Malting Barley Nutrient Management

Bill Verbeten
Cornell Cooperative Extension
NWNY Dairy, Livestock, & Field Crops Team
Take Home Points

- Barley is not tolerant of acidic soils.
- Nitrogen management is critical for yield, CP content, & kernel plumpness.
- Phosphorus is key to winter barley establishment & survival.
- Potassium is vital to overall plant health, grain fill, & disease resistance.
- Sulfur response is likely, but application is not recommended for distilling grains.

Bill Verbeten Cornell Cooperative Extension
pH for Malting Barley

- Lime to at least pH 6.3

- Barley cannot tolerate low pH like some other small grains
Sampling Soil

- Take 2-3 samples per acre up to 10-15 acres for each sample.

- Sample different soil types/drainage areas separately.

- Regularly sample fields every 3-4 years at the same time of the year.

Bill Verbeten Cornell Cooperative Extension
Sampling Soil

- pH & K vary throughout the growing season. Kentucky
Correcting Soil pH

- Liming & fertilizer recommendations on soil test report.

- No yield or quality responses to changing base saturation ratios of Ca, Mg, & K.

- Increasing pH (up to 7.0) increases nutrient availability.

Bill Verbeten Cornell Cooperative Extension
Crop Removal of Nutrients

Source: Reference Sufficiency Ranges for Plant Analysis in the Southern US

Bill Verbeten Cornell Cooperative Extension
Malting Barley Nutrient Removal

- 100 bu of grain & 2.5 tons of straw/A removes

- **N** 100 lb./A
- **P$_2$O$_5$** 40 lb./A
- **K$_2$O** 80 lb./A
- **S** 14 lb./A
- **Zn** 0.22 lb./A

Franze & Gerwing 1997. University of Nebraska

- Typical yields are 70-80 bu/A for winter barley & 50-60 bu/A spring barley.

Bill Verbeten Cornell Cooperative Extension
Malting Barley Fertility

- Goal: healthy, disease-free, high-yielding grain with CP 9-12% DM.
Malting Barley Yield from N

- **Oregon State**
 - ~1 to 1.5 lb N/bu

- **Montana**

Bill Verbeten Cornell Cooperative Extension
CP & Nitrogen

- CP increases as soil N+ fertilizer increases

- **Oregon State**

- ~0.5%-1.5% CP for 50 lb./A

- **Montana**

Bill Verbeten Cornell Cooperative Extension
Kernel Plumpness & N

- More N will decrease kernel plumpness

- Montana

- Oregon State

Bill Verbeten Cornell Cooperative Extension
Malting Barley & Nitrogen

- Between **70-100 lb./A** nitrogen from all sources will likely achieve reasonable yields, protein, & plumpness.

- Need to **account for all nitrogen contributions**- soil OM, manure, legumes
<table>
<thead>
<tr>
<th>Soil Mgt. Group</th>
<th>Crop</th>
<th>Nitrogen (N)</th>
<th>Phosphorus (P$_2$O$_5$)</th>
<th>Potassium (K$_2$O)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Manure</td>
<td>Manure</td>
<td>Very Low</td>
<td>Low</td>
</tr>
<tr>
<td>I</td>
<td>Winter barley</td>
<td>40–60</td>
<td>10–20</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>Spring barley</td>
<td>40–60</td>
<td>10–20</td>
<td>50</td>
</tr>
<tr>
<td>II</td>
<td>Winter barley</td>
<td>40–60</td>
<td>10–20</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>Spring barley</td>
<td>40–60</td>
<td>10–20</td>
<td>50</td>
</tr>
<tr>
<td>III</td>
<td>Winter barley</td>
<td>40–60</td>
<td>10–20</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>Spring barley</td>
<td>40–60</td>
<td>10–20</td>
<td>50</td>
</tr>
<tr>
<td>IV</td>
<td>Winter barley</td>
<td>50–60</td>
<td>10–20</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>Spring barley</td>
<td>40–60</td>
<td>10–20</td>
<td>50</td>
</tr>
<tr>
<td>V</td>
<td>Winter barley</td>
<td>60–70</td>
<td>10–20</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>Spring barley</td>
<td>50–70</td>
<td>10–20</td>
<td>50</td>
</tr>
</tbody>
</table>

Bill Verbeten Cornell Cooperative Extension
Nitrogen Mineralization

Bill Verbeten Cornell Cooperative Extension
Tiller Counts

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Sand</th>
<th>Silt</th>
<th>Loam</th>
<th>Clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tillers/plant</td>
<td>N to apply lb./A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-3</td>
<td>36</td>
<td>45</td>
<td>45-62</td>
<td>53-71</td>
</tr>
<tr>
<td>4-6</td>
<td>22</td>
<td>31</td>
<td>31-45</td>
<td>40-53</td>
</tr>
<tr>
<td>6+</td>
<td>13</td>
<td>22</td>
<td>27-36</td>
<td>36-45</td>
</tr>
</tbody>
</table>

Getreide anbauen wie die Profis: Bestände aufbauen, führen, schützen.

Growing grains like the professionals: Establishing stands, directing, & protecting

Bill Verbeten Cornell Cooperative Extension
Nitrogen

- Organic Sources:
 - Manure
 - Hay or legume credit?
 - Organic fertilizer ~5-10 lb./100 lb. of product
 - Chilean nitrate, NaNO₃ 16-0-0

Bill Verbeten Cornell Cooperative Extension
Nitrogen

- Conventional Sources:
 - Urea, UAN, AMS, etc.
 - Enhance efficiency products

- Apply early, not late

- Apply with stream bars
Bottom line:

- Most malting barley fields will need **10-60 lb./A of nitrogen applied**.
- Apply 10-20 lb./A at fall planting, remainder early spring at green up.
- **70-100 lb./A of nitrogen from all sources** should meet yield & quality goals.

Bill Verbeten Cornell Cooperative Extension
Phosphorus

- P placement and amount critical for small grain establishment, winter survival, & yield.

Bill Verbeten Cornell Cooperative Extension
Phosphorus

- Place P with the barley seed, band, or work P fertilizer into ground prior to planting

- `0.3-0.35 lb. P₂O₅ removed/bu

- Keep pH 6.2-7.0
 - Max P available
Modified Table 5.5.1. Fertilizers for small grains

<table>
<thead>
<tr>
<th>Soil Mgt. Group</th>
<th>Crop</th>
<th>Fertilizer Nutrients to be Added (lb./A)</th>
<th>No Manure</th>
<th>Manure</th>
<th>Soil Test Levels<sup>3</sup></th>
<th>Soil Test Levels<sup>3</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nitrogen (N)</td>
<td>No</td>
<td></td>
<td>Very Low</td>
<td>Very Low</td>
</tr>
<tr>
<td>I</td>
<td>Winter barley</td>
<td>40–60 10–20</td>
<td>65</td>
<td>50</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Spring barley</td>
<td>40–60 10–20</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>II</td>
<td>Winter barley</td>
<td>40–60 10–20</td>
<td>65</td>
<td>50</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Spring barley</td>
<td>40–60 10–20</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>III</td>
<td>Winter barley</td>
<td>40–60 10–20</td>
<td>65</td>
<td>50</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Spring barley</td>
<td>40–60 10–20</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>IV</td>
<td>Winter barley</td>
<td>50–60 10–20</td>
<td>65</td>
<td>50</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Spring barley</td>
<td>40–60 10–20</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>V</td>
<td>Winter barley</td>
<td>60–70 10–20</td>
<td>65</td>
<td>50</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Spring barley</td>
<td>50–70 10–20</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
</tr>
</tbody>
</table>
Phosphorus

- Organic Sources
- Manure/Compost
 - Apply in fall
- Organic fertilizer
 - ~0-5 lb./100 lb. of product
- Rock Phosphate & bone meal?
 - Low availability 10-20%
 - P Not available ≥7.0
 - More P available <6.0

Bill Verbeten Cornell Cooperative Extension
Phosphorus

- Conventional Sources
 - Superphosphate, MAP, DAP—highly available P
 - Made from rock phosphate treated with strong acid.

- Can easily apply with seed at planting.

Bill Verbeten Cornell Cooperative Extension
Potassium

- Deficiencies can lead to
 - Poor root growth
 - Restricted leaf development
 - Fewer grains per head
 - Smaller grain size affecting both yield & quality
 - More vulnerable to drought, frost and waterlogging as well as pests and diseases.

Bill Verbeten Cornell Cooperative Extension
Barley Diseases

Bill Verbeten Cornell Cooperative Extension
Modified Table 5.5.1. Fertilizers for small grains.\(^1\)

<table>
<thead>
<tr>
<th>Soil Mgt. Group</th>
<th>Crop</th>
<th>Fertilizer Nutrients to be Added (lb./A)</th>
<th>Nitrogen (N)</th>
<th>Phosphorus (P(_2)O(_5))</th>
<th>Potassium (K(_2)O)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>No Manure</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Manure</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Very Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Very High</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Soil Test Levels(^3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Winter barley</td>
<td>40–60 10–20</td>
<td>65 50 40 20 10</td>
<td>50 40 20 20 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spring barley</td>
<td>40–60 10–20</td>
<td>50 40 30 20 10</td>
<td>50 40 20 20 0</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>Winter barley</td>
<td>40–60 10–20</td>
<td>65 50 40 20 10</td>
<td>50 40 20 20 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spring barley</td>
<td>40–60 10–20</td>
<td>50 40 30 20 10</td>
<td>50 40 20 20 0</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Winter barley</td>
<td>40–60 10–20</td>
<td>65 50 40 20 10</td>
<td>50 40 20 20 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spring barley</td>
<td>40–60 10–20</td>
<td>50 40 30 20 10</td>
<td>50 40 20 20 0</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Winter barley</td>
<td>50–60 10–20</td>
<td>65 50 40 20 10</td>
<td>50 40 20 20 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spring barley</td>
<td>40–60 10–20</td>
<td>50 40 30 20 10</td>
<td>50 40 20 20 0</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Winter barley</td>
<td>60–70 10–20</td>
<td>65 50 40 20 10</td>
<td>50 40 20 20 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spring barley</td>
<td>50–70 10–20</td>
<td>50 40 30 20 10</td>
<td>50 40 20 20 0</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Bill Verbeten Cornell Cooperative Extension
Potassium

- Organic Sources:
 - K_2SO_4
 - 50 lb. $K_2O + 17$ lb. S
 - K-Mag
 - 22 lb. K_2O
 - Manure
 - Organic fertilizer
 - ~0-5 lb. / 100 lb.

Bill Verbeten Cornell Cooperative Extension
Potassium

- Conventional Sources: KCl
 - Cl\(^{-}\) is universal present
 - in soils (~100 ppm or 200 lb/acre)
 - In manure 5-10 lb./ton
 - Cl\(^{-}\) rapidly leaches from the soil
 - Cl\(^{-}\) doesn’t not decrease biological activity

- Chlорine gas (Cl\(_2\)) does not occur naturally.

- KCl does have a higher salt index than other fertilizers and should be limited in furrow with seed.

Bill Verbeten Cornell Cooperative Extension
Barley & Chlorine

- Low sensitivity—tolerate up to 4% DM, some other crops sensitive to 0.5 to 2.0% DM.

- Slight yield increases out west where soil tests are low.

Bill Verbeten
Cornell Cooperative Extension
Sulfur

- Barley may respond to 10-20 lb./A.
- Don’t apply on grain for distilling.
Calcium & Magnesium

- Soils supply high rates of these nutrients (and Potassium).
- Regular liming with dolomitic limestone replaces removal rates
- 5 tons DM of grass only removes 150 lb./ac of Ca and 30 lb./acre of Mg.
- Some crops may respond to foliar Mg if tissue tests are low.

Bill Verbeten Cornell Cooperative Extension
Manganese

- pH >6.5 & low soil levels, Delaware

- Corn starter N acidified soil, made Mn available on 30 in. centers

- Standard N stunted between rows, foliar Mn rescued.

- Broadcast 30 lb./A Mn pre-plant or foliar apply 1-2 lb./A at V5.
Boron, Zinc, Copper

- Response is most likely
 - on sandy soils
 - muck soils
 - no history of manure
 - extreme soil pH (<5.0 & >7.0)

- Response to foliar spray possible.

- 5 tons DM of grass only removes about
 - 0.4-0.5 lb./A Boron
 - 0.2-0.30 lb./A Zinc

Bill Verbeten Cornell Cooperative Extension
Tissue Sampling Timing

- More samples taken than soil samples to account for variability, usually 30+ plants/field
- Sample from “good” and “bad” areas separately
- Samples need to be air-dried in a paper bag prior to shipping
Tissue Sampling Timing

- Needs to be at *proper plant growth stage*

- May be *too late to correct* if sampled at a later growth stage.

- *Soil sampling* is often done at the *same time* for comparison

Bill Verbeten Cornell Cooperative Extension
Methods-Tissue Sampling

- **Small Grains**
 - Sample 25-35 areas of field

- **Prior to Stem Elongation**
 - All the above ground tissue
 - 50-75 plants

- **Prior to Heading**
 - Top 4 leaf blades with leaf collar visible
 - 30-40 plants
Methods-Tissue Sampling

- Small Grains
 - Response common for **N, S, Mg, Cu, Zn, & possibility Mn.**
Nutrient Tissue Levels in Small Grains

<table>
<thead>
<tr>
<th></th>
<th>N %</th>
<th>P %</th>
<th>K %</th>
<th>Ca %</th>
<th>Mg %</th>
<th>S %</th>
<th>B ppm</th>
<th>Zn ppm</th>
<th>Cu ppm</th>
<th>Mn ppm</th>
<th>Fe ppm</th>
<th>Mo ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.0-2.7</td>
<td>0.1-0.5</td>
<td>1.0-3.0</td>
<td>1.0</td>
<td>0.15-1.0</td>
<td>N/A</td>
<td>3-40</td>
<td>10-70</td>
<td>3-10</td>
<td>15-200</td>
<td>25-300</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>4.0-5.0</td>
<td>0.2-0.5</td>
<td>2.5-5.0</td>
<td>0.2-1.0</td>
<td>0.14-1.0</td>
<td>0.15-0.65</td>
<td>1.5-4.0</td>
<td>18-70</td>
<td>4.5-15</td>
<td>20-150</td>
<td>30-200</td>
<td>0.1-2.0</td>
</tr>
<tr>
<td>3</td>
<td>4.0-5.0</td>
<td>0.2-0.5</td>
<td>2.0-4.0</td>
<td>0.2-1.0</td>
<td>0.14-1.0</td>
<td>0.15-0.65</td>
<td>1.5-4.0</td>
<td>18-70</td>
<td>4.5-15</td>
<td>20-150</td>
<td>30-200</td>
<td>0.1-2.0</td>
</tr>
<tr>
<td>4</td>
<td>1.7-3.0</td>
<td>0.2-0.5</td>
<td>1.5-3.0</td>
<td>0.2-0.5</td>
<td>0.15-0.5</td>
<td>0.15-0.40</td>
<td>5-10</td>
<td>15-70</td>
<td>5-25</td>
<td>25-100</td>
<td>50-150</td>
<td>N/A</td>
</tr>
</tbody>
</table>

1: *Ontario*: Prior to flowering sample four upper leaves and flag leaf. Critical to normal concentrations listed.
2: *Kentucky*: Seedling (before jointing) sample whole plant. Sufficiency range listed.
3: *Kentucky*: Flowering, sample flag leaf only. Sufficiency range listed.
4: *Oklahoma*: Seedling stage sample whole plant. Prior to heading sample four uppermost leaves. Sufficiency levels listed (seedling stage-prior to heading).

Bill Verbeten Cornell Cooperative Extension
Take Home Points

- Barley is not tolerant of acidic soils.
- Nitrogen management is critical for yield, CP content, & kernel plumpness.
- Phosphorus is key to winter barley establishment & survival.
- Potassium is vital to overall plant health, grain fill, & disease resistance.
- Sulfur response is likely, but application is not recommended for distilling grains.

Bill Verbeten Cornell Cooperative Extension
Questions?
How Lime Works

\[\text{Acid Soil} \quad \begin{align*}
H^+ + CaCO_3 & \quad (\text{Calcium Carbonate}) \\
Al^{3+} & \quad \text{Exchange} \\
Ca^{2+} & \quad \text{Neutral Soil}
\end{align*} \]

\[\text{Step 1} \]

\[\text{Neutralization} \quad \begin{align*}
+ H^+ + Al^{3+} + HCO_3^{2-} & \\
Al(OH)_3 + CO_2 + H_2O & \quad \text{Neutral Compounds}
\end{align*} \]
Liming Materials

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Chemical Formula</th>
<th>CCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcitic Limestone</td>
<td>CaCO₃</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>MgCO₃</td>
<td>119</td>
</tr>
<tr>
<td>Burned Lime, Quick Lime</td>
<td>CaO</td>
<td>179</td>
</tr>
<tr>
<td>Hyrdated Lime, Slack Lime</td>
<td>Ca(OH)₂</td>
<td>136</td>
</tr>
<tr>
<td>Dolomitic Limestone</td>
<td>CaMg(CO₃)₂</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>CaSiO₃</td>
<td>86</td>
</tr>
<tr>
<td>Wood Ash</td>
<td>Variable</td>
<td>50-80</td>
</tr>
</tbody>
</table>

- Increases mesh size only increases speed of the reaction (only use 20 to 100 mm mesh lime)
Yearly Soil Variation

- pH

- K

Kentucky

- P

Bill Verbeten Cornell Cooperative Extension