Wireworms, the larvae of click beetles, are significant economic soil-dwelling pests in temperate and subtropical areas of the world. Larvae can be recognized in agricultural soils by their characteristic yellow-green color. They are slender, with hard, smooth and jointed bodies, and often reddish-brown in color. However, larvae can also be yellow or white in color as well.

Regarding this insect pest life-cycle, overwintered adult click beetles usually emerge from soil in the spring, from late April to early May. Oviposition activity typically begins between late May and early June. Each female lays eggs by depositing on the soil surface down to a depth of nearly six inches. From three to seven weeks, the larvae hatch and spend several years feeding on roots and germinating seeds and moving up and down in the soil profile based on climatic conditions. Dr. Reddy and his team members previously researched (2014. Journal of Invertebrate Pathology 120: 43–49) that Hypothenemus biconsocularis and Limonius californicus are two major wireworm species (Figure 1) damaging to spring wheat, particularly in the Golden Triangle, an important cereal-growing region in Montana. This research work was carried out in collaboration with Dr. Stefan T. Jaronski, Research Entomologist at UGAiping, Georgia, Georgia. In addition, three insect pathogenic fungi (Metarthium brunneum F52, formerly M. anisopliae F52, Beauveria bassiana GHA, and Metarthium robertsii DWR 346) which applied as granules in furrow as well as soil drenches, were more effective than when used as seed-coating treatments for wireworm control, and provided an efficacy comparable or superior to imidacloprid. Further research is going on cost: benefit ratios as to make these products cheaper to the growers.

Within a last five to ten years, wireworms’ management has become an increasing problem, particularly for spring wheat crop production in Golden Triangle area of Montana. Wireworm damages to spring wheat has been shown to inflict significant losses in crop yield, quality, and marketability. They feed on the roots, stems or other plant parts by feeding, chewing, or drilling into below-ground plant tissues and structures, thereby enhancing plant diseases, stopping plant growth or killing plants completely. Wireworms also attack on stems later in the growing season that can stimulate excessive tillering and inhibit wheat head formation. Wireworm injury can cause wilting, stunting, thinning, delay in plant maturation, and seedling death. The larvae feed on the roots, and affects crop value. When wireworm populations are extremely high, entire fields may be lost. In many fields, wireworm infestation results in an uneven plant stand, which allows weeds to outcompete the crop and share available food and water resources, thus lessening the normal tillering of adjacent uninjured plants.

Because of wireworms’ hidden nature as they live in soil, eradication of this insect pest has been very difficult. Montana farmers have tended to control wireworms primarily with insecticides. Beginning in the 1950s, wireworm populations were suppressed by conventional insecticides, such as Lindane, to a low pest status for nearly 40 years. The resurgence of wireworms in United States including Montana is rampant in recent years as because of the recent removal of conventional insecticides that were used to control them.

The current wireworm management practice relies mainly on the use of chemical-neonicotinoids (imidacloprid, principally), used as seed treatments, to provide seed and foliar protection for several weeks after planting. Neonicotinoids are widely used for control for many crop pests due to the low rates required and the compounds long residual activity. However, some neonicotinoids have also been found to have adverse effects on pollinators or other beneficial insects. For this reason, there is a need to develop other alternative control options such as a trap crop that are safe to environment and humans.

Trap cropping is a method, in which a crop that is more attractive to a pest is planted either before or alongside the main crop. Trap crops can be used to simply lure pests away from main crops, or they can be used to release toxic agents (biological or chemical) to attract-and-kill pests in a number of imaginative ways. If a trap crop can be found to distract the pests at least during the sensitive growth periods of the main crop, sustainable and long-term pest management solutions can be achieved.

Montana Wheat and Barley Committee has been funding the project dealing in developing trap crops for wireworms at Western Triangle Ag Research Center in Conrad, Montana. Dr. Reddy is the principle investigator for this project, says this project has been funded since 2014 and includes researching various techniques in developing trap crops for wireworms. Dr. Reddy hired Ashish Adhikari who worked on this project as a graduate student and masters program. In this study, we examined the effect of seven trap crops: pea, lentil, canola, corn, durum, barley and wheat, for their attractiveness to wireworms compared to spring wheat. Experimental core plots were located in two commercial grain fields in Valier and Ledger, Montana, USA and the trials took place from May to August in 2015 and 2016. Wheat plants damaged by wireworms were recorded and their relative locations to wheat rows and adjacent trap crops core rows within a plot was determined using destructive soil samples (procedure that causes a permanent change to a specimen). In 2016, variable row spacing (0.25, 0.5, 0.75 and 1 m) between the trap crops (pea, lentil and barley) and wheat was assessed. Shade house bioassays were conducted using potted pea, lentil and wheat plants to support field trial results. For bioassay studies, Limonius californicus larvae, released at the center of each pot, were sampled four and ten days after sowing.

Interestingly, the two years studies clearly indicate that wheat intercropped with pea and lentil had significantly fewer damaged wheat plants. In addition, wireworm numbers...
If you make rice and it won’t fluff, add a few drops of vinegar before running through with a fork.

MSU Western Triangle Ag Research Center Develops Trap Crops for Wireworms

Continued from Page A18

bers were found lower in wheat intercropped with pea compared to the control for both locations and years. Shade house results corresponded with field results, with more wireworms collected from pea and lentil than wheat. In the spacing trials, wheat plant counts were also significantly higher when paired with pea and lentil, particularly at 0.5 m spacing. Regardless of inter-row spacing, significantly fewer wireworms were associated with wheat when intercropped with pea and lentil trap crops. This work has been accepted for publication in an International Journal, Arthropod-Plant Interactions. These results are very promising and can be used in management for wireworms in Golden Triangle area of Montana.

Dr. Reddy has hired Dr. Anamika Sharma as a postdoctoral researcher to continue the research work with trap crops. During the summer months, this researcher will be performing the field experiments on the effect of seeding density of wheat, peas and lentils against wireworms in Ledger and Valier (Montana). The seeding densities will be 0, 11, 22, 28/ sq. ft for wheat; 0, 4, 8, 14 per sq. ft/peas, and 0, 6, 12, 18/ sq. ft for lentils. Thanks to the four Pondera County producers who have provided plots for our experiments. Without cooperators help this project would not have been successful.

To get rid of bugs that are harming your houseplants, place the entire plant (pot and all) in a clear, plastic dry-cleaning bag. Throw several mothballs in with it, and tie a knot at the top. The sun will still get through, but the bugs will die after a week in seclusion with the mothballs.

If you can’t escape static electricity on your carpet, here’s an easy fix. Mix 3 cups water with 1/2 cup liquid fabric softener, put it in a spray bottle, and apply to your carpet. Not only will the static electricity disappear, but the mixture will serve as a carpet deodorizer too.

Super SmartRooms

Dollar for Dollar the Best Heating System on the Market Today!

SmartRooms Electric Radiant Heating Systems

The difference between heat and comfort with Green products from SmartRooms

North America’s Strongest Block

SUPERform is forming a Greener future with Insulated Concrete Forms

To discover how one or both of these systems can benefit you, call us today at (406) 492-8229

New Holland 8770 tractor, 160 PTO hp, 7600 hours, extremely well cared for, 600/65R-28 and 650/65-44 tires, 4 remotes, consigned $56,000

Vermeer R23 rake $8800

Case IH LB334 3x3 baler, 8000 bales, excellent $79,500

New Holland 340R 3x4 baler, rotor cut $79,000

Freeman 200 baler $3500

New Holland 320 14x18 baler, PTO $4500

New Holland 282 baler, twine $2900

New Holland BR780 round baler wide pickup, wing & net $29,000

New Holland BR780A round baler, twine only $9500

John Deere 566 round baler, wing net $9800

New Holland 258 rake, hydraulic drive, rubber teeth $6900

New Holland 1049 bailerwagon, no cab $9500

New Holland 488 mower conditioner $10,500

John Deere 936 118” cut disc, flail conditioner $13,900

John Deere 820 mower conditioner $9800

New Holland 144 inverter $9300

Used Haying Equipment

Now a dealer for FAIR

At Western Montana New Holland we sell parts for FORD tractors and other makes

NEW HOLLAND Manure Spreaders IN STOCK

Western Montana New Holland
1-406-728-1996 • 1-877-728-1996
Wayne Miller, Manager - 406-369-0348
7719 Thornton Drive Missoula, MT