Spring Wheat Productivity in dryland and irrigated environments

Jessica A. Torrion

Assistant Professor- Crop Physiology

Northwestern Ag Research Center, Kalispell, MT

Mountains හි Minds

<u>Goal</u>

Optimal productivity with the rainfall received and applied irrigation "more crop per drop" (Water for Food Inst)

Specific objectives

Characterize spring wheat variety response to water regimes – in yield and quality

Creston, Montana AgriMet Weather Station (CRSM)

Latitude: 48.1875 N Longitude: 114.12777 W Elevation: 2950' Installation Date: 4/1/1988

http://www.usbr.gov/pn/ agrimet/agrimetmap/crs mda.html

Daily Crop Water Use (Crop ET)

Water Holding Capacity of a Fine Sandy Loam Soil

1.5 or 2 ft Soil Depth to Consider: early vegetative

3 ft Soil Depth to Consider: ~Boot

PAW_{Today} = **PAW**_{yesterday} – **CropET** - **Other Losses** + **Rainfall** + **Irrigation**

Field Research Set-Up

Water Treatment: 1) Soft dough (100ET), 2) early milk, 3) medium milk, 4) dough and, 5) Rainfed check Varieties: Brennan, Buck Pronto, Cabernet, Expresso, McNeal, Solano

Year	April	May	June	July	August	April-Aug	
	Mean Temperature, F						
2014	44.5	53.3	56.9	67.5	64.9	57.4	
2015	44.8	54.7	65.1	66.3	65.2	59.2	
1989-2015	43.9	52.4	58.4	66.0	64.4	57.0	
	Precipitation, in						
2014	0.84	1.6	6.05	0.46	1.88	10.8	
2015	0.6	0.62	0.97	0.35	0.16	2.7	
1989-2015	1.48	2.04	3.19	1.15	0.95	8.8	
		Total Irrigation Applied					
	Soft Dough		Medium milk	Early milk	Flower half complete		
2014	5.8		4.6	3.3	2.1		
2015	10.0		8.8	7.5	5.0		

Water Regimes: 2014

Water Regimes: 2015

Water Productivity and <u>Un</u>Productivity

What does this yield plateau mean?

In terms of water, time, and energy cost?

In terms of more crop per drop? WP= Produce/total water

1 acre-inch = 27,154 gallons; 140 acres: 3.8 million gal ~average pumping cost for 1 acre-inch: \$5/acre; \$700 (140 Acres); x2 \$1,400 2014 Yields

Nonsignificant yield response with water regimes

2015 Yields

Nonsignificant protein response with water regimes
 I (*), V (*), I x V (ns)

Protein, <u>2015</u>

Nonsignificant protein response with water regimes
 I (ns), V (*), I x V (*)

Falling Number

Falling Number, 2014

Nonsignificant FN response with water regimes
I (*), V (*), I x V (*)

In Summary:

Water-critical stage in spring wheat:

From seedling establishment to early milk.

• Consider the water holding capacity of soil, 'bucket' size, and make room for storing rain.

Non-Water Critical stage in spring wheat:

Late milk to dough

 <u>Schedule Final Irrigation of the season starting early to medium-</u> milk stages

Yield:

- Yield increased with irrigation (<u>6 Bu per inch water</u>).
- Plateau indicates the limits of water productivity (insensitivity of spring wheat to water at seed-fill).
- Temperature stress limited yield potential of irrigated wheat in 2015

Protein:

Protein improvement at early milk irrigation is possible in case of 2014 weather- at least 80% of the yield potential was already achieved prior to <u>this</u> irrigation event.

Falling Number:

Brennan is the most susceptible to the decrease in falling number with irrigation

Thank you

Test Weight, 2014

Nonsignificant TWT response with water regimes

Test Weight, 2015

