Dr. Zach Miller
Protect your investment

- Main Objective:
 - Return of investment
 - Maximize growth
 - Minimize time to maturity/harvest
 - Site-Specific needs assessment and management plans
Orchard Planning makes dreams come true

- Fencing
- Bird Protection
- Weed Management
- Plant Selection
- Irrigation
- Potential Returns
Main threats to plant health/production

Weeds, Rodents/Deer, Birds, and Disease
Two major type of wildlife fencing

Woven wire

Electric
Pros and Cons

<table>
<thead>
<tr>
<th>Fence Type</th>
<th>Cost</th>
<th>Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Woven Wire</td>
<td>High: $4-6 per foot, $4700-7000/2 acres</td>
<td>Low- occasionally mowing</td>
</tr>
<tr>
<td>Electric</td>
<td>Low: $1.50-2.20, $1800-$3000/2 acres</td>
<td>High- must keep vegetation off fence.</td>
</tr>
</tbody>
</table>

http://agresearch.montana.edu/warc/guides/Orchard_Infrastructure.html
Bird Protection

- Can remove 50 to 99% of the crop
 - Aronia less attractive to birds
- Exclusion vs. Deterrents
- Two types
 - Row cover
 - Orchard Cover-Full Exclosure
Orchard Cover-Full Exclosure

- E.g. Smart Net System
 - Advantages:
 - Can work under net
 - Better for mixed orchards/U-pick
 - Better bird protection-can’t reach fruit
 - Disadvantages
 - Cost: need to add ~10 ft. tall posts every 50 ft.
 - ~$3,700 per acre

WWW.smart-net-systems.com
250-890-0841 Canada
Row cover

• Advantages:
 • Cost: $850-1,800/acre.
 • Netting: $800-1,200/ac
 • Support, stakes: $630/ac.
 • Allows mechanical harvest.
• Disadvantages
 • Less effective: birds can reach fruit
 • Can’t work under net- must remove to prune, spray, monitor, and harvest
Weed Impacts

- Direct:
 - Competition for water and nutrients:
 - Especially intense in establishment years
 - Lost returns on inputs/investment
 - Weeds can block irrigation -> water stress

- Indirect:
 - Provide food/habitat for rodents-winter browsing to roots and trunk
Weed Management

- Weed types
- Critical period for control
- Management tool kit:
 - Herbicide types
 - Application
- Orchard floor vegetation management planning
- Rodent control
- Take the Hard-easy approach:
 - Vigilant control early will make things easier in the end.

http://treefruit.wsu.edu/crop-protection/weed-control/
Know your enemy

- Scouting weeds:
 - Determine management
 - Monitor results

- Major weed types:
 - Growth form:
 - Grass
 - Broadleaf
 - Live span:
 - Annual (winter vs summer)
 - Biennial
 - Perennial
Weed Growth Forms

Monocot

Dicot-Broadleaf Weeds
Weed Life Span

- **Annuals**
 - Winter Annuals
 - Summer Annuals

- **Biennials**-2 year life cycle-often noticed too late to control
Spreading Perennial are the most difficult to control.

- E.g. Quack Grass, Canada Thistle, Field Bindweed
- Use Systemic Herbicide that will break down (i.e. glyphosate)
- Multiple applications-Fall most critical

REMOVE BEFORE PLANTING
Critical Period(s)

- Weed competition has greatest effects when:
 - **Orchard Establishment** - small root system, creates lag in growth
 - When plants need resources during the growing season
 - Flowering
 - Fruit set
 - Fruit enlargement (yield, size)
 - Growth (next years yield)
 - Flower bud initiation (next years yield)
 - **MAY-JULY**
 - Weed competition in fall can help plants harden off/prepare for winter
Increase in trunk cross sectional area – 1991

Trunk growth

Duration of weed-free period

Merwin-Cornell University
Early weed control is critical
Weed Management Tool Kit

Prevention: sanitation, stopping weed seed production

Biological: competition, bio-control

Chemical: tillage, mulches, mowing
Table 4-14. Advantages and disadvantages of weed management tools

<table>
<thead>
<tr>
<th>Tool</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cultivation/hoeing</td>
<td>- effective, especially on small weeds
- non-selective - controls all emerged growth
- equipment readily available</td>
<td>- may damage soil structure
- may spread perennial weeds
- may damage trees/roots
- provides only short-term control</td>
</tr>
<tr>
<td>Mulching</td>
<td>- effective if properly managed
- non-selective - suppresses all emerging weeds
- holds soil moisture as well
- provides long-term control</td>
<td>- availability of mulch
- cost of mulch/application
- attractive to rodents
- may affect tree nutrition
- must be free of weed seeds</td>
</tr>
<tr>
<td>Mowing</td>
<td>- rescue treatment
- quick suppression
- equipment available
- reduce seed spread</td>
<td>- weeds may still compete
- quick regrowth
- several mowings required
- may damage young trees</td>
</tr>
<tr>
<td>Herbicides</td>
<td>- effective
- easy to apply
- can be selective
- timely</td>
<td>- require 2% soil organic matter
- directed spray equipment
- effects on pest complex
- cost varies</td>
</tr>
</tbody>
</table>

$425/acre/year

$<100/acre/year

http://www.omafra.gov.on.ca/english/crops/facts/weedman.htm
Herbicide types

- **Pre-emergent: PRE**
 - Effects weed seeds (not established perennials)
 - Applied fall, early spring
 - Require incorporation (water, tillage)

- **Post-emergent: POST**
 - Contact: Not moved within plant
 - Effective on annual weeds
 - Less risk for crop damage
 - Paraquat, Glufosinate (Cheetah, Rely), Organic herbicides
 - Systemic: moved within the plant
 - Effective on annual and perennial weeds
 - Glyphosate (Roundup-many others)-no residual
 - 2,4-D, clopyralid (Stinger)-soil residual-can harm some cultivars if used mid season w/ irrigation

- Some herbicides are both PRE-POST
Herbicide types

- Selectivity: Based on mode of action (MOA)
 - Some MOA’s work on all plants - Non-Selective, Broad spectrum
 - Other MOA’s work on some plants - Selective
 - Often grass or broadleaf
 - But can be more selective.
 - Know weeds, Read labels.
PREEMERGENCE WEED CONTROL

Grasses
- Barnyardgrass
- Crabgrass, large
- Foxtail, Giant
- Foxtail, Green
- Foxtail, Yellow
- Quickgrass
- Wheat, Volunteer

Broadleaves
- Chamomile, False
- Dandelion, common (seedling)
- Flibere, Redstem
- Fleabane, hairy
- Groundsel, common
- Herbit
- Kochia
- Mallow, common
- Marestail/horseweed
- Mustard, Birdsfoot
- Mustard, Black
- Pigweed, Redroot
- Pigweed, Smooth
- Puncturevine
- Purslane, Common
- Sperge, prostrate
- Sperge, spotted

POSTEMERGENCE WEED CONTROL

Grasses (1-2 inches)
- Barley, Volunteer
- Barnyardgrass
- Bluegrass, Annual
- Crabgrass, large (1/2 inch)
- Foxtail, Brittle
- Foxtail, Giant
- Foxtail, Green
- Foxtail, Yellow
- Panicum, Fall
- Wheat, Volunteer

Broadleaves (1-3 inches)
- Chamomile, False
- Chickweed, common
- Herbit
- Kochia
- Mustard, Black
- Mustard, Wild
- Pigweed, Redroot
- Pigweed, Smooth
- Purslane, common
- Shepherd’s-purse
- Wild Radish

POSTEMERGENCE PARTIAL WEED CONTROL

Grasses
- Johnsongrass, seedling
- Millet, wild
- Oat, wild
- Quickgrass

Broadleaves/Sedges
- Cocklebur
- Dandelion, common (established)
- Lambquarters, common
- Nightshade, Black
- Nightshade, Hairy
- Nutsedge, yellow
- Pigweed, Prostrate
- Ragweed, Common
- Velvetleaf

WATER SOLUBLE GRANULE

For Weed Control In Citrus Fruit, Stone Fruit, Tree Nuts, Pome Fruit, Grapes, Potatoes, Potatoes grown for seed, and field grown Tomatoes

Grasses
- Sorgghum halepense
- Panicum miliaceum
- Avena fatua
- Agropyron repens
- Eragrostis cilianensis

Broadleaves/Sedges
- Xanthium spp.
- Taraxacum officinale
- Chenopodium album
- Solanum nigrum
- Solanum sarrachoides
- Cyperus esculentus
- Amaranthus blitoides
- Ambrosia artemisiifolia
- Abutilon theophrasti

Postemergence Partial Weed Control

Grasses
- Johnsongrass, seedling
- Millet, wild
- Oat, wild
- Quickgrass

Broadleaves/Sedges
- Cocklebur
- Dandelion, common (6 inches in diameter)
- Lambquarters, common
- Mallow, common
- Nightshade, hairy
- Nutsedge, yellow
- Pigweed, prostrate
- Ragweed, common
- Smartweed, Pennsylvania
- Thistle, Giant

Herbicide

Matrix® SG

For Weed Control In Citrus Fruit, Stone Fruit, Tree Nuts, Pome Fruit, Grapes, Potatoes, Potatoes grown for seed, and field grown Tomatoes

Grasses
- Sorgghum halepense
- Panicum miliaceum
- Avena fatua
- Agropyron repens
- Eragrostis cilianensis

Broadleaves/Sedges
- Xanthium spp.
- Taraxacum officinale
- Chenopodium album
- Solanum nigrum
- Solanum sarrachoides
- Cyperus esculentus
- Amaranthus blitoides
- Ambrosia artemisiifolia
- Abutilon theophrasti

Postemergence Partial Weed Control

Grasses
- Johnsongrass, seedling
- Millet, wild
- Oat, wild
- Quickgrass

Broadleaves/Sedges
- Cocklebur
- Dandelion, common (6 inches in diameter)
- Lambquarters, common
- Mallow, common
- Nightshade, hairy
- Nutsedge, yellow
- Pigweed, prostrate
- Ragweed, common
- Smartweed, Pennsylvania
- Thistle, Giant
Maximizing Control

- Weed size/stage: smaller is more susceptible
- Weeds need to be actively growing
 - Water
 - Heat
- Herbicide must contact weeds
 - Dust
 - Hairs
- Adjuvants:
 - Hold herbicide on plant, prevent breakdown
 - Increase uptake
 - Nitrogen, surfactants, oils, penetrants, wetting agents, spreader-stickers
 - Follow labels
Other Considerations

- Soil factors- Organic Matter and temperature affect herbicide movement/breakdown
- Crop/Cultivar. E.g. Rose/Apple family more tolerant of synthetic auxins (clopyrlid)
- Age of plants:
 - younger plants have more tender bark and shallower root system.
 - Protect with careful application, guards.
 - Avoid root active PRE and POST products in new orchards.
 - Some products registered only for young, NON-BARING orchards.
- Weed shifts/Herbicide resistance
Ten important herbicide modes of action

<table>
<thead>
<tr>
<th>Mode of action</th>
<th>WSSA group</th>
<th>Key herbicides</th>
<th>Number of resistant species</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCase</td>
<td>Group 1</td>
<td>Poast, Select, Fusilade</td>
<td>44</td>
</tr>
<tr>
<td>ALS</td>
<td>Group 2</td>
<td>Sandea, Matrix, Solida, Pruvin</td>
<td>142</td>
</tr>
<tr>
<td>Shoot inhibitors</td>
<td>Group 3</td>
<td>Surflan, Prowl, Kerb</td>
<td>12</td>
</tr>
<tr>
<td>PGR</td>
<td>Group 4</td>
<td>2,4-D, Stinger</td>
<td>31</td>
</tr>
<tr>
<td>PS II</td>
<td>Group 5</td>
<td>Simazine, Sinbar</td>
<td>72</td>
</tr>
<tr>
<td>PSP</td>
<td>Group 9</td>
<td>Glyphosate, Roundup, many others</td>
<td>25</td>
</tr>
<tr>
<td>PS I</td>
<td>Group 22</td>
<td>Gramoxone</td>
<td>29</td>
</tr>
<tr>
<td>GS</td>
<td>Group 10</td>
<td>Rely, Finale</td>
<td>2</td>
</tr>
<tr>
<td>PPO</td>
<td>Group 14</td>
<td>Goal, Chateau, Treevix, Aim, Venue</td>
<td>6</td>
</tr>
<tr>
<td>Cellulose inhibitors</td>
<td>Group 20/29</td>
<td>Casoron, Gallery, Alion</td>
<td>1</td>
</tr>
</tbody>
</table>

Cost

Soil Active (preemergent) Herbicides for use in Orchards

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Product</th>
<th>Cost per treated acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>diuron</td>
<td>Karmex</td>
<td>$4</td>
</tr>
<tr>
<td>dichlobenil</td>
<td>Casoron</td>
<td>$128</td>
</tr>
<tr>
<td>indaziflam</td>
<td>Alion</td>
<td>$21</td>
</tr>
<tr>
<td>norflurazon</td>
<td>Solicam</td>
<td>$30</td>
</tr>
<tr>
<td>oryzalin</td>
<td>Surflan</td>
<td>$10</td>
</tr>
<tr>
<td>pendimethalin</td>
<td>Prowl</td>
<td>$10</td>
</tr>
<tr>
<td>pronamide</td>
<td>Kerb</td>
<td>$57</td>
</tr>
<tr>
<td>simazine</td>
<td>Simazine 90DF</td>
<td>$6</td>
</tr>
<tr>
<td>terbacil</td>
<td>Sinbar</td>
<td>$41</td>
</tr>
</tbody>
</table>

bold and italic recommended for new plantings
Application

Granular applicators

Banded over row

Rotary spreader - broadcast

Drop spreader - broadcast
Integrated Weed Management

- Prior to Planting:
 - In row: build soil, reduce weeds
 - Wait for weeds to emerge-control, fall sprays to remove perennials
 - Cover crop
 - Tillage
 - Fall-control perennials with systemic herbicide (just after first frost)
 - Establish alleys:
 - Grass- sod forming, easy weed control
Integrated Weed Management

- Post planting first few years - critical period
 - Keep clean of weeds to drip line (2-4 ft.)
 - Chemical:
 - fall-early spring
 - Control winter annuals with contact herbicide
 - PRE-soil applied (8-12 weeks of weed control)
 - Clean up escapes with contact herbicide or hoeing.
 - Fall systemic if needed for perennials
 - Mechanical
 - Mulch (may need to remove for winter)
 - Tillage- applied every 3-4 weeks
 - Not effective for perennial weeds
Integrated Weed Management

- Established orchard
 - Will be more competitive (shade-deeper roots)
 - Control winter annuals, perennials in the fall
 - Fall or early Spring- apply broad spectrum contact herbicide followed by mulch or PRE herbicide
 - Control weeds as needed up to July (Critical period).
Small Mammals (Rodents)

Feed on bark of younger trees

Feed on tree roots
Rodent Control

- **Alter Habitat**
 - Reduce food and cover (vegetation/snow)
 - Remove vegetation around trunks
 - Mow or till alley and orchard border
 - Avoid plants favored by gophers
 - Encourage predators
 - Cats, Snakes, Raptors, Foxes

- **Protect Young Trees- tubes or paint**
- **Monitor (Apple slices-U of Illinois)**
 - 1 per 20-30 plants
 - 24 hrs
 - %apples w/ teeth =% trees damaged
 - Treatment threshold (20-25%) ITRPG
Bait/Trapping

- **Traps:**
 - Along runs/tunnels
 - Voles/mice: provide cover over traps

- **Baits/Poison**
 - **2 types**
 - Acute baits: Zinc phosphide
 - More effective for meadow voles
 - Anticoagulants (Chlorophacinone and Diphacinone)

- **Application:**
 - Broad cast
 - Bait stations
 - Hand
Disease Management

- Relatively minor concern due to our dry climate
- Recognize symptoms and treat early to limit damage.
- Saskatoon-Juniper rust (*Gymnosporangium* spp.) has been the most common disease
Saskatoons

- Common Diseases
 - Juniper rust
 - Entomosporium leaf and berry spot
 - Powdery Mildew
 - Fire Blight
Currants

- No disease seen in our trials
- Anthracnose (dark-brown to black dots on leaf surface-yellowing of leaves)
- Septoria leaf spot (in early stages looks similar to anthracnose, but spots expand and have light center and brown border)
- Powdery Mildew
Protect your investment

- Main Objective:

Weeds, Rodents/Deer, and Birds,
Table 1. Weed control options for organic orchards: Attributes and constraints.

<table>
<thead>
<tr>
<th></th>
<th>Attribute</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tillage</td>
<td>Effective</td>
<td>Can degrade soil quality, organic matter depletion</td>
</tr>
<tr>
<td></td>
<td>Reduces rodent habitat</td>
<td>Costly in young orchards</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Can damage roots and trunks, irrigation system</td>
</tr>
<tr>
<td>Flaming</td>
<td>Can control weeds around trunk</td>
<td>Potential tree injury</td>
</tr>
<tr>
<td></td>
<td>Reduces rodent habitat</td>
<td>Not good for older weeds, perennials</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uses fossil fuels</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Irrigation system damage</td>
</tr>
<tr>
<td>Inert mulches</td>
<td>Effective for most weeds</td>
<td>Costly to apply</td>
</tr>
<tr>
<td></td>
<td>Can improve soil quality</td>
<td>Can tie up N</td>
</tr>
<tr>
<td></td>
<td>Conserves moisture</td>
<td>May be hard to source</td>
</tr>
<tr>
<td>Living mulches</td>
<td>Add biodiversity</td>
<td>Compete with trees</td>
</tr>
<tr>
<td></td>
<td>Benefit soil quality</td>
<td>Rodent habitat</td>
</tr>
<tr>
<td></td>
<td>Legumes can fix N</td>
<td>Variable persistence</td>
</tr>
<tr>
<td></td>
<td>Theoretically low maintenance</td>
<td>Variable ability to compete with weeds</td>
</tr>
<tr>
<td>Organic herbicides</td>
<td>Can control weeds around trunk</td>
<td>Expensive</td>
</tr>
<tr>
<td></td>
<td>No physical damage to tree, roots</td>
<td>Inconsistent effectiveness</td>
</tr>
<tr>
<td></td>
<td>Reduces rodent habitat</td>
<td>May need many applications</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Few registered products</td>
</tr>
</tbody>
</table>

Granatstein and Mullinix 2008