

1998 MONTANA MINT RESEARCH REPORT

RESEARCH PROJECTS FOR THE NORTHWESTERN

AND WESTERN AGRICULTURAL RESEARCH CENTERS

WEB PAGE: http://www.montana.edu/wwwnwarc/northw.htm

Plan to attend the Northwestern Ag Research Center Mint Tour on June 30, 1999

STAFF

NWARC: Leon E. Welty, Superintendent & Professor of Agronomy Dr. Bob Stougaard, Assistant Professor, Weed Science Douglas L. Holen Jr., Research Associate Louise M. Strang, Ag Research Specialist Gail Sharp, Research Assistant Gary R. Haaven, Ag Research Specialist Paul P. Koch, Ag Research Tech Elaine M. Scott, Administrative Support

WARC: Dr. Malvern P.Westcott, Dept. Head, Supt. & Prof. of Agronomy Marty L. Knox, Ag Research Specialist

MSU:

Dr. Bill Grey, Research Assistant Professor/Mint Certification Specialist, Plant Sciences

Dr. Mareike R. Johnston, Research Associate Professor, Plant Sciences

This publication reports on research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate State and Federal agencies before they can be recommended.

TABLE OF CONTENTS

Growing Degree Days
1998 Mint Cultivar Trial
1997 Spearmint Cultivar/Propagation Trial
1996 Black Mitcham Propagation Trial 15
Peppermint Fall Harvest Management Trial 21
Effect of Freezing on Survival of Peppermint and Spearmint Rhizomes/Stolons
Peppermint Hilling Study 31
Long-term Quackgrass Control in Peppermint with Assure II
1996 Mint Carryover Study 37
Dormant Spring Goal Applications for Toadflax Control
Toadflax Control with Basagran Tankmix Combinations
Goal Tolerance Study
Post Harvest Goal Applications for Toadflax Control
Mint Tolerance and Wild Pansy Control with Roundup
Wild Pansy Control in Peppermint 52
Horsetail Control in Baby Mint 54
Evaluation of Menta Varities and Germplasm for Disease Reaction and Latent Infection Period to Mint Rust and Powdery Mildew
Early-Season N Fertilization of Peppermint

Summary of growing degree day (GDD) data for mint at the Northwestern Agricultural Research Center May 1, 1949 through September 15, 1998. GDD = Temp Max + Temp Min ÷2 - 50

Min Temp < 50F	substituted with 50
----------------	---------------------

YEAR	MAY	JUNE	JULY	AUG.	SEPT.	TOTAL	
1949	314.0	356.5	473.0	525.0	170.0	1838.5	
1950	208.0	308.0	460.5	466.0	196.5	1639.0	
1951	223.0	251.5	516.0	421.5	135.5	1547.5	
1952	243.5	309.0	465.0	476.0	155.0	1648.5	
1953	194.5	252.5	527.0	468.5	212.5	1655.0	
1954	270.5	255.0	479.0	387.0	149.0	1540.5	
1955	165.0	375.5	451.5	509.5	213.0	1714.5	
1956	282.0	354.0	502.0	443.0	183.0	1764.0	
1957	312.5	350.5	519.0	470.5	191.0	1843.5	
1958	430.5	401.0	514.0	583.5	208.5	2137.5	
1959	187.0	371.0	524.5	419.0	158.0	1659.5	
1960	202.5	380.5	621.0	386.5	189.0	1779.5	
1961	248.0	491.5	548.0	589.0	127.5	2004.0	
1962	201.0	370.5	460.0	444.5	144.0	1620.0	
1963	265.0	335.5	472.0	531.0	210.5	1814.0	
1964	219.5	324.5	490.0	357.0	109.0	1500.0	
1965	222.0	329.5	495.0	462.5	82.0	1591.0	
1966	307.5	291.0	500.0	452.5	215.0	1766.0	
1967	255.0	354.5	557.0	586.5	237.5	1990.5	
1968	207.5	349.0	522.0	410.5	163.0	1652.0	
1969	293.5	339.5	461.5	522.0	201.5	1818.0	
1970	281.5	402.0	483.5	483.0	117.5	1767.5	
1971	259.0	263.0	442.5	604.0	141.0	1709.5	
1972	228.5	350.0	427.5	529.0	159.5	1694.5	
1973	259.5	322.5	538.0	523.0	179.0	1822.0	
1974	152.5	407.5	489.5	436.5	145.0	1631.0	
1975	180.0	283.5	604.5	363.0	156.0	1587.0	
1976	251.0	249.5	467.5	401.0	165.5	1534.5	
1977	184.0	422.5	436.0	438.5	159.0	1640.0	
1978	131.0	349.5	446.5	379.0	144.0	1450.0	
1979	225.5	370.5	505.0	518.0	164.5	1783.5	
1980	268.0	290.0	442.0	361.0	159.5	1520.5	
1981	209.0	210.5	447.0	556.0	199.5	1622.0	
1982	195.0	370.0	406.5	480.5	159.5	1611.5	
1983	259.5	315.5	358.5	530.0	136.0	1599.5	
1984	162.0	295.5	529.0	526.5	129.5	1642.5	
1985	294.5	350.5	604.0	395.0	110.5	1754.5	
1986	252.0	462.5	363.0	544.5	105.0	1727.0	
1987	287.5	406.5	446.5	390.0	211.5	1742.0	
1988	218.5	400.5	466.5	524.0	206.0	1815.5	
1989	178.5	350.5	530.0	401.0	122.5	1582.5	
1990	165.5	297.0	492.5	475.5	233.5	1664.0	
1991	175.0	243.0	465.5	509.5	179.5	1572.5	
1992	277.0	414.5	375.0	456.5	120.0	1643.0	
1993	306.0	273.5	260.0	383.0	153.5	1376.0	
1994	261.5	316.0	539.0	567.0	159.5	1843.0	
1995	219.5	275.0	427.5	383.0	204.0	1509.0	
1996	91.5	322.0	512.0	442.0	158.5	1526.0	
1997	229.0	295.5	423.5	470.5	178.5	1597.0	
1998	267.5	243.5	575.5	535.0	251.0	1872.5	
MEAN	234.4	334.1	481.2	470.3	167.2	1687.3	

1

YEAR: 1998 NORTHWESTERN AGRICULTURAL RESEARCH CENTER

y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 7 17	76 76 77 78 72 77 75 73 77 69 73 69	38 36 49 41 42 42 41 38 43 37	13.0 13.0 13.5 14.0 11.0 13.5 12.5 11.5 13.5		1234567	61 69 61 66 67 70	50 42 35 35 42	5.5 9.5 5.5 8.0		1 2 3 4	81 72 83 85	52 47 54 53	16. 11. 18.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	77 78 72 77 75 73 77 75 67 69 73	46 49 41 42 42 41 38 43	13.5 14.0 11.0 13.5 12.5 11.5 13.5		3 4 5 6	61 66 67	35 35	5.5 8.0		3	83	54	18.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	78 72 77 75 73 77 75 67 69 73	49 41 42 41 38 43	14.0 11.0 13.5 12.5 11.5 13.5		4 5 6	66 67	35	8.0					
4 5 6 7 8 9 10 11 12 13 14 15 16 17	72 77 75 73 77 75 67 69 73	41 42 41 38 43	11.0 13.5 12.5 11.5 13.5		5 6	67				4	85	5.3	
5 6 7 8 9 10 11 12 13 14 15 16 17	72 77 75 73 77 75 67 69 73	41 42 41 38 43	11.0 13.5 12.5 11.5 13.5		6		42						19
6 7 8 9 10 11 12 13 14 15 16 17	77 75 73 77 75 67 69 73	42 42 41 38 43	12.5 11.5 13.5			70		8.5		5	77	57	17
7 8 9 10 11 12 13 14 15 16 17	75 73 77 75 67 69 73	42 41 38 43	12.5 11.5 13.5		7		45	10.0		6	70	49	10
8 9 10 11 12 13 14 15 16 17	73 77 75 67 69 73	41 38 43	11.5 13.5			69	49	9.5		7	75	52	13
9 10 11 12 13 14 15 16 17	77 75 67 69 73	38 43	13.5		8	62	41	6.0		8	81	52	16
10 11 12 13 14 15 16 17	75 67 69 73	43			9	68	42	9.0		9	82	54	18
11 12 13 14 15 16 17	67 69 73		12.5		10	70	50	10.0		10	89	61	25
12 13 14 15 16 17	69 73	5/	8.5		11	67	55	11.0		11	84	60	22
13 14 15 16 17	73	37	9.5		12	70	56	13.0		12	74	57	15
14 15 16 17		41	11.5		13	70	49	10.0		13	73	48	11
15 16 17		48	9.5		14	61	43	5.5		14	76	50	13
16 17	50		0.0		15	62	49	6.0		15	78	53	15
17	50	41			16	57	45	3.5		16	84	54	19
	56	29	3.0		17	61	42	5.5		17	85	53	19
	65	36	7.5			66	50	8.0		18	87	56	2
18	50	42	0.0		18			8.5		19	88	54	2
19	54	31	2.0		19	67	45				87	52	19
20	69	37	9.5		20	62	50	6.0		20			16
21	81	44	15.5		21	66	42	8.0		21	82	51	19
22	64	48	7.0		22	75	45	12.5		22	84	54	
23	49	46	0.0		23	70	49	10.0		23	86	54	20
24	60	48	5.0		24	66	47	8.0		24	88	62	2
25	63	40	6.5		25	67	52	9.5		25	82	56	19
26	77	47	13.5		26	63	51	7.0		26	87	57	2
27	76	42	13.0		27	55	48	2.5		27	90	58	24
28	53	38	1.5		28	61	48	5.5		28	88	60	2
29	62	36	6.0		29	69	46	9.5		29	86	55	20
30	69	43	9.5		30	75	47	12.5		30	85	56	20
31	52	48	1.0							31	84	61	2
	MAX 67.2	AV MIN 41.1	GDD 267.5			AV MAX 65.8	AV MIN 46.3	GDD 243.5			AV MAX 82.4	AV MIN 54.6	GDD 575
				Cant		MAX	MIN	GDD	Oct.		MAX	MIN	G
gust	MAX	MIN	GDD	Sept.		90	47	20.0	001.	1			Ū.
1	82	60	21.0		1		49	19.0		2			Ċ
2	65	60	12.5		2	88		20.5		3			i
3	80	54	17.0		3	91	47			4			i
4	85	54	19.5		4	89	47	19.5		5			i
5	89	52	20.5		5	91	46	20.5					
6	92	59	25.5		6	89	47	19.5		6			
7	92	53	22.5		7	89	47	19.5		(
8	83	48	16.5		8	86	49	18.0		8			
9	82	46	16.0		9	77	59	18.0		9			
10	86	48	18.0		10	67	51	9.0	(L. 1	10			
11	88	51	19.5		11	74	43	12.0		11			
12	88	52	20.0		12	74	42	12.0		12			
13	86	51	18.5		13	77	43	13.5		13			
14	89	54	21.5		14	79	42	14.5		14			
15	90	54	22.0		15	81	43	15.5		15			
16	86	53	19.5		16			0.0		16			
17	79	42	14.5		17					17			(
18	73	40	11.5		18			0.0		18			
19	72	40	11.0		19			0.0		19			
	74	41	12.0		20			0.0		20			
20		41	19.0		21			0.0		21			1
21	88		19.0		22			0.0		22			(
22	84	55	19.5		23					23			
23	80	46	10.0							24			
24	74	50	12.0		24			0.0		25			
25	69	42	9.5		25			0.0		26			
26	78	44	14.0		26								- 1
27	79	44	14.5		27			0.0		27			
28	80	43	15.0		28			0.0		28			
29	85	44	17.5		29			0.0		29			
30	91	46	20.5		30			0.0		30			
31	89	48	19.5							31	234		4 -
AVI	MAX	AV MIN	GDD			AV MAX 82.8	AV MIN 46.8	GDD 251.0			AV MAX 0.0	AV MIN 0.0	GDD
	82.5	48.9	535.0			o∠.ð	40.0	201.0			0.0	0.0	

2

TITLE: 1998 MINT CULTIVAR TRIAL

PERSONNEL: Leon E. Welty, Professor of Agronomy, MSU, Kalispell, MT Louise Strang, Research Specialist, MSU, Kalispell, MT

OBJECTIVE: Determine peppermint and spearmint germplasm response to an Intermountain environment in terms of pest tolerance, oil yield and oil quality.

DURATION: 1998-2000

PROCEDURES: The following cultivars/selection lines were planted May 18 and 19, 1998:

1) Black Mitcham peppermint, stem-cut propagated by MIRC

2) B-90-9 peppermint, stem-cut propagated by MIRC

3) Murray Mitcham peppermint, stem-cut propagated by MIRC

M-83-14 peppermint, stem-cut propagated by MIRC

5) 92(B-37 x M0110) peppermint, stem-cut propagated by MIRC

6) Lewis McKellip selection, nodal propagated by MIRC

7) UK-1 peppermint, nodal propagated by Lake

8) UK-2 peppermint, nodal propagated by Lake

9) McClelland selection, meristem propagated by Starkel

10) Plant Tech-94 selection, stem-cut propagated by Grey

11) Native spearmint, stem-cut propagated by MIRC

12) N-83-22 spearmint, stem-cut propagated by MIRC

13) Scotch spearmint, stem-cut propagated by MIRC

14) Scotch 770 spearmint, stem-cut propagated by MIRC

15) S-90-9 spearmint, stem-cut propagated by MIRC

Experimental design was two side-by-side randomized complete blocks (peppermint and spearmint) with four replicates. Each plot consisted of four 20-ft long rows spaced 22 inches apart with 3 ft between plots. Plant spacing was one foot within each row. Appropriate management practices (irrigation, fertility, and weed and pest control) were employed to insure maximum mint oil production. Stand vigor was rated August 7. Plots were harvested August 25, 1998, when peppermint entries were at the full bud to midbloom stage and spearmint entries were at full bloom. Some entries were exhibiting severe rust symptoms. Rust severity was estimated by visual ratings on August 19. Plant height and growth stage was determined the day before harvest. Yields were determined by swathing a 92 ft² area of each plot, drying a 500 g subsample to determine dry matter content, and drying a 20 lb. sample for distillation. Oil was distilled and collected by steam distillation with a research still at the NWARC. Oil samples were analyzed for quality by gas chromatography at A.M. Todd company, and the data compiled and statistical analyses performed at NWARC using MSUSTAT (Version 5.22, R.E. Lund, 1994).

RESULTS AND DISCUSSION: All entries established well with very good transplant survival. Mid summer stand evaluation indicated M-83-14 and the McClelland peppermints and Native spearmint were most vigorous, while Scotch 770 was least vigorous (Table 1). Brownish-red spots typical of the rust uredial stage were seen in all plots to different extents. At this time, symptoms were most severe in Scotch spearmint and least in the 92(B-37 x M0110) and UK-1 peppermints.

By harvest time in late August, rust symptoms had increased in severity and extent, particularly in the spearmints (both *M.cardiaca* and *M.spicata*) and in B-90-9 peppermint (Table 2). Obviously both strains of *Puccinia menthae* were active at NWARC in 1998.

In this establishment year of the study, there was variation in yield parameters among cultivars and selection groups (Table 2). No peppermint entry produced significantly more dry matter than Black Mitcham, and (B-37 x M0110), UK-2 and Plant Tech 94 produced significantly less. Of the spearmint entries, the derived line N-83-22 produced less dry matter than the parent Native, while Scotch 770 and S-90-9 produced less than the parent Scotch did.

B-37 x M0110 was lower in oil content (% of dry matter) than Black Mitcham. N-83-22 produced less oil per unit dry matter than Native, while S-90-9 had less than Scotch (Table 2). B-90-9, M-83-14, and the McKellip selection matched the Black Mitcham check entry in oil yield, while the other peppermint lines were less productive. N-83-22 spearmint produced significantly less oil than Native. S-90-9 spearmint produced significantly less oil than Scotch770 (Table 2). None of the new cultivars or selections showed improvement over the checks in oil yield during the first year of this study.

In comparing levels of seven major components of peppermint oil to the Black Mitcham check entry, the highest menthol levels were found in Black Mitcham, B-90-9, B-37 x M0110, and the McClelland selection. (Table 3). Menthol is usually maximized when the mint approaches the full bloom stage. Black Mitcham, B-90-9, and B-37 x M0110 were at the early to mid bloom stage, but the McClelland entry had only reached full bud.

Of the spearmints, carvone levels were similar except for N-83-22, which was lower than the other entries (Table 3). For the other components listed, the Scotch and its derivations differed in content from the Native and N-83-22.

Table 1. Stand establishment evaluation of peppermint and spearmint entries in the Mint Cultivar Trial at Kalispell, MT on August 7, 1998.

10 I 0 I V						Stolor	1		
Selection/Cultivar	Source		Cover (0-5) ^{1/}		<u>gor</u> -5) ²	<u>Sprea</u> (0-5) ³	<u>d</u>	<u>Rust</u> (0-5) ^{4/}	
Black Mitcham	stem-cut/MIRC		4.5	4	1.5	4.5		1.5	
B-90-9	stem-cut/MIRC		5.0	4	1.5	3.0		1.0	
Murray Mitcham	stem-cut/MIRC		4.0	4	1.0	3.5		2.5	
M-83-14	stem-cut/MIRC		5.0	5	5.0	3.5		1.0	
92 (B-37 x M0110)	stem-cut/MIRC		3.0	3	8.5	2.0		0.5	
Lewis McKellip	nodal/MIRC		4.5	4	1.5	4.5		1.0	
UK-1	nodal/Lake		5.0	4	1.0	3.5		0.5	
UK-2	nodal/Lake		4.0	3	8.5	3.0		1.0	
McClelland	meristem/Starkel	20	5.0	5	5.0	4.5		1.5	
Plant Tech 94	stem-cut/Grey		3.0	3	3.0	3.5		1.0	
SPEARMINT	•								
Native	stem-cut/MIRC		4.0	5	5.0	2.5		2.5	
N-83-22	stem-cut/MIRC		3.0	3	3.0	1.5		2.5	
Scotch	stem-cut/MIRC		5.0	4	1.5	1.5		3.5	
Scotch 770	stem-cut/MIRC		3.0	2	2.5	1.0		1.0	
S-90-9	stem-cut/MIRC		3.0	3	8.0	1.0		2.0	
	LSD(0.10)		0.5	1	.1	1.1		2.1	

Planted 5/19/98 Harvested 8/25/98

^{1/} 0=empty; 5=total plot coverage

^{2/}0=dead; 5=very healthy, vigorous growth

^{3/}0=no visible spread from crowns; 5=extensive spreading

^{4/}0=no rust symptoms; 5=very severe, leaf necrosis

Table 2. Heights, rust severity, total dry matter and oil yields for entries in the Mint Cultivar Trial established at Kalispell, MT in 1998.

0:1

					Hay	Oil	Oil
Quite tie - 10 ultivor	Source		Height	Rust	Yield	Content	Yield
Selection/Cultivar	Source		inches	(0-5)*	t/a	%dm	lbs/a
PEPPERMINT	stem-cut/MIRC		24	5	1.98	1.5	59.8
B-90-9	stem-cut/MIRC		23	4	1.98	1.4	59.3
Black Mitcham	stem-cut/MIRC		23	3	2.05	1.4	56.7
M-83-14	nodal/MIRC		22	4	2.15	1.3	55.3
Lewis McKellip	meristem/Starkel		22	4	1.98	1.3	51.0
McClelland			18	3	1.73	1.4	49.5
Plant Tech-94	stem-cut/Grey nodal/Lake		21	4	1.83	1.4	49.5
UK-1			24	4	1.87	1.3	48.0
Murray Mitcham	stem-cut/MIRC		20	4	1.60	1.5	46.5
UK-2	nodal/Lake		25	4	1.67	1.1	38.4
92 (B-37 x M0110)	stem-cut/MIRC		25	All Providence			
SPEARMINT			26	5	1.76	1.3	44.5
Scotch	stem-cut/MIRC		20	5	1.39	1.3	38.0
Scotch 770	stem-cut/MIRC		26	5	1.84	1.0	34.6
Native	stem-cut/MIRC			5	1.41	1.0	26.3
S-90-9	stem-cut/MIRC		22	5	1.57	0.5	17.7
N-83-22	stem-cut/MIRC		26	5	1.07	0.0	
			2	1	0.27	0.2	7.4
	LSD(0.10)		3	-	12.5	2.5	13.7
	CV(s/mean x100)	10.2	12.5	12.5	2.0	

Planted 5/19/98 Harvested 8/25/98

6

Table 3. Oil quality components of entries in the Mint Cultivar Test at Kalispell, MT in 1998.

PEPPERMINT

Scotch 770

S-90-9

			Total	Total					
Selection/Cultivar	Source	Stage*	Ketones %	Alcohol %	MF %	Menthone %	Menthol %	Ester %	Pulegone %
Black Mitcham	stem-cut/MIRC	ebl	28.4	46.4	3.89	24.6	38.4	2.09	0.46
B-90-9	stem-cut/MIRC	mbl	28.0	46.8	4.42	24.2	38.8	1.82	0.47
Murray Mitcham	stem-cut/MIRC	mbl	31.5	44.5	3.16	27.6	35.2	1.81	0.45
M-83-14	stem-cut/MIRC	mbl	32.3	44.2	3.89	27.6	36.3	1.99	0.75
92 (B-37 x M0110)	stem-cut/MIRC	mbl	30.5	46.3	3.54	27.0	38.3	1.82	0.44
Lewis McKellip	nodal/MIRC	lb	30.1	44.7	3.77	26.2	36.9	1.77	0.36
UK-1	nodal/Lake	fb	30.5	44.5	4.68	26.6	36.7	1.97	0.38
UK-2	nodal/Lake	mbl	30.7	44.5	4.53	26.9	36.7	1.91	0.39
McClelland	meristem/Starkel	fb	28.3	47.2	3.28	24.4	39.2	2.09	0.30
Plant Tech 94	stem-cut/Grey	ebl	32.0	43.3	4.23	28.1	35.8	1.63	0.35
	mean		30.2	45.2	3.94	26.3	37.2	1.89	0.43
	LSD(0.10)		1.5	1.6	0.44	1.3	1.2	0.20	0.11
	CV(s/mean)x100		4.1	2.9	9.4	4.2	2.7	8.6	21.6
SPEARMINT									
								Dihydro	-1 3%
Selection/Cultivar	Source	Stage*	A:Pinene	B:Pinene	<u>Limonene</u>	Cineole	<u>Octanol</u>	carvone	Carvone
Native	stem-cut/MIRC	fbl	0.96	1.39	12.80	2.54	0.91	2.31	61.53
N-83-22	stem-cut/MIRC	fbl	1.03	1.42	15.45	2.53	0.73	0.92	55.65
Scotch	stem-cut/MIRC	fbl	0.89	1.27	20.58	1.72	2.11	0.71	62.64
and the second second				1					

0.87

0.90

0.93

0.05

4.0

1.26

1.34

1.33

0.07

4.2

21.29

20.89

18.20

1.09

4.7

1.51

1.83

2.02

0.15

5.8

1.93

1.73

1.48

0.09

4.7

0.53

0.51

1.00

0.18

14.5

62.49

61.36

60.73

1.81

2.4

* mb = midbud; fb = full bud; lb = late bud; ebl = early bloom; mbl - midbloom; fbl = full bloom

fbl

fbl

stem-cut/MIRC

stem-cut/MIRC

CV(s/mean)x100

mean

LSD(0.10)

TITLE: 1997 SPEARMINT CULTIVAR/PROPAGATION TRIAL

PERSONNEL: Leon E. Welty, Professor of Agronomy, MSU, Kalispell, MT Louise Strang, Research Specialist, MSU, Kalispell, MT

OBJECTIVE: Evaluate new spearmint cultivars / propagation methods for vigor, hay and oil production.

DURATION: 1997-1999

PROCEDURES: Nuclear plants of Native, N-83-5, and Scotch 770 spearmint were provided by the following propagators:

Summit – stem-cut Starkel – meristem Lake – nodal

The meristem and nodal tissue propagated material was planted 5/20/97, and the stem-cut material was planted 5/29/97. The entries were planted in a randomized complete block design in 20-ft long plots consisting of 4 rows of 20 plants with 20-inch row spacing.

Stands were rated for vigor and stolon spread on 4/22/98. All plots were harvested 7/1/98 at the vegetative stage of maturity. A second harvest was taken 9/2/98 at the late bud to early bloom stage. Rust symptom ratings were taken prior to harvest. Harvest method and hay an oil yield calculations were the same as the other mint trials. A.M. Todd Company conducted oil quality analyses.

RESULTS AND DISCUSSION: Scotch 770 had the most vigorous early season growth, followed by N-83-5 and Native (Table 1). Spearmint propagated by nodal culture showed more extensive stolon spread than that propagated by either meristem or stem cutting.

For the first cutting, Scotch 770 had much higher oil content (%oil in dry matter) than Native and its derivative N-83-5 (Table 2). The nodal propagated Scotch 770 had a higher concentration of oil than meristem propagated. Native produced significantly more dry matter but Scotch 770 produced significantly more oil than the other cultivars. The interaction effect between cultivar and propagation source was significant in regards to hay yield. Meristem Scotch 770 produced more hay than the other propagation types, but stem cut and nodal Native and nodal N-83-5 produced more hay than meristem for these cultivars. Scotch 770 produced 67% more oil than Native and N-83-5, and the nodal propagated entries produced more than stem cut or meristem.

Rust had invaded all plots by the second cutting. Scotch 770 was more seriously affected than the Native types (Table 3). As in the first harvest, N-83-5 was tallest and Scotch 770 was shortest. Scotch 770 was the most mature, having started to bloom.

There was no significant difference between Native and N-83-5 in second harvest hay yield (Table 3). Scotch 770 produced significantly less hay. Scotch 770 had over 40% higher on content than the other cultivars. As in the first cutting, the nodal propagated Scotch 770 contained significantly more oil per pound dry matter than the same cultivar propagated by

meristem or stem cutting. Because of the higher concentration, Scotch 770 also had the highest oil yield of the three cultivars. The nodal propagated line produced over 114 lbs/acre in the second harvest.

Total oil yields are displayed graphically in Figure 1. The superiority of Scotch 770 nodal propagated material is obvious. Scotch 770 produced on the average 45% more oil than Native or N-83-5, and the nodal line produced 25% more oil than the meristem or stem cut lines. Since the nuclear plants came from three different propagators, there may have been variation in the parent material from which these lines were derived.

Differences in major quality components in first cutting oil were mainly due to species differences. None of the entries had reached the budding stage. Scotch 770 had higher carvone and limonene levels than Native or N-83-5 (Table 4). At the second cutting, Scotch 770 was slightly more mature than the Native lines. Carvone levels were significantly higher in the meristem-derived plots, but only slightly higher in the stem cut and nodal lines (Table 5). Scotch was again higher in limonene content than Native and N-83-5.

VIGOR (1-5)					
	Stem cut	Meristem	Nodal	means	
Native	3.0	3.0	2.8	2.9	
N-83-5	3.0	3.0	3.3	3.1	
Scotch 770	4.0	4.0	4.3	4.1	
means	3.3	3.3	3.4	LSD(0.10):	
	1.\$0(6/10) :actust mean**			cultivar: (propagation &).2 interaction: NS

Table 1. Stand ratings for spearmint cultivars/propagation sources on 4/22/98.

STOLON SPREAD (1-5)

	Stem cut	Meristem	Nodal	means	
Native	3.3	3.5	4.0	3.6	
N-83-5	3.3	3.5	4.0	3.6	
Scotch 770	3.3	3.8	4.3	3.8	
means	3.3	3.6	4.1	LSD(0.10)	
3. N -				propagation: 0. cultivar&interac	

Table 2. Height, hay yield, oil content, and oil yield of cultivars at the first cutting - 7/1/98.

HEIGHT (inches)					
	Stem cut	Meristem	Nodal	means	
Native	37	35	35	35	
N-83-5	37	36	38	37	
Scotch 770	31	31	30	31	
means	35	34	34	LSD(0.10) cultivar: 1 propagation: N	S
				interaction: N	
HAN VIELD (topolo	010)1/				ona shovish
HAY YIELD (tons/a	cre)	O Settler	Nedel	moone	
andres i poster manager deuts it	Stem cut	Meristem	Nodal	means	
Native	4.05	3.64	4.10	3.93	
N-83-5	3.44	3.35	4.03	3.60	ан Та
Scotch 770	3.15	3.94	3.28	3.46	
	0.54	0.04	0.04	100(0 10)	
means	3.54	3.64	3.81	LSD(0.10)	0.40
				factor means:	0.19
	19.90			interaction:	0.32
OIL CONTENT (%d	m)				
	Stem cut	Meristem	Nodal	means	
Native	.36	.38	.42	.38	
N-83-5	.42	.46	.44	.44	
Scotch 770	.76	.59	.87	.74	
means	.51	.48	.57	LSD(0.10)	
				factor means:	0.08
				interaction:	0.11
OIL YIELD (Ibs/acre	e) ^{1/}				
·· (Stem cut	Meristem	Nodal	means	
Native	29.2	27.2	33.2	29.9	
N-83-5	28.5	30.3	34.7	31.1	
Scotch 770	47.0	46.5	57.9	50.4	2
Scolon 110	47.0	-0.0	8.2	00.4	
means 3.0 molts	34.9	34.6	41.9	LSD(0.10)	
means	54.5	04.0	71.0	factor means:	4.5
				interaction:	NS

 $^{1\prime}$ All spearmints were in the vegetative stage on 7/1/98.

Table 3. Height, disease, growth stage, hay yield, oil content, and oil yield of cultivars at the second cutting – 9/2/98.

HEIGHT (inches)					
•	Stem cut	Meristem	Nodal	means	
Native	27	26	27	27	
N-83-5	29	29	29	29	
Scotch 770	27	24	23	25	
				LSD(0.10)	
means	28	26	27	cultivar: 1	
				propagation: 1	
				interaction: 2	-
RUST (0-5)*					
	Stem cut	Meristem	Nodal	means	
Native	2.8	2.3	3.3	2.8	
N-83-5	3.3	3.3	2.8	3.1	
Scotch 770	4.3	4.8	3.8	4.3	
				LSD(0.10)	
means	3.4	3.4	3.3	cultivar: 0.6	
mound	(o. o)050			propagation: NS	
*0=no symptoms;	5=heavily infes	sted		interaction: NS	
5.0	FC Kistern				

GROWTH STAGE

	Stem cut Meristem Nodal	
Native	late bud full bud late bud	
N-83-5	late bud late bud prebloom	
Scotch 770	early bloom prebloom early bloom	
	(6) (102) L/O (108)	

Table 3. (co	ont.)				
HAY YIELD	(tons/acre)				
Native N-83-5 Scotch 770	Stem cut 2.89 3.08 2.65	Meristem 2.89 2.90 2.62	Nodal 3.09 3.03 2.47	means 2.96 3.00 2.58	
means	2.87	2.80	2.86	LSD(0.10) factor means: interaction:	0.13 NS
OIL CONTE	NT (%dm)				
	Stem cut	Meristem	Nodal	means	
Native	1.3	1.3	1.3	1.3	
N-83-5	1.4	1.3	1.3	1.3	
Scotch 770	1.7	1.7	2.2	1.9	
means	1.5 24 0012 1.5	<u>ິະ</u> 1.5	1.6	LSD(0.10) factor means: interaction:	0.1 0.2
OIL YIELD (I	bs/acre)				
	Stem cut	Meristem	Nodal	means	
Native	70.9	75.1	78.4	74.8	
N-83-5	82.6	75.7	78.3	78.9	
Scotch 770	89.9	91.4	114.4	98.5	
means	81.1	80.7	90.4	LSD(0.10) factor means: interaction:	6.8 11.7

	Dihydro-					
	carvone	Carvone	a-Pinene	b-Pinene	Limonene	Cineole
Stem cut Native	1.30	49.9	0.84	1.43	15.8	1.01
Stem cut N-83-5	0.80	50.2	0.81	1.29	11.5	1.20
Stem cut Scotch 770	0.55	59.5	0.84	1.37	17.9	1.04
Meristem Native	1.17	49.9	0.88	1.41	13.4	1.03
Meristem N-83-5	0.82	47.4	0.92	1.41	12.7	1.19
Meristem Scotch 770	0.80	61.0	0.86	1.39	16.6	0.89
Nodal Native	0.89	47.7	0.92	1.44	14.0	0.85
Nodal N-83-5	1.06	49.0	1.04	1.54	13.2	0.97
Nodal Scotch 770	0.82	63.7	0.83	1.32	17.1	0.85
mean	0.91	53.1	0.88	1.40	14.7	1.00
LSD(0.10)	0.26	3.5	NS	NS	2.4	0.20
CV(s/mean)	23.5	5.5	13.5	11.0	13.3	16.2

Table 4. Quality components of 3 spearmint cultivars and 3 propagation types for the first harvest, 1998.

Table 5. Quality components of 3 spearmint cultivars and 3 propagation types for the second harvest, 1998.

	Dihydro-					
	carvone	Carvone	a-Pinene	b-Pinene	Limonene	Cineole
Stem cut Native	1.88	61.4	1.11	1.60	11.6	2.24
Stem cut N-83-5	1.11	61.1	1.14	1.62	11.4	2.32
Stem cut Scotch 770	0.68	63.0	1.07	1.57	16.1	1.94
Meristem Native	1.27	62.1	1.10	1.58	13.5	1.99
Meristem N-83-5	0.87	60.6	1.16	1.61	11.6	2.31
Meristem Scotch 770	0.84	65.7	0.99	1.48	16.7	1.51
Nodal Native	0.92	62.6	1.10	1.53	11.9	1.74
Nodal N-83-5	0.91	62.3	1.10	1.59	13.5	2.18
Nodal Scotch 770	0.85	64.7	1.04	1.51	16.0	1.73
mean	1.04	62.6	1.09	1.56	13.6	1.99
LSD(0.10)	0.34	2.3	NS	NS	2.6	0.48
CV(s/mean)	26.8	3.0	7.7	5.8	16.1	19.9

Analysis by A. M. Todd

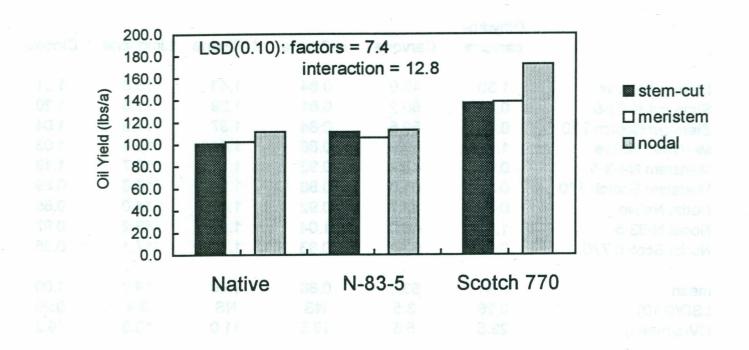


Figure 1. Total oil yield of spearmint cultivars/propagation types at NWARC in 1998.

Table 5 - Unality Components of 3 spectrulet outivaria and 3 propagation (yeas for this apoint rangest 1997

		enanialia		
	1.57			
1.51				
				e della labola
				1
		7.7.	3.0	

Analysis by A M Todal

TITLE: 1996 BLACK MITCHAM PROPAGATION TRIAL

into tose bas bose while a reflection and

PERSONNEL: Leon E. Welty, Professor of Agronomy, MSU, Kalispell, MT Louise Strang, Research Specialist, MSU, Kalispell, MT Dr. Bill Grey, Asst. Research Professor, MSU, Bozeman, MT Cathy & Tom Smith, Summit Labs, Fort Collins, CO

OBJECTIVE: Determine effect of propagation source and method on vigor, hay yield, oil yield, and oil quality of Black Mitcham peppermint.

DURATION: 1996-1999

PROCEDURES: Nuclear plants representing stem-cut, *in vitro* nodal and meristem culture were propagated from a single plant or from a randomly selected group of plants from the Black Mitcham mother block by Summit Labs. These seven entries plus plants from a contaminated culture of Lake's were planted on June 4 and 5, 1996. Seven lines from various sources were stem-cut propagated at the NWARC and planted on June 17, 1996.

The MIRC 1, 2, 5, and 7 entries came from a cutting off a single plant from the Black Mitcham mother bed at Summit Plant Laboratories, Inc.(Table 1.) Entries MIRC 3, 4, and 6 originated from a group of plants randomly selected from the mother bed. Stem cut plants (MIRC 1, 6, 7) were grown directly from cuttings off the original parent or the random plant selection group. Nodal tissue culture plants (MIRC 2, 4) were grown from surface disinfected, trimmed nodal cuttings placed in sterile culture medium with no growth regulators. One month later, the explants that remained free of contamination were transferred as nodal cuttings to another culture medium to increase populations. Rooted in vitro plantlets were then transferred to plug trays in the greenhouse. The meristem/parent plant entry (MIRC 5) originated from in vitro plantlets created from nodes subcultured from the single parent plant and grown under standard growth conditions in the laboratory for 8 weeks. The mature cultures were then heat treated at 34°-36° C for 6 days. Meristem explants were grown in vitro under standard conditions, increased, and finally transplanted into plug trays in the greenhouse. The meristem/random selection entry (MIRC-3), however, received no heat treatment. Meristems were taken from randomly selected in vitro plants in the commercial production block in the laboratory. The 5 surviving meristem lines from this process provided the material for this entry. The MIRC-7 entry was stem cut from a separate bed created from rooted in vitro plantlets derived from the single parent.

The NWARC lines consisted of material obtained from two meristem fields located at the NWARC (R-5 and R-7), material obtained from the 1994 cultivar evaluation trial (Lake 94 and Plant Tech 94), material from two productive Black Mitcham fields in the Flathead (Montana 1, Montana 2), and material obtained from George McClelland (Idaho) (Table 1). Stolons were dug from each source location on February 14, 1996 and planted in separate flats in the NWARC laboratory. After shoot emergence, stem segments containing two leaf nodes were removed and planted in trays containing potting medium (half in plugs and half in open trays). Plantlets were grown at ambient lab temperature under fluorescent lights. All propagation lines were successfully established in a randomized block design. Appropriate management practices (irrigation, fertility, weed and pest control) were employed to insure maximum mint growth and oil production.

Entries were evaluated for stand vigor indicators May 29, 1998. All plots were harvested August 5. Hay yield was measured, and 20 pounds green material from each plot was dried and the oil separated by steam distillation to determine oil yield. Oil samples from each plot were sent to A.M.Todd Co. for quality component analysis.

Data were analyzed using MSUSTAT Version 5.22 (R.E. Lund, Montana State University).

RESULTS AND DISCUSSION: The seven MIRC entries allow us to compare different propagation methods carried out in the same laboratory, eliminating variance due to the propagation environment (equipment, personnel, source material, etc.). As in 1997, plants propagated from meristem culture produced significantly more dry matter than non-meristem plants (Fig.1). This supports previous observations that meristem derived Black Mitcham exhibits more vigorous growth than non-meristem peppermint. There was no difference in hay yield between single parent derivation and propagation from a group.

Unlike 1997, oil yield was not affected by propagation method directly. Parental selection, however, and its interaction with propagation method were significant (Fig.2). Non-meristem propagated plants derived from a randomly selected parental group produced more oil than meristem propagated plants from the random selection. Meristem-propagated plants cloned from a single plant yielded slightly more oil than those from the random group. The superiority of using a random selection of parental plants reinforces the previous indication that there is variation within the Black Mitcham mother block for some trait influencing oil yield. The fact that this was **not** observed in the entries that had been propagated by meristem culture suggests that this high oil factor was reduced or eliminated by this technique.

The objective of propagating at NWARC was to determine if the high vigor/lower oil yield characteristic attributed to *in vitro* nodal or meristem culture could be transferred through the stem-cut process. Plants derived from the Lake 94 (source: Lake 92) nodal material produced slightly more dry matter and 14% less oil than that derived from the Plant Tech 94 stem cut material (Table 2). This is the same relationship observed in 1997, except the difference in dry matter production is not significant. This confirms the persistence of the high oil yield trait associated with the Plant Tech material.

In 1997, correlations between response variables revealed a strong negative correlation between dry matter production and oil yield. This relationship was no longer significant in 1998 (Table 3). Oil yield and early season stand vigor are not significantly related.

Oil quality analysis revealed variation among entries in certain components (Table 4). All plots were in the late bud stage of development. The oil was characteristic of immature oil, being low in menthol and esters and high in menthone. The menthofuran levels are high for this region considering no blossoms were present.

Table 1. Descriptions of entries in Black Mitcham peppermint propagation evaluation planted at NWARC in 1996.

Source	Propagator	Method		Origin	
MIRC 1	Summit Labs	stem cut		parent plant	
MIRC 2	Summit Labs	nodal tissue cul	ture	parent plant	
MIRC 3	Summit Labs	meristem tissue	e culture	random selection	on
MIRC 4	Summit Labs	nodal tissue cul	ture	random selection	on a second
MIRC 5	Summit Labs	meristem tissue	culture	parent plant	
MIRC 6	Summit Labs	stem cut		random selection	on Olay M
MIRC 7	Summit Labs	stem cut		reestablished ti	ssue culture
				from parent pla	nt N2 rtosT mai9
	2.23				
Lake 96	Lake's	nodal tissue cul	ture	bacteria infecte	d culture
Lake 94	NWARC	stem cut		1994 trial - noda	al constract
Plant Tech 94	NWARC	stem cut		1994 trial - stem	n-cut
R-5 field	NWARC	stem cut		meristem low vi	gor field
R-7 field	NWARC	stem cut		meristem high v	vigor field
Montana 1	NWARC	stem cut		stem-cut high yi	ield field
Montana 2	NWARC	stem cut		stem-cut high yi	ield field
Idaho	NWARC	stem cut		McClelland stol	ons

h seriesta acruation healthy, violanus gravit

Fable 3. Peorson constitutions (P) with P-victues of vigor, yield, and oil content level. W avera saturation lines at Kaleself in 1998.

	<u>ON Yield</u> •0.2845 0.6041	1	
			NSN 10

17

	Evaluat Row	ed 5/29/98	Harve	sted 8/5/98	4) ANDANE
Source	<u>Cover</u> %	<u>Vigor</u> (0-5) ^{1/}	<u>Oil Yield</u> Ibs/acre	Hay Yield tons/acre	<u>Oil Content</u> % dm
Summit Labs					
stem/single	79	2.8	58.4	2.52	1.2
nodal/single	85	3.5	62.5	2.36	1.3
Meristem/random	91	4.8	61.3	2.66	1.1
nodal/random	80	3.0	69.8	2.48	1.4
Meristem/single	89	4.5	64.8	2.72	1.2
stem/random	79	2.8	69.7	2.31	1.5
stem/nodal/single	81	3.5	58.7	2.52	1.2
noit					
Lake 96	84	3.0	73.8	2.70	1.4
NWARC					
Lake 94	85	3.8	63.2	2.42	1.3
Plant Tech 94	81	3.3	73.5	2.34	1.6
R-5 field	59	2.3	64.4	2.23	1.4
R-7 field	76	3.5	66.9	2.37	aa a 1.4
Montana 1	81	3.8	70.1	2.38	1.5
Montana 2	76	2.5	65.9	2.16	1.5
Idaho	78	2.8	77.7	2.21	1.7
LSD(0.10)	8	0.9	6.8	0.24	0.2
CV(s/mean x100)	8.5	22.3	8.6	8.3	10.0
10063			វ័ណ្ណ (ក្រស់រង		

Table 2. Stand observations, hay and oil yields of Black Mitcham propagation lines in 1998.

¹0=no growth; 5=plants exhibiting healthy, vigorous growth

Table 3. Pearson correlations (r²) with P-values of vigor, yield, and oil content levels of Black Mitcham propagation lines at Kalispell in 1998.

		Hay Yield	Oil Yield	Oil Content
Vigor	Γ <mark>2</mark>	0.6463	-0.2845	-0.5677
	Р	0.0092	0.3041	0.0273
Hay Yield	۲²		-0.2724	-0.7055
	Р		0.3260	0.0033
		and the second s		
Oil Yield	r²			0.8568
	P			0.0000

gure 1. Comparisons antong water projegies an inise sy provingian. In amost of mising an 1998 day installs (but s/2).

Propagation	Total	Total	Total	Mentho-					
Source	Heads	Ketones	Alcohol	furan	Menthone	Menthol	Ester	Pulegone	
	%	%	%	%	%	%	%	%	
stem/single	8.5	30.0	36.7	3.6	26.9	34.1	1.9	1.01	
nodal/single	9.5	30.4	35.8	3.6	27.2	33.3	1.8	0.91	
ms/random	9.7	30.4	36.2	2.3	27.3	33.7	2.0	0.50	
nodal/random	9.9	29.0	36.7	3.4	26.0	34.1	1.9	0.73	
ms/single	8.8	30.3	36.6	3.4	27.2	34.0	2.3	0.72	
stem/random	9.6	28.2	37.7	2.9	25.1	35.1	2.3	0.62	
st/nod/single	8.5	30.4	34.7	3.8	27.3	32.1	2.0	0.95	
Lake 96	9.8	30.7	35.5	2.8	27.6	33.1	1.9	0.67	
Lake 94	9.6	28.6	37.1	3.7	25.8	34.3	2.1	0.79	
Plant Tech	9.9	29.3	36.7	3.1	26.2	34.2	1.8	0.76	
R-5 field	9.3	28.3	38.2	3.4	25.3	35.6	1.9	0.71	
R-7 field	9.4	29.7	36.5	3.4	26.6	34.0	1.9	0.77	
Montana 1	10.0	30.1	35.6	3.5	25.9	33.9	2.0	0.81	
Montana 2	10.1	28.8	36.6	3.4	25.8	34.1	1.9	0.75	
Idaho	9.8	29.0	37.2	3.4	25.2	35.1	2.0	0.74	
Mean	9.5	29.5	36.5	3.3	26.3	34.0	2.0	0.76	
LSD(0.10)	0.7	NS	1.4	0.4	NS	1.4	NS	0.15	
CV(s/mean)%	6.0	1.8	3.2	9.8	5.7	3.4	0.3	16.4	

Table 4. Quality components of Black Mitcham propagation lines at Kalispell, MT (GC%).

Growth stage: late bud Oil analyses by A.M. Todd Company

DOG.

Financia Comparisata emang Milita propegites a thes by propegators mean and communicate rates for 1998 oil content (% of dry mailer).

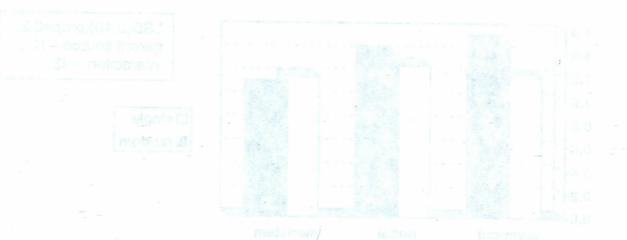


Figure 1. Comparisons among MIRC propagated entries by propagation method and parent plant source for 1998 dry matter yield (tons/a).

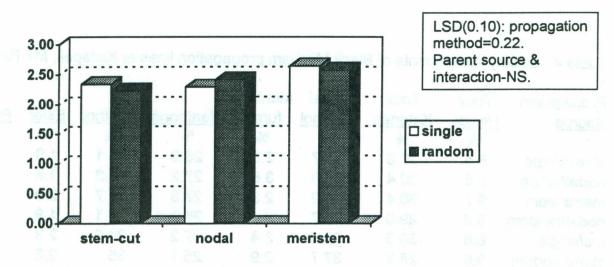


Figure 2. Comparisons among MIRC propagated entries by propagation method and parent plant source for 1998 oil yield (lbs/a).

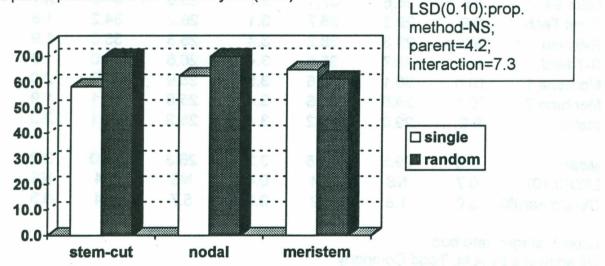
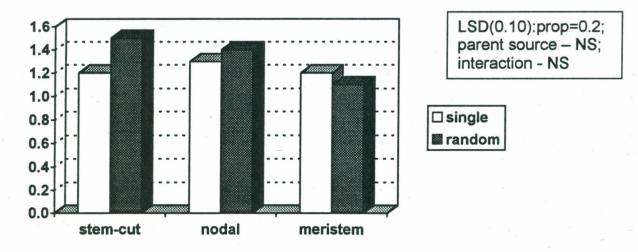



Figure 3. Comparisons among MIRC propagated entries by propagation method and parent plant source for 1998 oil content (% of dry matter).

TITLE: PEPPERMINT FALL HARVEST MANAGEMENT TRIAL

PERSONNEL: Leon E. Welty, Professor of Agronomy, MSU, Kalispell, MT Louise Strang, Research Specialist, MSU, Kalispell, MT Gail Sharp, Research Assistant, MSU, Kalispell, MT

OBJECTIVE: Determine the effect of harvest timing on peppermint hay yield, oil yield, oil guality, and spring vigor.

DURATION: 1996-1999

PROCEDURES: The study was initiated in 1996. Plots (10' x 30') were laid out in an established stand of Black Mitcham, meristem derived (stolon source – Sonstelie Farms), and treatments assigned in a randomized complete block design with 4 replicates. Treatments in were 7 harvest dates at 10-day intervals (July 31-Sept.30) and an uncut check. Stolons were dug from a one-foot square area in each plot on 3/25-27/98 and weighed to determine the effect of 1997 harvest timing on stolon mass. The same harvest dates were imposed on each plot in 1998. At each harvest, morphological stage, height, lodging, and dry matter yield were determined. Approximately 20 pounds of herbage from each plot was air dried and the oil removed by steam distillation. Oil yield was calculated and samples sent to A.M. Todd Co. for chemical analyses.

In 1998, 250 lbs/a N, 52 lbs/a P_2O_5 , 100 lbs/a K_2O and 34 lbs/a S were applied. Assure II (15 oz/a) was applied on 5/13/98. Sinbar was applied in May at one lb Al/acre.

RESULTS AND DISCUSSION: The mint was at the full bud stage on the first harvest date and was senescent by the last harvest on Sept. 30. The first frost (28^o F) did not occur until after the final harvest. The frost free period was 137 days in 1998, compared to a 49-year average of 114 days. There were 1873 growing degree days (GDD) for mint in 1998 compared to 1597 GDD in 1997.

Maximum stolon mass was found in plots harvested 8/11/97 and minimum stolon mass in plots harvested 9/30/97, which was one week before the first killing frost (Figure 1).

Dry matter yield increased to 3.30 tons/acre on 8/31, when the mint reached the full bloom stage (Table 1c). It decreased to 2.79 tons/acre by 9/30 (Figure 2). Oil yield increased to 95.3 lbs/acre on 9/10 when the mint had reached full bloom, and then declined to 65.1 lbs/acre by the time leaves senesced (Table1c). This represented a 51% increase in oil yield when harvest was delayed from July 31 to Sept. 10. In 1997 oil yield decreased after the first harvest. There was no relationship between spring stolon mass and oil yields (Figures 1 & 3).

Levels of the oil quality components corresponded with the stage of maturity of the mint at time of harvest. Total ketones and menthone decreased as the mint progressed from bud to full bloom, with the exception of the 8/31 harvest (Table 2c). Total alcohols and menthol continued to increase through the last harvest as did % esters. Menthofuran increased until 8/20 (85% bloom) and then leveled off at approximately 10% (Table2c). Menthofuran levels for prime quality Montana peppermint usually range from 1-4%. Except for the first harvest, before flowering commenced, MF levels exceeded 4% in 1998 as in 1997. MF levels from the research still are somewhat higher than production stills. In 1998, we compared whole vs chopped mint in the research still and found that chopped hay had higher menthol and lower MF levels than whole hay. To date the mint research plots are cooked whole. Desirable oil contains 45% menthol. Menthol in 1998 did not reach this level until the 9/23 harvest, when the plants were approaching maturity (Table 2c). Oil yield increased from 7/31 to 8/31 and 9/10 and then declined as the mint senesced.

Optimum harvest date is affected by environment/year. In 1996 and 1998, later harvests produced the most oil, whereas in 1997 early harvests produced the most oil (Figure 3). The relationship between oil production and Growing Degree Days (GDD) was not very consistent (Tables 1a, 1b, 1c). In 1996 oil production peaked at about 1300 GDD, whereas in 1998 yields were not maximized until GDD 1600. Total GDD was low in 1996 because May and August were below normal. June, however, was close to normal and July exceeded the norm by 31 GDD. This may explain why later harvests in 1996 produced more oil.

NEBUILTS CND DISGUSSION: The mini was at the tub pool stage on the more harvest cole and war some teent by the last harvest on Sept SC. The first cost (28⁶ 21 dia nm recommend at at the final barvest. The troubline particitives fair days in 1998 complianed to a 43-year available of 114 days. There were 1872 proving warms day (00001 for minute 1989 compared to 1807 CDD to 1997.

Masimum skolon medis was found in plans harvestud Brituer and minimum shou maaki in pieli (hervelsted 5/32/37, which was one weak before the fust killing ros (Ficore 1).

Bry Paston would increased to 3.30 toostage on 8/31. When the mine received the Uk bloom steppini Table (c), it decreased to 2.79 tonalacte by 0/20 (Figure 2), 704 yeld increased to 36.3 lobitions on 9/10 when the mini had reached full broom and 0/20 declared to 66.4 lobitions by the time los real sension of (Table to). This representation of the Linconsect in oil year when harvest has delayed from July 31 to 50pt. 19, 19 1972 to year Ukreesed atter the final harvest has delayed from July 31 to 50pt. 19, 19 mini would invest and the time for final harvest. 8.31.

ngestur		Accum	Growth	Hay	Oil	Oil	
	Date	GDD	Stage	Yield	Conte	nt Yield	
				tons/ac	% DN	1 Ibs/ac	:
	8/1	925.5	20% bud	1.89	1.3	48.1	
	8/12	1060.5	full bud	2.33	1.3	59.8	
	8/22	1211.0	10% bloom	2.98	1.3	74.5	
	8/30	1336.0	20% bloom	3.01	1.3	77.9	
	9/10	1442.0	mid bloom	3.61	0.9	62.4	
	9/19	1526.0	90% bloom	2.98	1.1	62.9	
	9/27	1526.0	frozen	2.67	1.0	56.1	
	mean			2.78	a.a 1.2	63.1	
	LSD(0.10)			0.27	0.1	6.5	

Table 1a. Hay and oil yields for peppermint harvested in 1996.

Table 1b. Hay and oil yields for peppermint harvested in 1997.

		Accum	Growth	Hay	Oil	Oil
	Date	GDD	Stage	Yield	Content	Yield
	2.5	4.3	8.05	tons/ac	% DM	lbs/ac
	8/1	948.0	mid bud	5.66	0.6	71.3
	8/12	1140.5	full bud	4.30	0.7	60.4
21	8/22	1283.0	mid bloom	4.23	0.8	65.6
8.0	8/30	1394.5	late bloom	4.35	0.9	59.9
	9/10	1539.0	late bloom	4.02	0.8	63.8
	9/19	1597.0	late bloom	2.99	0.7	40.8
	9/29	1597.0	mature	2.74	0.4	22.1
	mean			8.8° 4.04 8.88	0.7	54.8
	LSD(0.10)			0.83	0.1	13.0

Table 1c. Hay and oil yields for peppermint harvested in 1998.

	Accum	Growth	Hay		Oil	Oil
Date	GDD	Stage	Yield		Content	Yield
			tons/ac	45.5	% DM	lbs/ac
7/31 👘 🗟	1064.0	full bud	2.32		1.4	63.0
8/10	1257.5	mid bloom	2.23		1.5	65.8
8/20	1433.5	85% bloom	2.73		1.1	61.5
8/31	1602.0	full bloom	3.30		1.4	92.7
9/10	1796.0	full bloom	3.20		1.5	95.3
9/23	1872.5	seed set	3.07		1.3	79.5
9/30	1872.5	leaf drop	2.79		1.2	65.1
			187		a rok	
mean			2.80		1.3	74.7
LSD(0.10)			0.25		0.2	8.3

		Neo-		D-iso-			\sim
DATE	Menthol	menthol	Menthone	menthone	Esters	MF	Pulegone
			G	C%			
8/1	38.9	3.2	24.8	2.9	3.7	1.9	0.15
8/12	43.1	3.6	20.1	2.6	3.7	2.3	0.19
8/22	42.9	3.5	19.1	2.3	3.6	3.3	0.47
8/30	42.2	3.5	18.9	2.2	3.9	4.2	0.57
9/10	43.7	3.6	16.8	1.9	5.2	4.6	0.38
9/19	45.4	3.7	14.4	1.7	6.3	4.9	0.21
9/27	47.2	3.7	13.4	1.7	6.2	4.4	0.17
MEAN	43.3	3.5	18.2	2.2	4.6	3.7	0.30
LSD(0.10)	1.3	0.1	1.7	0.1	0.5	0.3	0.05

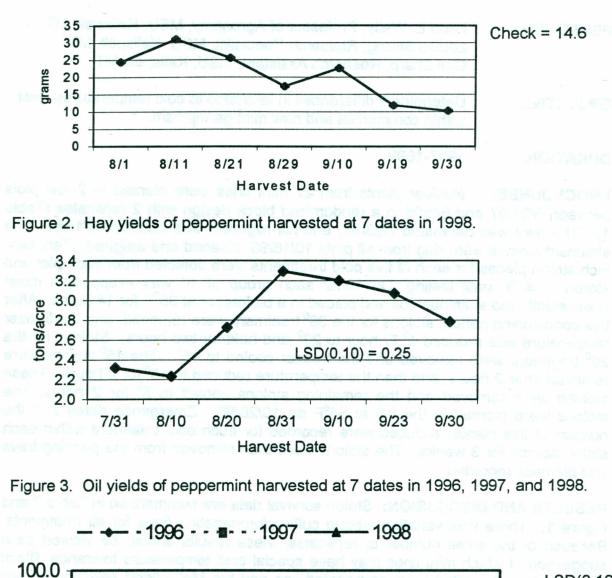

Table 2a. Quality components of peppermint harvested on different dates in 1996.

Table 2b. Quality components of peppermint harvested on different dates in 1997.

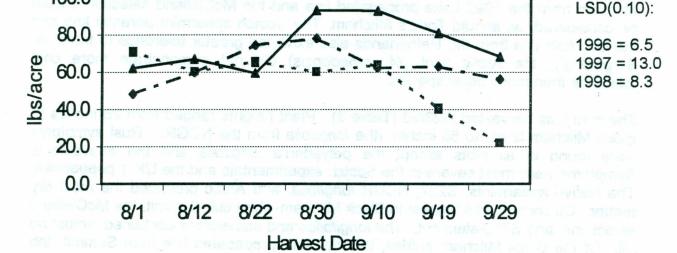

DATE	Menthol	Total Alcohol	Menthone	Total Ketones GC%	Esters	MF	Pulegone
8/1	37.2	47.3	28.3	30.8	4.1	2.1	0.3
8/12	36.8	46.7	25.5	27.9	4.0	4.7	1.1
8/22	39.3	49.7	20.7	22.7	4.5	7.4	1.2
8/30	43.2	55.2	15.1	16.9	5.8	7.7	1.1
9/10	44.0	56.9	12.9	14.4	7.0	10.3	0.8
9/19	44.5	57.8	13.2	14.5	7.9	10.9	0.4
9/29	46.6	60.7	12.3	13.5	8.7	10.3	0.3
MEAN	41.7	53.5	18.3	20.1	6.0	7.6	0.7
LSD(0.10)	1.1	1.3	1.2	1.2	0.4	0.6	0.1

Table 2c. Quality components of peppermint harvested on different dates in 1998.

		Total		Total	Total		
DATE	Menthol	Alcohol	Menthone	Ketones GC%	Ester	MF	Pulegone
7/31	36.6	45.5	25.3	29.3	3.4	3.8	0.7
8/10	39.4	49.6	SS S 18.7	22.7	4.2	6.1	1.7
8/20	38.7	49.4	SS 15.8	19.5	4.8	9.8	2.4
8/31	39.2	49.8	17.6	21.1	4.9	9.7	1.3
9/10	41.5	53.0	15.8	19.0	6.1	9.9	0.6
9/23	44.6	57.5	12.7	15.7	7.7	9.9	0.4
9/30	46.3	59.6	10.7	13.5	8.1	10.1	0.3
MEAN	40.9	52.0	16.7	20.1	5.6	8.5	1.1
LSD(0.10)	1.3	1.6	1.1	1.2	0.3	0.6	0.'

:3.m

TITLE: EFFECT OF FREEZING ON SURVIVAL OF PEPPERMINT AND SPEARMINT RHIZOMES/STOLONS.

PERSONNEL: Leon E. Welty, Professor of Agronomy, MSU, Kalispell, MT Louise Strang, Research Specialist, MSU, Kalispell, MT Gail Sharp, Research Assistant, MSU, Kalispell, MT

OBJECTIVE: Determine if differences in tolerance to cold temperatures exist within commercial and new mint germplasm.

DURATION: 1997-1999

PROCEDURES: Nuclear plants from 27 mint lines were planted in 2-row plots between 5/21/97 and 6/3/98 in a randomized block design with 2 replicates (Table 1). The mint was harvested 7/23/98, and fall regrowth was removed 9/15/98. The stolons/rhizomes were dug from all plots 10/16/98, cleaned and weighed. Ten, twoinch stolon pieces for each of five cold treatments were selected from each plot and stored at 40°F until testing. On 10/22 each group of 10 was wrapped in moist cheesecloth and aluminum foil and placed in a biofreezer at 36°F for 14 hours. After this conditioning period, stolons for the 36⁰ treatment were removed, and the freezer temperature was reduced 4° F/ hour to 20° and held for two hours. Stolons for the 20° treatment were removed and the freezer cooled to 15°. The 15° stolons were removed after 2 hours, and then the temperature reduced to 10⁰ for 2 hours. These stolons were removed and the remaining stolons cooled to 5° for 2 hours. The stolons were planted in the lab at 65°F on 10/26/98. Emergence dates and the number of live plants produced were recorded for each cold treatment within each stolon source for 3 weeks. The stolons were then removed from the planting trays and biomass recorded.

RESULTS AND DISCUSSION: Stolon survival data are summarized in Table 2 and Figure 1. There was variation among cultivar/propagation lines for all treatments. Because of the small number of replicates, these results should be viewed as a suggestion of which mint lines may have special cold temperature tolerance. Black Mitcham from the 1992 Lake propagated line and the McClelland selection should be considered, as should Todd's Mitcham. The Scotch spearmint parental line and the *longifolia* line from the Netherlands also exhibited greater tolerance to freezing. Surprisingly, the Arctic mint (*M. canadensis*) did not demonstrate more cold tolerance than many other species.

The mint was harvested 7/23/98 (Table 3). Plant heights ranged from 28 inches (2 Black Mitcham lines) to 58 inches (the *longifolia* from the NCGR). Rust symptoms were found in all plots except the polyadenia *longifolia* and the *suaveolens*. Symptoms were most severe in the Scotch experimentals and the UK-1 peppermint. The Native spearmints, S227, NCGR *longifolia*, and Arctic produced the most dry matter. Oil content was highest in Black Mitcham–stem cut–Summit, the McClelland selections, and S770-stem cut. The *longifolias* and *suaveolens* contained almost no oil. Of the Black Mitcham entries, the stem-cut propagated line from Summit, the MIRC92 line, the McClelland lines, Todd's Mitcham and M-83-7 produced the most oil. The Scotch spearmint lines S213 and S770-stemcut propagated were among the top producers, as was the *M.canadensis* "Arctic" entry.

Table 1. Entries in the Mentha cold tolerance stud	y at NWARC.
--	-------------

Species	Cultivar	Propagation Method	Source	Propagator
piperita	Black Mitcham	meristem	MIRC	Summit
piperita	Black Mitcham	meristem	MIRC	Starkel
piperita	Black Mitcham	nodal	MIRC-92	Lake
piperita	Black Mitcham	nodal	McClelland	Lake
oiperita	Black Mitcham	nodal	English 1	Lake(Margetts-Roberts)
piperita	Black Mitcham	nodal	English 2	Lake
oiperita	Black Mitcham	nodal	McClelland	Lake(Mc96-7)
oiperita	Black Mitcham	nodal	McClelland	Lake(Mc96-19)
oiperita	Black Mitcham	stemcut	MIRC	Summit
oiperita	Black Mitcham	stemcut	McClelland	Clarke
oiperita	M-83-7	stemcut	MIRC	Summit
oiperita	Murray Mitcham	stemcut	MIRC	Summit
oiperita	Roberts Mitcham	stemcut	MIRC	Summit
piperita	Todd's Mitcham	stemcut	MIRC	Summit
cardiaca	Scotch	stemcut	MIRC	Summit
cardiaca	Scotch 213	stemcut	MIRC	Summit
cardiaca	Scotch 227	stemcut	MIRC	Summit
cardiaca	Scotch 770	meristem	MIRC	Starkel
cardiaca	Scotch 770	stemcut	MIRC	Summit
spicata	N-83-5	stemcut	MIRC	Summit
spicata	Native	meristem	MIRC	Starkel
spicata	Native	stemcut	MIRC	Summit
anadensis	Arctic	nodal	I.P.Callison	Lake
ongifolia	hymaliensis	stemcut	Davis	Grey
ongifolia	polyadenia	stemcut	Davis	Lake (S.Africa)
ongifolia	60 18 1	nodal	NCGR	Lake (Netherlands)
suaveolens	rotundifolia	nodal	NCGR	Lake (Minnesota)

	<u>36°check</u>	<u>20°</u>	<u>15°</u>	<u>10°</u>	<u>5°</u>	
BM-ms-MIRC-Summit	85	85	70	0	0	
BM-sc-MIRC-Summit	100	95	85	5	0	
BM-ms-MIRC-Starkel	95	80	95	25	0	
BM-n-MIRC92-Lake	95	95	100	85	0	
BM-McClelland/Clarke	100	90	80	30	0	
BM-n-McC96-19-Lake	79	70	55	15	0	-
BM-n-McC96-7-Lake	95	75	80	35	0	
BM-n-McC-Lake	85	95	95	30	5	-
BM-n-UK1-Lake	95	90	85	0	0	
BM-n-UK2-Lake	95	80	75	0	0	ente
M83-7-sc-MIRC-Sum	95	75	80	0	0	
MM-sc-MIRC-Summit	95	95	95	10	0	
RM-sc-MIRC-Summit	100	90	90	0	0	
TM-sc-MIRC-Summit	95	85	100	75	0	
N83-5-MIRC-Summit	100	95	80	0	0	
NS-ms-MIRC-Starkel	95	75	85	0	0	
NS-sc-MIRC-Summit	100	60	65	35	0	
S770-ms-MIRC-Starkel		95	80	20	0	Cial L
S770-sc-MIRC-Sum	40	94	82	50	0	
S213-sc-MIRC-Sum	95	80	80	0	0	
S227-sc-MIRC-Sum	96	35	80	0	0	
SS-sc-MIRC-Summit	60	75	70	35	20	
Hymal-sc-Davis-Grey	100	95	85	0	0	
Long-n-NCGR-Lake	100	100	100	30	0	100
Poly-sc-Davis-Lake	85	50	75	15	0	
Arctic-n-Callison-Lake	95	90	50	15	0	1.2
Rotund-n-NCGR-Lake	95	65	95	15	0	
mean	91	80	80	18	1	
CV(s/mean)%	15	17	24	141		

Table 2. Survivorship of stolon segments at four freezing treatments.

Table 3. Height, growth stage, rust symptoms and yield components of entries.

Entry	Height	Growth ^{4/}	Rust	Yield	Content	Yield
	in 32	stage	(0-5)	t/a 1.86	%dm 1.49	lbs/a
BM-sc-MIRC-Summit		eb	4	***************************************		57.3
BM-ms-MIRC-Summit	32	b	4	2.90	0.83	- 51.3
BM-ms-MIRC-Starkel	28	pb	4	2.85	0.89	51.0
BM-n-MIRC92-Lake	32	eb	3	2.58	1.05	55.1
MM-sc-MIRC-Summit	33	eb	2	2.28	0.90	44.3
TM-sc-MIRC-Summit	35	pb	4	2.82	1.03	61.7
RM-sc-MIRC-Summit	32	pb	3	2.83	0.70	42.2
M83-7-sc-MIRC-Sum	35	pb –	3	2.45	1.06	54.2
BM-n-McCI-Lake	32	eb	4	2.39	1.24	56.2
BM-n-UK1-Lake	34	V	5	2.47	0.84	45.5
BM-n-UK2-Lake	34	pb	4	2.39	0.80	41.1
NS-sc-MIRC-Summit	40	fb	2	4.07	0.57	46.1
N83-5-MIRC-Summit	40	lb	2	4.82	0.57	48.7
NS-ms-MIRC-Starkel	42	fb	3	3.87	0.60	43.6
SS-sc-MIRC-Summit	40	fbl	4	3.12	0.63	37.7
S213-sc-MIRC-Sum	38	mbl	5	3.15	1.13	67.4
S227-sc-MIRC-Sum	35	fbl	5	3.68	0.58	42.5
S770-sc-MIRC-Sum	35	mbl	5	3.34	1.24	80.2
S770-ms-MIRC-Star	36	ebl	5	2.83	0.81	42.2
Long-n-NCGR-Lake	58	pbl	3	4.51	0.00	1.8
Polyad-sc-Davis-Lake	30	mbl	0	0.72	0.67	6.8
Rotund-n-NCGR-Lake	30	mbl	0	3.39	0.09	7.3
BM-n-McC96-7-Lake	28	pb	4	2.22	1.55	67.7
BM-n-McC96-19-Lake	35	eb	4	2.40	1.13	59.5
Arctic-n-Callison-Lake	37	mb	4	4.21	0.85	67.6
mean				2.96	0.85	47.2
LSD(0.10)				1.16	0.37	26.4
CV(s/mean)%				22.9	19.6	25.4

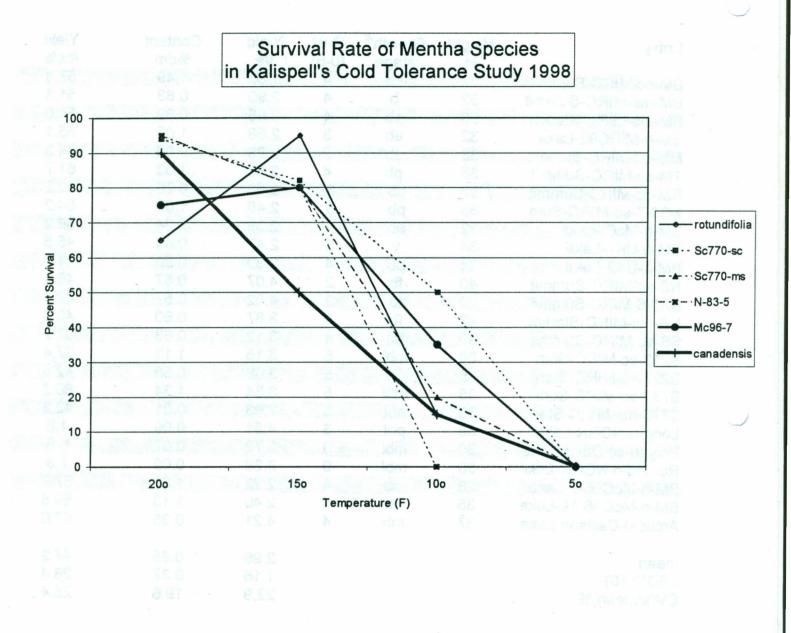


Figure 1. Survival of stolons from various Mentha species subjected to freezing treatments.

TITLE: PEPPERMINT HILLING STUDY

PERSONNEL:

Leon E. Welty, Professor of Agronomy, MSU, Kalispell, MT Louise Strang, Research Specialist, MSU, Kalispell, MT Gail Sharp, Research Assistant, MSU, Kalispell, MT Dale Sonstelie, Producer, Flathead County, MT Phil Clarke, Producer, Flathead County, MT Myron Mast, Producer, Flathead County, MT

OBJECTIVE:

Determine if different management practices affect the viability of peppermint stolons.

DURATION: 1997-1998

PROCEDURES: Black Mitcham rhizomes/stolons derived from *in vitro* nodal propagation (from 1995 nuclear plants – Lake 94 source), generation #1, were dug in May of 1997 from the Myron Mast farm and replanted in replicated plots at NWARC. The following cultural treatments were imposed:

Trt	<u>Culture</u>	Operation	Harvest
1 2 3	Flat Flat Disk Hill	No hilling Cultivate between rows 7/1, 7/16 ½ coverage 8/6, 2/3 on 9/2, Stolons covered 9/17 & 10/8	None 9/24 None
4 5	Flat Shank/Disk	No hilling ¼ shank 7/1, 7/16, 8/1 1/3 disk 8/15, ½ disk 9/2 Stolons covered 9/17 and 10/8	8/25 None
6	Disk Hill	1/2 coverage 7/1	None
7	Disk Hill	1/2 coverage 8/6, 2/3 on 9/2 Stolons covered 9/17	None
8	Disk Hill	1/2 coverage 8/6, 2/3 on 9/2 Stolons covered 10/8	None

Stolons/rhizomes were dug from a 3-foot square area in each plot between 4/6 and 4/8/98. The entire mass was rinsed and weighed, and 20 two-inch segments from the healthiest looking stolons were removed. The remainder of the stolon mass was air dried and weighed. Another 3-square-foot area was dug from each plot and 20 segments chosen at random (not selected for "quality"). The stolons were planted in a randomized complete block design with 3 replicates, with the "best" segments on one side and the "random" segments on the other side of the plot.

On 7/21 and 7/22/98 plant height was measured and all plants dug from each plot. Number of live rhizomes were counted, and the top growth separated from the crowns and underground growth. These components were weighed wet and then air dried and weighed again. Hilling treatments were submitted to ANOVA and mean effects separated by LSD (student's t) at the 0.10 significance level.

RESULTS AND DISCUSSION: There were no significant differences in total dry weight or in the wet weight of the 2" pieces selected from the "best" stolons (Table 1). Treatments having the highest stolon mass (wet) were the non-harvested flat culture and the flat culture harvested 8/25. The shank/disk and disk hill treatment covered once on 7/1 also had good stolon mass. The flat culture harvested 9/24 had approximately half the stolon mass of that harvested earlier in the season, indicating that a late harvest just before the first frost had a detrimental effect on stolon vigor the following spring.

There were no significant differences in plant height or root mass among the treatments planted in 1998 (Table 2). The unharvested flat culture, the early harvest flat, and two of the disking treatments had the greatest number of live rhizomes. These two flat culture treatments and three of the disk treatments produced the most topgrowth. The difference between the two harvest dates on the flat cultures can be explained by the the greater amount of regrowth on the early harvest providing more carbohydrate reserves to the roots as well as the insulating protection of the residue. Differences among the disk treatments are harder to explain. Perhaps the 3 shanking treatments early in the season damaged the stolons.

			8/25
	Disk Hill		

Steronshikzomes were durg trom a 2-tool square eres in each plot between and steads. The white muss meet tineed and weighed, and 20 two-inch segments from the healthies toolond stations were removed. The remainder of the station mass was ste direct and weighed. Anothar 3-square-tool area vias dug from such plot and 20 segments chosen at random (not esterted for "quality"). The stations were planted in a randomized complete block design with 3 replicates, with the "beat" segments on a randomized complete block design with 3 replicates, with the "beat" segments on an and the meridines are the other of the plot.

On 7, in and 7.722/83 blant height was measured and all plants dug from each (100) Mumber of live thisomes were counted, and this top growth separated from the econors and and econith. These commonicate wore weighted well and inert Table 1. Stolon/rhizome weights for various cultural methods for peppermint root production.

			Best 2"	Random 2"
1997	Total	Total	Stolen Segments	Stolon Segments
Treatment*	Wet	Dry	Wet	Wet
			gms	
Flat-1	359.4	66.7	22.2	17.5
Flat-2	224.5	48.3	22.3	13.0
Disk Hill-1	233.8	36.4	20.4	14.7
Flat-3	434.3	58.7	23.3	19.9
Shank/Disk	363.7	38.6	20.5	12.0
Disk Hill-2	458.5	48.9	24.8	14.0
Disk Hill-3	217.4	51.5	20.6	11.6
Disk Hill-4	256.1	37.6	23.3	14.4
mean	318.5	48.3	22.2	14.6
LSD(0.10)	127.5	NS	NS	3.8
CV(s/mean)%	27.8	55.0	10.6	18.2

Table 2. Height and biomass yield of plants grown from stolon segments from the peppermint hilling study in 1997.

1997						
TREATMENT*	HEIGHT	RHIZOMES	TOP _{wet*}	<u>TOP_{dry*}</u>	<u>ROOT_{wet}</u>	ROOT dry
	in	#	gms	gms	gms	gms
Flat-1	24.4	17.2	562.3	113.1	240.7	52.1
Flat-2	22.3	13.3	431.2	88.7	188.4	42.4
Disk Hill-1	22.0	12.5	389.2	79.6	164.2	37.6
Flat-3	22.8	15.2	531.4	107.9	225.9	52.6
Shank/Disk	23.1	12.5	461.5	91.5	195.1	41.2
Disk Hill-2	22.7	15.2	485.3	98.3	195.2	43.0
Disk Hill-3	23.0	12.8	525.6	104.8	225.9	50.3
Disk Hill-4	21.7	16.3	514.1	104.4	208.1	44.5
mean	22.8	14.4	487.6	98.5	205.4	45.5
LSD(0.10)	NS	2.8	92.2	18.9	NS	NS
CV(s/mean)%	а т	20.3	19.4	19.7	22.2	25.2

*1997 TREATMENTS

Flat-1	No Harv
Flat-2	Harv 9/24
Disk Hill-1	1/2 on 8/6, 2/3 on 9/2, cover 9/17 & 10/8
Flat-3	Harv 8/25
Shank/Disk	1/4 shank on 7/1, 7/16, & 8/1; 1/3 disk on 8/15,
Disk Hill-2	1/2 cover on 7/1
Disk Hill-3	1/2 cover on 8/6, 2/3 cover on 9/2, cover on 9/17
Disk Hill-4	1/2 cover on 8/6, 2/3 cover on 9/2, covered on 10/8.

Long-Term Quackgrass Control in Peppermint with Assure II

Quackgrass is a weed which commonly infests mint fields in western Montana. While Assure II has demonstrated significant activity toward this weed, annual applications are needed to maintain acceptable levels of control. This study was conducted to monitor long-term control of quackgrass when utilizing annual applications of Assure II with the intent of optimizing herbicide inputs.

Assure II was applied at 7, 10, and 15 oz/A with either a nonionic surfactant (NIS) or methylated seed oil (MSO) plus 28% urea ammonium nitrate liquid fertilizer (UAN). These treatments were applied either in the fall or spring when 6 to 8 inches of quackgrass regrowth was present. Sequential applications also were included which consisted of fall plus spring treatments applied to the same plots.

The first series of treatments were applied during the 1996/1997 season. Fall treatments were applied on 9/23/96. Single spring treatments were applied on 5/6/97 and sequential spring treatments were applied on 5/29/97. Treatments were then reapplied to the same plots during the 1997/1998 season. Fall treatments were made on 9/8/97 and all spring treatments were applied on 4/21/98. This report details the results of the 1997/1998 treatments.

The effect of quackgrass competition on mint hay yields is apparent in the nontreated check. Left uncontrolled, quackgrass developed into a sod, completely eliminating the mint crop. Initially, control was most complete with fall applications. However, long-term control appeared to be most affected by rate and surfactant type. Sequential fall plus spring treatments provided the greatest control, with no significant differences in control being observed among Assure II rates. In contrast, control increased as Assure II rates increased for single applications made in the fall or spring. The effect of surfactants was slight, but control appeared to be greater when Assure II was applied with MSO plus 28% UAN.

34

Long-Term Quackgrass Control in Peppermint with Assure II

Site Description

Crop: Peppermint Variety: Black Mitchum Planting Date: 4-4-93 Planting Method: Roots Study conducted on established stand of peppermint

Plot Width, Unit: 10 FTPlot Length, Unit: 15 FTReps: 3Site Location: R-7Study Design: RCB

Plot Maintenance: Wheel line irrigation

Fertility: 4-11-97 150 Lbs. N, 30 Lbs. S 6-16-97 50 Lbs. N 10- 8-97 17 Lbs. N, 78 Lbs. P, and 90 Lbs. K 3- 2-98 101 Lbs. N and 36 Lbs. S Weed Control: 4-17-97 Stinger at .5 pt/A 5-14-97 Basagran at 2 qt/A + Buctril at .5 pt/A 4-29-98 Stinger at 1 pt/A

Soil Description

Texture: Coarse Silty Mix % OM: 4.4 % Sand: 40 % Silt: 50 % Clay: 10 pH: 7.8 Soil Name: Creston Silt Loam

Application Information

Application Date:	9-23-96	5-6-97	5-29-97	9-8-97	4-21-98
Time of Day:	1:30 PM	11:00 AM	10:00 AM	11:00 AM	11:00 AM
Application Method:	BACKPACK	BACKPACK	BACKPACK	BACKPACK	BACKPACK
Application Timing:	POST	POST	POST	POST	POST
	54 F	55 F	68 F	68 F	63 F
% Relative Humidity:	58	51	55	48	41
		3 MPH	3 MPH	0 MPH	0-3 MPH
Dew Presence (Y/N):	N	Y	Y	Y	N
Soil Temp., Unit:	50 F	50 F 9 9	62 F	68 F	60 F
Soil Moisture:	GOOD	GOOD	GOOD	GOOD	GOOD
% Cloud Cover:	0	85	30	0	10

	Weed Species	Weed Stag
9-23-96	Quackgrass	4-8"
5- 6-97	Quackgrass	6-8"
5-29-97	Quackgrass	6-9"
9- 8-97	Quackgrass	4-8"
4-21-98	Ouackgrass	4-8"

Application Equipment

P

Sprayer	Speed	Nozzle	Nozzle	Nozzle	Nozzle	Boom			
Type	MPH	Type	Size	Height	Spacing	Width	GPA	Carrier	PSI
Backpack	2.5	Flatfan	11002XR	14"	20"	10'	20	H2O	20

Long-Term Quackgrass Control in Peppermint with Assure II

No	Treatment Name	Rate Unit		Grow Stg	PERCEN 4-22-9	DL CONTR IT PERCE 98 5-26-	NT PERCENT 98 7-29-98	L DRY MAT I TON/ACRE 3 7-29-98	DRY MAT TON/ACRE 7-29-98	LBS/ACRE
	ASSURE II NIS		pr/A pr/A		91.0	50.0	58.3	2.24	0.96	28.9
2	ASSURE II MSO UAN 28%	1 qt	pr/A pr/A pr/A	FALL	95.7	74.3	75.0	1.42	1.39	36.8
3 3	ASSURE II NIS	10 oz 1 qt			96.3	86.7	80.0	1.42	1.42	43.6
4 4 4		10 oz 1 qt 2 qt		FALL	97.0	86.7	83.3	1.96	1.07	48.7
		15 oz 1 qt			97.7	94.7	95.7	0.34	-2.07	45.1
	ASSURE II MSO UAN 28%	15 oz 1 qt 2 qt		FALL	99.0	97.0	94.7	0.03	2.30	56.8
7 7	ASSURE II NIS			SPRING SPRING		36.7	30.0	2.40	0.68	27.5
8	ASSURE II MSO UAN 28%	1 qt	pr/A	SPRING SPRING SPRING		53.3	30.0	2.72	0.77	29.5
	ASSURE II NIS			SPRING SPRING		63.3	63.3	1.49	1.36	50.6
10	MSO	l qt	pr/A	SPRING SPRING SPRING		87.7	86.0	1.30	1.56	61.2
	ASSURE II NIS			SPRING SPRING		95.3	95.7	0.94	1.78	57.7
12	MSO	1 qt	pr/A	SPRING SPRING SPRING	80.0	97.3	96.0	0.25	2.15	62.3
13 13	ASSURE II NIS ASSURE II NIS	1 qt 7 oz	pr/A pr/A			96.7	98.0	0.01	2.33	66.7
14 14	NIS ASSURE II		pr/A pr/A		98.3	97.0	97.3	0.17	2.30	67.5
15	NIS ASSURE II		pr/A pr/A		99.3	97.7	99.7	0.00	2.12	65.1
16	NONTREATED				0.0	0.0	0.0	3.82	0.01	1.7
LSD Star CV Trea	(.05) = ndard Dev.= = atment F atment Prob(F)		2	C	16.2 9.74501 12.86 30.720 0.0001	12.07 28.584			11647 13. 33.73 2 5.453 5	22.0 1501 8.07 .760 0001

Establishing a new stand of mint requires a significant investment in labor as well as dollars. As such, questions have arose regarding herbicide carryover injury to baby mint. This study was conducted to investigate the carryover potential of three ALS inhibitors - Assert, Pursuit, and Imazamox.

The three herbicides were applied in the spring of 1996 at their respective 1X and 2X use rates. Nontreated controls were also included for each product. The study is designed to evaluate 12 and 24 month recropping intervals. Baby mint was planted in the spring of 1997 in those plots designated for the 12 month rotation interval. These plots were harvested first in 1997 and again in 1998. The plots designated for the 24 month recrop interval were planted to baby mint on April 28, 1998 and were harvested in the fall of the same year.

There were no significant yield reductions associated with the 24 month rotational interval. The plots associated with the 12 month rotation interval treatments continued to demonstrate yield reductions related to the injury observed during the 1997 year of establishment. Pursuit treatments resulted in the greatest yield reductions followed by Assert and Imazamox, respectively. This observation demonstrates the importance of optimizing inputs and management considerations for the establishment of new plantings. A stand that is less than ideal will never recover from the initial stress.

Site Description

Soil Moisture: Good

Crop: Peppermint Planting Method: Hand Row Spacing, Unit: 22"

Plot Length, Unit: 15 FT

Variety: Black Mitchum

Plot Width, Unit: 10 FT Site Location: R-3 Plot Maintenance: Fertility:

4- 2-98 100 Lbs. N, 52 Lbs. P, 60 Lbs. K, and 24 Lbs. S
5-20-98 100 Lbs. N and 10 Lbs. S
7-29-98 50 Lbs. N
4-21-98 Assure II at 15 oz/A
6-24-98 Sinbar at .5 lb

Planting Date: 4-28-98

Emergence Date: 5-19-98

Depth, Unit: 4"

Study Design: RCB

Reps: 3

Weed Control:

Planting of 12 month treatments was on 4-24-97

Soil Description

Texture: Coarse Silty Mix % OM: 3.0 % Sand: 40 % Silt: 50 % Clay: 10 pH: 7.4 Soil Name: Creston Silt Loam

Application Information

Application Date:	5-3-96	5-24-96		
Time of Day:	12:00 PM	11:00 AM		
Application Method:	BACKPACK	BACKPACK		
Application Timing:	PRE	POST		
Air Temp., Unit:	52 F	65 F		
<pre>% Relative Humidity:</pre>	72	31		
Wind Velocity, Unit:	0 MPH	3 MPH		
Dew Presence (Y/N):	N	N		
Soil Temp., Unit:	50 F	58 F		
Soil Moisture:	GOOD	GOOD		
% Cloud Cover:	0	10		

	Nozzle					
Type Backpack					PSI 20	

	Treatment Name	Form Amt		Rate		MINT DRY MAT TON/ACRE 7-17-98	MINT DRY MAT TON/ACRE 8-26-98
1	ASSERT	2.5	EC	.92	1001 21	2.62	in the strate of the
1 1	BARLEY 12 MO				ે નુ આ તે જેવા		
2	ASSERT	2.5	EC	.46		3.33	
2 2	BARLEY 12 MO						
3 3 3	NONTREATED BARLEY 12 MO					3.32	
5	12 110						
4	PURSUIT LENTILS	2	EC	.092		- 2.33 	
4	12 MO						
5 5 5	PURSUIT LENTILS 12 MO	2	EC	.046		2.69	
6	NONTREATED					3.04	
6 6	LENTILS 12 MO						And the second second second
7	AC299263	2	FC	.063		2.94	
7 7 7	LENTILS 12 MO	2		.000	•		
8 8	AC299263 LENTILS	2	EC	.032		3.12	
8	12 MO						
9 9	NONTREATED LENTILS					3.03	
9	12 MO						
10		2.5					1.15
10 10	BARLEY 24 MO						
11 11 11	ASSERT BARLEY 24 MO	2.5	EC	.46			1.24
12	NONTREATED BARLEY 24 MO						1.10
13	PURSUIT LENTILS	2	EC	.092			1.16
13						<u></u>	

CONTINUED...

	Trt No	Treatment Name	Form Fm Amt Ds		MINT DRY MAT TON/ACRE 7-17-98	MINT DRY MAT TON/ACF 8-26-98	E
8	14 14 14					1.13	o Miloso Stan Minta Social State Sacial State
	15 15 15	NONTREATED LENTILS 24 MO					
	16 16 16	AC299263 LENTILS 24 MO		.063		1.12	
	17 17 17	AC299263 LENTILS 24 MO	2 EC	.032	a sa naan aa sa in na	1.21	
	18 18 18	NONTREATED LENTILS 24 MO		а: сазач .a	Prink Longs Line	1.19	rigan horaid Aistric anna Aistric anna
	Star CV Trea	(.05) = ndard Dev.= = atment F atment Prob(F)			0.55 .316211 10.77 3.304 0.0200	0.21 .118561 10.26 0.506 0.8348	Le o-

and rate but a free lives

soarto Mozsle 1 re - Selpis 1 cosse re

Dormant Spring Goal Applications for Toadflax Control

Yellow toadflax is a perennial broadleaf weed which is extremely difficult to control in mint production fields. Preliminary findings indicated that Goal applied postemergence did `burn back' established toadflax plants. Unfortunately, similar injury was noted with the mint crop. This study was established to determine if early dormant spring applications of Goal would control toadflax and provide the needed crop selectivity.

Goal was applied as the liquid formulation as well as impregnated on dry fertilizer. The liquid did have slightly greater activity, but the effects were minor. Although control improved as rates increased, control was inadequate and only temporary regardless of the formulation used.

Site Description

Crop: Peppermint

Plot Width, Unit: 10 FT	Plot Length, Unit: 15 FT	Reps: 6
Site Location : Tutvedt Farm		Study Design: RCB
Plot Maintenance:		
Fertility: 4- 3-98	157 Lbs. N, 100 Lbs. P, 120 Lbs. K,	36 Lbs. S,
	2 Lbs. B, and 4 Lbs. Zn	
	Applied to granular treatments as i	mpregnated fertilizer
4-3-98	100 Lbs. N, 52 Lbs. P, 60 Lbs. K, a	nd 24 Lbs. S
	Applied to liquid Goal treatments a	nd non-treated checks
Weed Control: 4-22-98	Buctril at 1.5 pts + Stinger at 1 p	t/A

*** Study conducted on established stand of mint

Application Information

Application Date: Time of Day: Application Method: Application Timing: Air Temp., Unit: % Relative Humidity: Wind Velocity, Unit: Dew Presence (Y/N): Soil Temp., Unit: Soil Moisture: % Cloud Cover:	4-3-98 9:00 AM BACKPACK DORMANT 52 F 71 1 MPH N 44 F GOOD 100	
Plant Species Toadflax	Plant Stage 1"	

Dormant

Mint

Sprayer	Speed	Nozzle	Nozzle	Nozzle	Nozzle	Boom				
Туре							GPA	Carrier	PSI	
Backpack										

Dormant Spring Goal Applications for Toadflax

CONDLES CLORD

Trt No	Treatment Name	dued which Lields Thi egh, ar budi	TOADFLAX CONTROL PERCENT 6-19-98	is a poset criol da ti interrine i	rdiko sužticz Gifetovs sužticz oktakianieľ tou
1	GOAL 2EC	2.0	35.8		
2	GOAL 2EC	1.0	19.2		
3	GOAL 2EC	0.5	8.3		
4	GOAL FERT	2.0	24.2		
5	GOAL FERT	1.0	20.0		
6	GOAL FERT	0.5	8.3		
7	NONTREATED		0.0		
Star CV Trea	(.05) = ndard Dev.= = atment F atment Prob(F)	13.4 11.3983 68.88 6.600 0.0002	- 1.154/14281146 - 652482430/20 - 4592430/20	
				8 - 759 1187 8 - 759 1187 4 - 7 18 3 - MP5 63	
		8,489 19,615 (50 - 10 11,1 - 20 - 219		2 () () (A.2) A.11 () () () () () (A.1)	ndi karan tahun san San san San karangan San karangan

Toadflax Control with Basagran Tankmix Combinations

Yellow toadflax is a perennial broadleaf weed which is extremely difficult to control in mint production fields. This study was established to determine if basagran, tough, or buctril would control toadflax and provide the needed crop selectivity.

Basagran, tough, and buctril were applied as single or sequential treatments alone or in all possible combinations. Of the herbicides evaluated, basagran caused the greatest injury. Control and fresh weight reductions were greatest with sequential applications. Including either tough or buctril along with basagran did not dramatically increase control compared to basagran applied alone.

Site Description

Crop: Peppermint

 Plot Width/Area, Unit: 10 FT
 Plot Length, Unit: 15 FT
 Reps: 3

 Site location: Tutvedt Farm
 Study Design: RCB

 Field Preparation/Plot Maintenance:
 ***Conducted on established mint stand under center pivot irrigation

Application Information

Application Date:		5-6-98	5-12-98
Time of Day:		1:30 PM	10:00 AM
Application Metho	d:	BACKPACK	BACKPACK
Application Timir		POST	POST
Air Temp., Unit:	5	82 F	63 F
% Relative Humidi	tv:	18	55
Wind Velocity, Ur		3 MPH	0 MPH
Dew Presence (Y/N		N	N
Soil Temp., Unit:		69 F	58 F
Soil Moisture:		GOOD	EXCELLENT
% Cloud Cover:		0	0
Plant Species	Plant	Stage	
5- 6-98			
Toadflax	3 to	4 "	
Mint	1 to	2 "	
5-12-98			

Toadflax 3 to 6"

Mint 1 to 3"

Sprayer	Speed	Nozzle	Nozzle	Nozzle	Nozzle	Boom			
Type Backpack	MPH	Туре	Size	Height	Spacing	Width	GPA	Carrier	PSI 20
Васкраск	2.5	Flatian	11002AR	14	20	ΤŲ	20	112.0	20

Toadflax Control with Basagran Tankmix Combinations

		Treatment Name	Form Amt	Fm Ds Rate	Rate Unit	Grow Stg	≞ts∃" Sati	TOADFLAX INJURY PERCENT 5-18-98	TOADFLAX FRESH WT GRM/FT2 6-4-98
	1	BASAGRAN	4	EC 2	qt pr/A	E POST		23.3	59.7
	1 1	MSO 28%		EC 1 EC 2	qt pr/A qt pr/A				
		TOUGH MSO	1	EC 3 EC 1	pt pr/A qt pr/A			3.3	95.5
	2	28%	1	EC 2	qt pr/A				
	3	BUCTRIL	2	EC 1.5	pt pr/A	E POST		0.0	138.6
	4 4 4	BASAGRAN MSO 28% BASAGRAN MSO 28%	1 1 4 1	EC 2 EC 1 EC 2 EC 2 EC 1 EC 2	qt pr/A qt pr/A qt pr/A qt pr/A qt pr/A qt pr/A			63.3	23.8
5	5 5 5	TOUGH MSO 28% TOUGH MSO 28%	1 1 3.75 1	EC 3 EC 1 EC 2 EC 3 EC 1 EC 2	pt pr/A qt pr/A qt pr/A pt pr/A qt pr/A qt pr/A		8/32 39 A/30 30 A/32 20 A/32 20 A/3 A/3 A/3 A/3 A/3 A/3 A/3 A/3 A/3 A/3	21.7	34.1
	6 6	BUCTRIL BUCTRIL		EC 1.5 EC 1.5	pt pr/A pt pr/A			21.7	73.3
	7	BASAGRAN TOUGH MSO 28%	3.75 1	EC 2 EC 3 EC 1 EC 2	qt pr/A pt pr/A qt pr/A qt pr/A	E POST		28.3	55.0
	8	BUCTRIL TOUGH MSO 28%	3.75 1	EC 1.5 EC 3 EC 1 EC 2	pt pr/A pt pr/A qt pr/A qt pr/A	E POST		21.7	54.6
	9 9 9	BASAGRAN BUCTRIL TOUGH MSO 28%	2 3.75 1	EC 2 EC 1.5 EC 3 EC 1 EC 2	qt pr/A pt pr/A pt pr/A qt pr/A qt pr/A	E POST		25.0	73.3

CONTINUED...

44

Toadflax Control with Basagran Tankmix Combinations

					TOADI INJUI		TOADFLAX FRESH WT		
Trt	Treatment	Form Fm	Rate	Grow	PERCH	ENT	GRM/FT2		
No	Name	Amt Ds Rate	Unit	Stg	5-18-	-98	6-4-98		
10	BASAGRAN	4 EC 2	qt pr/A	E POST	63.3	1 (S. 1	21.1	275.8	
10	TOUGH	3.75 EC 3	pt pr/A						
10	MSO	1 EC 1	qt pr/A						
10	28%	1 EC 2	qt pr/A						
10	BASAGRAN	4 EC 2	qt pr/A						
10	TOUGH	3.75 EC 3	pt pr/A						
10	MSO	1 EC 1	qt pr/A						
10	28%	1 EC 2	qt pr/A						
1 1	DIICTDII		pt pr/A	E DOOT	E1 7		24 4		
11 11	BUCTRIL TOUGH	2 EC 1.5 3.75 EC 3			51.7		24.4		
	MSO	1 EC 1	pt pr/A qt pr/A						
11 11	28%	1 EC 1 1 EC 2							
11	BUCTRIL	2 EC 1.5	qt pr/A pt pr/A						
11	TOUGH	3.75 EC 3	pt pr/A pt pr/A						
11	MSO	1 EC 1	qt pr/A						
11	28%	1 EC 1 1 EC 2	qt pr/A						
1 L	200	I EC Z	qu pi/A						
12	BASAGRAN	4 EC 2	qt pr/A	E POST	85.0		13.0		
	BUCTRIL	2 EC 1.5	pt pr/A						~
12	TOUGH	3.75 EC 3	pt pr/A						
12	MSO	1 EC 1	qt pr/A						
12	28%	1 EC 2	qt pr/A						
12	BASAGRAN	4 EC 2	qt pr/A						
12	BUCTRIL	2 EC 1.5	pt pr/A						
12	TOUGH	3.75 EC 3	pt pr/A						
12	MSO	1 EC 1	qt pr/A						
12	28%	1 EC 2	qt pr/A						
13	NONTREATED				0.0		136.3		
	1				-			-	
	(.05) =				24.6		49.8		
	ndard Dev.=				14.6195		.5798		
CV	=				46.54		47.91		
	atment F				9.922		5.885		
Trea	atment Prob(F)				0.0001	0	.0001		

45

Goal Tolerance Study

Goal controls several troublesome weeds in mint production fields. Treatments are restricted to dormant applications as severe injury results if the mint crop has even a few leaves present. Preliminary results indicate that crop injury can be avoided with nondormant applications if Goal is impregnated on dry fertilizer. This study was conducted to evaluate the mint crop tolerance to impregnated Goal applications relative to conventionally applied dormant treatments.

Goal was applied impregnated on dry fertilizer either as a spring dormant treatment or when the mint crop was four inches tall. No differences were observed in either mint hay yields or oil production, suggesting that post dormant impregnated application of Goal are safe to the mint plant.

Site Description

Crop: Peppermint Planting Date: 4-15-93 Variety: Black Mitchum Harvest: 7-8-98

	Width, Unit: 10 Location: R-5	FT Plot	Length, Unit: 15	FT	Reps: 3 Study De	sign: RCB
Plot	Maintenance:					
	Fertility:	3-30-98	157 Lbs. N, 100	Lbs. P,	120 Lbs.	K, 36 Lbs. S,
			2 Lbs. B, and 4	Lbs. Zn		
			Applied as Goal	impregna	ated fert	ilizer
		6- 1-98	157 Lbs. N, 100	Lbs. P,	120 Lbs.	K, 36 Lbs. S,
			2 Lbs. B, and 4	Lbs. Zn		
			Applied as Goal	impregna	ated fert:	ilizer
		6-12-98	50 Lbs. N applie	ed as fer	tigation	
		7- 8-98	50 Lbs. N applie	ed as fer	tigation	
	Weed Control:	4-21-98	Assure II at 15	oz/A		
		4-21-98	Buctril at 1.5 p	ot/A		
		6- 1-98	Assure II at 15	oz/A		
	Irrigation:		Throughout seaso	on as nee	eded with	wheel line

Soil Description

Texture: SiL% OM: 2.8% Sand: 40% Silt: 50% Clay: 10pH: 6.4Soil Name: Creston Silt Loam

Application Information

Application Date:	3-30-98	6-1-98
Time of Day:	2:30 PM	1:00 PM
Application Method:	HAND	HAND
Application Timing:	DORMANT	4"
Air Temp., Unit:	62 F	74 F
% Relative Humidity:	48	45
Dew Presence (Y/N): Soil Temp., Unit: Soil Moisture: % Cloud Cover:	GOOD	N 72 F GOOD 60

Sprayer	Speed	Nozzle	Nozzle	Nozzle	Nozzle	Boom			
Туре	MPH	Type	Size	Height	Spacing	Width	GPA	Carrier	PSI
Backpack	2.5	Flatfan	11002XR	14"	20"	10'	20	H2O	20

Goal Tolerance Study

Goal Tolerance Study

	Treat			akorea pikarier a matiez i Geeli stod to e olicetiar	MINT DRY WT TONS/A 7-28-98	MINT OIL YI LBS/A	
1	FERT	DORM	2.0	ent bu	2.2	60.6	ೆ ಮಾತ್ರಿ ಬಿದ್ದ ಮಾತ್ರಿಗಳು
2	FERT	DORM	1.0		2.4	61.1	
3	FERT	DORM	0.5		2.6	64.2	
4	FERT	4 "	2.0		2.8	61.9	
5	FERT	4 "	1.0		2.7	64.4	
6	FERT	4 "	0.5		2.6	66.6	
7	NONTE	REATED			2.6	63.7	
Star CV Trea	ndard atment	= Dev.= = F : F : Prob(0.6 .329258 12.85 0.978 0.4803	10.7 6.00644 9.50 0.369 0.8851	
						89-10-8 19-8 - 1 89-10 - 6 19-11-9 80	

¹ Byg⁺ = 4.1799 Bigs⁺ Bigs⁺ C²

1

Post Harvest Goal Applications for Toadflax Control

Yellow toadflax is a perennial broadleaf weed which is extremely difficult to control in mint production fields. Preliminary findings indicated that Goal applied postemergence did `burn back' established toadflax plants. Unfortunately, similar injury was noted with the mint crop. This study was established to determine if post harvest applications of Goal would control toadflax and provide the needed crop selectivity.

Goal was applied as the liquid formulation at different rates as either single or sequential treatments. Two impregnated treatments were also included. Sequential treatments provided the best control and there were few differences among the rates tested. Although initial control was excellent, weed regrowth had occurred by the next spring. In addition, mint injury was unacceptable.

Site Description

Crop: Peppermint

Plot Width/Area, Unit:	10 FT	Plot Length,	Unit: 15	FT	Reps:	3
Site Type: Tutvedt Farm					Study	Design: RCB
Plot Maintenance:						
Weed Control:	10-21-97	Stinger at	1 pt/A			
	4-22-98	Buctril at	1.5 pt an	nd Stinger	at 1 pt/A	

Application Information

Application Date:		8-2	27-98	9	9-98	
Time of Day:		10	:30	9:	30	
Application Method	d:	BAG	CKPACK	BA	CKPACK	
Application Timing		POS	ST-HARV	PO	ST-HARV	
Air Temp., Unit:		74	F	55	F	
% Relative Humidit	ty:	38		74		
Wind Velocity, Un:		0	MPH	0	MPH	
Dew Presence (Y/N)		Ν		N		
Soil Temp., Unit:		66	F	58	F	
Soil Moisture:		GOO	DD	GOO	DD	
% Cloud Cover:		20		0		
Plant Species	Plant	Sta	age			
8-27-98			-			
Toadflax	2 - 4 "					

Toadflax 2-4" Mint 1"

Sprayer	Speed	Nozzle	Nozzle	Nozzle	Nozzle	Boom				
Туре	MPH	Туре	Size	Height	Spacing	Width				
Backpack	2.5	Flatfan	11002XR	14"	20"	10'	20	H20	20	

Post Harvest Goal Applications for Toadflax Control

	Treat	ment	Form Amt		Rate	Ra Un		isc Tul	nd h ibo ta ibo ta	atran anio Iron	TOADF INJUR PERCE 10-20	Y NT	MINT INJUR PERCE 10-20	TN	TOADFLA CONTROL PERCENT 6-19-98	1
1	GOAL		.005	G	2.0	lb	ai/A	83			41.7		6.7		5.0	,
2	GOAL		.005	G	1.0	lb	ai/A				30.0		23.3		41.7	
3	GOAL				0.25		ai/A				50.0		63.3		3.3	
3	MSO		1	EC	1	qt	pr/A									
3	UAN		1	EC	2	qt	pr/A									
4	GOAL				.125		ai/A				43.3		70.0		11.7	
4	MSO			EC		_	pr/A									
4	UAN		1	EC	2	qt	pr/A									
5	GOAL				0.06		ai/A				53.3		60.0		16.7	
5	MSO			EC			pr/A									
5	UAN		1	EC	2	qt	pr/A									
6	GOAL		2	EC	0.25	lb	ai/A				96.3		95.0		53.3	
6	MSO		1	EC	1	qt	pr/A									
6	UAN		1	EC	2	qt	pr/A									
6	GOAL		2	EC	0.25	lb	ai/A	1	WEEK							
6	MSO		1	EC	1		pr/A									
6	UAN		1	EC	2		pr/A									
7	GOAL		-2	EC	0.125	lb	ai/A				93.3		95.0		46.7	
7	MSO		1	EC	1	qt	pr/A									
7	UAN		1	EC	2	qt	pr/A									
7	GOAL		2	EC	0.125	lb	ai/A	1	WEEK							
7	MSO		1	EC	1	qt	pr/A									
7	UAN		1	EC	2	qt	pr/A									
8	GOAL		2	EC	0.06	lb	ai/A				76.7		90.0		10.0	
8	MSO		1	EC	1	qt	pr/A									
8	UAN		1	EC	2	qt	pr/A									
8	GOAL				0.06				WEEK							
8	MSO			EC			pr/A									
8	UAN			EC			pr/A									
0	NONEDE															
9	NONTRE	ATED					-			5	16.7	e i	0.0		10.0	
LOD	(05)	14							÷		15.0		20.0		20 5	
	(.05)										46.0	10	29.0		39.5	
	ndard D										26.5761		7774		8268	
CV	hungert	=									47.71		0.00		3.58	
	tment										3.228		.789		.186	
Trea	tment	Prob(F)									0.0220	0.	0001	0.	0871	

Mint Tolerance and Wild Pansy Control with Roundup

Wild pansy in an annual broadleaf weed which is occasionally found in peppermint fields. Wild pansy can form dense patches and competes successfully with peppermint. No herbicide options are known. Therefore research was conducted to evaluate Roundup for the potential to control this pest.

Roundup did injury wild pansy. The 8 oz rate provided 90 percent control and control increased as rates increased. Unfortunately, wild pansy and peppermint have the same level of tolerance toward Roundup, and crop injury was unacceptable.

Site Description

Crop: Peppermint

Plot Width, Unit: 10 FTPlot Length, Unit: 15 FTSite Location: Jaquette FarmField Preparation/Plot Maintenance:***Study conducted on established stand of mint

Reps: 3 Study Design: RCB

Application Information

Application Date:	6-4-98
Time of Day:	11:30 AM
Application Method:	BACKPACK
Application Timing:	POST
Air Temp., Unit:	63 F
<pre>% Relative Humidity:</pre>	45
Wind Velocity, Unit:	0-3 MPH
Dew Presence (Y/N):	N
Soil Temp., Unit:	60 F
Soil Moisture:	EXCELLENT
% Cloud Cover:	20

Weed	Species	Weed Stage	Density at	Application
Wild	Pansy	8 "	60% of tot	al area

Sprayer	Speed	Nozzle	Nozzle	Nozzle	Nozzle	Boom			2
Туре							GPA	Carrier	PSI
Backpack	2.5	Flatfan	11002XR	14"	20"	10'	20	H2O	20

Mint Tolerance and Wild Pansy Control with Roundup

Trt No	Treatment Name		orm mt	Fm Ds R	ate	itasi Mitd happy	PANSY CONTROL PERCENT 6-29-98	s oraș Contraș Contra a	MINT CROP I PERCEN 6-29-9	Т
1	Roundup		4	AS 4	oz/A		68.3		75.0	
2	Roundup		4	AS 8	oz/A		90.0		90.7	
3	Roundup		4 2	AS 1:	2 oz/A		100.0		97.3	
4	Roundup		4 2	AS 1	6 oz/A		100.0		100.0	
5	Nontreated				1200	sel re-	0.0		0.0	
Star CV Trea	(.05) = ndard Dev.= = atment F atment Prob(H	?)					17.2 9.13601 12.75 63.698 0.0001		12.5 5.65332 9.16 118.014 0.0001	
								1 95 k		
	12 -									
							-		_	

Wild Pansy Control in Peppermint

Wild pansy in an annual broadleaf weed which is occasionally found in peppermint fields. Wild pansy can form dense patches and competes successfully with peppermint. No herbicide options are known. Therefore research was conducted to evaluate Vin-der and basagran for the potential to control this pest.

Basagran had no impact on wild pansy, regardless of the rate used. Vin-der did injury wild pansy. The activity of Vin-der was enhanced with the addition of methylated seed oil (MSO) as a surfactant. Unfortunately, wild pansy and peppermint have the same level of tolerance toward Vin-der, and crop injury was unacceptable.

Site Description

Crop: Peppermint

Plot Width, Unit: 10 FTPlot Length, Unit: 15 FTSite Location: Jaquette FarmField Preparation/Plot Maintenance:***Study conducted on established stand of mint

Application Information

Application Date:	6-2-98
Time of Day:	2:30 PM
Application Method:	BACKPACK
Application Timing:	POST
Air Temp., Unit:	70 F
<pre>% Relative Humidity:</pre>	29
Wind Velocity, Unit:	5 MPH
Dew Presence (Y/N):	N
Soil Temp., Unit:	66 F
Soil Moisture:	GOOD
% Cloud Cover:	30
(b) (c)	

Plant Species	Plant Stage
Wild Pansy	8" at full bloom
Mint	5 "

Density at Application 60% of total area

Reps: 3

Study Design: RCB

Sprayer	Speed	Nozzle	Nozzle	Nozzle	Nozzle	Boom			
Туре	MPH	Туре	Size	Height	Spacing	Width	GPA	Carrier	PSI
Backpack	2.5	Flatfan	11002XR	14"	20"	10'	20	H2O	20

Wild Pansy Control in Peppermint

	Treatment Name	Form Fm Amt Ds	Rate	Rate Unit	el rubadie telds Wi illy with genearch v	PANSY CONTR PERCE	OL CROP	
1	Vineder	ndieze o	3	pt pr/A	A bilbw no *	46.7	45.0	
2 2	Vineder MSO		3 2	pt pr/A pt pr/A		62.7	63.3	
3 3 3	Basagran MSO 28%		1 2 4	qt pr/A pt pr/A pt pr/A	<i>Y</i> —	0.0	0.0	
4 4 4	Basagran MSO 28%		2 2 4	qt pr/A pt pr/A pt pr/A	7	0.0	0.0	
5	Nontreated					0.0	0.0	
Star CV Trea	<pre>(.05) = ndard Dev.=</pre>				\$111 * 6100 10 6-2-38 2- * 7 20 40.47 80.47 5 - 7 6 6 7 6 7 6 7 6 7 7 7 8 7 7 7 8 7 7 8 7 7 8 7 7 8 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	24.6 13.0652 59.75 16.319 0.0006	39.9 21.1936 97.82 6.160 0.0145	
		na antina tana						
						rian (m. 1997) 1940 - Maria Maria 1950 - Maria		
				-				

Horsetail Control in Baby Mint

Horsetail is a perennial weed which is adapted to high moisture areas with high water tables. No herbicide options are known for mint production. Therefore research was conducted to evaluate mint herbicides for the potential to control this pest.

Gramoxone and Goal both resulted in complete control. Tough also demonstrated good activity, providing 88 percent control. Buctril and Vin-der were ineffective.

Site Description

Application Information

Crop: Peppermint

Plot Width, Unit: 10 FT Plot Site Location: Offstation

Plot Length, Unit: 15 FT

Reps: 3 Study Design: RCB

5-7-98	

Application Date:	5-7-98
Time of Day:	11:00 AM
Application Method:	BACKPACK
Application Timing:	POST
Air Temp., Unit:	70 F
% Relative Humidity:	50
Wind Velocity, Unit:	0 MPH
Dew Presence (Y/N):	N
Soil Temp., Unit:	69 F
Soil Moisture:	GOOD
% Cloud Cover:	0

Weed SpeciesWeed StageDensity at ApplicationHorsetail1 to 1.5"30/ft2

Sprayer	Speed	Nozzle	Nozzle	Nozzle	Nozzle	Boom			
Туре	MPH	Туре	Size	Height	Spacing	Width	GPA	Carrier	PSI
Backpack	2.5	Flatfan	11002XR	14"	20"	10'	20	H2O	20

Horsetail Control in Baby Mint

	Treatment Name				Rate Unit	PERCE	OL NT
0316	Tough	Louis nest	33	a Félalo	resulted in c	Cost Leos	1006 -90. kohrt
1	GRAMOXONE E NIS			2.4	pt pr/A % v/v	100.0	
2 2 2	TOUGH MSO 28%		EC EC EC	1	pt pr/A qt pr/A qt pr/A	88.3	-
3 3	BUCTRIL NIS			1.5 .25	pt pr/A % v/v	33.3	
4	VINE-DER	2	SC	3	pt pr/A	48.3	
5 5 5	GOAL MSO 28%	1	EC EC EC	1	lb ai/A qt pr/A qt pr/A	100.0	
6	NONTREATED					0.0	
Star CV Trea	(.05) = ndard Dev.= = atment F atment Prob(F)			6 50% 51% 5200 7300 7	34.5 18.9517 30.73 14.088 0.0003	N. Salara and a second state of the state of the second s second second sec

Unglichten Schupvent

55

TITLE: EVALUATION OF MENTHA VARIETIES AND GERMPLASM FOR DISEASE REACTION AND LATENT INFECTION PERIOD TO MINT RUST AND POWDERY MILDEW

PERSONNEL: WILLIAM E. GREY, Research Assistant Professor/Mint Certification Specialist, Department of Plant Sciences, MSU, Bozeman, MT

MAREIKE R. JOHNSTON, Research Associate Professor, Department of Plant Sciences, MSU, Bozeman, MT

ABSTRACT: The purpose of this research is to develop methodology for evaluation of commercial mint varieties and germplasm to mint rust and powdery mildew. The commercial peppermint varieties are susceptible to the 'peppermint' rust biotype whereas, the native spearmint varieties are only susceptible to the 'native spearmint' rust biotype. The scotch spearmint varieties are moderately susceptible to the 'peppermint' rust biotype and susceptible to the 'native spearmint' rust biotype. In contrast, Scotch 770 was moderately-resistant to the 'native spearmint' rust biotype, which may indicate partial resistance in this selection (Table 1).

In cooperation with T. Davis, Univ. New Hampshire, we evaluated the F1 progeny derived from crosses of diploid parents. The parental lines of Mentha longifolia as well as several wild mint species tested, were resistant to both rust biotypes (Table 2, 3). Variation to the rust biotypes was found among the F1 progeny derived from the diploid parents, M. longifolia 'tomentosa' MEN 501 x M. longifolia MEN 018. The F1 progeny from a different cross, M. polyadenia MEN 584 x M. hymalaiensis MEN 635 were highly variable in rust reaction to the 'native spearmint' rust biotype. These same progenies were resistant to the 'peppermint' rust biotype. The findings suggest several sources of resistance and potential genetic markers for rust resistance (Table 3).

In cooperation with L. Welty, NWARC, we evaluated the disease reaction of commercial mint varieties, propagated by stemtip, meristem, or nodal, under field conditions to the 'peppermint' rust biotype (Table 4). The disease reaction of field grown plants were more variable than that of seedling plants inoculated under standardized conditions in the greenhouse. The differences among peppermint varieties are due to variable inoculum pressure or micro-climate differences in the plant canopy rather than to the plant material sources or method of propagation. Scotch 770 was more resistant than the other scotch spearmint varieties to the 'peppermint' rust biotype (Table 4).

Powdery mildew on mint has only been identified as an Erysiphe-type, based on the structure of the cleistothecium, number of asci and ascospores. The sexual structure was obtained from a field of 'Black Mitcham' peppermint that was allowed to naturally senesce rather than be harvested for oil. Commercial mint varieties were evaluated by the detached leaf or whole plant methods for powdery mildew. Native spearmint varieties are immune to infection but there is localized leaf necrosis when the plant is exposed to severe mildew inoculum. Scotch spearmint is highly susceptible and does support abundant sporulation of conidia at 12 days following inoculation. Peppermint varieties are variable in reaction and may have a longer latent infection period, or time from inoculation to sporulation, than the scotch spearmint varieties (Table 5).

OBJECTIVES - Rust

Our objectives were to develop the protocols for inoculating mint plants under uniform conditions with pure isolates of mint rust and to determine the disease reaction and latent infection period of commercial mint varieties and germplasm to the two rust biotypes.

<u>Mint Rust Introduction</u>. Mint rust (Puccinia menthae) causes light-yellow, blister-like lesions (aecium stage) on young shoots in the spring, and brownish-red spots surrounded by a yellow halo (uredinium stage) on the leaves later in the season. Rusted leaves may eventually drop off and defoliation of plants can be severe. If rust has infected young shoots, the shoots are usually twisted and distorted and break off easily at the point of infection. In late summer and fall, leaf spots become a deep-chocolate brown (telium stage) as the overwintering spores of the fungus are produced. The 'native spearmint' rust

biotype infects Native spearmint (Menthae spicata) but not Peppermint (M. x piperita); the 'peppermint rust biotype' infects Peppermint but not Native spearmint and both biotypes infect Scotch spearmint (M. x gracilis). The 'peppermint rust biotype' occurs in climates with a cool summer temperature, such as in the Flathead region of Montana and Willamette Valley of western Oregon. The 'native spearmint rust biotype' can tolerate higher summer temperatures and is common where spearmints are grown.

<u>Mint Varieties and Plant Maintenance</u>. Summit Plant Labs, Inc. provided the MIRC commercial varieties (Table 1), T. Davis, Univ. of New Hampshire, provided F1 progeny plants and M. longifolia parental lines and the National Clonal Germplasm Repository -USDA, provided the wild mint species (Tables 2,3,4) as rooted cuttings. Mother plants were irrigated with water warmed to 20 0C and irrigated with Peter's 20-20-20 soluble fertilizer containing minor elements, at 100 ppm nitrogen. Individual stem tips were rooted in pasteurized soil based media for 6 to 8 wks prior to inoculation.

<u>Rust Inoculation Procedures.</u> The 'peppermint mint rust biotype' was obtained from the Flathead region and the 'native spearmint rust biotype' was obtained from D. Johnson, WSU and maintained on peppermint or native spearmint, respectively. The host plant was clasped by a circular 'collar' that rested on the potting container and the host plant was enclosed by a plastic 'plant tower' with the top covered by a nylon mesh. Urediniospores that fell on the white 'collar' were used as inoculum. Rooted cuttings to be tested were inoculated with urediniospores that were suspended in water and rubbed on the lower leaf surface of moistened foliage. The inoculated plants were placed in a dew chamber at 16 0C for 24 hrs with a sample of urediniospores placed on a plastic membrane to monitor spore germination. Inoculated plants were incubated in the growth chamber during a daily cycle of 14:10 hr light:dark and 20:15 0C day:night temperature. Pustules developed in 14 to 21 days.

<u>Rust Disease Evaluation</u>. Plants were evaluated for pustule development and the degree of chlorosis and necrosis, according to an infection type scale developed by D. Johnson (Plant Disease 1995): N = No visible reaction, 0 = Flecking or necrotic spots, no uredinia formed; 1 = Uredinia small, always in necrotic spots, often failing to rupture epidermis; 2 = Uredinia of moderate size and in necrotic spots, necrosis may develop after eruption of fully sized uredinia; 3 = Chlorosis surrounding uredinia but no necrosis, uredinia of any size; 4 = No necrosis or chlorosis surrounding uredinia, uredinia of any size. No visible reaction and infection types 0 to 2 are considered resistant reactions (avirulent isolate) and those of 3 and 4 are considered susceptible reactions (virulent isolate).

CONCLUSIONS - Rust

The commercial peppermint varieties were susceptible to the 'peppermint' rust biotype and the native spearmint varieties were susceptible to the 'native spearmint' biotype. The scotch spearmint varieties are moderately susceptible to the peppermint biotype and susceptible to the native spearmint biotype (Table 1). Interestingly, Scotch 770 was moderately-resistant to the native spearmint biotype. In contrast to the native spearmint varieties, 'Crispa' a curled leaf selection from native spearmint, was resistant to the 'native spearmint' biotype.

In cooperation with L. Welty, NWARC, we determined the disease reaction of the commercial mint varieties to the 'peppermint' rust biotype (Table 4). The disease reaction of the field entries was similar to that found in the greenhouse tests (Tables 1,4). There were no differences in disease reaction among the varieties due to source plant materials and the propagation method, including stem tip, meristem and nodal.

The 'peppermint' rust biotype was the prevalent biotype early in the summer, indicated by the susceptible reaction on the peppermint varieties and the resistant reaction on the native spearmint varieties (Table 4). However, by the end of August and with higher temperatures, the native spearmint varieties were severely diseased (data not shown). The impact of the 'native spearmint' rust biotype on spearmint varieties is unknown but losses may be mitigated if summer temperatures remain cool during the growing season in the Flathead region of Montana.

In cooperation with Tom Davis, Univ. New Hampshire, we evaluated the germplasm study to both rust

biotypes in the greenhouse. Variation to both rust biotypes was found among the F1 progeny derived from the diploid parents, M. longifolia 'Tomentosa' MEN 501 x M. longifolia 'Tomentosa' MEN 018 (Tables 2,3). The F1 progeny of M. longifolia 'Polyadenia' MEN 584 x M. longifolia 'Hymalaiensis' MEN 635 were variable in rust reaction to the 'native spearmint' rust biotype but resistant to the 'peppermint' rust biotype. Potential genetic markers for rust resistance may be identified in this germplasm.

OBJECTIVES - Powdery Mildew

Our objectives were to develop the procedures for inoculating mint plants with a pure culture of powdery mildew and to determine the disease reaction and latent infection period of commercial mint varieties and germplasm to this pathogen. We are investigating the taxonomic identity of powdery mildew on mint in Montana and the role of the sexual stage as an overwintering structure in this disease.

<u>Powdery Mildew Introduction</u>. Powdery mildew forms long chains of single celled-conidia on the leaf surface giving a powdery appearance to the mint foliage. Cell necrosis and death occurs as a result of hypersensitive reaction and/or severe infection. The dark-bodied, spherical cleistothecium, or sexual fungal structure, is intertwined amongst the hyaline to white mycelium. Cleistothecia are not common on Black Mitcham peppermint commercial fields during the growing season in Montana. However, we have found the cleistothecia on senesced tissues in the late fall but not on the leaf residue in the spring. The role of the cleistothecia as an overwintering structure for maintaining powdery mildew disease is still unknown in Montana.

<u>Powdery Mildew Taxonomy</u>. We have identified the powdery mildew on Black Mitcham peppermint in Montana as an Erysiphe-type. The cleistothecium contained multiple asci with two ascospores and the unbranched, mycelial appendages on the surface that are longer than the diameter of the cleistothecium (<140 um). Of the four Erysiphe species that have been reported on mint, Erysiphe galeopsidis DE Candolle ex Mérat, is characterized as forming mature asci most often in the spring, whereas the remaining three form asci in the fall, Erysiphe biocellata Ehrenberg, Erysiphe cichoracearum DC. Ex Mérat, and Erysiphe polygoni DE Candolle ex Saint-Amans. In Montana, cleistothecia were found on peppermint in the fall season but it is not known if the ascospores were mature and viable. Correct species identification will depend on the a mature cleistothecium and on the determination of the number of mature asci and the size of ascospores.

<u>Powdery Mildew Inoculation</u>. The 'whole plant' method was useful for evaluating many varieties to a common virulence type, whereas, the 'detached leaf' method can be used for comparing several isolates on a single variety. The whole plant method employs a clear plastic 'chimney' to enclose the plant and maintain a higher humidity. With the 'detached leaf' method, a leaf and petiole are placed on a solidified agar growth medium in an individual cell of an organizer box (divided, plastic storage box with 12 cells). The growth medium can support a live leaf in the organizer box up to 6 wks which is sufficient time for mildew to develop. The growth medium contains benzimidazole (118 mg/l), calcium nitrate (472 mg/l), agar (12 gm/l). The whole plant and detached leaf are inoculated by shaking conidia from an infected plant onto the leaf surfaces. The tissues are incubated in a growth chamber at temperature of 17:22 C and night : day cycle of 10:14 hrs with high light intensity (1500 foot candles). Sporulation occurred after 8 - 10 days.

Powdery Mildew Evaluation. The following infection type scale was used: 0 = No powdery mildew; 1 = Light powdery mildew, mycelium / conidia, on upper leaf; 2 = Moderate powdery mildew and/or light leaf flecking; 3 = Heavy powdery mildew and moderate leaf flecking; 4 = Severe powdery mildew, leaf necrosis and leaf drop. No powdery mildew and a disease reaction of 0 to 1 were considered resistant reactions (avirulent isolate) and those of 2 to 4 are considered susceptible reactions (virulent isolate).

CONCLUSIONS - Powdery Mildew

Native spearmint varieties are immune to infection but there is localized leaf necrosis when the plant is exposed to severe mildew inoculum. Scotch spearmint is highly susceptible and does support abundant sporulation of conidia at 12 days following inoculation. Peppermint varieties are variable in reaction and

may have a longer latent infection period, or time from inoculation to sporulation, than the scotch spearmint varieties (Table 5). Latent infection period in peppermint and spearmint varieties may indicate partial host resistance to powdery mildew. In addition, leaf morphology and the density of leaf hairs may reduce conidial sporulation, dispersal and secondary infection.

The correct identification of powdery mildew has an impact on disease management in commercial mint. The cleistothecium or surviving fungal structure has not been found on the foliage or dried residue from production mint fields in Montana. Wild mint species and closely related plants may be important hosts for survival of powdery mildew over the winter or as a reservoir to re-infect the mint crop during the growing season. Growers have reported severe mildew epidemics on scotch spearmint but we do not know if there has been a shift in the mildew population to virulence or to fungicide resistance or perhaps to a change in crop management practice. A correct fungal identity and the methods to evaluate plant responses to powdery mildew will help determine the potential development of specialized forms on commercial mint.

	Disea	se reaction*
Mentha varieties	Peppermint biotype	Native Spearmint biotype
Peppermint (Mentha x piperita)	ns the surface that an	an construction of the second
Black Mitcham	S	R
Black Mitcham 'uk1'	S S S	esti in the R not see
Black Mitcham 'uk2'	85 mint 10 genored to 1 and	R
Murray Mitcham m-83-7	S	R
Murray Mitcham	S	R
Redefined Murray Mitcham	S	R datable
Roberts Mitcham m-83-5	S	R
Todds Mitcham t-84-5	S	R
Todds Mitcham	See	R
Native Spearmint (Mentha spicata) and has been at the	lavelo International
Native Spearmint 'crispa'	R	R
Native Spearmint n-83-5	R	S
Native Spearmint n-83-6	R	S
Native Spearmint n-87-1	e englin Rehene i	S
Native Spearmint	R	S
Scotch Spearmint (<i>Mentha x graci</i>	lis) a start of C to provi	windent isolate) and I
Scotch 213	MS	S
Scotch 227	MS	S
Scotch 770	MS	MR?
Scotch	MS	S

Table 1. Disease Reaction of Mentha varieties to the 'peppermint' and 'native spearmint' biotypes of Mint rust (*Puccinia menthae*) in the greenhouse.

 R = resistant; S = susceptible; MR = moderately resistant; MS = moderately susceptible; -= not tested

59

Table 2. Disease reaction of Mentha varieties to the 'peppermint' and 'native spearmint' biotypes of Mint rust (*Puccinia menthae*) in the greenhouse.

			Dise	ase reaction*
Mentha varieties	Plant Introduction #	Mentha ID	Peppermint biotype	Native spearmint biotype
Mentha x aquatica	97 . 97	-		
'Water mint'	PI557572	MEN109	R	R
'Water mint'	PI557574	MEN111	R	R
Mentha canadensis				
'Alaska or Artic'			MR	-
Mentha longifolia				
Tomentosa	PI557888	MEN501	R	R
Mentha pulegium				
'Pennyroyal'	PI557772	MEN003	R	R
'Pennyroyal'	PI196272	MEN502	R	San - Marin
'Pennyroyal'	PI557780	MEN626	R	
Mentha suaveoleons				
Rotundifolia	PI557903	MEN379	R	R

* R = resistant; S = susceptible; MR = Moderately resistant; - = not tested

- Yesterson it is a climately interacted in the state of the state of a st

Table 3. Disease reaction of diploid Mentha species and F1 progenies to the 'peppermint' and 'native spearmint' biotypes of Mint rust (*Puccina menthae*) in the greenhouse.

Mentha spp.	Plant			Diseas	e Reaction*
Progeny	introduction number	NCGR ID*	F1 ID	Peppermint biotype	Native Spearmin biotype
Diploid parents	s Mentha longil	olia			
Tomentosa	PI557756	MEN018		field resistant	R
Tomentosa	PI557888	MEN501		R	R
Capensis	PI557767	MEN585		R	R
lymalaiensis	PI557768	MEN635		- PISU/572	THE REPAIR
Polyadenia	PI557769	MEN584		R	R
-1 progeny Me	ntha longifolia	'Tomentosa'		longifolia MEN018	
		_	501x18-02	S	S
			501x18-05	S	S
			501x18-06	S	R-S?
			501x18-07	MR	MS
			501x18-08	S	S
			501x18-09	States S	S R
			501x18-10	R	
			501x18-11	S	Sec.
			501x18-16	S	R-S?
	-	-		longifolia 'Hymalai	
			584x635-d01	R	S
	-	-	584x635-d01 584x635-d02	R R	S S
					S S R
		2	584x635-d02	R	S
	-	8	584x635-d02 584x635-d06	R R	S R
			584x635-d02 584x635-d06 584x635-d08	R modele R 1947-88141 R	S R R R R
		9 19	584x635-d02 584x635-d06 584x635-d08 584x635-d11	R R R R R	S R R R
		7 7	584x635-d02 584x635-d06 584x635-d08 584x635-d11 584x635-d12	R R R R R	S R R R R
		2 	584x635-d02 584x635-d06 584x635-d08 584x635-d11 584x635-d12 584x635-d16	R R R R R R R R R	S R R R R MR R
		2 2 20100 1011 1-	584x635-d02 584x635-d06 584x635-d08 584x635-d11 584x635-d12 584x635-d16 584x635-d19	R R R R R R R R	S R R R R R R R R
			584x635-d02 584x635-d06 584x635-d08 584x635-d11 584x635-d12 584x635-d16 584x635-d19 584x635-d20	R R R R R R R R R	S R R R R R R R S
			584x635-d02 584x635-d06 584x635-d08 584x635-d11 584x635-d12 584x635-d16 584x635-d19 584x635-d19 584x635-d20 584x635-d23	R R R R R R R R R R R R R R R	S R R R R R R S S
			584x635-d02 584x635-d08 584x635-d08 584x635-d11 584x635-d12 584x635-d16 584x635-d19 584x635-d20 584x635-d23 584x635-d23 584x635-d24 584x635-d26 584x635-d27	R R R R R R R R R R R R R R R R R R	S R R R R R R S S S S
			584x635-d02 584x635-d08 584x635-d08 584x635-d11 584x635-d12 584x635-d16 584x635-d19 584x635-d20 584x635-d23 584x635-d23 584x635-d24 584x635-d26	R R R R R R R R R R R R R R R R R R R	S R R R R R R S S S S MR
			584x635-d02 584x635-d08 584x635-d08 584x635-d11 584x635-d12 584x635-d16 584x635-d19 584x635-d20 584x635-d23 584x635-d23 584x635-d24 584x635-d26 584x635-d27 584x635-d30 584x635-d35	R R R R R R R R R R R R R R R R R R R	S R R R R R R R S S S S M R MR
			584x635-d02 584x635-d08 584x635-d08 584x635-d11 584x635-d12 584x635-d16 584x635-d19 584x635-d20 584x635-d23 584x635-d23 584x635-d24 584x635-d26 584x635-d27 584x635-d30	R R R R R R R R R R R R R R R R R R R	S R R R R R R R S S S S M R M R R
			584x635-d02 584x635-d08 584x635-d08 584x635-d11 584x635-d12 584x635-d12 584x635-d19 584x635-d20 584x635-d23 584x635-d23 584x635-d24 584x635-d26 584x635-d27 584x635-d27 584x635-d30 584x635-d35 584x635-d36 584x635-d37	R R R R R R R R R R R R R R R R R R R	S R R R R R R R S S S S M R R R R
			584x635-d02 584x635-d08 584x635-d08 584x635-d11 584x635-d12 584x635-d12 584x635-d19 584x635-d20 584x635-d20 584x635-d23 584x635-d24 584x635-d27 584x635-d27 584x635-d30 584x635-d35 584x635-d36 584x635-d37 584x635-d39	R R R R R R R R R R R R R R R R R R R	S R R R R R R R S S S M R R R R S
			584x635-d02 584x635-d08 584x635-d08 584x635-d11 584x635-d12 584x635-d12 584x635-d19 584x635-d20 584x635-d23 584x635-d23 584x635-d24 584x635-d26 584x635-d27 584x635-d27 584x635-d30 584x635-d35 584x635-d36 584x635-d37	R R R R R R R R R R R R R R R R R R R	S R R R R R R R S S S M R M R R R R

* R = resistant; S = susceptible; MR = moderately resistant; Ms = moderately susceptible; -- = not tested

 Table 4. Disease reaction of Mentha varieties to the 'peppermint' biotype of mint rust (*Puccinia menthae*) in the field nursery at Kalispell, MT, 1998.

Mentha varieties	Propagation Method	Propagator	Source	Disease Reaction*
Peppermint (Mentha x pip	erita)			
Black Mitcham	meristem	Summit	MIRC	MS
Black Mitcham	meristem	Starkel	MIRC	S
Black Mitcham 'lake92'	nodal	Lake	1	MR
Black Mitcham 'uk1'	nodal	Lake	0-20-1 MERTIN	S
Black Mitcham 'uk2'	nodal	Lake	1-16-10 5010-18	S
Black Mitcham '96-07'	nodal	Lake	McClelland	S
Black Mitcham '96-19'	nodal	Lake	McClelland	MR
Black Mitcham	stemtip	Summit	MIRC	S
Roberts Mitcham	stemtip	Summit	MIRC	S
Murray Mitcham	stemtip	Summit (etter	MIRC	MR
Murray Mitcham m-83-7	stemtip	Summit	MIRC	S
Todds Mitcham	stemtip	Summit	MIRC	S
Native Spearmint (Mentha	spicata)			the second second
Native Spearmint n-83-5	stemtip	Summit	MIRC	R
Native Spearmint	meristem	Starkel	MIRC	R
Scotch Spearmint (Mentha	a x gracilis)		G. M. H. Mask	and what
Scotch	stemtip	Summit	MIRC	S
Scotch 213	stemtip	Summit	MIRC	S de
Scotch 227	stemtip	Summit	MIRC	Self
Scotch 770	stemtip	Summit	MIRC	MR
Scotch 770	meristem	Starkel	MIRC	S
Mentha longifolia				
Tomentosa	nodal	Lake	NCGR	R
Hymalaiensis	stemtip	Lake	NCGR	-
Polyadenia	stemtip	Lake	NCGR	2
Mentha suaveoleons				
Rotundifolia	nodal	Lake	NCGR	R
Mentha canadiensis				-
'Alaska or Artic'	nodal	Lake	IPCallison	MR

* R = resistant; S = susceptible; MR = moderately resistant; MS = moderately susceptible; - = not tested

Table 5. Disease reaction of Mentha varieties to Powdery Mildew determined by the whole plant and detached leaf methods.

Mentha varieties	N N	Whole Plant		eaction*	d Leaves
	Exp1	Exp2	Exp3	Exp1	Exp2
Native Spearmint (Mentha sp			To 120 s		0 y
Native Spearmint n-83-5	R	R	<u>_</u> 5.1	R	R
Native Spearmint n-86-6	R	R	-	R	R
Native Spearmint n-87-1	R	R	R	R	R
Scotch Spearmint (<i>Mentha x</i> g	gracilis)		1.4		
Scotch 213	S	S	-	S	S
Scotch 770	S	S	Trip	S	S
Scotch	n n-i nst	-	S	4z -	n ted.
Peppermint (<i>Mentha x piperita</i>	3) 201003		2 781		
Murray Mitcham m-84-5	S	R	<u>n</u> Sm	S	R
Murray Mitcham m-83-5	S	R	S	S	R
Murray Mitcham m-83-7	S	R	S	R	S
Redefined MurrayMitcham	R	R	R	R	R
Todds Mitcham m-84-5	S	R	R	S	S
Todds Mitcham	S	R	-	R	S
Black Mitcham	terretoria	S	S	R	S
Black Mitcham (invitro)	homes	-	S	-	
resistant; S = susceptible; = n	ot tested				

ment blandter i skelleret

R e versesor o S e suos scillites (CC -s tradicisée) realizario MB e modernia). Suorphilites - je 444 (color)

TITLE: EARLY-SEASON N FERTILIZATION OF PEPPERMINT

PERSONNEL: Mal Westcott Western Ag Research Center, MSU

OBJECTIVES: To evaluate early-season N fertilization programs for peppermint.

PROCEDURES: The eleven N fertilization treatments described in Table 1 were applied to Black Mitcham peppermint in a randomized, complete block design field experiment with four replications at the Northwestern Agricultural Research Center in 1998. Anhydrous ammonia applications were made by shanking at 6 inch depth, 22 in. centers, with coulters in front of the shanks. Urea and ammonium nitrate applications were topdressed on the soil surface. Urea-ammonium nitrate (UAN) was applied with a back-pack sprayer on the crop canopy. Soil solution concentrations at 4 ft. depth were sampled periodically from suction lysimeters installed in each plot. Plant stem samples for nitrate-N concentration in dry tissue and leaf SPAD levels were measured at each time of UAN application in each plot.

The crop was fertilized with 16.5 lbs N/ac, 78 lbs P_2O_5/ac and 120 lbs K_2O/ac in October, 1997. Other management practices were targeted for optimum production.

Plots were harvested on August 12 for determination of hay and oil yields. Soils were sampled in each plot after harvest to a depth of four ft. for determination of soil nitrate distribution (data not available at this point).

April 7		24 June	8 J	uly	22 July	Total N
Lbs N/ac	Source				nitrate N/ac	Lbs N/ac
0	1A.S.P.	0	23	0	0	0
0	43.8 J	80	47.	80	80	240
240	Anhy	0	53	0	0	240
160	Anhy	0	45	0	80	240
80	Anhy	0	45	80	80	240
240	Urea	0	52	0	0	240
160	Urea	0	45	0	80	240
80	Urea	0	ER.	80	80	240
240	Am Nit	0		0	0	240
160	Am Nit	0	8	0	80	240
80	Am Nit	0		80	80	240

Table 1. Nitrogen rate, source, and timing treatments applied to peppermint, 1998.

Results: Early-season crop N status (Tables 2 and 3) was roughly proportionate to the amount of initial N applied to each treatment, but as the season progressed stem nitrate levels were greater in the treatments receiving greater amounts of in-season N.

Initial N	Growing	Sa	mpling d	ate	
Fertilization	Season N	24 June	8 July	22 July	Mean
ACCRET ST	eronte pe	Stem	nitrate-N	, ppm dry	matter basis
0	0	245	120	129	165
0	240	209	2675	4475	2453
80 Urea	160	481	579	2525	1195
160 Urea	80	1123	1465	900	1163
240 Urea	0	1951	1743	1426	1706
80 Anhy	160	1730	2150	3450	2443
160 Anhy	80	2438	1875	1558	1957
240 Anhy	0	2240	2350	1628	2073
80 Am Nit	160	1203	1303	2250	1585
160 Am Nit	80	1454	2203	1905	1854
240 Am Nit	0	1683	1785	1460	1642
LSD 0.05	the here we	1493	1287	1508	837

Table 2. Effects on N rate, source, and timing on seasonal stem nitrate-N concentrations in peppermint.

Table 3. Effects on N rate, source,	and timing on seasonal leaf SPAD levels in
peppermint.	

Initial N	Growing		S	amplin	ng dat	е		
Fertilization	Season N	24-Ju	ne	8-Ju	ly	22-July	/ N	lean
	Ин	taT	YW	Leaf	SPAD) reading	gs	
0	0	38.3	ou	37.7	ulana	39.8	1	38.6
0	240	36.4	2	43.9	n ac	51.1		43.8
80 Urea	160	37.7		38.8		50.9		42.5
160 Urea	80	41.6		41.8	3	43.8		42.4
240 Urea	041	41.0	8	42.5	0.0	47.9		43.8
80 Anhy	160	40.9		44.0	:	53.6		46.1
160 Anhy	80	41.6	8	42.4		45.2	-	43.0
240 Anhy	0	41.5	3	41.8	23	45.6		43.0
80 Am Nit	160	40.6		40.6		52.2		43.2
160 Am Nit	80	42.0	6	42.3		45.2		43.2
240 Am Nit	0	41.4	-	40.2	18, -	46.3		42.6
	1365	4						Life ma
LSD .05		2.8		3.2		5.1		2.1

Mid-season soil solution nitrate concentration at 4 ft. depth (Table 4) was greater with the higher rates of initial N application, particularly with the anhydrous source, indicating that nitrate leaching was greater with high rates of initial N.

e ol be	ord heavy	ng Date	Samplin	into montwick	Growing	Initial N
Mean	12 Aug	22 July	8 July	24 June	Season N	Fertilization
25	40	23	19	2	0	0
	54	48	49	38	240	0
34	32	35	60	33	160	80 Urea
74	59	73	73	85	80	160 Urea
87	62	68	77	109	0	240 Urea
62	67	79	47	54	160	80 Anhy
101	88	113	114	87	80	160 Anhy
115	79	139	158	124	0	240 Anhy
64	49	71	73	63	160	80 Am Nit
74	64	70	69	85	80	160 Am Nit
72	50	66	76	95	0	240 Am Nit
0.000	0.3255	0.038	0.0105	0.003		P-value
26	NS	61	59	52		LSD .05

Table 4. Effects of N rate, source, and timing on soil solution nitrate-N concentrations sampled at 4 ft. depth.

Though hay yields were unaffected by N application rate or timing, oil yield response was greater to the N applied during the growing season than to the initial N (Table 5). The N applied in April was obviously poorly utilized by the crop, likely due to leaching below the crop root zone early in the growing season. The months of May and June were unusually rainy (7 inches of precipitation), and the evidence of elevated soil solution nitrate from the suction lysimeters, the decline in stem nitrate and leaf SPAD levels, and the poor oil yield response all point to leaching as the cause for poor N utilization in treatments where heavy applications of early N were made, regardless of the source.

Taken together with the results from the previous two years' of work, it is apparent that any of the three sources of N tested can be effectively applied to peppermint in April or May prior to the onset of rapid crop growth. When conditions are right, this early N can be just as effective as multiple applications made during the growing season. Anhydrous applications will cause some crop dieback near the shank furrow, but the crop will rapidly outgrow this damage and perform very well. The dry formulations are also effective as early-season N sources, though some volatilization loss or even crop damage may occur if urea is not incorporated by rainfall (or irrigation) shortly after application. The greater concern, however, is the potential for leaching with heavy rates of early season N. In years when rainfall is not excessive and efficient irrigation is practiced, this will not be a problem. But in years such as 1998 where periods of excessive rainfall occur, particularly early in the growing season, significant leaching losses can occur. This is manifest as poor crop response to N fertilization and the potential for environmental damage with nitrate leaching. Since these risks occur as a result of conditions beyond grower control, it is best advised to avoid heavy applications of N early when they will be susceptible to losses.

Olluted	Second and a	Growing	Initial N
Oil yield	lay yield	season N	fertilization
	lb /ac		
38.7	3050	0	0
66.4	3994	240	0
73.4	4199	160	80 urea
69.8	4727	80	160 urea
58.8	4222	0	240 urea
71.5	3797	160	80 Anhy
58.4	3828	80	160 Anhy
61.1	4006	0	240 Anhy
68.8	4236	160	80 Am Nit
65.9	4669	80	160 Am Nit
57.3	4150	0	240 Am Nit

NS

LSD .05

Table 5. Effects on N rate, source, and timing on peppermint hay and oil yields.

crup, ilkely due to leaching below the ontproof zone early in the growing seaso "One months of May and Juno were unascelly rainy (" indirect of precipitation), and the evidence of alevated soil adjuston nimite from the suction lycameters, the decking in stars object and leaf SPAD levels , and the poor of yield response a point to leaching as the results for poor is utilization in treatments where there and resister of a stars made to poor is utilization in the source.

11.9

Cases together with the results from the previous two years' of work, it is applied to applied the response of the sources of the stord can be effectively applied to be executed to the obset of reput cate provide. When conditions are right this early N can be just as effectively applied to under their growing season. Anti-yeing as applied to conditions are right this early N can be just as effective an multiple applied to under the diseases in the provide and the provide and the cases of the provide and the cases of the provide and provi