Are we in for a wireworm plague in Canada?

Starring:

Dr. Bob Vernon,
Dr. Wim van Herk
Pacific Agri-Food Research Centre,
Agriculture and Agri-Food Canada,
Box 1000, Agassiz, B.C. V0M 1A0

Dr. Jeff Tolman,
Dr. Christine Noronha
Southern Crop Protection and Food Centre,
and Charlottetown Research Centre,
Ag. and Agri-Food Canada,
Wireworms in Canada: Challenges, Surveys, Current and Future Control Options.

Bob Vernon¹, Wim van Herk¹, Jeff Tolman², Christine Noronha³

¹Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada, Box 1000, Agassiz, British Columbia, CANADA, V0M 1A0

²Southern Crop Protection & Food Research Centre, AAFC, 1391 Sandford St., London, Ontario, CANADA, V0M 1A0

³Charlottetown Research Station, Agriculture and Agri-Food Canada, Charlottetown, Prince Edward Island, CANADA
Setting the stage:

-Wireworms:
-about 30 economic species in Canada
Examples of common pest species in Canada

- **Ctenicera destructor/aeripennis** (BC, AB, SK, MB)
- **C. lobata, C. morula** (AB, SK, MB)
- **C. pruinina** (OR, ID)
- **Agriotes obscurus, A. lineatus** (BC, NS, PEI)
- **A. sputator** (PEI, NS), **A. mancus** (MB, ONT, NB, NS, PEI)
- **A. sparsus** (BC, OR)
- **Athous spp** (AB, SK, MB)
- **Limonius canus, L. californicus** (BC, AB, SK, MB)
- **Melanotus spp** (ON)
- **Hypnoides spp** (SK, MB)
Identification of economic wireworms in Canada: 2004-2010 Surveys

Wim van Herk
Bob Vernon

AAFC-Pacific Agri-Food Research Centre, Agassiz, BC
2010 Syngenta Crop Protection Canada initiative
Sites sampled in 2010
Many from Alberta!!!
Thanks!!!
Hypnoides prefers non-irrigated fields
Selatosomus prefers non-irrigated fields
Limonius prefers irrigated fields!!
Results: overview (2010)
identifications by Dr. van Herk, Agassiz

<table>
<thead>
<tr>
<th></th>
<th># wws</th>
<th>Hypnoides bicolor</th>
<th>Selatosomus destructor</th>
<th>Limonius californicus</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC</td>
<td>68</td>
<td>7</td>
<td>10</td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>AB</td>
<td>403</td>
<td>297</td>
<td>45</td>
<td>41</td>
<td>20</td>
</tr>
<tr>
<td>SK</td>
<td>589</td>
<td>366</td>
<td>163</td>
<td>39</td>
<td>21</td>
</tr>
<tr>
<td>MB</td>
<td>496</td>
<td>467</td>
<td>1</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>ON</td>
<td>75</td>
<td>7</td>
<td></td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>QC</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

69.9% 13.4% 4.9% 11.8%
Results: overview (2010)

<table>
<thead>
<tr>
<th></th>
<th># wws</th>
<th>Hypnoides bicolor</th>
<th>Selatosomus destructor</th>
<th>Limonius californicus</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC</td>
<td>68</td>
<td>7</td>
<td>10</td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>AB</td>
<td>403</td>
<td>297</td>
<td>45</td>
<td>41</td>
<td>20</td>
</tr>
<tr>
<td>SK</td>
<td>589</td>
<td>366</td>
<td>163</td>
<td>39</td>
<td>21</td>
</tr>
<tr>
<td>MB</td>
<td>496</td>
<td>467</td>
<td>1</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>ON</td>
<td>75</td>
<td>7</td>
<td></td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>QC</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>69.9%</td>
<td>13.4%</td>
<td>4.9%</td>
<td>11.8%</td>
</tr>
</tbody>
</table>
Main species in Alberta:

- *Hypnoides bicolor* (74% of total, 23 sites)
- *Selatosomus destructor* (11% of total, 16 sites)
- *Limonius californicus* (10% of total, 3 sites)

So what?

The two main species are radically different in size and obviously impact crops differently.
Size does matter!!

Selatosomus destructor
(up to 2.5 cm)

Hypnoides bicolor
(up to 1.0 cm)
Main species in Alberta:
- *Hypnoides bicolor* (74% of total, 23 sites)
- *Selatosomus destructor* (11% of total, 16 sites)
- *Limonius californicus* (10% of total, 3 sites)

So what?
The two main species are radically different in size and obviously impact crops differently

Lots of Unknowns:
- What is their susceptibility to new insecticides? Little info.
- Feeding abilities/amounts, crops damaged? Little info.
- Behaviour, repellency, life history? Little info.
Survey plans for 2011 and beyond:

- Continue with survey as in 2010 with assistance from industry and growers.

- In Spring, need to know sites where wws are present in high #s to collect for Agassiz. *Selastomus destructor, Hypnoides bicolor* and *Limonius californicus*.

- Focus on new field work in prairies will be on these 3 species.

 - Vauxhall/Taber/Saskatoon/Winnipeg (wheat and/or pots.)
 - Hector Carcamo & Ian Wise (AAFC), Doug Waterer (U of S)
Setting the stage:

-Wireworms:
 -about 30 economic species in Can.
 -typically live for 3-5 years in soil
Life Cycle of Click Beetles

- Jan
- Feb
- Mar
- Apr
- May
- Jun
- Jul
- Aug
- Sep
- Oct
- Nov
- Dec

Emerging from the soil

- Adults overwintering in the soil
- Eggs laid
- Eggs hatching
- Transforming to Adults
- Pupae
- Adults overwintering in the soil

- Larvae

3-5 years

neonate

resident
Setting the stage:

-Wireworms:
 -about 30 economic species in Can.
 -typically live for 3-5 years in soil
 -populations may be > 3 million/ha
Click Beetles enter grassy fields, cereal crops, etc. in April, May and June.

Eggs are laid in soil, and hatch within 3 weeks.

Larvae feed on roots of grassy hosts or most other crops for 3-5 years.

The longer a field is in cereals or pasture, the higher the population.
Setting the stage:

-Wireworms:
 - about 30 economic species in Can.
 - typically live for 3-5 years in soil
 - populations may be > 3 million/ha
 - attack most economic crops
 cereals and grasses preferred
Setting the stage:

-Wireworms:
 -about 30 economic species in Can.
 -typically live for 3-5 years in soil
 -populations may be > 3 million/ha
 -attack most economic crops
 -populations & damage growing
Damage in Corn
Agriotes obscurus

Feeding Early in Tuber
(Late Summer Feeding)

Damage in wheat:
Ctenicera destructor
Setting the stage:

-Wireworms:
 -about 30 economic species in Can.
 -typically live for 3-5 years in soil
 -populations may be > 3 million/ha
 -attack most economic crops
 -populations & damage growing
 -Wireworms attracted by CO₂
Untreated wheat seed

Wireworms are attracted to CO$_2$!!!!!

Resident wireworms ‘large’
*A wireworm can easily consume 2 or more seeds. They also eat roots and other below-ground parts later.
WIREWORM ARSENAL:

CANADA

THIMET: GONE 2012

TEMIK: LONG GONE

MOCAP: NEVER REG.

DYFONATE: GONE

FURADAN: GONE

CHLORPYRIFOS: MU

COUNTER: GONE

LINDANE: GONE

U.S.A.

THIMET: STILL AVAIL.

TEMIK: STILL AVAIL.

MOCAP: STILL AVAIL.

FURADAN: GONE

CHLORPYRIFOS: NOT REG

COUNTER STILL AVAIL.

LINDANE: GONE

All kill wireworms!!!
Canada

- Thimet: Gone 2012
- Temik: Long gone
- Mocap: Never reg.
- Dyfonate: Gone
- Furadan: Gone
- Chlorpyrifos: BC
- Counter: Gone

Won’t kill wireworms!!!

Neonicotinoids: New

U.S.A.

- Thimet: Still avail.
- Temik: Still avail.
- Mocap: Still avail.
- Dyfonate: Gone
- Furadan: Still avail.
- Chlorpyrifos: Not reg.
- Counter still avail.
- Lindane: Gone

Fipronil: Potatoes.
Capture: POTs.

Neonicotinoids: New
Wireworm Insecticide Research

Wheat Trials
- Great study crop
- Easy to work with
- Major crop in Canada

Laboratory Trials

Field Trials

Multi-species Lab Toxicity and Repellency Trials
Laboratory Toxicity Studies

POTTER SPRAY TOWER
AAFC, LONDON, ONT.

Dr. Jeff Tolman

LC$_{50}$s
LT$_{50}$s
Wireworm health examined weekly for up to 300 days
Routine Health Checks:

- Categories of health:
 - **Alive**: can move out of 10cm circle in Petri dish
 - **Writhing**: full body movement, but uncontrolled
 - **Leg & Mandibles**: no visible movement except legs & mandibles
 - **Mandibles**: no visible movement except mandibles
 - **Dead**: decomposing, moldy

- Some "**Mandibles**" wireworms, which appear dead, are capable of full recovery, hence what we term the ‘**Lazarus Syndrome**’.
Laboratory Repellency Studies
- Soil bioassays

 ‘Volatile, contact, ingestion’
Inside yellow line = "orient"

Repelled

Intoxicated
Wireworm Management Research

Wheat Trials
- Great study crop
- Easy to work with
- Major crop in Canada

Potato Trials
- 16-20 candidate treatments/year
- Across Canada

Laboratory Trials

Field Trials

Candidate insecticide selections

Multi-species Lab Toxicity and Repellency Trials
What have we discovered?

WHEAT
*Questions:

*Can wireworm DAMAGE be controlled with seed treatments?
*Can wireworms actually be KILLED with seed treatments?
Cereal Seed Tmts: “PAST”

- Lindane (Vitavax) seed treatment used
- Provided good stand protection AND…
- Killed wireworms quite effectively (3 or 4 years)
- BUT!!!
- Banned in NA in 2004.
Lindane (Organochlorine)

Resident wireworms ‘large’
Lindane (Organochlorine)

60g AI/100kg seed

Wireworms feed and die within a month or so

-65-70% of residents die during growing season
Lindane 60g AI/100kg seed

Wireworms are dying or dead while crop establishes
Around mid summer, click beetles lay eggs in wheat and neonate wireworms are produced.
Lindane also kills neonate wireworms!!!

> 85% reduction in 7 field studies.

Wireworm populations would not recover to damaging levels for 3+ years!!
Why control for 3+ Years?

Year 1: Wheat

Year 2: Potatoes; canola; pulse crops.
- No WWs

Year 3: Wheat; potatoes; canola; pulse crops.
- Few, small WWs.

Year 4: Wheat
Candidate Insecticides for Canada:

Neonicotinoids:
- clothianidin (Poncho, Titan)
- thiamethoxam (Actara, Cruiser Maxx)
- imidacloprid (Gaucho, Raxil ww).

Synthetic pyrethroids:
- tefluthrin (Force)
- bifenthrin (Capture)
- lambda cyhalothrin (Matador).

Phenyl pyrazole:
- fipronil (Regent).
Wheat field trials since 1996

- Agassiz
- Agriotes obscurus
Plot preparation
- Roundup in March
- Field disced, not ploughed
- Clods removed

Preformed furrows

Precision seeding by hand

No CO2!!!!

Does crop protection = Wireworm Mortality?

Weekly counts

Resident wws

1 year later

Bait Traps Installed: 4/plot

Harvest Yield

neonates

Extracts:
-neonates
-resident wws
What have we discovered?

Neonicotinoids:
Clothianidin (Poncho)
Thiamethoxam (Cruiser Maxx)
Imidacloprid (Raxil ww)
Neonicotinoid 10-30g AI/100kg seed

Resident wireworms ‘large’
*Wireworms rapidly become intoxicated/moribund
Neonicotinoid 10-30g AI/100kg seed

*Wireworms are intoxicated while crop establishes
*Most wireworms recover fully by mid-summer
Early to mid summer, click beetles lay eggs in wheat and neonate wireworms are produced.

BUT, no kill of neonates occurs with neonicotinoids.
Neonicotinoid 10-30g AI/100kg seed

*The result?

- Great crop establishment and yield, BUT
- Little reduction in resident wws and no reduction of neonates
- Wireworms are there the next year
- True for all neonicotinoids tested
Effectiveness is reduced if germination delayed, since insecticide levels drop over time.

Wireworms most active at near or > 10 C in soil!!!

Resident wireworms ‘large’
Candidate Insecticides for Canada: What have we discovered?

Synthetic pyrethroids:
- tefluthrin (FORCE)
- bifenthrin (Capture)
- lambda cyhalothrin (Matador)

All are repulsive, not lethal to wireworms
What have we discovered?

Phenyl pyrazole:
- fipronil (Regent)
Fipronil (phenyl pyrazol) 50 g Al/100kg seed

Rapidly kills resident wireworms!!!
100% reduction in two field studies
Also kills neonate wireworms later on!!!
100% reduction in two field studies
Latently kills resident wireworms!!!
> 90% reduction in two 2008/09 studies
Fipronil 1.0g AI/100kg wheat

Kills neonate wireworms later in summer!!!
> 92% reduction in two 2008/09 studies

Wireworm populations will not recover to damaging levels for 3+ years, just like Vitavax!!!!!
BUT....
Wheat stand not optimal with fipronil at 1.0g Al/100kg wheat!!
Sooooo
How do we accomplish both goals of:

a) Protecting a wheat seed from damage
AND
b) Killing wireworms?
Thiamethoxam + Fipronil BLEND

10g 1g

- Excellent wheat stand (vigour effects).
- Excellent kill of resident and neonate wws.
- WW pops will not recover for 3+ years.
- Proven over 3 years of field trials.
Cereal Seed Tmts: “PRESENT”

Neonicotinoids:
Thiamethoxam (Cruiser Maxx)
Imidacloprid (Raxil ww)
- Provide current season damage protection
- Probably no wireworm population reduction
- Work best in soil temperatures favouring both rapid germination and high wireworm activity.
Cereal Seed Tmts: “FUTURE”

Neonicotinoid + Fipronil Blends (?

- Requires registration of fipronil in Canada
- Will work on all wireworm species
- New methods being developed where fipronil will kill most wireworms with less than 1 gram/ha.

New insecticides are tested every year.
Special thanks to:

-Agriculture and Agri-Food Canada, National Wireworm Project
-Pest Management Centre, AAFC.
-BC Potato Industry Development Committee
-Potato Growers of Alberta
-Syngenta CropProtection Inc.
-Bayer CropScience, Inc.
-FMC and other industry collaborators
-A horde of eager summer students.