MT 8062	YT0117-20/CTK//TX65A1	72.25	63.50	165.50	37.60	.00	.00	8.50	
MT 80280	REDWIN SEL 268	72.17	63.70	165.75a	40.16	1.25	1.25	4.00	
MT 80124	SS63283/6*CNN	71.65	60.90	167.00a	33.76b	.00	.00	3.75b	
MT 80148	YG1231/6*CNN	71.35	59.90	168,25a	29.13b	.00	.00	4.50	
MT 80153	YG1231/6*CNN	71.35	58.10	169.25a	29.04b	.00	.00	5.25	
MT 80120	SS63283/6*CNN	71.30	60.10	166.75a	34.74b	.00	.00	7.50	
MT 80132	SS63283/6*CNN	70.82	61.90	166,75a	35.43	.00	.00	5.25	
MT 8095	TX65A1268/PARKER//FRD	70.62	61.50	165,75a	37.01	.00	.00	7.75	
MT 80127	SS63283/6*CNN	70.60	60.90	167.25a	32,58b	.00	.00	6.00	
MT 80177	ID5006/5*CNN	70.60	59.60	168.00a	30.71b	.00	.00	6.75	

-18-

23

Table_7_...(cont'd)

	VARIETY	YIELD BU/A	TEST WT LB/BU	HEADING DATE	HEIGTHT	LOD. ANGLE	LOD, %	% DWARF SMUT 2/
MT 80174	ID5006/5*CNN	70.25	61,00	169.00a	30.715	.00	.00	4,75
MT 80185	ID5006/5*CNN	69.97	60.00	167.75a	35.245	.00	.00	14.00
MT 7976	CTK/MARIAS	69.77	61.10	165,75a	37.30	.75	1.25	11.00
MT 80168	ID5006/5*CNN	69,70	58,20	171,00a	30.61b	.00	.00	8,50
MT 80125	SS63283/6*CNN	69.42	61.60	167.50a	34.940	.00	.00	4.50
MT 80156	YG1231/6*CNN	69.42	62,40	167,25a	39.07	.00	.00	4.00
MT 80223	YGSS2458/3*YG	69.20	60.50	170.50a	26.485	.00	.00	.62b
MT 8046	LCO/FRD/NE69559/WNK	68,97	61.90	165.50	34.55b	.00	.00	8.25
MT 79125	UT755079/CST56//TX65A	68.62	60.50	166.00a	29.336	.00	.00	1.25b
MT 80203	YGSS2458/6*WN	68.35	61.10	167,75a	34.94b	1.75	30.00	8.25
MT 79148	UT775099/CST56//TX65A	67.88	60.00	166.00a	33.07b	.00	.00	1.62b
MT 8030	TX65A268/FRD//YT0-117	67,47	63.00	164.75	32.18b	.00	.00	5.00
MT 8097	TX65A1268/PARKER//FRD	66.90	60.50	161.50b	28,44b	.00	.00	5.25
CI 17844	REDWIN	66.55	63,60	169.75a	39.47	.00	.00	3.37b
MT 80194	YGSS2458/6*WN	66.52	61.90	168,25a	34.25b	.00	.00	5.25
MT 8009	JMK 77-462	66.27	63,00	170.00a	39.17	1,50	12,50	2.63b
MT 80198	YGSS2458/6*WN	65,25	62.10	166.50a	34,35b	.00	.00	4.50
MT 80187	ID5006/5*CNN	64.82	59.50	168,25a	33.960	.00	.00	6.00
MT 80207	YGSS2458/6¥WN	63.68	62.20	167.75a	37.01	1.50	21.25	4.25
MT 8064	YT0117-20/CTK//TX65A1	63.30	61.40	169.50a	25.39b	.00	.00	1.62b
MT 80134	SS63283/6*CNN	63.22	60.30	167.50a	36.91	.00	.00	9.75
MT 80278	REDWIN SEL 127	63.12	62.00	166,25a	43.603	3.25	7.50	7.50
MT 80217	YGSS2458/3*YG	62,38	59.50	169.258	25.795	.00	.00	.75b
MT 80121	SS63283/6*CNN	62,25	61.00	167.50a	32.97b	.00	.00	8.25
MT789564	GUNDERSON BULK SEL 56	62.18	60.10	164.75	38,78	5.25a	38.75	8.50
MT 79132	UT755079/CST56//TX65A	61.75	60.00	163.25	31.405	.00	.00	1.50b
MT 80252	YGSS1231/3*YG	61.53	61.00	170.25a	25.79b	.00	.00	7.00
MT 80279	REDWIN SEL 185	61,18	63.10	166.25a	37.20	.75	3.75	8,50
MT 80213	YG552458/6*WN	61.00	62.00	167.75a	40.55a	.00	.00	6.75
CI 15075	CENTURK 1/	60.68	62.90	164.25	37.89	1.50	13.75	8.50
CI 8885	CHEYENNE	60.68	58,90	167.25a	42,228	5.00a	28.50	4.25
MT693009	NB176/Y18181//YTO-117	59,75	60.60	169.75a	42,72a	3.00	31.00	1.75h
CI 13670	WINALTA	58,93	63.00	168.00a	42,428	2.00	15.00	5,50
MT693016	NB176/Y18181//YTO-117	57,88	60.60	168.50a	44,59a	5.00a	86,00a	1.25b
MT 80268	YGSS1231/3*YG	56.68	62,80	169.258	46.368	5.75a	94.50a	4.00

-19-

24

	ALG-214 C							
	动动 网络马蹄头马马蹄的马马马马马马马马							
Table	_7 (cont'd)							
0.5 1.00								2 8120
	15 91.528954 (21.225) (12.125			0				1.5206
	VARIETY	YIELD	TEST WT	HEADING	HEIGTHT	LOD.	LOD.	% DWARF
		BU/A	LB/BU	DATE	INCHES	ANGLE	X	SMUT 2/
MT 8045	LCO/FRD/NE69559/WNK	54.85	61,50	167,75a	39.47	2.75	25.00	2.50b
MT 80209	YGSS2458/6*WN	54.68	61.50	169.00a	36.52	3.75a	42.50a	6.50
MT693012	NB176/Y18181//YT0-117	53.33	60.50	168.00a	42.623	4.25a	47.50a	4.75
MT593010	NB176/Y18181//YT0-117	52.18	63.40	169.00a	44.00a	3.25	48.75a	2.50b
MT 80258	Y6551231/3*Y6	50.83	62.50	169.75a	32.18b	1.00	2.50	5.37
MT 80272	YGSS1231/3#YG	48.75	62.00	169.25a	46.363	5.50a	88,75a	4.25
MT 693017	NB176/Y18181//YT0-117	38,225	61.00	169.00a	42,72a	5.50a	72,25a	3.50b
	549 649112-	211	12 20 20 20		225 230			10 17 17 17 17
	X	167.53	35.33	67.60	61.21	.98	10.61	5.41
	F 3/_	14.12**	31.84**	2.71**	.99	4.74**	6.66**	2.46**
	S.E.X.	.50	.91	5.17	43.58	.77	8.57	1.63
	L.S.D.	1,39	2.52	14.41	122.87	2.14	23,90	4.54
	C.V.	.30	2.56	7.64	71.20	78.56	80.79	30.08
1/ Check	variety							

25

-20-

- 17 DIECK VOLLEDS
- 2/ % smut = % TCK (Tilletia controversa Kuhns) smut per plot by ocular rating.
- 3/ F value for variety comparison
- a/ Values significantly larger than the check at the .05 level.
- b/ Values significantly less than the check at the .05 level.
- ** Indicates statistical significance at the .05 level

<u>TITLE</u>: Evaluation of growth regulator ethephon (Ethrel) on spring barley varieties under irrigated conditions.

PROJECT: Small Grains Investigations MS 756

YEAR: 1982

LOCATION: Northwestern Agricultural Research Center, Field No. Y-4

- PERSONNEL: Leader Vern R. Stewart Technician - Todd K. Keener Cooperators - Union Carbide Agric. Chem. Division Research & Development Representatives
- <u>OBJECTIVE</u>: To determine the effect of ethephon on yield and yield components of small grains.

MATERIALS AND METHODS:

Four spring barley varieties were planted under irrigated conditions using a research type cone seeder. Plots were four rows spaced 1 ft., 15 ft. long. Application of the growth regulator was made when the barley was 10-14" in the flag leaf stage of growth. The applications were made with a research type tractor mounted sprayer. Observations were taken throughout the season and are listed in Table 1.

Plots were harvested with a Hege 125B plot harvester. Kernel counts were taken from ten heads per plot just prior to harvest.

RESULTS AND DISCUSSION:

Yields throughout the study were uniform except for ethephon at .5 lbs/a on Ingrid. The yields in checks for Unitan were noticeably lower.

Test weights were slightly higher in the treated plots of Unitan as compared to the check. All other test weights did not vary within varieties.

Percent plump figures dropped off at the higher rates of ethephon for each vareity except Menuet.

Height increased at the higher rates of ethephon in all the varieties.

Lodging was even throughout the study. Two severe rainstorms during the growing season provided heavy lodging pressure in this experiment.

Kernel counts and stem lengths were taken just prior to harvest. Stem elongation was prevalent in most of the varieties tested from those plots which had been treated with ethephon.

Table 1. Evaluation of ethephon applications to four spring barley varieties under irrigated conditions. Northwestern Agricultural Research Center, Kalispell, MT in 1982. Field No. Y-4.

Date seeded: April 26, 1982 Date harvested: September 14, 1982 Size of Plot: 32 sq. ft.

Rate Yield (bu/a)					Test Weight (lbs/bu)					% Plump						
Treatment	Lb ai/A	Ingrid	Purcell	Menuet	Unitan	x	Ingrid	Purcell	Menuet	Unitan	x	Ingrid	Purcell	Menuet	Unitan	x
Ethephon Ethephon Check	.25 .50	114.5 94.6 113.3	128.3 131.0 128.3	143.8 143.2 140.2	138.1 139.7 127.9	131.2 127.1 127.4	47.1 46.0 46.7	44.5 43.7 44.9	48.4 48.9 48.9	44.6 44.4 42.8	46.2 45.8 45.8	62.8 57.5 65.0	52.3 43.8 49.3	71.8 71.8 69.8	70.5 65.0 65.3	64.4 59.5 62.4
	x	107.5	129.2	142.4	134.6		46.6	44.4	48.7	43.9		61.8	48.5	71.1	66.9	
			Heigh	t (inche	es)			Lodging	Prevale	$nce^{1/}$		Lodging Severity 1/				
Ethe phon Ethe phon Check	.25 .50	32.0 35.3 30.8	31.5 32.3 29.5	31.0 31.5 30.3	33.0 35.3 33.3	31.9 33.6 31.0	8.0 8.5 8.5	6.5 6.3 8.3	5.3 4.5 6.8	7.5 7.5 8.0	6.8 6.7 7.9	58.8 55.0 58.8	48.8 43.8 51.3	28.8 25.0 40.0	50.0 61.3 63.8	46.6 46.3 39.2
	x	32.7	31.1	30.9	33.9		8.3	7.0	5.5	7.7		57.5	48.0	31.3	58.4	
		<u></u>	Number K	ernels/1	Head-'			Stem	Length	<u></u> /	-					
Ethe phon Ethe phon Check	.25 .50	20.4 20.5 21.2	20.7 20.8 21.2	22.8 22.1 22.6	34.3 34.2 34.1	24.6 24.4 24.8	3.91 3.96 3.21	3.01 2.72 2.91	5.80 6.83 5.49	5.74 7.65 6.05	4.62	2				
	x	20.7	20.9	22.5	34.2		3.69	2.88	6.04	6.48						
1/ Lodgi Lodgi 2/ Numbe 3/ Lengt APPLICATI Da Wi	ng Preva ng Sever r kernel h (cm) b ON DATA: te: 6/1 nd veloc	lence = ity = s s/head etween 5/82 ity: 2	% plot everity = averag flag lea Air Te mph	lodged of lodg: e numbe: f and band mperatu: Volume	ing sco r of ke ase of re: 71 : 26.8	re 0-9 rnels head °F 6 gpa	: 0 = n from co Soil T Noz	o lodgin unting 1 emperatu zles: 8	g; 9 = 0 heads ure: 75 0003	lodged °F Pressu	to gro Humid: re:	ity: 4 32 psi	1%			