THIRTY-SEVENTH ANNUAL REPORT

1985

Northwestern Agricultural Research Center of the Agricultural Experiment Station Montana State University

> 4570 Montana 35 Kalispell, Montana 59901

> > Prepared by

Vern R. Stewart Professor of Agronomy and Superintendent

> Leon E. Welty Associate Professor Agronomy

Todd K. Keener Ag. Research Specialist I

Louise S. Prestbye Ag. Research Technician II

Contents of this report may not be published or reproduced in any form without consent of the research workers involved.

ADMINISTRATION 750

The Administration Project (750) at the Northwestern Agricultural Research Center includes expenses for the overall operation of the center, personnel and office equipment purchased. Personnel for 1985 is listed below.

Full - time Staff Members

Vern R. Stewart - Superintendent & Prof. Agronomy began April 1952 Leon E. Welty - Associate Prof. Agronomy began January 1973 Oscar Buller - Farm/Ranch Hand III began January 1984 Jeanette Calbick - Secretary II began September 1963 Gary Haaven - Agricultural Research Technician I began April 1982 Todd Keener - Agricultural Research Specialist I began March 1978 Louise Prestbye - Agricultural Research Technician II began May 1983

Student Employees

Ramona Benz (April 18 thru September 12) Krisit Carda (June 17 thru September 13) Craig Fischer (June 17 thru August 29) Kirk Hanson (June 5 thru August 13) Wanda Iverson (June 17 thru September 13) Randy Turnacliff (June 3 thru August 16) Jeffery Walton (July 16 thru August 29)

Parttime Hourly Employees

Larry Conrad Sandra Conrad Mavis Heitman O'Brien Michnal Sondra Mockabee Sherry Savage Amy Wilcox

Office equipment purchased with G&C funds follows:

IBM-PC	\$5126
Gemini 15X Printer	445
Systems Stand	647
Pen Plotter	875
Wheelwriter 5 Typewriter w/printer option	584
Total	\$7677

GENERAL FARM 751

The General Farm Project (751) supports all research projects. This includes capital items purchased and used in the total research program. The follow-ing were purchased in 1985 using several grant funds.

1.	Ford 1 T Pickup	7 × 1	\$9774
2.	Portable Air Compressor		870
3.	Sartorius Balance Scale		1168
4.	Seed Cleaner		1675
		Total	\$13487

PHYSICAL PLANT 752

The Physical Plant Project (752) pertains to the maintenance of buildings and grounds at the Northwestern Agricultural Research Center.

A 48' x 96' machine storage building was erected on the eastern corner of Field X-1. Now all the vehicles and equipment that had been sitting out can be stored inside out of the elements.

Three Bulk Flow Grain Tanks were purchased in 1984, but were not used until the 1985 season. They are to be used for storage of foundation seed.

Before the new tanks were installed a concrete slab was poured and the four grain bins that were sitting beside the Crops Livestock Bldg. were moved south of the buildings along the creek bank. Then the new tanks were installed beside these on the concrete slab.

VISITORS - 1985

DATE

REPRESENTING

ADDRESS

			Ronan, MT
1/8	Eugene Dolezal	Farmer	
1/9	Tom Whitley	Communications Systems	Helena, MT
1/15	Greg Bain	Greg Bain & Company	Kalispell, MT
		Farmer	Kalispell, MT
2/11	Floyd LaBrant	DuPont	Bozeman, MT
2/14	Rod & Susan Warner	SCS	Kalispell, MT
2/19	Durwin Wick		Kalispell, MT
	Bob Bishop	SCS	Missoula, MT
	Lee Hirshebur	SCS	Kalispell, MT
2/22	Greg Bain	Greg Bain & Company	Kalispell, MT
2/26	Greg Bain	Greg Bain & Company	Railop
3/4	Greg Bain	Greg Bain & Company	Kalispell, MT
3/6	Donald Baldridge	Extension Service	Bozeman, MT
570	Dan Burkhart	Graduate Student	Bozeman, MT
2/6 7	Jim Story	Western Ag. Res. Cnt.	Corvallis, MT
3/6-7	Jim Buechle	Farmer	Kalispell, MT
3/7	Donald Casterline	Farmer	Kalispell, MT
3/12	Tom Perkins	Farmer	Kalispell, MT
3/14	Marvin J. Douma	Farmer	Moise, MT
3/15	Dick Kerr	Farmer	Moise, MT
0 / 0 1		Greg Bain & Company	Kalispell, MT
3/21	Greg Bain	University Services	Bozeman, MT
3/25	Andy VanTeylingen	Greg Bain & Company	Kalispell, MT
0/07	Greg Bain	Greg Bain & Company	Kalispell, MT
3/26	Greg Bain		W.1.1. 11 MT
4/1	Greg Bain	Greg Bain & Company	Kalispell, MT
4/2	Hank Ramsey	MoBay	Yakima, WA
4/2	Ron Pack	Pack & Company	Kalispell, MT
4/4	Ramona Benz	Job Applicant	Kalispell, MT
4/4	Durwin Wick	SCS	Kalispell, MT
4/0	Sonju	Sonju Seamless Raingutters	Kalispell, MT
1/12	Gary Fellows	Graduate Student	Bozeman, MT
4/13	Dan Burkhart	Graduate Student	Bozeman, MT
//15	John Combs	Big Sky Equipment Co.	Conrad, MT
4/15	Jim Buechle	Farmer	Kalispell, MT
1/16	Darrell Dumke	Job Applicant	Kalispell, MT
4/16	Kevin Fay	Job Applicant	Kalispell, MT
4/17	Oakford Bain	Cyanamid	Boise, ID
4/25	Dan Burkhart	Graduate Student	Bozeman, MT
4/26	Gary Fellows	Graduate Student	Bozeman, MT
	Virginia DeMars	Visitor	Bigfork, MT
1.100	O'Brien Michnal	Job Applicant	Kalispell, MT
4/30	0 Brien Michnar		Bozeman, MT
5/7-8	Dan Burkhart	Graduate Student	Bozeman, MT
-,	Gary Fellows	Graduate Student	Kalispell, MT
5/9	Mark Passmore	Farmer	Great Falls, MT
-1-	Jim Adams	Monsanto	Clinton, MT
	Jim Toth	Monsanto	OTTICOIL, III

Page 2 Visitors 1985 (con't)

REPRESENTING ADDRESS DATE Bozeman, MT 5/10 MSU Student Kristi Carda Kalispell, MT 5/13 Floyd LaBrant Farmer Kalispell, MT 5/14 Clyde Pederson Farmer SCS Kalispell, MT 6/3 Durwin Wick Kalispell, MT Bob Bishop SCS Marion, MT Doug Gamma Farmer 6/4 Boise, ID Oakford Bain Cyanamid Orinda, CA Cyanamid Art Jenson Bozeman, MT 6/11-12 Dan Burkhart Graduate Student Great Falls, MT Graduate Student Gary Fellows 6/12 Bob Brattain DuPont Great Falls, MT University Services Bozeman, MT Andy VanTeylingen 6/19 Idaho Falls, ID Al Luke Union Carbide Bozeman, MT 6/24 Assoc. Director, MAES Arne Hovin Bozeman, MT P&SS - MSU 6/27-28 Pat Hensleigh Jim Christensen Great Falls, MT 7/1 MT Wheat Res. & Marketing Maria Rietmann Western Wheat Assoc. Portland, OR Mainland China Visitor to USA Mr. Li Mainland China Visitor to USA Mr. Chang 7/12 Greg Carson Carson Bros. C-B Inc. Kalispell, MT Memphis, TN 7/16-18 Arlyn Evans Photographer Madison, WI 7/24 Roger, Gayle, Heidi Stewart Visitors 7/25 Bozeman, MT Andy VanTeylingen University Services Kalispell, MT 7/26 Ron Richwine Farmer Bozeman, MT 8/6 Jim Nelson Ext. Weed Specialist Pat Branike Oklahoma 8/8 Traveler Kalispell, MT Farmer 8/12 Mark Passmore 8/13 Visitor Helena, MT Greg Cunniff Graduate Student Bozeman, MT 8/14 Dan Burkhart Bozeman, MT Gary Fellows Graduate Student Bozeman, MT John Lindstrom Graduate Student Twin Falls, ID 8/19 Janelle Johnson Cyanamid 8/20 Mavis Heitman Job Applicant Kalispell, MT Bozeman, MT P&SS - MSU 8/20-21 Jim Sims 8/21 Tom Pyle Jacklin Seed Co. Kalispell, MT Farmer 8/26 Ron Richwine Farmer - Adv. Comm. Member Deer Lodge, MT 8/29 John Vanisko Bill Ambrose Farmer Kalispell, MT Bozeman, MT Graduate Student Dan Burkhart Graduate Student Bozeman, MT Gary Fellows Bozeman, MT Graduate Student John Lindstrom Kalispell, MT Emmet Quigley Cenex Bruce Huffine Cenex Kalispell, MT County Weed Control Kalispell, MT Bill Dopp Kalispell, MT County Weed Control Francis VanRinsum

1.

Page 3 Visitors 1985 (con't)

DATE		REPRESENTING	ADDRESS
9/17 9/18 9/19 9/24	Sondra Mockabee Emmet Quigley Dewey Anderson Burton Isch Tom Mahugh Bruce Hewitt Jim Morgan	Job Applicant Cenex Cenex Farmer Mutual of Omaha Gustafson Co. Gustafson Co.	Kalispell, MT Kalispell, MT Kalispell, MT Kalispell, MT Kalispell, MT Moses Lake, WA Belgrade, MT
10/10	Larry Holzworth Hal Hunter Kit Sutherland Tera Comfort Jay Norton Joe Long Peggy Haaglund	SCS SCS SCS SCS SCS SCS SCS	Bozeman, MT Bozeman, MT Missoula, MT Missoula, MT Missoula, MT Missoula, MT Missoula, MT
11/12	Rod Warner Lew Toews	DuPont Farmer	Bozeman, MT Kalispell, MT
12/23	Myron Mast	Farmer	Kalispell, MT

ACTIVITIES 1985

T = Talk				
DATE	ACTIVITY		STAFF	LOCATION
1/17	N.W. & W. Ag. Res. Cnt. Adv. Comm.		, Stewart Welty	Allentown
1/18	Ed. Comm. Meeting, Equity Supply	(1)	Stewart Welty	Kalispell
1/19	Montana Weed Control Conference	(T)	Stewart	Kalispell
1/24	Montana Weed Control Conference		Stewart	Great Falls
1/28-2/1	Planning Conference		Stewart Welty	Bozeman
2/5	Ext. Ser. Dairy Nutrition Program		Stewart Welty	Somers
2/7-8	WSA Meeting		Stewart	Seattle, WA
2/14	CRD Meeting		Stewart	Kalispell
2/14	Equity Supply annual Meeting	(T)	Stewart	Kalispell
2/19	Equity Educational Program	(-)	Stewart Welty	Kalispell
2/21	Farm Show		Stewart	Kalispell
			Welty Stewart	Kalispell
2/26	Chamber of Commerce Meeting		Stewart	Denver, CO
2/28-3/1	DuPont Academic Seminar	(T)		Creston
3/6	Crops & Soils Day	(T)	Stewart Welty	
3/11-14	West. Soc. Weed Science	(T)	Stewart	Phoenix, AZ
3/15	Chamber Commerce Meeting		Stewart	Kalispell
	Union Carbide Meeting (Cerone)	()	Stewart	Kalispell
3/19	Farmers Meeting		Stewart Welty	Missoula
3/20	Search Committee Meeting		Welty	Bozeman
	Meetings w/AES Staff		Stewart	
3/21	County Agents Up-Dating Meeting		Stewart Welty	Allentown
3/22	Cenex Meeting		Stewart Welty	Kalispell
3/25	WRCC-52 Meeting		Welty	Spokane, WA
3/28	Monsanto Academic Seminar		Stewart	Bozeman
4/9	Mint Growers	(T)	Stewart	Kalispell
4/12	Eastside Grange		Stewart	Creston
4/19	Chamber of Commerce		Stewart	Kalispell
4/24	Farmers Meeting	(T)	Welty	Eureka
4/24	Farmers Meeting		Welty	Troy
4/25	Farmers Meeting	(T)	Welty	Trout Creek
4/25	Farmers Meeting	(T)	Welty	Hot Springs
5/1	Ranch Tour		Stewart	Greenough Area
571	italien iour	(T)	Welty	
5/2	Budget Meeting		Stewart	Bozeman
5/17	Chamber of Commerce		Stewart	Kalispell
5/23	Advisory Committee Meeting		Stewart	Missoula
5/24	Tour Polson Middle School	(T)	Welty	Station
6/13	Inspection of Oat Nurseries		Stewart	Havre
6/14	Weed Fair	(T)	Stewart	Culbertson
6/14	Inspection of Oat Nurseries		Stewart	Sidney
-,				

DATE	ACTIVITY		STAFF	LOCATION
7/1	Don Graham's Retirement Party		Stewart Welty	Corvallis
7/2	Search Committee Meeting		Stewart	Corvallis
7/9	Tour of Western Triangle Res. Cnt.	×	Stewart	Conrad
7/10	Field Day	(T)	Stewart	Moccasin
7/19	Summer Staff Conference	3.	Stewart Welty	Huntley
7/24	County Agents Tour		Stewart Welty	Station
7/26	Chamber of Commerce		Stewart	Kalispell
7/29	Look at plots		Welty	Bozeman
8/15	Tour by Cenex Representatives		Stewart Welty	Station
9/3	Superintendent's Meeting		Stewart	Lewistown
9/13-14	Weed Science Retreat		Stewart	Bozeman
9/26	Extension Advisory Committee		Stewart	Kalispell
10/10	Tour SCS Personnel	(T)	Welty	Station
10/15	Search Committee Meeting	(-)	Stewart	Missoula
10/31	Extension Service TV Documentary		Stewart	Kalispell
11/4	Search Committee Meeting		Stewart	Missoula
11/13-14	Search Committee Meeting		Stewart	Corvallis
11/18-21	Assert Seminar		Stewart	San Diego, CA
11/24-25	Search Committee Meeting		Stewart	Corvallis
12/1-4	ASA Meeting	(T)	Stewart	Chicago, IL
12/4	Canola Meeting		Welty	Station
12/10-11	Planning Conference		Stewart	Bozeman
	5		Welty	
12/12	Variety Recommendation Meeting		Stewart Welty	Bozeman
12/13	Dan Burkhart's Masters Examination		Stewart	Bozeman
12/15-16	Search Committee		Stewart	Corvallis
12/19 10	Chamber of Commerce		Stewart	Kalispell
,				

TABLE OF CONTENTS

Project No.		Page No.
	DISTRIBUTION	1
	CLIMATOLOGY	3
754	WEED CONTROL IN FARM CROPS	
	Chemicals used in herbicide studies 1984-85, NWARC Kalispell, MT	15
	Chlorsulfuron (Glean) for weed control in winter wheat .	17
	Fall and spring application of chlorsulfuron (Glean) for weed control in Newana spring wheat	19
	Control of bedstraw in Newana spring wheat	21
	Combination of broadleaf weed herbicides for control of weeds in grains	24
	Evaluation of chlorsulfuron analogs or phenoxy compounds for control of broadleaf weeds in Ingrid spring barley	27
	Combination wild oat and broadleaf herbicides for weed control in spring barley	29
	The effect of preplant incorporated triallate (Fargo) on ten spring wheat varieties	34
	The effects of several chlorsulfuron analogs on five varieties of spring barley	36
	Broadleaf weed control in Newana spring wheat	39
	Evaluation of herbicides for control of weeds in established alfalfa	42
	Herbicide evaluations to a new seeding of alfalfa	47
	Evaluation of grass herbicide for control of grass in established stands of alflafa	52
	Evaluation of Landmaster (glyphosate + 2,4-D) for no-till alfalfa seeding	56
	Long term herbicide evaluation in alfalfa	59
756	SMALL GRAIN PRODUCTION	
	Spring barley variety evaluation	65
	Recommended spring barley varieties	70
	Montana oat variety performance trial	75
	Spring oat varieties	77
	Spring wheat variety evaluations	78
	Spring wheat varieties	83
	Small Grains production	85
	Winter wheat varieties	95
	Dwarf bunt tillage study (TCK)	97

DISTRIBUTION OF THE 1985 NORTHWESTERN AGRICULTURAL RESEARCH CENTER REPORT T

1-10

Copies	
1	Plant and Soil Science Department
3	Research Staff at Northwestern Agricultural Research Center
11	County Extension Agents in Northwestern Montana
	Program CoordinatorBill PetersonDeer Lodge- Kimberly ThompkinsFlathead- Darrell FennerGranite- Lyle NiederkleinLake- Wilfred HuotLincoln- Robert WilsonMineral-Missoula- Gerald MarksPowell- David StreufertRavalli- G. Robert JohnsonSanders- Donald Nicholson
1	Agricultural Stabilization and Conservation
1	Farmers Home Administration
1	Flathead Chapter Future Farmers of America
1	Soil Conservation Service
1	Federal Land Bank Association
4	Feed Mills Co-op Supply Inc Ronan Equity Supply Company - Kalispell Farmers Union Exchange - Kalispell Westland Seeds - Ronan

CLIMATOLOGICAL DATA NORTHWESTERN AGRICULTURAL RESEARCH CENTER Kalispell, Montana

Since 1949 weather data has been tabulated by personnel of the Northwestern Agricultural Research Center and sent to the National Climatic Center, Ashville, North Carolina. The data is then published in <u>Climatological</u> <u>Data</u>, the official publication of the National Oceanic and Atmospheric Administration. Data collected are the maximum and minimum air temperatures, soil temperatures (4 & 8 inches) and precipitation.

3

Summary for the 1984-85 Crop Year

In this report the days between September 1, 1984 and August 31, 1985 are included.

For this period we received two inches less precipitation than average. September, October and May were the only months with above average precipitation. January, June and July were below average with a total of 2.55 inches. The average for these three months is 5.81 inches. There have been several years when total precipitation was less than this year, but this was the lowest recorded since 1978-79.

All months had below average temperatures except April, May and July making this one of the coldest years in the history of the station. Only 1949-50, 1951-52 and 1978-79 were colder.

Included in this report are several tables giving the weather for the crop year and also detailed descriptions of the weather since recording first began.

Table	1	-	Summary of climatic data by months for 1984-85 crop year
			and averages for the period 1949-85.
Table	2	-	Summary of average temperatures on a crop year basis by
			month and year.
Table	3	-	Summary of maximum temperatures on a crop year basis by
			month and year.
Table	4	-	Summary of minimum temperatures on a crop year basis by
			month and year.
Table	5	-	Total precipitation in inches on a crop year basis by
			month and year.
Table	6	-	Precipitation by day for crop year, September 1, 1984
			thru August 31, 1985.
			Frost free period from 1950 thru 1985.
			Temperature extremes from 1950 thru 1985.
Table	9	-	Average temperature by month and year from January 1950
			thru December 1985.
Table	10	- 1	• Total precipitation (inches) by months and years from

January 1950 thru December 1985.

ITEM	Sept. 1984	Oct. 1984	Nov. 1984	Dec. 1984	Jan. 1985	Feb. 1985	Mar. 1985	Apr. 1985	May 1985	June 1985	July 1985	Aug. 1985	Total or Average
Precipitation (inches) Current Year	2.15	2.25	1.40	1.29	0.31	1.28	0.90	1.31	2.81	1.89	0.35	1.62	17.56
Avg. 1949 to 1984-85	1.51	1.38	1.43	1.70	1.54	1.19	1.10	1.41	2.23	2.85	1.42	1.63	19.39
Mean Temperature (F) Current Year	49.5	40.0	32.6	20.6	19.2	19.0	30.8	44.8	53.7	57.6	68.3	60.2	41.4
Avg. 1949 to 1984-85	53.6	43.4	32.9	25.9	21.8	28.1	33.5	43.0	51.5	58.2	64.2	63.0	43.3
Last killing frost in spring	cing												
1985 Avg. 1949-85				May 13 May 26		(26 degrees	F)				i na dali		
First killing frost in fall	11												
1985 Avg. 1949-85				September September	7 14	(32	degrees	F)					ing the sec
Frost Free Period													
1985 Avg. 1949-85				117 da 111 da	days days								
Maximum summer temperature	re			94 deg	degrees F	on July	11y 9,	11 and	23,	1985			\
Minimum winter temperature	re			24 deg	degrees F	below	Zero	uo	January 3	30, 1985	55		

.

	Cente		p	year i	Jasis,	Septen	iber 1,	1949	unru .	August	51, 15		
	- Nik	•	Aver	age te			month enheit		vear		1.00		5
YEAR	SEPT.	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	MEAN
1949-50	54.1	41.5	38.5	25.0	4.2	25.6	31.2	41.9	49.7	.57.0	64.0	62.5	41.3
1950-51	53.8	45.9	31.5	29.5	20.2	27.7	27.0	42.1	50.0	54.2		60.4	42.3
1951-52	50.6	40.8	30.8.		18.0	26.6	29.3	45.8	52.4			62.8	41.0
1952-53	56.0	45.5	30.4	27.6	36.0	32.9	37.2	41.2	49.5	54.6	64.3	63.1	44.9
1953-54	56.1	46.2	37.0	31.3	21.1	31.2	29.6	40.8	52.5	54.9		60.1	43.7
1954-55	52.9	41.5	38.8	28.8	25.7	22.1	24.5	39.1	47.7	58.8	62.7	62.2	42.1
1955-56	52.5	44.6	23.5	21.8	23.3	20.9	31.5	44.2	54.0	59.0	64.8	62.0	41.8
1956-57	55.2	44.1	30.9	28.5	10.2	23.4	33.3	43.7	55.6	59.7	65.4	62.4	42.7
1957-58	55.8	41.4	32.1	32.4	29.1	30.4	32.2	43.6	59.6	62.3	65.2	67.9	46.0
1958-59	55.5	44.6	32.8	28.2	24.7	23.1	35.3	45.2	48.1	59.9	64.5	61.0	43.6
1959-60	53.0	43.9	25.5	27.6	19.4	25.2	32.3	44.3	50.6	59.6	68.8	60.6	42.6
1960-61	55.0	45.2	34.4	24.9	27.8	37.0	38.3	42.0	52.6	64.7	66.2	67.8	46.3
1961-62	49.6	42.3	28.2	23.6	17.4	25.7	30.9	47.2	51.5	58.6	62.1	62.1	41.6
1962-63	54.7	44.7	38.0	32.5	11.8	33.1	38.7	43.2	51.4	59.4	63.0	64.9	44.6
1963-64	58.7	47.4	35.8	24.0	28.5	28.3	30.6	42.8	51.1	58.7	64.3	58.9	44.1
1964-65	51.2	43.7	33.7	22.1	30.2	28.7	28.6	45.2	50.6	57.6	64.6	63.6	43.3
1965-66	46.4	47.6	35.0	28.8	26.3	27.7	34.5	42.9	54.3	56.0	64.5	61.7	43.8
1966-67	59.3	43.4	33.4	30.2	31.0	33.2	32.9	40.6	52.2	59.4	66.1	67.2	45.7
1967-68	61.0	45.9	33.8	25.2	23.3	32.8	41.2	42.0	49.8	59.0	64.6	61.3	45.0
1968-69	53.8	42.9	33.4	19.9	13.1	24.0	29.6	47.1	53.9	58.8	62.3	63.6	41.9
1969-70	56.0	40.0	35.2	27.7	21.9	29.9	32.8	40.2	53.2	62.0	64.8	62.6	43.9
1970-71	48.7	40.1	31.3	26.2	23.6	29.9	33.2	43.6	52.5	54.9	61.9	68.2	42.8
1971-72	49.5	40.4	34.1	22.2	17.0	27.3	38.5	40.6	51.9	59.3	61.5	65.9	42.4
1972-73	50.2	40.3	33.7	19.9	20,7	27.8	37.7	42.2	51.5	57.5	65.1	64.5	42.6
1973-74	53.3	44.1	29.3	30.8	21.0	32.3	33.6	42.7	48.0	61.5	64.8	61.6	43.6
1974-75	52.8	43.6	34.8	30.1	21.5	21.5	29.9	37.6	48.6	55.9	69.1	59.8	42.1 .
1975-76	52.1	42.9	35.4	27.5	27.7	29.9	31.0	43.4	51.9	54.5	63.4	61.3	43.4
1976-77	55.2	42.4	33.1	28.6	20.0	30.9	34.4	45.0	49.7	61.5	62.6	62.8	43.9
1977-78	51.7	42.5	30.4	22.0	21.6	26.1	34.3	43.7	48.1	59.1	63.4	60.3	41.9
1978-79	53.7	43.7	27.2	18.8	4.1	24.9	34.7	42.3	51.5	59.4	65.0	65.4	40.9
1979-80	56.9	46.6	30.7	33.0	16.3	29.0	32.6	47.1	54.8	56.9	63.5	58.6	43.8
1980-81	54.1	45.3	35.8	32.2	30.1	31.3	38.5	44.5	52.5	53.8	62.8	66.4	45.6
1981-82	55.3	43.2	36.0	27.0	21.6	24.5	37.5	39.4	49.8	59.8	61.1	63.0	43.2
1982-83	53.4	41.0	29.1	25.9	30.3	33.8	37.9	42.4	51.9	57.6	59.6	65.4	44.0
1983-84	50.4	42.9	36.6	11.1	27.6	32.4	38.3	42.2	48.7	56.4	65.3	64.6	43.0
1984-85	49.5	40.0	32.6	20.6	19.2	19.0	30.8	44.8	53.7	57.6	68.3	60.2	41.4
MEAN	53.6	43.4	32.9	25.9	21.8	28.1	33.5	43.0	51.5	58.2	64.2	63.0	
		Mean te	empera	ture f	or all	years	=	43.3					

Table 2. Summary of temperature data at the Northwestern Agricultural Research Center on a crop year basis, September 1, 1949 thru August 31, 1985.

1---

	0
4	n
	U

Table 3.			a crop	year b	data a basis,								L.
		Av			m temp egrees				nd yea	ır.	· · · · · · · · ·	2053	
YEAR	SEPT.	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	MEAN
									iic.				
1949-50	71.4	52.4	45.7	32.1	14.4	34.6	38.4	52.3	63.1	70.1	78.6	79.5	52.7
1950-51	70.9	55.8	38.2	36.3	28.7	36.6	37.3	57.9	63.2	66.6		. 77.0	54.2
1951-52	64.2	47.5	37.2	23.6	25.9	35.7	39.5	61.8	65.7	70.2	79.2	79.5	52.5
1952-53	73.4	62.6	40.6	33.2	41.3	39.1	46.8	51.5	62.5	66.8	83.3	79.5	56.7
1953-54	72.3	61.0	45.6	36.7	29.1	38.4	40.0	51.0	67.2	67.0	80.1	74.4	55.2
1954-55	66.4	53.4	45.9	34.9	31.8	31.2	33.9	48.1	60.5	74.7	76.9	82.4	53.3
1955-56	67.6	55.5	30.8	29.2	30.7	30.1	39.7	57.4	67.5	73.3	81.2	77.8	53.4
1956-57	71.0	53.7	37.6	35.5	19.0	33.2	43.3	55.3	70.2	72.4	82.1	80.0	54.4
1957-58	74.3	50.5	40.1	38.5	33.7	37.9	43.5	54.4	77.5	75.7	80.8	85.5	57.7
1958 - 59	69.7	57.9	39.6	34.1	31.8	31.9	43.9	57.9	61.5	74.3	83.2	76.3	55.2
1959-60	64.0	53.6	33.9	33.3	27.5	34.1	43.4	56.1	63.0	74.8	88.7	74.1	53.9
1960-61	72.1	57.8	41.1	29.8	35.0	43.1	48.2	51.6	65.3	82.0	83.7	86.3	58.0
1961-62	62.3	53.3	35.1	30.4	26.0	33.4	40.5	60.7	62.7	74.2	79.2	77.5	52.9
1962-63	71.7	54.7	43.8	37.9	19.9	41.4	48.9	55.7	67.1	71.8	79.6	82.5	56.3
1963-64	74.6	59.4	43.4	30.2	35.1	37.7	39.7	53.3	63.5	71.4	80.3	72.9	55.1
1964-65	63.9	55.0	41.0	28.9	35.1	36.9	41.0	57.6	64.3	71.4	80.8	77.1	54.4
1965-66	57.5	61.1	42.6	35.4	31.8	35.3	45.4	54.8	69.8	69.1	81.2	78.4	55.2
1966-67	74.9	55.1	41.1	35.8	36.7	40.9	41.3	52.6	66.0	73.3	84.8	87.2	57.5
1967-68	78.9	55.8	41.3	30.8	31.5	40.8	52.6	54.2	63.4	72.2	82.7	75.7	56.7
1968-69	65.9	53.1	40.6	27.3	20.8	32.5	40.9	59.5	68.7	72.0	78.9	83.0	53.6
1969-70	70.4	49.7	43.0	32.8	28.5	36.2	42.5	49.7	67.9	75.5	79.1	80.9	54.7
1970-71	62.5	52.2	40.0	34.1	30.6	38.6	41.6	56.2	66.4	67.3	78.0	87.5	54.6
1971-72	64.2	53.1	41.2	30.9	27.1	35.9	47.9	51.7	64.7	72.4	76.9	83.3	54.1
1972-73	64.0	51.3	41.4	28.6	30.6	38.5	47.7	53.8	65.8	69.6	83.7	.83.2	54.9
1973-74	67.6	56.3	36.8	36.5	28.5	39.6	43.5	53.1	59.2	76.2	80.3	77.6	54.6
1974-75	70.9	61.4	43.2	37.4	32.0	31.5	39.4	48.1	61.2	68.5	85.5	73.0	54.3
1975-76	69.4	52.3	40.4	35.1	36.2	37.6	40.1	54.3	66.2	66.3	79.0	74.4	54.3
1976-77	73.2	57.7	42.1	36.1	28.0	39.1	42.7	60.2	61.9	77.0	76.6	77.4	56.0
1977-78	64.7	55.4	38.5	29.4	28.8	35.5	45.5	54.3	58.1	72.6	77.5	74.2	52.9
1978-79	65.7		35.9		13.7		45.3		64.3	73.9			53.0
1979-80	74.1	59.5	37.8	39.2	25.2			60.4		69.0	77.0	73.2	54.9
1980-81	66.9	59.0	43.9	39.2				54.8		63.8	78.1	85.0	56.4
1981-82	70.8	54.1	44.9	34.2	29.7	33.3		50.5		74.3	75.0	80.6	54.6
1982-83	69.2	53.2	36.9	33.0			47.5	55.2	66.4	70.6	73.1	82.9	55.6
1983-84	65.1	56.0	43.7	19.9		40.8		54.2	60.4	69.1	82.8	83.3	54.7
1984-85	63.9	52.2	40.4	28.2	25.3	29.1	42.7	56.8	68.7	73.2	88.0	75.0	53.6
MEAN	68.6	55.3	40.4	32.7	29.3	36.4.	43.3	54.7	64.9	71.7	80.6	79.5	
		Mean t	empera	ture f	or all		1 <u>_</u> 235	54.8					

Table 3. Summary of temperature data at the Northwestern Agricultural Research

.

Table 4. Summary of temperature data at the Northwestern Agricultural Research Center on a crop year basis, September 1, 1949 thru August 31, 1985

1. . .

Average	minimum	temperature	by	month	and	year	
	Degrees	Fahrenheit					

YEAR	SEPT.	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	MEAN
1949-50	36.7	35.0	31.2	17.8	-6.0	16.6	23.9	31.5	36.3	43.9	49.4	45.5	30.2
1959-51	36.6	36.0	24.8.	22.6	11.7	18.8	16.6	26.2	36.7	41.7	46.9	43.7	30.2
1951-52	37.0	34.0	24.4	10.1	10.0	17.4	19.1	29.8	39.1	43.1	44.3	46.1	29.5
1952-53	38.6	28.3	20.2	21.9	30.6	26.7	27.5		36.5	42.3	45.3	46.7	33.0
1953-54	39.8	31.4	28.4	25.9	13.1	24.0	19.2	30.6	37.7	42.8	46.7	45.7	32.1
1954-55	39.3	29.5	31.6	22.7	19.5	13.0	15.0	30.0	34.9	42.8	48.5	42.0	30.7
1955-56	37.3	33.6	16.1	14.4	15.9	11.7	23.3	30.9	40.5	44.7	48.2	46.1	30.2
1956-57	39.4	34.4	24.2	21.5	1.4	13.6	23.2	32.0	40.9	47.0	48.7	44.8	30.9
1957-58	37.2	32.3	24.1	26.2	24.5	22.8	20.9	32.8	41.7	48.8	49.5	50.3	34.3
1958-59	41.2	31.2	26.0	22.2	17.5	14.2	26.6	32.4	34.7	45.4	45.8	45.6	31.9
1959-60	42.0	34.1	17.0	21.8	11.2	16.3	21.1	32.4	38.1	44.3	48.8	47.0	31.2
1960-61	37.9	32.5	27.6	19.9	20.6	30.9	28.4	32.3	39.8	47.4	48.7	49.2	34.6
1961-62	36.8	31.2	21.2	16.8	8.7	17.9	21.2	33.7	40.3	43.0	45.0	46.6	30.2
1962-63	37.6	34.6	32.2	27.1	3.7	24.7	28.4	30.6	35.7	47.0	46.4	46.9	32.9
1963-64	42.7	35.3	28.1	17.7	21.8	18.9	21.4	32.2	38.6	46.0	48.3	44.9	33.0
1964-65	38.4	32.3	26.4	15.3	25.3	20.4	16.2	32.7	36.9	43.8	48.4	50.0	32.2
1965-66	35.2	34.0	27.4	22.1	20.8	20.0	23.6	30.9	38.7	42.8	47.7	45.0	32.4
1966-67	43.6	31.7	25.6	24.6	25.3	25.5	24.5	28.6	38.4	45.4	47.4	47.2	34.0
1967-68	43.1	35.9	26.3	19.4	15.0	24.8	29.7	29.8	36.1	45.7	46.4	46.8	33.3
1968-69	41.7	32.6	26.1	12.5	5.4	15.4	18.2	34.6	39.0	45.5	45.7	43.5	30.0
1969-70	41.6	30.3	27.4	22.6	15.3	23.4	23.0	30.7	38.5	48.2	50.5	44.3	33.0
1970-71	34.9	27.9	22.5	18.3	16.5	21.0	24.8	31.0	38.6	42.3	45.7	48.8	31.0
1971-72	34.7	27.6	26.9	13.5	7,7	18.6	29.0	29.0	39.2	46.3	45.8	48.5	30.6
1972-73	36.4	29.2	25.9	11.1	11.0	17.4	27.8	29.6	36.4	44.4	46.5	45.8	30.1
1973-74	38.9	32.0	21.8	25.2	13.5	25.1	23.6	32.4	36.7	46.9	49.5	45.6	32.6
1974-75	34.7	25.7	26.3	22.9	10.9	11.5	20.4	27.1	36.1	43.3	52.7	46.5	29.8
1975-76	34.7	33.4	30.3	20.0	19.1	22.2	22.0	32.4	37.6	42.6	47.8	48.3	32.5
1976-77	37.2	27.2	24.1	21.1	12.0	22.6	26.1	29.9	37.4	46.0	48.5	48.2	31.7
1977-78	38.6	29.5	22.2	14.6	14.5	16.7	23.2	33.1	38.1	45.6	49.2	46.4	31.0
1978-79	41.7	28.3	18.4	9.3	-5.6	16.5	24.0	32.1	38.7	44.9	48.5	48.0	28.7
1979-80	39.7	33.7	23.6	26.8	7.5	22.1	24.5	33.7	42.7	44.7	50.0	44.0	32.8
1980-81	41.3	31.6	27.7	25.1	26.2	23.8	27.2	34.2	41.7	43.7	47.6	47.8	34.8
1981-82	39.7	32.2	27.0	19.8	13.5	15.7	29.2	28.4	37.2	45.3	47.3	45.4	31.7
1982-83	37.6	28.8	21.4	18.7	23.7	25.3	28.4	29.5	37.5	44.7	46.1	48.0	32.5
1983-84	35.6	29.7	29.5	2.4	20.6	24.0	29.9	30.2	37.1	43.6	47.8	46.0	31.4
1984-85	35.2	27.7	24.7	13.0	13.2	9.0	18.8	32.7	38.7	42.0	48.5	45.5	29.1
MEAN	38.5	31.5	25.2	19.1	14.3	19.7	23.6	31.1	38.1	44.7	47.7	46.4	

Mean temperature for all years = 31.7

87

1 + - -

	Total precipitation in inches by month and year													
YEAR	SEPT.	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	MEAN	
and have seen take and then they are														
1949-50	1.03	1.05	1.67	0.92	2.62	1,13	2.31	0.84	0.15	3.90	3.12	0.75	19.49	
1950-51	0.52	2.30	1.16	2.48		1.29			3.77		1.03		21.55	
1951-52	1.49	5.62	1.01	3.31		0.98	0.97				0.56		21.10	
1952-53	0.13	0.05	0.60	0.98		1.14		2.07	2.00		Т		14.72	
1953-54	0.71	0.03	0.87	1.30	2.65	0.79	0.83	0.79	1.52	2.98	2.91	3.79	19.17	
1954-55	1.09	0.54	1.00	0.43	1.00	1.31	0.44	0.82	1.18	1.86	3.08	0.00	12.75	
1955-56	1.64	1.89	1.97	2.38	1.76	1.53	0.87	1.28	1.06	4.20	2.13	3.21	23.92	
1956-57	1.16	1.10	0.53	0.96	1.47	1.14	0.75	1.22	1.75	2.51	0.52	0.78	13.89	
1957-58	0.10	1.59	0.96	1.76	1.56	2.67	0.97	1.47	2.20	2.56	0.84	0.58	17.26	
1958-59	1.99	1.16	2.90	2.77	1.95	1.33	0.75	1.62	4.10	1.75	Т	0.91	21.23	
1959-60	4.22	3.36	4.32	0.34	1.67	1.10	1.01	1.23	3.27	0.69	0.13	2.43	23.77	
1960-61	0.55	1.44	1.72	1.24	0.65	1.46	1.96	2.26	4.02	1.45	0.76	0.64	18.15	
1961-62	3.40	1.22	1.77	2.09	1.33	1.15	1.59	0.96	2.59	1.15	0.11	0.72	18.08	
1962-63	0.58	1.85	1.31	0.91	1.69	1.21	0.85	1.07	0.57	5.00	1.44	2.10	18.58	
1963-64	1.46	0.75	0.95	1.70	1.46	0.41	1.57	0.87	3.33	3.86	3.01	1.64	21.01	
1964-65	2.27	0.85	1.62	3.62	2.25	0.64	0.24	2.55	0.81	2.30	1.15		23.04	
1965-66	1.72	0.21	1.31	0.55	1.42	0.67	0.53	0.76	1.18	6.57	2.49		19.05	
1966-67	0.79	1.34	3.33	1.68	1.50	0.62	1.27	0.99	1.30	2.53	0.02		15.38	
1967-68	0.91	1.88	0.62	1.16	0.79	1.15	0.68	0.57	3.92	2.22	1.00		18.32	
1968-69	4.51	2.39	1.59	3.12	3.05	0.75	0.69	1.39	1.19	5.21	0.70		24.68	
1969-70	1.54	1.90	0.31	1.14	3.10	0.89	1.49	0.76	1.97	4.37	3.08		20.99	
1970-71	1.79	1.38	1.75	0.99	1.84	0.77	0.69	0.58	2.45	4.42	1.31		19.08	
1971-72	0.94	0.87	1.70	1.62	1.10	1.65	2.11	0.95	1.48	3.28	1.77		18.45	
1972-73	1.38	1.84	0.80	2.19	0.52	0.56	0.70	0.45	1.13	2.14	0.01		12.35	
1973-74	1.37	1.41	2.95	1.94	1.35	1.32	1.40	3.36	1.82	1.80	1.01		20.35	
1974-75	0.80	0.12	1.10	1.31	1.56	1.08	1.50	1.27	1.50	1.40	1.08		16.98	
1975-76	1.18	2.96	0.85	1.39	0.91	1.12	0.34	1.92	1.90	2.49	1.49		19.97	
1976-77	0.96	0.62	0.73	0.86	0.83	0.71	1.40	0.41	2.90	0.52	3.60		15.04	
1977-78	2.84	0.56	1.62	4.10	2.15	0.99	0.72	2.54	3.56	2.63	3.90		28.95	
1978-79	1.90	0.15	0.96	0.91	1.70	1.45	0.82	2.33	2.67	1.23	0.40		16.31	
1979-80	1.03	1.75	0.50	1.03	1.53	2.03	0.97	1.88	5.48	3.89	1.08		23.62	
1980-81	1.20			2.58		1.85			3.86		1.17		23.66	
1981-82	0.77	0.56	1.49	1.91	2.38	1.48	1.16	1.60	1.25	2.41	2.06		18.24	
1982-83	2.37	0.75	1.39	1.60	0.93	0.85	1.71	2.41	1.20	2.96	3.66		20.99	
1983-84	1.70	1.13	1.96	2.57	0.80	2.19	1.81	1.93	2.91	2.07	0.31		19.93	
1984-85	2.15	2.25	1.40	1.29	0.31	1.28	0.90	1.31	2.81	1.89	0.35	1.02	17.56	
MEAN	1.51	1.38	1.43	1.70	1.54	1.19	1.10	1.41	2.23	2.85	1.42	1.63		

Table 5. Summary of precipitation records at the Northwestern Agricultrual Reserch Center on a crop year basis, September 1, 1949 thru August 31, 1985

Mean precipitation for all crop years = 19.39

DATE	SEPT. 1984				JAN. 1985							
	0.56				Т		0.02					0.03
2	0.02		0.09	0.07	Т			43 2013		0.71		0.05
3			0.11	Т				0.02	0.02	0.47		0.03
4						0.17						
5	0 07					0:17	0.05					
6	0.07					0.03	0.07		Т	0.07		
7						0.14				0.33		Т
8	0.10					0.25			Т	0.05		T
9	0.18		0 00	0.07		0.08				T T		0.03
10 11	0.17			0.04		0.03				1		0.23
	0.04	0.72	0.07			0.02		0.10				
12 13	0.04	0.72	0.07	0 02		0.02		Т				0.02
14	0 11			0.02 T								0.05
14		0.02			0.04	14.1.15						Т
16					0.04			0.44		0.04		
17		0.02		0.09				0.44		0.04		0.24
18		0.02		0.13							0.03	
19		0 10	т		0.05			0.22			0.05	
20	0.04	0.10	T		0.12							
21	0.47		0 33	0 12	0.12		0.20			0.12		0.61
22	0.33		0.06	0.12						0.12		0.03
23	0.04		0.00	0.25		0.20	Т					0.02
24		0.10	0.09	0.25							0.32	
25		0.03				0.17	0.10					
26	0.02	0.23					Т					
27		0.67							0.03			
28		0.20	0.23	0.02	0.02		Т	0.04	0.11			0.13
29			0.05	0.13	0.02 0.08			Т	0.21			
30									1.77	· · · ·		
31		0.08		0.08	Τ,		0.24		0.07			
TOTAL	2.15	2.25	1.40	1.29	0.31	1.28	0.90	1.31	2.81	1.89	0.35	1.62

Table 6.Precipitation by day for crop year, September 1, 1984 through August 31,1985.Northwestern Agricultural Research Center, Kalispell, MT.

9

YEAR	DATE LAST FREE	ZE	TEMP DEG	ERAT REE	FI	DATE RST FR			DEG			FROS EE SE	
1950	June 1	0		32		Sept.	11			29	 	93	
1951	june	1		29		Sept.	15			29		106	
1952	June 1	4		32		Sept.	8			29		86	
1953	May 2	3		32		Sept.				31		116	
1954	May 2	9		31		Sept.	30			26		124	
1955	May 2	5		28		Sept.	13			31		111	
1956	May	3		26		Sept.				32		122	
1957		3		30		Sept.	9			30		109	
1958	-	4		31		Sept.				31		136	
1959	June 1	1		32		Aug.	30			30		80	
1960	June 1			32		Sept.				32		80	
1961		6		32		Sept.				29		129	
1962		0		32		Sept.	3			25		96	
1963	May 2			28		Sept.				32		119	
1964	May 2			26		Sept.				28		109	
1965	June			30		Sept.				31		91	
1966	May 1			26		Sept.				28		135	
1967	May 2			28		Sept.				32		120	
1968	May 2			32		Sept.				32		124	
1969	June 1			28		Sept.	6			32		85	
1970	May 1			32		Sept.				31		122	
1971	July			32		Sept.				28		69	
1972		4		32		Sept.				32		131	
1973	May 2			31		Sept.	2			31		103	
1974	May 1			31		Sept.	2			30		107	
1975	May 2			32		Sept.				32		110	
1976	May 2			30	r	Sept.	8			30		110	
1977	May 1			29		Sept.				28		133	
1978	May 2			31		Sept.				28		116	
1979	May 3			31		Oct.	1			32		123	
1980		4		32		Sept.		- ×-		31		111	
1981		5		28		Sept.				25		142	
1982	May 3			31		Sept.				23		108	
1983	May 1			31		Sept.	6			31		114	
1984		2		32		Sept.				30		103	
1985	May 1			26		Sept.	7			32		117	
Mean f										-			
years		6		30		Sept.	14			30		111	

Table 7. Frost free period at the Northwestern Agricultural Research Center from 1950 thru 1985.

		MINIMUM			MAXIMUM	
YEAR		DATE	TEMPERATURE DEGREES' F	9.1 54 9.1 54 2.5 54	DATE	TEMPERATURE DEGREES F
1050	Ţ	20	10		21	0.0
1950	Jan.		-40	Aug.		- 88
1951	Jan.		-25	Aug.		92
1952	Jan.	1	-14	Aug.		90
1953	Jan.		8	July	12	97
1954	Jan.		-32	July	6	90
1955	Mar.	5	-20	June		96
1956	Feb.		-25	July	22	90
1957	Jan.		-34	July	13	91
1958	Jan.		2	Aug.	11	94
1959	Nov.	16	-30	July	23	96
1960	Mar.	3	-32	July	19	98
1961	Jan.	2	0	Aug.	4	100
1962	Jan.		-32	Aug.	16	92
1963	Jan.	30	-24	Aug.	9	94
1964	Dec.		-28	July	8	91
1965	Mar.	24	-10	July	31	89
1966	Mar.	4	- 7	Aug.	2,25	91
1967	Jan.	24	2	Aug.	19	95
1968	Jan.	21	-23	July	7	94
1969	Jan.	25	-13	Aug.	24	97
1970	Jan.	15	-14	Aug.	21,25	92
1971	Jan.	12	- 8	Aug.	6, 9	96
1972	Jan.	28	-24	Aug.	9,10	92
1973	Jan.		-22	July		97
1974	Jan.	5	-18	June	16,20	93
1975	Jan.	12, Feb. 9	-16	July	12	96
1976	Feb.	5	- 4	July	27	90
1977	Dec.	31	-11	June	7	97
1978	Dec.		-31	July	16	91
1979	Jan.		-31	July	20	97
1980	Jan.		-20	July		92
1981	Feb.		-21	Aug.	26,27	97
1982		9,10	-23	Aug.	8	91
1983	Dec.		-29	Aug.	8	97
1984	Jan.		-14	July		97
1985	Jan.		-24		9,11,23	94

Table 8. Temperature extremes at the Northwestern Agricultural Research Center, Kalispell, MT from 1950-1985. 12

Table 9. Summary of temperature records at the Northwestern Agricultural Research Center, January 1950 thru December 1985.

AVERAGE	TEMPERATURE	BY	MONTH	AND	YEAR	
	DECREEC 1	FAUL	FNHET	г		

					DEGRI	EES FAH							
DATE	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	OCT.	NOV.	DEC.	MEAN
1950	4.2	25.6	31.2	41.9	49.7	57.0	64.0			45.9			
1951	20.2	27.7	27.0	42.1	50.0	54.2	64.7	60.4	50.6	40.8	30.8		40.5
1952	18.0	26.6	29.3	45.8	52.4	56.7	61.8	62.8	56.0	45.5	30.4		42.7
1953	36.0	32.9	37.2	41.2	49.5	54.6	6.4.3	63.1	56.1	46.2	37.0	31.3	45.8
1954	21.1	31.2	29.6	40.8	52.5	54.9	63.4	60.1	52.9	41.5	38.8		43.0
1955	25.7	22.1	24.5	39.1	47.7	58.8	62.7	62.2	52.5	44.6	23.5		40.4
1956	23.3	20.9	31.5	44.2	54.0	59.0	64.8	62.0	55.2	44.1	30,9		43.2
1957	10.2	23.4	33.3	43.7	55.6	59.7	65.4	62.4	55.8	41.4	32.1	32.4	43.0
1958	29.1	30.4	32.2	43.6	59.6	62.3	65.2	67.9	55.5	44.6	32.8	28.2	46.0
1959	24.7	23.1	35.3	45.2	48.1	59.9	64.5	61.0	53.0	43.9	25.5		42.7
1960	19.4	25.2	32.3	44.3	50.6	59.6	68.8	60.6	55.0	45.2	34.4		
1961	27.8	37.0	38.2	42.0	52.6	64.7	66.2	67.8	49.6	42.3	28.2		45.0
1962	17.4	25.7	30.9	47.2	51.5	58.6	62.1	62.1	54.7	44.7	38.0	32.5	43.8
1963	11.8	33.1	38.7	42.3	51.4	59.4	63.0	64.9		47.4	35.8		
1964	28.5	28.3	30.6	42.8	51.1	58.7	64.3	58.9	51.2	43.7	33.7	22.1	42.8
1965	30.2	28.7	28.6	45.2	50.6	57.6	64.6	63.6	46.4	47.6	35.0		43.9
1966	26.3	27.7	34.5	42.9	54.3	56.0	64.5	61.7	59.3	43.4	33.4	30.2	
1967	31.0	33.2	32.9	40.6	52.2	59.4	66.1	67.2	61.0	45.9	33.8		45.7
1968	23.3	32.8	41.2	42.0	49.8	59.0	64.6	61.3	53.8	42.9			43.7
1969	13.1	24.0	29.6	47.1	53.9	58.8	62.3	63.6	56.0	40.0			42.6
1970	21.9	29.9	32.8	40.2	53.2	62.0	64.8	62.6	48.7	40.1			42.8
1971	23.6	29.9	33.2	43.6	52.5	54.9	61.9	68.2	49.5	40.4		22.0	42.8
1972	17.0	27.3	38.5	40.6	51.9	59.3	61.5	65.9		40.3			
1973	20.7	27.8	37.7	42.2	51.5	57.5	65.1	64.5			29.3		
1974	21.0	32.3	33.6	42.7	48.0	61.5	64.8	61.6	52.8	43.6	34.8		43.9
1975	21.5	21.5	29.9	37.6	48.6	55.9	69.1	59.8	52.1	42.9	35.4		
1976	27.7	29.9	31.0	43.4	51.9	54.5	63.4			42.4	33.1	28.6	
1977	20.0	30.9	34.4	45.0	49.7	61.5	62.6						
1978	21.6	26.1	34.3	43.7	48.1	59.1	63.4						
1979	4.1	24.9	34.7	42.3	51.5	59.4	65.0	65.4	56.9				
1980	16.3	29.0	32.6	47.1	54.8	56.9	63.5			45.3			
1981	30.1	31.3	38.5	44.5	52.5	53.8	62.8						
1982	21.6	24.5	37.5	39.4	49.8	59.8	61.1	63.0				25.9	
1983	30.3	33.8	37.9	42.4	51.9	57.6	59.6						43.3
1984	27.6	32.4	38.3	42.2	48.7	56.4	65.3						
1985	19.2	19.0	30.8	44.8	53.7	57.6	68.3	60.2	47.8	40.8	18.6	18.3	39.9
Mean	21.8	28.1	33.5	42.9	51.5	58.2	64.2	63.0	53.4	43.4	32.3	25.7	
					5	<u>.</u>			10 0				

Mean temperature for all years =

43.2

Table 10. Summary of precipitation records at the Northwestern Agricultural Research Center, Kalispell, MT, January 1950 thru December 1985.

					-								
DATE	JAN.	T FEB.	MAR.	Precipi APR.	tation MAY	(inch JUNE			ns and SEPT.	Years OCT.	NOV.	DEC.	TOTAL
DAIL	JAN.	TLD.											
1950	2.62	1.13	2.31	0.84	0.15	3.90	3.12	0.75	0.52	2.30	1.16	2.48	21.28
1951	0.94	1.29	0.62	2.32	3.77	2.26	1.03	2.86	1.49	5.62	1.01	3.31	26.52
1952	1.03	0.98	0.97	0.17	1.32	3.95	0.56	0.69	0.13	0.05	0.60	0.98	11.43
1953	1.84	1.14	0.98	2.07	2.00	3.31	Т	1.62	0.71	0.03	0.87	1.30	15.87
1954	2.65	0.79	0.83	0.79	1.52	2.98	2.91	3.79	1.09	0.54	1.00	0.43	19.32
1955	1.00	1.31	0.44	0.82	1.18	1.86	3.08		1.64	1.89	1.97	2.38	17.57
1956	1.76	1.53	0.87	1.28	1.06	4.20	2.13	3.21	1.16	1.10	0.53	0.96	19.79
1957	1.47	1.14	0.75	1.22	1.75	2.51	0.52	0.78	0.10	1:59	0.96	1.76	14.55
1958	1.56	2.67	0.97	1.47	2.20	2.56	0.84	0.58	1.99	1.16	2.90	2.77	.21.67
1959	1.95	1.33	0.75	1.62	4.10	1.75	Т	0.91	4.22	3.36	4.32	0.34	24.65
1960	1.67	1.10	1.01	1.23	3.27	0.69	0.13	2.43	0.55	1.44	1.72	1.24	16.48
1961	0.65	1.46	1.96	2.26	4.02	1.45	0.76	0.64	3.40	1.22	1.77	2.09	21.68
1962	1.33	1.15	1.59	0.96	2.59	1.15	0.11	0.72	0.58	1.85	1.31	0.91	14.25
1963	1.69	1.21	0.85	1.07	0.57	5.00	1.44	2.10	1.46	0.75	0.95	1.70	18.79
1964	1.46	0.41	1.57	0.87	3.33	3.86	3.01	1.64	2.27	0.85	1.62	3.62	24.51
1965	2.25	0.64	0.24	2.55	0.81	2.30	1.15	4.74	1.72	0.21	1.31	0.55	18.47
1966	1.42	0.67	0.53	0.76	1.18	6.57	2.49	1.64	0.79	1.34	3.33	1.68	22.40
1967	1.50	0.62	1.27	0.99	1.30	2.53	0.02	0.01	0.91	1.88	0.62	1.16	12.81
1968	0.79	1.15	0.68	0.57	3.92	2.22	1.00	3.42	4.51	2.39	1.59	3.12	25.36
1969	3.05	0.75	0.69	1.39	1.19	5.21	0.70	0.09	1.54	1.90	0.31	1.14	17.96
1970	3.10	0.89	1.49	0.76	1.97	4.37	3.08	0.44	1.79	1.38	1.75	0.99	22.01
1971	1.84	0.77	0.69	0.58	2.45	4.42	1.31	1.11	0.94	0.87	1.70	1.62	18.30
1972	1.10	1.65	2.11	0.95	1.48	3.28	1.77	0.98	1.38	1.84	0.80	2.19	19.53
1973	0.52	0.56	0.70	0.45	1.13	2.14	0.01	0.63	1.37	1.41	2.95	1.94	13.81
1974	1.35	1.32	1.40	3.36	1.82	1.80	1.01	0.62	0.80	0.12	1.10	1.31	16.01
1975	1.56	1.08	1.50	1.27	1.50	1.40	1.08	4.26	1.18	2.96	0.85	1.39	20.03
1976	0.91	1.12	0.34	1.92	1.90	2.49	1.49	3.42	0.96	0.62	0.73	0.86	16.76
1977	0.83	0.71	1.40	0.41	2.90	0.52	3.60	1.50	2.84	0.56	1.62	4.10	20.99
1978	2.15	0.99	0.73	2.54	3.56	2.63	3.90	3.34	1.90	0.15	0.96	0.91	23.76
1979	1.70	1.45	0.82	2.33	2.67	1.23	0.40	1.79	1.03	1.75	0.50	1.03	16.70
1980	1.53	2.03	0.97	1.88	5.48	3.89	1.08	2.45	1.20	0.83	0.78	2.58	24.70
1981	1.81	1.85	2.17	1.75	3.86	4.70	1.17	0.96	0.77	0.56	1.49	1.91	23.00
1982	2.38	1.48	1.16	1.60	1.25	2.41	2.06	1.17	2.37	0.75	1.39	1.60	19.62
1983	0.93	0.85	1.71	2.41	1.20	2.96	3.66	1.16	1.70	1.13	1.96	2.57	22.24
1984	0.80	2.19	1.81	1.93	2.91	2.07	0.31	0.55	2.15	2.25	1.40	1.29	19.66
1985	0.31	1.28	0.90	1.31	2.81	1.89	0.35	1.62	5.35	1.55	1.61	0.51	19:49
Mean	1.54	1.19	1.11	1.41	2.23	2.85	1.42	1.63	1.63	1.39	1.43	1.69	

Mean annual precipitation for 36 years = 19.52

13

ê ...

15

8 - L

Common name	Trade name	Chemical name	Company
	-10 PC-110 C81	a levent in the second se	(<u>)</u>
AC 222,293	Assert	m- toluic acid, 6-(4-isopropy1-4-methy1-	Am. Cyanamide
		5-oxo-2-imidazolin-2-yl)-methyl ester and	
		p-toluic acid, 2(4-isopropyl-4-methyl- 5-oxo-2-imidazolin-2-yl)-methyl ester	
	AC 263,49		Am. Cyanamide
AG 1	BAS 044084	no chemistry available	BASF
AG 2	BAS 037014	no chemistry available	BASF
AXF 1309	Brominal 4E	3,5-dibromo-4-hydroxybenzonitrile	Union Carbide
Bentazon	Basagran	3-isopropyl-1H-2,1,3-benzothiadiazin-4- (3H)-one-2,2-dioxide	BASF
Bromoxynil	Brominal	3,5-dibromo-4-hydroxybenzonitrile	Union Carbide
01.1 1.0	/Buctril		Rhone Poulenc
Chlorsulfuron	Glean .		DuPont
		triazin-2-y1)amino]carbony1]benzenesul fonamide	
Diclofop-m	Hoelon	2-[4-(2,4-dichlorophenoxy)phenoxy pro-	Am. Hoechst
летогор-ш	поетоп	panoic acid	Am. noechst
Diuron	Karmex	3-(3,4-dichloropheny1)-1,1-dimethylurea	DuPont
Haloxyfop-m	Verdict	Methyl 2-(4-((3-chloro-5-(trifluorometh-	Dow
<i>.</i>		y1)-2-pyridiny1)oxy)phenoxy) propanoate	
Metsulfuron	Ally	Methy1-2-[[[[(4-methoxy-6-methy1-1,3,5-	DuPont
		<pre>triazin-2-yl)amino]carbonyl]amino]sulfo- nyl]benzoate</pre>	
DPX-Y6202	Assure	2-[4-[(6-chloro-2-quinoxaliny1)oxy]-phe-	DuPont
		oxyl]-propionic acid ethyl ester	
DPX-M6316	DPX-M6316	No chemistry available	Dupont
DPX-R 9521	DPX-R 9521	No chemistry available	DuPont
DPX-E 8898	DPX-E 8898	No chemistry available	DuPont
DPX-L 5300	DPX-L 5300	No chemistry available	DuPont
DPX-R 9674	DPX-R 9674	No chemistry available	DuPont
EPTC	Eptam	S-ethyl dipropylthiocarbamate	Stauffer
Fluazifop-b	Fusilade (PP005)	Buty1-2-[4-(5-trifluoromethy1-2-pyri- diny1-oxy)phenoxy]propanoate	ICI
Glyphosate	Roundup	N-(phosphonomethyl) glycine	Monsanto
Glyphosate + 2,4-D	Landmaster	N-(phosphonomethyl) glycine + (2,4-di- chlorophenoxy)acetic acid	Monsanto
lexazinone	Velpar	3-cyclohexy1-6-(dimethylamino)-1-methyl- -1,3,5-triazine-2,4-(1H,3H)-dione	DuPont
	EL 107	N-[3-1-ethyl-1-methylpropyl)- s- isoxaz-	_
Isoxaben			

CHEMICALS USED IN HERBICIDE STUDIES 1984-85, NWARC, KALISPELL,MT

.

S. 3

MCPA Metribuzin	MCPA Sencor or Lexone	[(4-chloro- <u>o</u> -tolyl)oxyl]acetic acid 4-amino-6- <u>tert</u> -butyl-3-(methylthio)- <u>as</u> triazin-5(4 <u>H</u>)one	Union Carb Mobay DuPont
Pronamide	Kerb	3,5-dichloro(N-1,1-dimethy1-2-propyny1) benzamide	Rohm and Haas
Fluorchloidone	Racer	1-(m-trifluoromethylphenyl)-3-chlor-4- chloromethyl-2-pyrrolidone	Stauffer
Sethoxydim	Poast	2[(1-ethoxyimino)buty1]-5[(2-ethylthio)-	BASF
		propy1]-3-hydroxy-2-cyclohexen-1-one	1978. 1989.
	SC 0051	No chemistry available	Stauffer
	SSH 0860	<pre>l-amino-3-(2,2-dimethylpropyl)-6-(ethyl- thio)-1,3,5-triazine-2,4(lH,3H)-dione</pre>	Mobay
Sulfosate	SC-0224	Trimethylsulfonium carboxymethylamino methylphosphonate	Stauffer
	SC 0574	no chemistry available	Stauffer
	SC 1084	no chemistry available	Stauffer
	SMY 1500	no chemistry available	Mobay
SC 5676/ R - 25	5788	no chemistry available	Stauffer
Terbacil	Sinbar	3-tert-buty1-5-chloro-6-methyluracil	DuPont
Triallate	Fargo	S-(2,3,3-trichloroallyl)diisopropylthio- carbamate	Stauffer
2,4-D	2,4-D	(2,4-dichlorophenoxy)acetic acid	Cenex
2,4-DB	2,4-DB	4-(2,4-dichlorophenoxy)butyric acid	Union Cabide

2

and the first sector

.

Mathyl (19-((19-1) - 19-1)) (19-1) y))-2-partificy: and an analysis and PROJECT TITLE: Chlorsulfuron (Glean) for weed control in winter wheat

YEAR/PROJECT: 1985/754 Weed Control in Farm Crops

PROJECT PERSONNEL:

Leader - Vern R. Stewart, N. W. Agric. Res. Center, Kalispell Ag Research Specialist I - Todd K. Keener N. W. Agric. Res. Center, Kalispell Cooperators - Chemical Company Representatives

SUMMARY:

The chlorsulfuron application on winter wheat gave good to excellent broadleaf weed control when applied PES, post and at the tiller stage at .125, .25 and .5 oz ai/A. Yields and test weights were not increased or reduced significantly because rate of treatment or application timing.

RESULTS:

Excellent control of volunteer peas (<u>Pisum sativa</u>), fanweed (<u>Thlaspi</u> <u>arvense</u>), <u>Silene</u> (<u>Silene noctiflora</u>) and gromwell (<u>Lithospermum arvense</u>) was obtained when chlorsulfuron was applied pre emergence surfact (PES), post emergence (3-5 leaf post) and at fully tillered at .125, .25 and .5 oz ai/a. Less effective control was noticed in plots treated with the low rate of chlorsulfuron applied PES. Yields, test weight and height when statistically analyzed were found to be non significant at .05 probability level.

192 g 105 erie

18

Table 1.

Agronomic data from the Chlorsulfuron application study on winter wheat. Northwestern Agricultural Research Center, Kalispell, MT, 1985. Field R-2.

Treatment	Rate Oz al	Appln Type	Yield Bu/A	Test Wt. Lbs/Bu	Stand		eed Co Fan	ntrol Sil	1/ Grom	Heig. (In)
Chlorsulf.	.125	PES	55.2	53.28	76	65	63	75	63	36.8
Chlorsulf.	.25	PES	60.7	54.07	66	98	100	100	100	35.0
Chlorsulf.	.5	PES	59.4	53.08	66	98	100	100	100	36.4
Chlorsulf.	. 125	3-514	57.3	52.78	71	75	100.	100	100.	35.4
+ surf. Chlorsulf. + surf	.25	3-51f	56.5	55.00	70	100	100	100	100	34.8
Chlorsulf. + surf.	.5	3-51 f	56.8	54.35	71	97	100	100	95	35.1
Bromoxynil	.375#	3-51 f	62.1	53.80	74	81	100	100	75	35.7
Chlorsulf. + surf.	.125	tillr	65.1	55.43	66	9 9	100	100	100	35.7
Chlorsulf. + surf	.25	tillr	60.6	54.08	71	95	100	100	100	35.1
Chlorsulf. + surf.	.5	tillr	62.0	54.27	74	90	100	100	100	36.3
Bromoxynil + MCPA	.375#	tillr	53.0	51.68	68	45	100	100	100	36.4
2,4-D	.375#	tillr	56.0	52.80	73	95	100	100	100	37.0
Check			56.6	53.80	71	0	0	0	0	36.2
iss at 1933		58.6 .762 88 6.64 .4.14	53.72 .334 1.73 3.22 4.96	71 .30 5.91 8.38 16.96	84 2.00 13.55 16.20 5 38.88	11.29	94 1.91 10.84 11.50 31.09	13.85	2.86	
/ Weed sco Peas = / F value	volunte	er peas	, Fan =	fanweed,			Grom	= grom	well	
oplication	Dat	e: 9-24			5-85		5-1-85			
	licatio Air tem Soil tem	p: 52 F		5-0 62 F 60 F			1-2 ti 69 F 69 F	iler		
	Win	d: 2-3		5-7			0			
	tive hu stages			10% alfalfa :			13% 2-3"			
				gromwell false fla						~
			n nga lana.	fanweed a wheat 2-3	5"	also a fi	7", 3" 6" tal	dia		
eneral data					a 32 psi	i, tra	ctor s	peed 2		

harvest date August 8,1985, surfactant .5% v/v.

PROJECT TITLE:

Fall and spring application of chlorsulfuron (Glean) for weed control in Newana spring wheat

YEAR/PROJECT: 1985/754 Weed Control in Farm Crops

PROJECT PERSONNEL:

Leader - Vern R. Stewart, N. W. Agric. Res. Center, Kalispell Ag Research Specialist I - Todd K. Keener N. W. Agric. Res. Center, Kalispell Cooperators - Chemical Company Representatives

SUMMARY:

Weed control was excellent at equal rates of chlorsulfuron applied either in the fall (preplant) or at the 3 to 5 leaf stage (post in spring) in Newana spring wheat.

RESULTS:

Chlorsulfuron performed equally well in spring wheat applied either in the fall or applied in the spring at rates ranging from .125 oz to .5 oz ai/A. Fanweed (<u>Thlaspi arvense</u>), <u>Silene</u> (<u>Silene noctiflora</u>), and wild buckwheat (<u>Polygonem convolvalus</u>) were all effectively controlled at all rates studied. Yields, test weights and height did not vary and were found to be statistically significant when analyzed. Bromoxynil plus MCPA and fluorchloridone were also tested as comparison treatments. These treatments performed equally well in weed control, yield and test weights. Table 2. Fall and spring application study of chlorsulfuron to spring wheat. Northwestern Agricultural Research Center, Kalispell, MT. Field R-9

Freatment	Rate	Appln.	Yield	Test Wt.	Height	% We	ed Con	trol
	i Leige	stud for	Bu/A	Lbs./Bu	(In)	Fan	Sil	Buck
Chlorsulf.	.187	Fall	51.7	59.2	24.4	100	100	100
Chlorsulf.	.25	Fall	65.8	59.4	26.7	100	100	100
Chlorsulf.	.5	Fall	62.3	60.0	26.7	100	100 1	100
Chlorsulf. + surf.	.125	3-5 lf	61.5	59.8	26.1	100	100	86
t surf.	.25	3-5 lf	56.9	59.3	27.0	100	100	100
t surf.	.5	3-5 lf	63.4	59.6	27.0	100	100	100
+ surt. Bromoxynil + + MCPA	.375	Post	60.8	59.5	26.1	100	99	100
lourchlor.	.25	Post	64.9	59.7	26.7	100	100	71
Check		anne entre dans alles	53.6	59.8	25.5	0	0	0
		S.E.X. C.V.	6.17	59.59 .940 2.70 .452	26.1 .791 2.25 3.39	100	98.5 1.9 2.5 2.6	97.5 1.8 3.7 3.8
	nweed,	Sil = sil	by ocula ene, Buck	.787 ar ratings k = wild bud '		seats te qu e e ste qu e e ste s	7.3	10.9
Air Soil Wind Rel H	: 11 n. Fa temp 3 temp 4 Hum 5	59 F 40 F 0 mph	1-3 53 62 0 / 58 / W. 1 Fan	F	lvs, 2-3" ling to 1	1/2"		
eneral data:								

C>

C>

 PROJECT TITLE:
 Control of bedstraw in Newana spring wheat

 YEAR/PROJECT:
 1985/754 Weed Control in Farm Crops

 PROJECT PERSONNEL:
 Image: Control in Farm Crops

Leader - Vern R. Stewart, N. W. Agric. Res. Center, Kalispell Ag. Research Specialist I - Todd K. Keener N. W. Agric. Res. Center, Kalispell Cooperators - Chemical Company Representatives

SUMMARY:

Very light bedstraw stands prevented effective evaluation of the herbicides tested in this experiment. Yield differences and other agronomic observations showed that the majority of these compounds to be safe on spring wheat.

RESULTS:

This study was initiated in an area designated for winter wheat but germination and the resulting stand were so poor that spring wheat was reseeded the following April. Unfortunately this practice reduced bedstraw weed populations so no accurate evaluations could be made. Several compounds with potential and observed activity against bedstraw were applied which included Fluorchloridone, SC054, Harmony and combinations of bromoxynil, chlorsulfuron and betazon. None of the compounds were detrimental to yield, test weight and height and seemed safe for usage in spring wheat.

22

Table 3. Agronomic data from the bedstraw herbicide study grown on the Dale Sonstellie farm, Kalispell, MT. in 1985.

Date planted: April 23,1985 Date harvested: Sept. 3,1985

Treatment	Rate # ai/A	Appln.	Yield Bu/A	Test wt. Lbs./Bu	Height (In)
lourchloridone	.25	PES	82.0	55.4	30.6
lourchloridone	.375	PES	81.8	56.1	31.2
lourchloridone	.25	Post	78.4	56.8	29.1
lourchloridone	.375	Fost	90.4	58.éa	30.5
lourchl. + metribuzir	.25+.25	Post	72.7	58.6a	29.1
lourchl.+metribuzin	.375+.375	Post	71.1	59.1a	28.0
C 057	3.0	PES	84.7	55.5	30.1
C 057	4.0	PES	90.9	55.3	31.0
C 057	5.0	PES	94.5	55.3	32.0
C 057	3.0	Post	102.1a	57.6	31.5
C 057	4.0	Post	99.9	57.3	29.6
C 057	5.0	Post	89.8	55.6	30.5
PX - M6316	.25 oz	Post	87.5	56.9	27.7
°X - M6316	.5 oz	Post	78.6	56.0	27.9
omoxynil + MCPA .	375+.375	Post	90.1	56.3	29.4
lorsulfuron + surf	.125 oz	Post	87.3	55.8	29.1
hlorsulf. + bromox .1		Post	72.7	55.0	28.9
+ MCPA lourchl. + bromox	+ .375		80.6	56.7	29.5
+ MCPA entazon + MCPA	+ . .75 + .75	25 Post	89.7	56.5	30.4
lourchl. + chlorsulf	.25+.125oz	Post	83.1	57.2	29.2
heck			83.7	55.9	30.4
······································)	x	85.3	56.5	29.8
		F 1/	1.80*	3.95*	1.53
		S.E.X.	6.18	. 59	2.41
		C.V.	7.24	1.05	3.19

Table 3. (cont'd)

1/ F value for treatment comparison

Indicates statistical significance at the .05 level

a/ Indicates values significantly greater than the check at the .05 level

Application data:

6-10-85 Date: 10-17-84 Air temp: 40 F 70 F 43 F Soil temp: 68 F Wind: 0 mph 4-6 mph Rel hum: 45 % 30 % 7-9 " Crop: Fre Weed stages: all weeds present if any - seedlings General information:

Volume 26.86, tractor speed 2.64, pressure 32 psi, plot size 10 x 24', surfactant used .5% v/v.

alla barasmeat and lambaguarter in cring barley. Esa highest . d wr

(1) (ds. care, weight, height and perform at .06 or .1(a gap ...) good shut mificacely smong treatments. Marguifurem at .06 or .1(a gap ...) good shut control of did all broadlest treatments. The highest rield (120 ba(e)) and obmained with meteoligrem at .06 os at/s. The combination of BET-9(b)(b and or c sulfares -icb bromerysti iscenstrated excellent broadlest creducti is would at showing trop mifity to apring barts? AE 272,293 applied at of the scale of the states. PROJECT TITLE: Combination of broadleaf weed herbicides for control of weeds in grains

YEAR/PROJECT:

1985/754 Weed Control in Farm Crops

PROJECT PERSONNEL:

Leader - Vern R. Stewart, N. W. Agric. Res. Center, Kalispell Ag. Research Specialist I - Todd K. Keener N. W. Agric. Res. Center, Kalispell

Cooperators - Chemical Company Representatives

SUMMARY:

Applications of metsulfuron, DPX-M6316 and combinations of these herbicides with bromoxynil provided excellent control of fanweed, night flowering catchfly, wild buckwheat and lambsquarter in spring barley. The highest yield was recorded in plots treated with .06 oz ai/a of metsulfuron.

RESULTS:

Yields, test weight, height and percent plump recordings did not vary significantly among treatments. Metsulfuron at .06 oz ai/a gave very good weed control as did all broadleaf treatments. The highest yield (120 bu/a) was obtained with metsulfuron at .06 oz ai/a. The combinations of DPX-M6316 and metsulfuron with bromoxynil demonstrated excellent broadleaf weed control as well as showing crop safety to spring barley. AC 222,293 applied alone was weak on night flowering catchfly.

Table 4. Agronomic data from the combination broadleaf herbicide study on spring barley grown on the Northwestern Agricultural Research Center in 1985, Kalispell, MT.

Date seeded: April 30, 1985

1

Date harvested: September 5, 1985

Treatment	Rate	Yield Bu/A	Test Wt Lb/Bu	. % Plump	Height (In)	% Fari	Weed NFC		-ol 1/ Lamb
Bromoxynil	.19	91.4	49.1	76.8	28.1	100	86	88	85
Bromoxynil	.375	94.2	49.2	82.5	26.3	100	95	100	100
Bromoxynil	.25	101.0	50.0	86.3	27.9	94	84	95	100
Bromoxynil	.5	109.6	50.6	90.3	29.7	97	93	75	96
DFX-M6316 .1	25 oz	100.4	49.6	81.8	28.2	100	91	93	99
DFX-M6316 .	25 oz	104.0	50.2	88.5	27.4	100	88	99	88
DPX-M6316 .	50 oz	110.8	50.4	89.3	28.6	100	78	100	100
Metsulfuron.	06 oz	120.4	50.5	87.5	24.4	99	93	98	83
Bromoxynil+		112.6	50.6	92.0	28.5	100	98	96	100
DPX-M6316 Bromoxynil+	. 25+	112.3	50.9	91.3	28.2	100	88	94	100
DPX-M6316 Bromoxynil+	. 25+	103.9	49.5	84.0	28.4	100	100	87	100
DPX-M6316 Bromoxynil+	. 19+	102.1	49.4	84.8'	28.2	100	100	100	100
Bromoxynil+		106.3	50.8	92.0	30.2	100	100	100	100
Bromoxynil+		92.5	50.0	88.3	28.2	100	91	91	100
	.375 .45	100.9	49.7	85.5	28.8	100	59	95	85
Check		90.2	49.5	81.0	27.4	0	0	0	0
	x F 2/ S.E.X. C.V.	108.3 .825 9.43 9.13 26.87	50.0 .999 .58 1.16 1.65	71.7 .806 4.94 5.71 14.07	28.2 .601 1.20 4.26 3.43	93 6.10 7.78 8.36	86 2.61 11.16 13.07 31.79	8.29	89 6.89 8.81 9.94 25.09

1/ % Weed control by ocular observation Fan = fanweed, NFC = night flowering catchfly, Buck = wild buckwheat, Lamb = lambsquarter

2/ F value for treatment comparison

Table 4 (cont'd)

Application data: date: 5-22-85 type: Post air temp: 80 F serves broken grown on the North soil temp: 81 F wind: 0 mph rel hum.: 13 weed stages: w. buckwheat 2 true leaves fanweed 4" lambquarters 1 1/2", 6 true lvs night flowering catchfly & true leaves General information: Volume 26.86 gpa, tractor speed 2.64 mph, pressure 32 psi plot size 10' x 12'. ſ

reso sectors by scale preservation

PROJECT TITLE: Evaluation of chlorsulfuron analogs or phenoxy compounds for control of broadleaf weeds in Ingrid spring barley

27

YEAR/PROJECT: 1985/754 Weed Control in Farm Crops

PROJECT PERSONNEL:

Leader - Vern R. Stewart, N. W. Agric. Res. Center, Kalispell Ag. Research Specialist I - Todd K. Keener N. W. Agric. Res. Center, Kalispell

Cooperators - Chemical Company Representatives

SUMMARY:

In an experimental broadleaf herbicide evaluation in spring barley several chlorsulfuron derivatives provided very good weed control of fanweed, <u>Silene</u> sp, buckwheat and lambsquarter when applied post emergence. Other broadleaf experimental compounds (AG1, AG2 and Basagran M) gave good control of most broadleaf weed species evaluated.

RESULTS:

The chlorsulfuron analogs; M6316, L5300, R9674, E8898 and R9521 all gave good control of weed species evaluated. The only area where weed control was weak was with L5300 at .06 oz ai/a on fanweed. The stand and herbicide comparisons of bromoxynil plus MCPA, 2,4-D and the experimental compounds AG1, AG2 and Basagran M demonstrated excellent broadleaf control of the species evaluated. Yields, test weights, percent plump and height from the treated plots were not significantly different from the check.

3-5" 21-3" 3" re - 32 psi	gpa; Fressure	00		5		(
3-5"	=	. 26 86 or	Fanweed	General Infro:	52°F 3 mph	62°F		Temp	
3"	21" 2-3"	heat er	Wild Buckwheat Lambsquarter	Weed Stages:	6/10/85	6/10	n /85 63°F	ment co Date Soft	<pre>1/ F value for treat Application Data:</pre>
3.4 4.49	1.5	27.6	13.9	18.5	6.1	15.8	2	L.S.D.	
1.2 5.3	1.1	•	•	d :	2.3			C. V. %	
1.2 4.0	•5	9.8	4.9	6.	2.2	5.6		S.E.X	
1.2NS .34NS	S .7NS	.95NS	8.9		64.9	7.4			
96.0 29.7	49.1 9	110.0	97.0	9	94.7	96.0		. ×1	
94.5 31.1	49.1 9	112.9	0	0	0	0		0	Check
7.3 30.5	49.9 97	115.0	100	100	100	100	Tillered	.5#+.5#	Basagran M+2,4-D A
•	48.6 94		100	80	96	98	Tillered	.75#	Basagran M
8	49.0 9	116.2	100	99	94	100	Post	.5#	1
96.0 31.6	49.3 9	114.0	100	99	98	100	Tillered	2.5#	AG 2 BAS 03701H
.5 28.	G	113.1	100	94	100	100	Tillered	1.25#	2 BAS
95.0 31.6	49.5 9	125.0	100	99	98	100	Tillered	2.0#	1 BAS
8	49.6 98	111.0	99	94	100	100	Tillered	1.0#	1 BAS
ω	.6	112.7	100	95	100	100	Tillered	1.0#	PA amir
.0 29.	ω		98	94	86	100	Tillered	.50#	2,4-D amine
С	.7	•	- 100	81	94	100	Tillered	.3#	2,4-D amine
ъ	ω	113.9	100	95	93	100	Post	· 375#+· 357#	Bromoxynil + MCPA
•	.0	106.7	100	84	86	100	Post	.06oz	Ally
.3 29.	2	114.9	100	100	100	100	Post	.28oz	R9521
.0 28.	ω.	103.1	100	100	100	100	Post	.21oz	R9521
.8 28	4	108.7	100	100	100	100	Post	.14oz	R9521
.8 31.	2	108.4	100	98	100	100	Post	.50oz	E8898
5	-	87.9	100	98	100	100	Post	.25oz	E8898
8 29.	9	106.2	100	94	100	100	Post	.125oz+.125oz	M6316 + L5300
8	.00	100.2	100	98	100	100	Post	.20oz	R9674
∞	ω i	97.7	100	99	100	100	Post	.10oz	R9674
0 29.	2		100	93	98	100	Post	.25oz	L5300
LU I	G	97.1	100	91	99	100	Post	.125oz	L5300
.3 30.	ω		100	89	94	75	Post	.06oz	L5300
'n	-		100	100	99	100	Post	.25oz	M6316 + R11
95.8 28.3	48.3 9	95.4	100	91	98	99	Post	.125oz	M6316 + R11
Plump Inches	Bu .	Bu/A]	Lambsquarter	Buckwheat La	Silene	Fanweed	Application	Rate	Treatment
% Height	Test Wt	Yield (Weed Control	2 W				

6

Evaluation of several herbicides for the control of broadleaf weeds in Ingrid spring barley. Northwestern Apricultural Research Center. Field No. R-9, Kalienell, MT 50001

Table 5.

PROJECT TITLE: Combination wild oat and broadleaf herbicides for weed control in spring barley

YEAR/PROJECT: 1985/754 Weed Control in Farm Crops

PROJECT PERSONNEL:

Leader - Vern R. Stewart, N. W. Agric. Res. Center, Kalispell Ag. Research Specialist I - Todd K. Keener N. W. Agric. Res. Center, Kalispell

Cooperators - Chemical Company Representative

SUMMARY:

A study was initiated in spring barley comparing AC 222,293 or diclofop in combination with bromoxynil, MCPA, 2,4-D, chlorsulfuron, metsulfuron and DPX-M6316. AC 222,293 and diclofop performance varied in accordance with the broadleaf herbicide combination mixture. No significant yield, test weight, percent plump or height difference were a result of any of the herbicide applications.

RESULTS:

Bromoxynil plus diclofop gave slightly better wild oat control than bromoxynil plus AC 222,293 or bromoxynil plus MCPA plus AC 222,293. AC 222,293 or diclofop combined with 2,4-D did not give good wild oat control. The combination of chlorsulfuron plus diclofop gave better control than the combination with AC 222,293 plus chlorsulfuron. AC 222,293 plus DPX-T6376 gave more wild oat control than the DPX-T6376 plus diclofop combination. Slightly improved wild oat control was obtained when combining DPX-M6316 plus AC 222, 293 in comparison to DPX-T6316 plus diclofop. MCPA combinations with AC 222, 293 or diclofop were about equal in wild oat control. After wild oat counts were taken it was found that chlorsulfuron plus AC 222,293 (.125 oz \pm .45 lb) and DPX-M6316 plus AC 222,293 gave complete control of wild oats. Bromoxynil plus diclofop (.375 lb \pm 1.0 lb ai/a) gave practically complete control. Froadleaf weed control (fanweed, <u>Silene</u> sp, and buckwheat) was excellent in all treated plots except those treated with 2,4-D and MCPA which had fair to good control.

Yields, test weights, percent plump and height data were found to be statistically non-significant. 30 CTable 6.

Agronomic data from the combination broadleaf wild oat herbicide study grown on the Northwestern Agricultural Research Center in Kalispell, MT in 1985. Field R-9

Date planted: April 30,1985 Date harvested: September 5,1985

Treatment	Rate ai/A	Wild oat count 1/		Weed NFC		ol 2/ Woat
Bromox + AC 293 .375	+ .375	7.0	100	-90	100	100
Bromox + AC 293 .375	+ .45	4.8	99	99	91	100
	+ .375	1.3	100	91	77	84
Bromox + MCFA + .375	+ .375	4.7	100	94	98	53
+ AC 293 + Bromox + diclofop .375	· / ·	5.0	100	79	100	93
Bromox + diclfop .375	+ 1.0	.3	98	91	100	99
2,4-D LV + AC 293 .3 +.	.375	9.5	100	65	68	55
2,4-D LV + AC 293 .3 +.	.45	1.5	98	81	95	65
2,4-D LV + diclofop .3	+ .75	28.8	88	64	58	34
2,4-D LV + diclofop .3	+ 1.0	10.5	73	55	41	68
Chlorsul+ AC 293 .125 d	oz +.375	5 2.8	100	100	95	74
Chlorsul+ AC 293 .125 d	oz + .45	5 0	100	100	98	88
Chlorsul+ diclofop .125	5 oz+.75	5 14.8	100	100	99	60
Chlorsul+ diclofop .125	5 oz+1.0	3.8	100	100	96	89
DFX-T6376 + AC 293 .06	oz+.375	5 7.8	100	100	95	68
DPX-T6376 + AC 293 .06	oz+ .45	5 2.0	100	99	78	84
DPX-T6376 + diclo .06	oz+ .75	5 21.8	100	98	84	26
DPX-T6376 + diclo .06	oz+ 1.0	5.3	99	99	84	88
DFX-M6316 + AC 293 .25	oz+.375	5 7.7	100	100	98	75
DPX-M6316 + AC 293 .25	oz+ .45	5 0	100	99	94	98
DPX-M6316 + diclof .25	oz+ .75	5 7.0	100	98	96	78
DPX-M6316 + diclof .25	oz+ 1.0	2.8	100	100	95	93
MCPA + AC 293 .3 +	.375	11.3	98	80	81	64
MCPA + AC 293 .3 +	.45	6.3	100	79	84	83
MCPA + diclfop .3 +	.75	16.5	90	48	81	73
MCPA + diclfop .3 +	1.0	2.5	81	78	94	89
CHECK	-	34.3	0	0	0	0

Table 6. (cont'd)

Treatm	ent		Wild oa count					iona në
	1.7	F 3/ S.E.X.	8.1 2.06 5.96	3.64	3.75	88 2.87 8.98	72 2.50 12.8	name na 1 - A Charlet
		C.V.% L.S.D.	- 73.3 14.8	5.8	10.7	10.2	17.8	
′ % Weed buckwh Weed s	Contro eat, Wo cores w	t = number l Fan = far at = wild c ere made by reatment co	weed, NFC bat cocular ra	= nigh	nt flo	wering	catchf	ly, Buck = wi
oplicatio		: date air temp soil temp wind Rel hum	5-28-85 68 F 66 F 0-2 mph 55 %		Weed	stage		
meral da	ta: vol	ume 26.86 g	pa, ground	d speed	1 2.64	mph,	plot si	ze 10° × 12°
				· · ·				
· 1								
<u> </u>								

1,3

Table 6. (cont'd)

Treatment	Rate ai/A	Yield Bu/A	Test Wt. Lb/Bu	% Flump	Height (Inch)
Bromox + AC 293 .375	+ .375	103.7	48.2	94	28.7
Bromox + AC 293 .375	+ .45	108.3	48.4	99	27.4
	+ .375	107.7	48.2	95	30.0
		. 98.2	48.1	96	27.1
Bromox + diclofop .375	+ .75	110.3	48.5	96	27.9
Bromox + diclfop .375	+ 1.0	108.9	48.9	96 [°]	28.5
2,4-D LV + AC 293 .3 +.	.375	92.1	47.7	95	26.9
2,4-D LV + AC 293 .3 +	.45	107.0	48.8	96	30.1
2,4-D LV + diclofop .3	+ .75	102.3	47.5	93	27.0
2,4-D LV + diclofop .3	+ 1.0	103.9	48.6	80	28.9
Chlorsul+ AC 293 .125 (oz +.375	111.7	48.7	95	29.7
Chlorsul+ AC 293 .125 (oz + .45	115.5	49.2	96	29.3
Chlorsul+ diclofop .125	5 oz+.75	113.8	49.0	95	29.4
Chlorsul+ diclofop .125	5 oz+1.0	106.1	48.7	96	28.1
DPX-T6376 + AC 293 .06	oz+.375	107.9	48.9	96	30.3
DPX-T6376 + AC 293 .06	oz+ .45	107.7	48.9	96	28.8
DPX-T6376 + diclo .06		104.2	47.9	96	28.7
DPX-T6376 + diclo .06	oz+ 1.0	95.6	48.0	96	27.0
DPX-M6316 + AC 293 .25	oz+.375	108.2	48.9	97	28.5
DPX-M6316 + AC 293 .25	oz+ .45	108.9	49.4	97	30.0
DPX-M6316 + diclof .25	oz+ .75	103.6	48.1	96	27.8
DPX-M6316 + diclof .25	oz+ 1.0	108.2	48.7	96	28.4
MCPA + AC 293 .3 -	+ .375	106.8	48.6	96	29.7
MCPA + AC 293 .3 -	+ .45	111.7	48.5	95	28.8
MCPA + diclfop .3 -	+ .75	116.3	48.6	96	30.6
MCPA + diclfop .3 -	+ 1.0	112.2	49.0	96	30.1
CHECK		107.8	48.7	94	31.7

	Bu/A	Lb/Bu	% Plump	(Inch)
X	107.1	48.6	94.9	28.9
F 1/	.599	.71	1.15	1.00
S.E.X.	7.2	.53	3.01	1.25
C.V.%	6.6	1.10	3.17	4.33
L.S.D.	20.1	1.50	8.48	8.94
	S.E.X. C.V.%	Bu/A X 107.1 F 1/ .599 S.E.X. 7.2 C.V.X 6.6	Bu/A Lb/Bu X 107.1 48.6 F 1/ .599 .71 S.E.X. 7.2 .53 C.V.X. 6.6 1.10	Bu/A Lb/Bu X 107.1 48.6 94.9 F 1/ .599 .71 1.15 S.E.X. 7.2 .53 3.01 C.V.% 6.6 1.10 3.17

1/ F value for treatment comparison

ALC: NEST

Uninht

"All see egoing visat attailes tested showed a during to in [6 attain) an egot vina crasted cith 1.4 or 1.6 ins tel 1.72 just 2016, prepiati tations atel.

in anosi spring loosi variaclas reated thir, was a c . . - - in .lashi ... As the rate of trialists way incremed.

Rumber as plants par foot of row when revised regulicantly as the base or trialate was increased. Fortuna was the lassi as pitchis estrony in the second of the second second of the se

Stards ver reduced up to \$50 in Replace v. or offy a 200 reduced reas would in the worldfor first, Mastered and Gierons when i.v. 15 at/a 14 the shore lare was applied "Fir The 2.0 its at/a tate of tripijare when applied, it will be stadded that 15 to 972. Greater we the sout toletant variary torical. PROJECT TITLE: The effect of preplant incorporated triallate (Fargo) on ten spring wheat varieties

YEAR/PROJECT: 1985/754 Weed Control in Farm Crops

PROJECT PERSONNEL:

Leader - Vern R. Stewart, N. W. Agric. Res. Center, Kalispell Ag. Research Specialist I - Todd K. Keener N. W. Agric. Res. Center, Kalispell Cooperators - Chemical Company Representatives

SUMMARY:

As recorded in previous years different spring wheat varieties vary in their reaction to preplant incorporated (PPI) triallate. Most of the ten varieties tested had negative agronomic responses (yield, head counts, plant counts, percent stand) when exposed to 1.0 and 2.0 lbs ai/a of triallate preplant incorporated.

RESULTS:

All ten spring wheat varieties tested showed a decrease in yield and test weight when treated with 1.0 or 2.0 lbs triallate per acre, preplant incorporated.

In most spring wheat varieties tested there was a decrease in number of heads as the rate of triallate was increased.

Number of plants per foot of row were reduced significantly as the rate of triallate was increased. Fortuna was the least susceptible variety in respect to reduced plant numbers.

Stands were reduced up to 85% in Pondera whereas only a 25% reduction was noted in the varieties Olaf, Westbred and Glennan when 1.0 lb ai/a of triallate was applied PPI. The 2.0 lbs ai/a rate of triallate when applied PPI reduced stands from 35 to 95%. Glennan was the most tolerant variety tested.

Heading dates did not vary more than one day from the check in comparing treated triallate plots to an untreated area.

FRAIECT PERSONTEL:

Table 7. Agronomic data from the triallate spring wheat study grown on the Northwestern Agricultural Research Center, Kalispell, MT in 1985. Field R-6.

Date	p1	anted:	Apri	1 4.	1985
------	----	--------	------	------	------

Date harvested September 15, 1985

Variety	Rate Lb/A	Yield Bu/A	Test WE Lbs/Bu	Heads per 3ft	Plants per 6-4-85	3 feet 7-2-85	% Stand
[C 566 (* .)	-63 g %	5	(1) star j	52.03	002 81260	Infly parks	
NK 751	Ō	47.0	57.2	27.8	11.6	11.0	90
NK 751	1	39.0	57.5	29.3	13.1	12.8	49
NK 751	2	38.3	55.9	28.9	13.7	9.3	29
Newana	0	52.0	58.1	36.6	11.7	15.0	83
Newana	1	39.7	53.0	33.1	6.6	11.0	34
Newana	2	22.6	50.0	18.6	4.4	3.8	7
Lew	O	48.4	59.5	41.0	14.2	13.0	84
Lew	1	41.5	54.0	27.9	10.3	9.6 8	01083034
Lew	2	20.4	46.3	22.5	4.5	5.5	11
Glenman	0	47.5	55.2	39.3	42.9	10.7	84
Glenman	1	49.2	56.4	38.3	11.7	12.3	73
Glenman	2	39.4	53.3	32.3	9.6	9.1	58
Owens	0	54.0	55.8	36.3	12.6	10.9	71
Owens	1 1	51.5	56.6	31.5	11.7	10.6	46
Owens	2	42.6	51.8	26.5	6.1	6.6	34
Pondera	0	27.7	59.3	31.6	an13.1 K	13.8	78
Fondera	1	34.6	52.1	27.1	9.4	8.3	29
Pondera	24	15.4	47.4	19.4	3.3	4.6	8
Fortuna	0	33.6	58.5	36.9	10.3	12.1	94
Fortuna	1	33.6	57.9	34.9	12.8	12.8	70
Fortuna	2	24.3	53.9 '	33.9	7.2	8.3	37
Westbred (Ch O	42.1	59.8	32.7	11.5	12.4	86
Westbred (43.7	59.4	31.6	12.3	15.0	61
Westbred (Ch 2	37.3	56.8	22.9	7.2	8.9	22
Mckay	0	49.2	54.2	29.9	11.0	12.6	78
Mckay	1	45.7	51.9	34.1	10.5	11.1	43
Mckay	2	35.0	47.1	25.4	7.9	6.8	21
Olaf	0	53.4	58.1	42.9	13.6	12.9	94
Olaf	1	45.5	56.7	43.2	12.4	12.7	71
Olaf	2	40.0	53.7	36.2	7.7	9.6	44
	x	39.92	54.9	31.7	13.5	10.4	54.0

Application data: Date: April 24, 1985, air temp 42 F, soil temp 42 F, wind 0-2 mph, rel hum 34%, seeded with a research-type double disced seeder, depth of seeding 1 1/2 - 2 ", chemical incorporation by a vibra-shank in two directions, soil moisture was very good, type of application-pre plant incorporated.

C>

PROJECT TITLE:

The effects of several chlorsulfuron analogs on five varieties of spring barley

YEAR/PROJECT: 1985/754 Weed Control in Farm Crops

PROJECT PERSONNEL:

Leader - Vern R. Stewart, N. W. Agric. Res. Center, Kalispell Ag. Research Specialist I - Todd K. Keener N. W. Agric. Res. Center, Kalispell

Cooperators - Chemical Company Representatives

SUMMARY:

Three DuPont experimental compounds (M6316, L5300 and R9674) and bromoxynil plus MCPA were found to provide good broadleaf weed control in Menuet, Ingrid, Clark, Piroline and Hector barley. High rates of L5300 and R9674 did cause plant injury to several varieties.

RESULTS:

All chemical treatments provided excellent broadleaf weed control of pigweed, fanweed, lambsquarter and wild buckwheat. The compounds L5300 (.75 oz. ai/a) and R9674 (.375 and 1.0 oz. ai/a) noticeably thinned stands of Menuet, Ingrid, Clark, Piroline and Hector. Head counts were reduced in most barley varieties tested with rates of L5300 (.75 oz. ai/a) and R9674 (.375 and 1.0 oz. ai/a). High rates of L5300 and R9674 (.75 and 1.0 oz ai/a) respectively reduced plant counts in barley with most reduction being observed in Clark. Yields were greatly reduced in Ingrid, Clark and Hector. Test weights and percent plump were not altered significantly by treatment.

Table 8. Agronomic data from the Chlosufuron analog study grown at the Northwestern Agricultural Research Center, Kalispell, MT in 1985. Field R5

Menuet M 6316 .5 69.2 49.0 97.5 24.1 7.2 Menuet L 5300 .25 68.7 49.6 94.0 26.7 7.8 Menuet L 5300 .1.0 54.6 48.3 93.0 20.2 8.0 Menuet L 5300 1.0 54.6 48.3 93.0 20.2 8.0 Menuet L 5300 1.0 54.6 48.5 93.8 21.4 8.1 Menuet Broate .375# 51.9 49.7 92.5 14.7 7.6 Menuet Check 53.2 48.7 82.0 20.6 10.0 Ingrid M 63161.0 78.5 48.8 94.3 29.1 9.7 Ingrid R 9674 3.75 49.4 49.1 87.5 28.5 7.7 Ingrid R 9674 1.0 50.9 97.0 91.8 20.5 7.2 Ingrid Broate .375# 55.5	Variety	Treatmen oz ai/A		Yield Bu/a	Test Wt. Lb/Bu	% Plump	Head Count 1/	Plant Count	2/
MenuetM 63261.062.149.895.722.78.2MenuetL 5300.2568.749.694.026.77.8MenuetS 9274.37546.048.893.821.48.1MenuetS 9274.37546.048.693.821.48.1MenuetS 9274.37546.048.693.821.48.1MenuetB 7674.375#51.949.792.528.06.4MenuetCheck53.248.782.020.610.0IngridM 6316.1078.548.894.329.19.9IngridL 5300.2577.349.393.528.57.7IngridL 5300.2577.349.449.187.522.69.6IngridR 9674.37549.449.187.528.09.2IngridR 9674.1050.949.091.820.57.2IngridB 7674.37549.449.187.528.09.2ClarkM 63261.074.449.694.031.394.6IngridB 7674.37546.948.990.528.09.2ClarkM 63261.074.449.694.041.810.4ClarkL 5300.2565.649.993.324.08.1ClarkL 5300.2559.797.779.0 <th></th> <th></th> <th>100</th> <th></th> <th>5.0</th> <th>8.05 B</th> <th>9. · 0.22 J</th> <th>29</th> <th><u>Urav</u>ři</th>			100		5.0	8.05 B	9. · 0.22 J	29	<u>Urav</u> ři
MenuetM 63261.062.149.895.722.78.2MenuetL 5300.2568.749.694.026.77.8MenuetR 9274.37546.048.393.821.48.1MenuetR 9274.37546.048.593.821.48.1MenuetB 76741.044.149.192.514.77.6MenuetCheck53.248.782.020.66.4MenuetCheck53.248.782.020.66.4IngridM 63161.078.548.894.329.19.9IngridL 5300.2577.349.393.528.57.7IngridL 53001.061.748.989.820.87.2IngridR 9674.37549.449.187.522.69.6IngridR 76741.050.949.091.820.57.2IngridBronate.375#55.550.190.323.66.9IngridBronate.375#55.550.190.324.08.1ClarkM 6316.575.749.499.528.09.2ClarkM 63261.074.449.694.041.810.4ClarkL 5300.2565.649.993.324.08.1ClarkL 5300.2559.449.393.322.17.4 </td <td>001</td> <td></td> <td></td> <td></td> <td>22</td> <td>3.21 0</td> <td>1 0012 1</td> <td></td> <td></td>	001				22	3.21 0	1 0012 1		
MenuetL5300.25 68.7 49.4 94.0 26.7 7.8 MenuetL53001.054.6 48.3 93.0 20.2 8.0 MenuetR 87.4 1.0 44.3 49.1 92.5 14.7 7.6 MenuetBronate $375#$ 51.9 49.7 92.5 220.6 6.4 MenuetDronate $375#$ 51.9 49.7 92.5 220.6 6.4 MenuetDronate $375#$ 51.9 49.7 92.5 220.6 10.0 IngridM 6316.5 68.8 49.4 92.8 23.1 10.4 IngridL 5300.255 77.3 49.3 93.5 28.5 7.7 IngridL 5300.125 61.7 49.6 91.8 20.5 7.2 IngridR 974.375 49.4 49.1 87.5 221.6 9.6 IngridR 974.375 49.4 49.1 87.5 28.0 7.2 IngridBronate $.375#$ 55.5 50.1 90.3 23.6 6.9 IngridCheck 53.6 48.9 75.0 28.0 9.2 ClarkM $6326.1.0$ 74.4 49.6 94.0 41.8 10.4 ClarkM $6326.1.0$ 74.4 49.6 94.0 41.8 10.4 ClarkM $6326.1.0$ 60.6 48.7 95.2 28.1 7.6 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
MenuetLS3001.054.648.3 93.0 20.28.0MenuetR9674.37546.048.5 93.0 20.28.0MenuetBronate.375#51.949.192.514.77.6MenuetBronate.375#51.949.792.528.06.4MenuetCheck53.248.782.020.610.0IngridM 6316.568.849.492.823.110.4IngridL5300.2577.349.393.528.57.7IngridL53001.061.748.989.820.87.2IngridR96741.050.949.091.820.57.2IngridR96741.050.949.091.820.57.2IngridBronate.375#55.550.190.323.66.9IngridCheck53.648.775.028.09.2ClarkM 63261.074.449.694.041.810.4ClarkL53001.060.648.789.528.17.4ClarkL53001.060.648.789.528.17.4ClarkL53001.060.648.789.528.17.4ClarkBoate.375#61.549.492.526.17.0ClarkBo					,				
Menuet R 9674 .375 46.0 48.6 93.8 21.4 8.1 Menuet F 9674 1.0 44.2 49.1 92.5 28.0 6.4 Menuet Bronate .375# 51.9 49.7 92.5 28.0 6.4 Menuet Check 53.2 48.7 82.0 20.6 10.0 Ingrid M 6316 .5 68.8 49.4 92.8 23.1 10.4 Ingrid L 5300 1.0 61.7 48.9 89.8 20.8 7.2 Ingrid R 9674 1.0 50.9 49.0 91.8 20.5 7.2 Ingrid R 9674 1.0 50.9 49.0 91.8 20.5 7.2 Ingrid Dronate .375# 55.5 50.1 90.3 23.6 6.9 Ingrid Check 53.6 48.9 75.0 28.0 9.2 2 Clark M 6316 .5 75.7 49.7 94.0 31.8 10.4									
MenuetF. 96741.044.249.191.514.77.6MenuetBronate.375# 51.9 49.792.528.06.4MenuetCheck 53.2 48.782.020.610.0IngridM 63161.078.548.894.329.19.9IngridL 5300.2577.349.393.528.57.7IngridL 53001.061.748.989.820.87.2IngridR 9674.37549.449.187.521.69.6IngridBronate.375#55.550.190.323.66.9IngridBronate.375#55.550.190.323.66.9ClarkM 6316.575.749.794.037.48.5ClarkM 63261.074.449.694.041.810.4ClarkM 53261.074.449.694.041.810.4ClarkL 5300.2565.649.993.324.08.1ClarkL 53001.056.348.990.519.08.9ClarkR 96741.058.348.990.519.08.9ClarkR 96741.058.348.990.519.08.9ClarkCheck61.749.497.027.57.4ClarkCheck61.749.393.332.110.6 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
Menuet Bronate .375# 51.9 49.7 92.5 28.0 6.4 Menuet Check 53.2 48.7 82.0 20.6 10.0 Ingrid M 6316 .5 68.8 49.4 92.8 23.1 10.4 Ingrid L 5300 .25 77.3 49.3 93.5 28.5 7.7 Ingrid L 5300 .25 77.3 49.3 93.5 28.5 7.7 Ingrid R 9674 .375 49.4 49.1 87.5 21.6 9.6 Ingrid R 9674 1.0 50.9 49.0 91.8 20.5 7.2 Ingrid Bronate .375# 55.5 50.1 90.3 23.6 6.9 Ingrid Bronate .375# 55.5 50.1 90.3 28.0 9.2 Clark M 6326 1.0 74.4 49.6 94.0 41.8 10.4 Clark M 5300 .25 65.6 49.9 90.5 10.0 8.7 Clark M 6316 .5 58.7 49.4 97.0 27.5 7.4 Clark <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td></td<>							*		
MenuetCheck 53.2 48.7 82.0 20.6 10.0 IngridM 6316 .5 68.8 49.4 92.8 23.1 10.4 IngridM 63161.0 78.5 48.8 94.3 29.1 9.9 IngridL 5300 .25 77.3 49.3 93.5 28.5 7.7 IngridL 5300 1.0 61.7 48.9 89.8 20.8 7.2 IngridR 9674 1.0 50.9 49.0 91.8 20.5 7.2 IngridBronate 3754 55.5 50.1 90.3 23.6 6.9 IngridCheck 53.6 48.9 75.0 28.0 9.2 CharkM 6316.5 75.7 49.7 94.0 37.4 8.5 ClarkM 63261.0 74.4 49.6 94.0 41.8 10.4 CharkL 5300 $.25$ 65.6 49.9 93.3 24.0 8.1 ClarkM 63261.0 74.4 49.6 94.0 41.8 10.4 ClarkL 5300 $.25$ 65.4 49.9 90.5 19.0 8.9 ClarkR 9674 375 46.9 48.9 90.5 22.8 7.7 ClarkB ronate $375#$ 61.5 49.4 92.5 26.1 7.0 ClarkB 7974 1.0 58.3 48.9 92.0 27.5 7.4 ClarkB ronate $375#$ 41.9									
$\begin{array}{llllllllllllllllllllllllllllllllllll$.375#						
IngridM6 3 1 6 1.078.548.894.329.19.9IngridL5300.2577.349.393.528.57.7IngridL53001.061.748.989.820.87.2IngridR9674.37549.449.187.521.69.6IngridR96741.050.949.091.820.57.2IngridBronate.375#55.550.190.323.66.9IngridCheck53.648.975.028.09.2ClarkM63261.074.449.694.041.810.4ClarkL5300.2565.649.993.324.08.1ClarkL53001.060.648.789.528.17.4ClarkL53001.058.348.992.022.87.7ClarkR96741.058.348.992.022.87.7ClarkR96741.058.348.992.022.87.7ClarkCheck61.749.487.027.57.4ClarkBronate.375#64.948.993.332.110.6ClarkB94.393.332.110.610.4ClarkB96.73.933.332.110.6ClarkCheck61.749.4<								10.0	
Ingrid L 5300 .25 77.3 49.3 93.5 28.5 7.7 Ingrid L 5300 1.0 61.7 48.9 89.8 20.8 7.2 Ingrid R 9674 .375 49.4 49.1 87.5 21.6 9.6 Ingrid Bronate .375# 55.5 50.1 90.3 23.6 6.9 Ingrid Bronate .375# 55.5 50.1 90.3 23.6 6.9 Ingrid Check 53.6 48.9 75.0 28.0 9.2 Ingrid Check 53.6 48.9 75.0 28.0 9.2 Inark M 6326 1.0 74.4 49.6 94.0 41.8 10.4 Iark L 5300 1.0 60.6 48.7 89.5 28.1 7.4 Iark B 9674 1.375 46.9 48.9 90.5 19.0 8.9 Iark Bronate .375# 61.5 49.4 92.5 26.1 7.0 Iark Bronate .375#					49.4	92.8	23.1	10.4	
IngridL53001.0 61.7 48.9 89.8 20.8 7.2 IngridR 9674 .375 49.4 49.1 87.5 21.6 9.6 IngridBronate.375# 55.5 50.1 90.3 23.6 6.9 IngridBronate.375# 55.5 50.1 90.3 23.6 6.9 IngridCheck 53.6 48.9 75.0 28.0 7.2 IlarkM 6326 1.0 74.4 49.6 94.0 37.4 8.5 IlarkM 6326 1.0 74.4 49.6 94.0 41.8 10.4 IlarkM 6326 1.0 74.4 49.6 94.0 41.8 10.4 IlarkM 6326 1.0 74.4 49.6 94.0 41.8 10.4 IlarkL 5300 1.0 60.6 48.7 89.5 26.1 7.4 IlarkB 9674 3.75 46.9 48.9 90.5 19.0 8.9 IlarkBronate $375#$ 61.5 49.4 92.5 26.1 7.0 IlarkBBronate $375#$ 61.5 49.4 97.0 27.5 7.4 IrolineM 6316 .5 58.9 49.3 92.0 27.2 11.2 IrolineM 6316 .5 58.9 49.3 92.0 27.2 11.2 IrolineK <td< td=""><td>-</td><td></td><td></td><td>78.5</td><td>48.8</td><td>94.3</td><td>29.1</td><td></td><td></td></td<>	-			78.5	48.8	94.3	29.1		
IngridL 53001.0 61.7 48.9 89.8 20.8 7.2 IngridR 9674 $.375$ 49.4 49.1 87.5 21.6 9.6 IngridBronate $.3753$ # 55.5 50.1 90.3 23.6 6.9 IngridBronate $.3754$ # 55.5 50.1 90.3 23.6 6.9 IngridCheck 53.6 48.9 75.0 28.0 9.2 IlarkM 6326 1.0 74.4 49.6 94.0 41.8 10.4 IlarkL 5300 2.5 65.6 49.9 93.3 24.0 8.1 IlarkL 5300 1.0 60.6 48.7 89.5 28.1 7.4 IlarkL 5300 1.0 60.6 48.7 89.5 28.1 7.4 IlarkR 9674 37.5 46.9 48.9 90.5 19.0 8.9 IlarkB ronate $.3754$ 61.5 49.4 92.5 26.1 7.0 IlarkB ronate $.3754$ 61.5 49.4 92.5 26.1 7.0 IlarkBronate $.3754$ 61.5 49.4 92.5 26.1 7.0 IlarkB ronate $.3754$ 49.4 97.0 27.5 7.4 IlarkB ronate $.3754$ 49.4 92.5 26.1 7.0 IlarkCheck 61.7 49.4 97.0 27.5 7.4 IrolineM 6316 $.5$ <	-				49.3	93.5	28.5	7.7	
IngridR96741.050.949.091.820.57.2IngridBronate.375#55.550.190.323.66.9IngridCheck53.648.975.028.09.2ClarkM6316.575.749.794.039.48.5ClarkM63261.074.449.694.041.810.4ClarkL5300.2565.649.993.324.08.1ClarkL53001.060.648.789.528.17.4ClarkR96741.058.348.990.519.08.9ClarkR96741.058.348.992.022.87.7ClarkBronate.375#61.549.492.526.17.0ClarkBronate.375#61.549.492.526.17.0ClarkBronate.375#61.549.492.526.17.0ClarkBronate.375#61.549.492.027.211.2ClarkCheck61.749.487.027.57.4ClarkCheck61.749.487.027.211.2ClarkCheck61.749.392.027.211.2ClarkCheck61.749.392.027.211.2ClarkCheck61.749.392.027.2 <t< td=""><td>-</td><td></td><td></td><td></td><td>48.9</td><td>89.8</td><td>20.8</td><td></td><td></td></t<>	-				48.9	89.8	20.8		
Angrid Bronate .375# 55.5 50.1 90.3 23.6 6.9 Ingrid Check 53.6 48.9 75.0 28.0 9.2 Clark M 6316 .5 75.7 49.7 94.0 39.4 8.5 Clark M 6326 1.0 74.4 49.6 94.0 41.8 10.4 Clark L 5300 .25 65.6 49.9 93.3 24.0 8.1 Clark L 5300 1.0 60.6 48.7 89.5 28.1 7.4 Clark R 9674 .375 46.9 48.9 90.5 19.0 8.9 Clark R 9674 1.0 58.3 48.9 92.0 22.8 7.7 Clark Bronate .375# 61.5 49.4 92.5 26.1 7.0 Clark Bronate .375# 46.9 49.3 93.3 32.1 10.6 Chark Check 61.7 49.4 87.0 27.2 11.2 Clark Check 61.7 49.3	Ingrid	R 9674	.375	49.4	47.1	87.5	21.6	9.6	
Ingrid Check 53.6 48.9 75.0 28.0 9.2 Dlark M 6316 .5 75.7 49.7 94.0 39.4 8.5 Dlark M 6326 1.0 74.4 49.6 94.0 41.8 10.4 Dlark L 5300 .25 65.6 49.9 93.3 24.0 8.1 Dlark L 5300 1.0 60.6 48.7 89.5 28.1 7.4 Dlark R 9674 .375 46.9 48.9 90.5 19.0 8.9 Dlark R 9674 1.0 58.3 48.9 92.0 22.8 7.7 Dlark Bronate .375# 61.5 49.4 92.5 26.1 7.0 Dlark Bronate .375# 61.5 49.4 92.5 26.1 7.0 Dlark Bronate .375# 41.5 49.4 92.5 26.1 7.0 Dlark Check 61.7 49.3 93.3 32.1 10.6 10.13 9.1 Diroline <td< td=""><td>Ingrid</td><td>R 9674</td><td>1.0</td><td>50.9</td><td>49.0</td><td>91.8</td><td>20.5</td><td>7.2</td><td></td></td<>	Ingrid	R 9674	1.0	50.9	49.0	91.8	20.5	7.2	
Ingrid Check 53.6 48.9 75.0 28.0 9.2 Ilark M 6316 .5 75.7 49.7 94.0 39.4 8.5 Ilark M 6326 1.0 74.4 49.6 94.0 39.4 8.5 Ilark L 5300 .25 65.6 49.9 93.3 24.0 8.1 Ilark L 5300 1.0 60.6 48.7 89.5 28.1 7.4 Ilark R 9674 .375 46.9 48.9 92.0 22.8 7.7 Ilark Bronate .375# 61.5 49.4 92.5 26.1 7.0 Ilark Bronate .375# 61.5 49.4 92.5 26.1 7.0 Ilark Check 61.7 49.4 87.0 27.5 7.4 iroline M 6316 .5 58.9 49.3 93.3 32.1 10.6 iroline M 6326 1.0 60.8 49.1 94.0 31.3 9.1 iroline S300 .25 59	Ingrid	Bronate	.375#	55.5	50.1	90.3	23.6	6.9	
ClarkM 6316 .575.749.794.039.48.5ClarkM 6326 1.074.449.694.041.810.4ClarkL 5300 .25 65.6 49.993.324.08.1ClarkL 5300 .25 65.6 49.993.324.08.1ClarkL 5300 1.0 60.6 48.789.528.17.4ClarkR 9674 .37546.948.990.519.08.9ClarkBronate.375# 61.5 49.492.526.17.0ClarkBronate.375# 61.5 49.492.526.17.0ClarkBronate.375# 61.5 49.492.526.17.0ClarkCheck 61.7 49.487.027.57.4ClarkCheck 61.7 49.393.332.110.6CirolineM 6316 .558.749.392.027.211.2CirolineL 5300 .2559.449.392.027.211.2CirolineL 5300 .2559.449.392.027.211.2CirolineR 9674 .37542.647.890.522.16.9CirolineR 9674 .048.048.091.823.28.4CirolineCheck48.548.677.321.99.8ectorM 6316 .569.248.8 </td <td>Ingrid</td> <td>Check</td> <td></td> <td>53.6</td> <td>48.9</td> <td>75.0</td> <td></td> <td></td> <td></td>	Ingrid	Check		53.6	48.9	75.0			
HarkM 63261.074.449.694.041.810.4HarkL 5300.25 65.6 49.993.324.08.1HarkL 53001.0 60.6 48.789.528.17.4HarkR 9674.37546.948.990.519.08.9HarkR 96741.058.348.992.022.87.7HarkBronate.375#61.549.492.526.17.0HarkBronate.375#61.549.492.526.17.0HarkCheck61.749.487.027.57.4HorlineM 6316.558.949.393.332.110.6HorlineM 63261.060.849.194.031.39.1HorlineL 5300.2559.449.392.027.211.2HorlineL 53001.045.648.485.322.07.6HorlineR 96741.048.091.823.28.4HorlineR 96741.048.091.823.28.4HorlineBronate.375#51.349.191.822.78.6HorlineCheck48.548.677.321.99.8HorlineCheck48.548.677.321.99.8HorlineCheck48.548.677.321.99.8HorlineCheck<	lark	M 6316	.5	75.7	49.7				
HarkL5300.25 65.6 49.9 93.3 24.0 8.1 HarkL 5300 1.0 60.6 48.7 89.5 28.1 7.4 HarkR 9674 .375 46.9 48.9 90.5 19.0 8.9 HarkR 9674 1.0 58.3 48.9 92.0 22.8 7.7 HarkBronate.375# 61.5 49.4 97.0 22.8 7.7 HarkCheck 61.7 49.4 87.0 27.5 7.4 HorizolineM 6316 .5 58.9 49.3 93.3 32.1 10.6 HarkCheck 61.7 49.4 87.0 27.5 7.4 HorizolineM 6316 .5 58.9 49.3 92.0 27.2 11.2 HorizolineL 5300 .25 59.4 49.3 92.0 27.2 11.2 HorizolineL 5300 .25 59.4 49.3 92.0 27.2 11.2 HorizolineR 9674 375 42.6 47.8 90.5 22.1 6.9 HorizolineR 9674 1.0 48.0 91.8 23.2 8.4 HorizolineBronate $375#$ 51.3 49.1 91.8 23.2 8.4 HorizolineCheck 48.5 48.6 77.3 21.9 9.8 ectorM 6316 .5 69.2 48.8 <t< td=""><td>lark</td><td>M 6326</td><td>1.0</td><td>74.4</td><td>49.6</td><td></td><td></td><td></td><td></td></t<>	lark	M 6326	1.0	74.4	49.6				
larkL53001.0 60.6 48.7 89.5 28.1 7.4 larkR 9674 $.375$ 46.9 48.9 90.5 19.0 8.9 larkR 9674 1.0 58.3 48.9 92.0 22.8 7.7 larkBronate $.375#$ 61.5 49.4 92.5 26.1 7.0 larkCheck 61.7 49.4 87.0 27.5 7.4 irolineM 6316 .5 58.9 49.3 93.3 32.1 10.6 irolineL 5300 .25 59.4 49.3 92.0 27.2 11.2 irolineR 9674 .375 42.6 47.8 90.5 22.1 6.7 irolineR 9674 1.0 48.0 48.0 91.8 23.2 8.4 irolineBronate $.375#$ 51.3 47.1 91.8 22.7 8.6 irolineCheck 48.5 48.6 77.3 21.9 9.8 ectorM 6326 1.0	lark	L 5300	.25	65.6	49.9				
larkR 9674 $.375$ 46.9 48.9 90.5 19.0 8.9 larkR 9674 1.0 58.3 48.9 92.0 22.8 7.7 larkBronate $.375#$ 61.5 49.4 92.5 26.1 7.0 larkCheck 61.7 49.4 87.0 27.5 7.4 irolineM 6316 .5 58.9 49.3 93.3 32.1 10.6 irolineM 6326 1.0 60.8 49.1 94.0 31.3 9.1 irolineL 5300 .25 59.4 49.3 92.0 27.2 11.2 irolineL 5300 .25 59.4 49.3 92.0 27.2 11.2 irolineL 5300 1.0 45.6 48.4 85.3 22.0 7.6 irolineR 9674 375 42.6 47.8 90.5 22.1 6.9 irolineR 9674 1.0 48.0 48.0 91.8 23.2 8.4 irolineBronate $.375#$ 51.3 49.1 91.8 22.7 8.6 irolineCheck 48.5 48.6 77.3 21.9 9.8 ectorM 6316 .5 69.2 48.8 89.3 34.6 10.8 ectorM 6326 1.0 72.7 48.5 91.0 44.9 9.6 ectorL 5300 1.0	lark	L 5300	1.0	60.6	48.7				
Hark R 9674 1.0 58.3 48.9 92.0 22.8 7.7 Hark Bronate .375# 61.5 49.4 92.5 26.1 7.0 Hark Check 61.7 49.4 87.0 27.5 7.4 Hark Check 61.7 49.4 87.0 27.2 11.2 Hark Check 1.0 60.8 49.1 94.0 31.3 9.1 Hark L5300 .25 59.4 49.3 92.0 27.2 11.2 Horinine R 9674 .375 42.6 47.8 90.5 22.1 6.9 Horinine R 9674 1.0 48.0 48.0 91.8 23.2 8.4	lark	R 9674	.375	46.9	48.9				
lark Bronate .375# 61.5 49.4 92.5 26.1 7.0 lark Check 61.7 49.4 87.0 27.5 7.4 iroline M 6316 .5 58.9 49.3 93.3 32.1 10.6 iroline M 6326 1.0 60.8 49.1 94.0 31.3 9.1 iroline L 5300 .25 59.4 49.3 92.0 27.2 11.2 iroline L 5300 1.0 45.6 48.4 85.3 22.0 7.6 iroline R 9674 .375 42.6 47.8 90.5 22.1 6.9 iroline R 9674 1.0 48.0 48.0 91.8 23.2 8.4 iroline Bronate .375# 51.3 49.1 91.8 22.7 8.6 iroline Check 48.5 48.6 77.3 21.9 9.8 ector M 6316 .5 69.2 48.8 89.3 34.6 10.8 ector M 6326 1.0 72.7 </td <td>lark</td> <td>R 9674</td> <td>1.0</td> <td>58.3</td> <td></td> <td></td> <td></td> <td></td> <td></td>	lark	R 9674	1.0	58.3					
lark Check 61.7 49.4 87.0 27.5 7.4 iroline M 6316 .5 58.9 49.3 93.3 32.1 10.6 iroline M 6326 1.0 60.8 49.1 94.0 31.3 9.1 iroline L 5300 .25 59.4 49.3 92.0 27.2 11.2 iroline L 5300 1.0 45.6 48.4 85.3 22.0 7.6 iroline R 9674 .375 42.6 47.8 90.5 22.1 6.9 iroline R 9674 1.0 48.0 48.0 91.8 23.2 8.4 iroline Bronate .375# 51.3 49.1 91.8 22.7 8.6 iroline Check 48.5 48.6 77.3 21.9 9.8 ector M 6316 .5 69.2 48.8 89.3 34.6 10.8 ector M 6326 1.0 72.7 48.5 91.0 44.9 9.6 ector L 5300 1.0	lark	Bronate	.375#						
iroline M 6316 .5 58.9 49.3 93.3 32.1 10.6 iroline M 6326 1.0 60.8 49.1 94.0 31.3 9.1 iroline L 5300 .25 59.4 49.3 92.0 27.2 11.2 iroline L 5300 1.0 45.6 48.4 85.3 22.0 7.6 iroline R 9674 .375 42.6 47.8 90.5 22.1 6.9 iroline R 9674 1.0 48.0 48.0 91.8 23.2 8.4 iroline Bronate .375# 51.3 49.1 91.8 22.7 8.6 iroline Check 48.5 48.6 77.3 21.9 9.8 ector M 6316 .5 69.2 48.8 89.3 34.6 10.8 ector M 6326 1.0 72.7 48.5 91.0 44.9 9.6 ector L 5300 1.0 63.3 47.2 85.0 31.2 11.0 ector R 9674	lark	Check							
iroline M 6326 1.0 60.8 49.1 94.0 31.3 9.1 iroline L 5300 .25 59.4 49.3 92.0 27.2 11.2 iroline L 5300 1.0 45.6 48.4 85.3 22.0 7.6 iroline R 9674 .375 42.6 47.8 90.5 22.1 6.9 iroline R 9674 1.0 48.0 48.0 91.8 23.2 8.4 iroline Bronate .375# 51.3 49.1 91.8 22.7 8.6 iroline Check 48.5 48.6 77.3 21.9 9.8 ector M 6316 .5 69.2 48.8 89.3 34.6 10.8 ector M 6326 1.0 72.7 48.5 91.0 44.9 9.6 ector L 5300 .25 78.1 48.2 90.0 50.4 11.0 ector L 5300 1.0 63.3 47.2 85.0 31.2 11.2 ector R 9674	iroline	M 6316	.5						
iroline L 5300 .25 59.4 49.3 92.0 27.2 11.2 iroline L 5300 1.0 45.6 48.4 85.3 22.0 7.6 iroline R 9674 .375 42.6 47.8 90.5 22.1 6.9 iroline R 9674 1.0 48.0 48.0 91.8 23.2 8.4 iroline Bronate .375# 51.3 49.1 91.8 22.7 8.6 iroline Check 48.5 48.6 77.3 21.9 9.8 ector M 6316 .5 69.2 48.8 89.3 34.6 10.8 ector M 6326 1.0 72.7 48.5 91.0 44.9 9.6 ector L 5300 .25 78.1 48.2 90.0 50.4 11.0 ector L 5300 1.0 63.3 47.2 85.0 31.2 11.2 ector L 5300 1.0 53.3 <td< td=""><td>iroline</td><td>M 6326</td><td>1.0</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	iroline	M 6326	1.0						
iroline L 5300 1.0 45.6 48.4 85.3 22.0 7.6 iroline R 9674 .375 42.6 47.8 90.5 22.1 6.9 iroline R 9674 1.0 48.0 48.0 91.8 23.2 8.4 iroline Bronate .375# 51.3 49.1 91.8 22.7 8.6 iroline Check 48.5 48.6 77.3 21.9 9.8 ector M 6316 .5 69.2 48.8 89.3 34.6 10.8 ector M 6326 1.0 72.7 48.5 91.0 44.9 9.6 ector L 5300 .25 78.1 48.2 90.0 50.4 11.0 ector L 5300 1.0 63.3 47.2 85.0 31.2 11.2 ector L 5300 1.0 63.3 47.2 85.0 31.2 11.2 ector R 9674 375 52.6 4	iroline	L 5300							
iroline R 9674 .375 42.6 47.8 90.5 22.1 6.9 iroline R 9674 1.0 48.0 48.0 91.8 23.2 8.4 iroline Bronate .375# 51.3 49.1 91.8 22.7 8.6 iroline Check 48.5 48.6 77.3 21.9 9.8 ector M 6316 .5 69.2 48.8 89.3 34.6 10.8 ector M 6326 1.0 72.7 48.5 91.0 44.9 9.6 ector L 5300 .25 78.1 48.2 90.0 50.4 11.0 ector L 5300 1.0 63.3 47.2 85.0 31.2 11.2 ector R 9674 .375 52.6 46.8 82.0 24.2 8.8 ector R 9674 1.0 56.6 46.6 81.3 27.6 9.7 ector Bronate .375# 63.9 47.4 89.5 37.2 11.1 ector Bronate	iroline	L 5300							
iroline R 9674 1.0 48.0 48.0 91.8 23.2 8.4 iroline Bronate .375# 51.3 47.1 91.8 22.7 8.6 iroline Check 48.5 48.6 77.3 21.9 9.8 ector M 6316 .5 69.2 48.8 89.3 34.6 10.8 ector M 6326 1.0 72.7 48.5 91.0 44.9 9.6 ector L 5300 .25 78.1 48.2 90.0 50.4 11.0 ector L 5300 1.0 63.3 47.2 85.0 31.2 11.2 ector R 9674 .375 52.6 46.8 82.0 24.2 8.8 ector R 9674 1.0 56.6 46.6 81.3 27.6 9.7 ector Bronate .375# 63.9 47.4 89.5 37.2 11.1 ector Bronate .375# 63.9 47.4 89.5 31.2 11.0	iroline	R 9674							
iroline Bronate .375# 51.3 49.1 91.8 22.7 8.6 iroline Check 48.5 48.6 77.3 21.9 9.8 ector M 6316 .5 69.2 48.8 89.3 34.6 10.8 ector M 6326 1.0 72.7 48.5 91.0 44.9 9.6 ector L 5300 .25 78.1 48.2 90.0 50.4 11.0 ector L 5300 1.0 63.3 47.2 85.0 31.2 11.2 ector L 5300 1.0 63.3 47.2 85.0 31.2 11.2 ector R 9674 .375 52.6 46.8 82.0 24.2 8.8 ector R 9674 1.0 56.6 46.6 81.3 27.6 9.7 ector Bronate .375# 63.9 47.4 89.5 37.2 11.1 ector Check 57.1 46.6 78.8 31.2 11.0	iroline	R 9674	1.0						
iroline Check 48.5 48.6 77.3 21.9 9.8 ector M 6316 .5 69.2 48.8 89.3 34.6 10.8 ector M 6326 1.0 72.7 48.5 91.0 44.9 9.6 ector L 5300 .25 78.1 48.2 90.0 50.4 11.0 ector L 5300 1.0 63.3 47.2 85.0 31.2 11.2 ector R 9674 .375 52.6 46.8 82.0 24.2 8.8 ector R 9674 1.0 56.6 46.6 81.3 27.6 9.7 ector Bronate .375# 63.9 47.4 89.5 37.2 11.1 ector Check 57.1 46.6 78.8 31.2 11.0	iroline	Bronate							
ector M 6316 .5 69.2 48.8 89.3 34.6 10.8 ector M 6326 1.0 72.7 48.5 91.0 44.9 9.6 ector L 5300 .25 78.1 48.2 90.0 50.4 11.0 ector L 5300 1.0 63.3 47.2 85.0 31.2 11.2 ector R 9674 .375 52.6 46.8 82.0 24.2 8.8 ector R 9674 1.0 56.6 46.6 81.3 27.6 9.7 ector Bronate .375# 63.9 47.4 89.5 37.2 11.1 ector Check 57.1 46.6 78.8 31.2 11.0	iroline								
ector M 6326 1.0 72.7 48.5 91.0 44.9 9.6 ector L 5300 .25 78.1 48.2 90.0 50.4 11.0 ector L 5300 1.0 63.3 47.2 85.0 31.2 11.2 ector R 9674 .375 52.6 46.8 82.0 24.2 8.8 ector R 9674 1.0 56.6 46.6 81.3 27.6 9.7 ector Bronate .375# 63.9 47.4 89.5 37.2 11.1 ector Check 57.1 46.6 78.8 31.2 11.0	ector		.5						
ector L 5300 .25 78.1 48.2 90.0 50.4 11.0 ector L 5300 1.0 63.3 47.2 85.0 31.2 11.2 ector R 9674 .375 52.6 46.8 82.0 24.2 8.8 ector R 9674 1.0 56.6 46.6 81.3 27.6 9.7 ector Bronate .375# 63.9 47.4 89.5 37.2 11.1 ector Check 57.1 46.6 78.8 31.2 11.0									
ector L 5300 1.0 63.3 47.2 85.0 31.2 11.2 ector R 9674 .375 52.6 46.8 82.0 24.2 8.8 ector R 9674 1.0 56.6 46.6 81.3 27.6 9.7 ector Bronate .375# 63.9 47.4 89.5 37.2 11.1 ector Check 57.1 46.6 78.8 31.2 11.0									
ector R 9674 .375 52.6 46.8 B2.0 24.2 B.8 ector R 9674 1.0 56.6 46.6 B1.3 27.6 9.7 ector Bronate .375# 63.9 47.4 B9.5 37.2 11.1 ector Check 57.1 46.6 78.8 31.2 11.0									
ector R 9674 1.0 56.6 46.6 B1.3 27.6 9.7 ector Bronate .375# 63.9 47.4 B9.5 37.2 11.1 ector Check 57.1 46.6 78.8 31.2 11.0									
ector Bronate 375# 63.9 47.4 89.5 37.2 11.1 ector Check 57.1 46.6 78.8 31.2 11.0									
ector Check 57.1 46.6 78.8 31.2 11.0									
<pre>/ heads captrol cattron hated on coller cata cat Lam = lemberariary, Fig W = pigwave, Buch g act d Barr coast.</pre>			- w/ wn						
Lamo - Lambquarthes, Mig W - pignard, Budi - piid bui maal					1010	/0.0	01.2 101.10	11.0	
	Jasat	n dinađi bili i	x	59.5	48.8	87.8	27.1	8.79	

1/ Head counts per 3 feet of linear row 2/ Plant counts per 3 linear feet of row

Table 8. (cont'd)

	Variety O	Treatmer z ai/A		Height nches)	% Stand	La		Weed ig W	Contro: Buck	1 1 Fan
-							<u>.</u>			
	Menuet	M 6316	.5	22.3	44		100	100	100	100
	Menuet	M 6326	1.0	20.7	41		100	100	100	100
	Menuet	L 5300	.25	20.5	44		100	100	100	100
	Menuet	L 5300	1.0	19.5	33		100	100	75	100
	Menuet	R 9674	. 375	17.6	26		100	100	100	100
	Menuet	R 9674	1.0	16.6	29.		100	100	100	100
	Menuet	Bronate	.375#	20.8	- 30		88	98	100	100
	Menuet	Check		19.7	40		0	0	0	0
	Ingrid	r 215.	2 ho	25.4	54		100	iOO	100	100
	Ingrid	N 2721	1.0	25.4	53		100	100	100	100
	Ingrid	L 5300	. 25	24.1	55		100	100	100	100
	Ingrid	L 5300	1.0	24.1	41		84	100	100	75
	Ingrid	R 9674	.375	22.0	26		100	100	100	100
	Ingrid	R 9674	1.0	22.2	28		100	100	100	100
	Ingrid	Bronate	.375#	23.3	33		88	98	100	100
	Ingrid	Check		24.3	51		0	0	0	0
	Clark	M 6316	.5	26.2	58		100	100	100	100
	Clark	M 6326	1.0	24.1	54		100	100	100	100
	Clark	L 5300	.25	25.4	49		100	100	100	100
	Clark	L 5300	1.0	23.1	46		100	100	100	100
	Clark	R 9674	.375	21.7	35		100	100	100	100
	Clark	R 9674	1.0	24.4	31		100	100	100	100
	Clark			22.9	49		88	98	100	100
	Clark	Check	10701	25.1	45		0	0	0	0
	Piroline	M 6316	.5	24.8	50		100	100	100	100
	Piroline	M 6326	1.0	27.1	46		100	100	100	100
	Piroline	L 5300	.25	24.7	48		100	100	100	100
	Piroline	L 5300	1.0	23.1	32		100	100	100	100
	Piroline	R 9674	.375	23.0	25		100	100	100	100
	Piroline	R 9674	1.0	24.7	31		100	100	100	100
				27.2	29		88	98	100	100
	Piroline	Bronate	.3/3#	26.4	48		0	0	Ő	0
	Piroline	Check	E				100	100	100	100
	Hector	M 6316	.5	27.8	159		100	100	100	100
	Hector	M 6326	1.0	27.1	61		100	100	100	100
	Hector	L 5300	.25	28.3	63				75	100
	Hector	L 5300	1.0	25.1	50		100	100	100	100
	Hector	R 9674	.375	24.1	40		100	100		100
	Hector	R 9674	1.0	25.2	41		100	100	100	100
	Hector	Bronate	.375#	27.7	53		88	98	100	
	Hector	Check		25.6	59		0	0	0	0
	5.5			10	46.0	64.16	0	1 13	48- A	
			x e	23.8	43		85.5	87.2	85.6	86.9

Application Data: Post application, date 5-31-85, air temp 60 F, soil temp 72 F, wind 0-2 mph, Rel. Hum. 33%, crop stage 3-5 leaf.

Weed stages: Lamb - 1-3", pig w - seedlings, Buck - 1-2" Fan - 1-3".

General: Research type spayer traveling at 2.64 mph, volume 26.86 gpa, plot size 10' x 10.5'.

 PROJECT_TITLE:
 Broadleaf weed control in Newana spring wheat

 YEAR/PROJECT:
 1985/754
 Weed Control in Farm Crops

 PROJECT PERSONNEL:
 PROJECT PERSONNEL:
 PROJECT PERSONNEL:

Leader - Vern R. Stewart, N. W. Agric. Res. Center, Kalispell Ag. Research Specialist I - Todd K. Keener N. W. Agric. Res. Center, Kalsipell Cooperators - Chemical Company Representatives 39

SUMMARY:

Two new experimental broadleaf herbicides (E1107 and SC0051) were applied at various rates and varying application timings with relatively good control of fanweed, <u>Silene</u> sp and wild buckwheat. Percent stand and height measurements did indicate stand injury from post emergence applications of SC0051. <u>RESULTS:</u>

Yields, although varying from 65.8 to 88.1 bu/a, were not found to be significantly different from the check which was the highest yield. Lower yields for respective treatments did however indicate that there was some crop injury from treatments, especially post applications of SC0051. Thinning of stands were severe with post applications of SC0051, however plant heights showed that all treatments but the low rates of SC0051 were injurious as both PES and post applications. Table 9. Agronomic data from the broadleaf herbicide study in Newana spring wheat grown on the Northwestern Agricultural Research Center, Kalispell, MT. in 1985. Field R-9.

Date seeded: May 3, 1985 Date harvested: September 4, 1985

Treatment	Rate ai/A	Appln. % Type	Stand	Yield Bu/A	Test Wt. Lbs/Bu	Ht. In	% W Fan	eed Cor Sil	ntrol 1/ Buck
EL 107	30 g	FFSA 2/		35.a	ə0.1	28.5	100	, 85	
EL 107	60 g	31	98	83.3	60.0	27.2	100	81	81
EL 107	90 g	11	98	80.7	60.3a	27.0	100	93	85
EL 107	30 g	POPI 3/	98	85.3	60.0	27.9	100	80	83
EL 107	60 g	н	100	84.8	60.8a	28.3	100	73	99
EL 107	90 g	н	99	78.8	59.9	28.1	100	95	90
SC 0051	1.0 #	PES 4/	95	77.7	59.9	28.0	100	100	99
SC 0051	1.5 #		94	81.2	60.3a	26.25	100	100	100
SC 0051	2.0 #	"	816	72.2	59.3	26.2b	100	100	100
SC 0051	1.0 #	POST 5/	65b	72.8	58.4	26.Ob	100	100	100
SC 0051	1.5 #	н	55b	65.8	58.3	24.15	100	95	100
SC 0051	2.0 #		576	73.8	58.8	23.6b	100	94	99
EL 107 +	30 g +	PES	93	83.6	60.0	26.7	100	100	100
SC 0051 EL 107 +	1.0 # 30 g +	PES	85	75.6	59.5	28.0	100	99	100
SC 0051 EL 107 +	1.5 # 30 g +	POST	70Ь	75.5	58.0b	24.8b	100	88	98
SC 0051 EL 107 +	1.0 # 30 g +	POST	57ь	80.4	58.4	25.3b	100	88	94
SC 0051 CHECK	1.5#		98	88.1	59.3	28.1	0	0	0
		F 5/ S.E.X.	5.16	*1.52 4.80 6.07	59.4 4.66** .351 .591 .99	26.7 5.81** .64 2.40 1.83			

systuption al carbicides for control by weeds in -

- 1/ % Weed control by ocular rating
- Fan = fanweed, Sil = silene, Buck = wild buckwheat
- 2/ PPSA = surface application prior to planting
- 3/ POPI = post plant application with light incorporation (hand raked)
- 4/ POST = post to crop 1-3 leaf stage
- 5/ F value for treatment comparison and a latit of a second secon
- a/ Values significantly greater than the check at the .05 level
- b/ Values significantly less than the check at the .05 level
- ** Indicates statistical significance at the .05 level

Application da			5-3-85: La U FOF1/PES	
	Air temp:			at F
	Soil temp:	75 Foot See	73 F stad ah	184 Francishi Lelle
	Wind: Rel Hum:	0-3 mph 8 %	5 mph 13 %	0-4 mph 20 %
Weeds	Fanweed:	not emerged	Not emerged	1 st true lvs
	Silene	11	11	в и и и
	W. Buckwhi	eat "	**	п п п п
	Crop	DED	nnet nlant	2 1/2 leaf

General info:

Volume 26.86, ground speed 2.64 mph, plot size 10' × 12',

Ine percent at offer for the three cutting was significantly areaser then the shock with domain application of anyribuity club DFX-Y6102 or balonylop to r past application. The percentage of groes was greater to the pronomide plot (21.34) for the first cutting.

In the arcord carting of ray there ware no significant itilerators a gived of bay or pure alfallos. Percent alfalfs was significantly less and percent grass significantly grasser in the all 163,499 treatment when compared to the church. The less rate of Philic also had a higher percentage of grass when -capared on the checks.

Danor for hioda zoints par aquare feer ware equalificantly tare to each createed when conjured v th the check. Established cardoitons (second plan plants) ware and effectively controlled by any totration with depiction block suppression was very elective to metrificate and burnathone characteric locks to control of the patribut restments as well as the hearthead ppplants were effective in controlling first per as well so available dands PROJECT TITLE: Evaluation of herbicides for control of weeds in established alfalfa

YEAR/PROJECT: 1985/754 Weed Control in Farm Crops PROJECT PERSONNEL:

Leader - Vern R. Stewart, N. W. Agric. Res. Center, Kalispell Ag. Research Specialist I - Todd K. Keener

N. W. Agric. Res. Center, Kalispell

Cooperators - Chemical Company Representatives

SUMMARY:

Metribuzin applied alone and in combination with selective grass herbicides provided very good control of established and seedling dandelions in established alfalfa. Highest yields were obtained from plots treated with hexazinone at .5 lb ai/a (2.83 T/A) and metribuzin plus haloxyfop at .5 + .4 lb ai/a (2.7 T/A).

RESULTS:

The highest yield of hay per acre was harvested from dormant application treatment of hexazinone at .5 lb ai/a. The highest yield of pure alfalfa also obtained from this treatment application was the only one significantly higher in yield than the check.

The percent alfalfa for the first cutting was significantly greater than the check with dormant application of metribuzin plus DPX-Y6202 or haloxyfop as a post application. The percentage of grass was greater in the pronamide plot (21.5%) for the first cutting.

In the second cutting of hay there were no significant differences in yield of hay or pure alfalfa. Percent alfalfa was significantly less and percent grass significantly greater in the AC 263,499 treatment when compared to the check. The low rate of M6316 also had a higher percentage of grass when compared to the check.

Dandelion bloom counts per square feet were significnatly less in each treatment when compared with the check. Established dandelions (second year plants) were not effectively controlled by any treatment, yet dandelion bloom suppression was very effective in metribuzin and hexazinone treatments Table 3. Several of the metribuzin treatments as well as the hexazinone applications were effective in controlling first year as well as seedling dandelions.

Northwestern First Cutting. Dormant and post herbicide applications to established alfalfa. Field P-2. Agricultural Research Center, Kalispell. MT. Table 1.

4.3 3.19* 2.87 67.35 8.22 1.8 21.5a 1.2 3.7 Grass 6.2 3.6 2.1 1.9 0.6 0.3 3.8 3.8 1.7 1.22.81.81.811.65.40.1 2 .5 .995NS 1.19 225.6 3.41 4.9 Broad 2 5 4. .1 .1 ----20 95.2 4.38* 2.74 2.87 7.83 -96.3 97.8 97.6 99.3 99.6a 97.4 97.4 98.2 98.7 98.1 77.9b 98.7 96.1 98.1 88.0 84.0 91.8 93.7 97.1 Alfalfa 3 1.37 1.886** .084 .11b L.63a .240 Ton Alf .36 . 30 . 39 . 50 .45 . 50 . 28 1.27 1.56 .37 L.33 .41 .31 .22 .38 A per .067 4.71 .194 Ton Hay 1.34 1.59 1.43 .43 1.50 1.48 1.50 .49 1.64 1.44 .45 1.57 .42 l.34 .42 .37 1.51 per A • 44 Application Dorm/Post Dorm/Post Dorm/Post Dorm/Post Dorm/Post Dorm Dorm Dorm Dorm Dorm Dorm Dorm Dorm Post Dorm Dorm Dorm Dorm Dorm -F-value 2/ C.V. % L.S.D. S.E.X .25 + 1.0 1.0 2.0 Mean 1.0 1.0 •4 4. 4. •4 •4 .25 oz ZO Rate • 2 + • 5 + 5 + + .5+ + + + + .25 1.0 5 · 2 5 5 5 5 5 5 5 sethoxydim sethoxydim Flurchloridone + SC1084 haloxyfop Metribuzin + fluazifop Metribuzin + haloxyfop Metribuzin + fluazifop Metribuzin + DPX Y6202 Metribuzin + DPX-Y6202 Metribuzin + SC 1084 SC 1084 Treatment Metribuzin + 1 Metribuzin + Metribuzin + Metribuzin AC 263,499 Metribuzin **Hexazinone** Pronamide SMY 1500 SMY 1500 M 6316 M 6316 Check

% composition by species separation, calculated on weight basis.

 $\frac{1}{2}$

F value for treatment comparison

Broad = broadleaf weeds (mostly dandelions)
Grass = quackgrass

Dormant and post herbicide applications to established alfalfa. Northwestern Agricultural Research Center, Kalispell, MT. Field P-2. Second Cutting. Table 2.

Treatment	Rate	Application	Ton Hay per A	Ton Alf per A	z 1/ Alfalfa	% 1/ Broad	% 1/ Grass
Metribuzin	.5	Dorm	.94	.93	99.2	.4	4.
Pronamide	1.0	Dorm	.88	. 84	95.6	.7	3.7
Hexazinone	.5	Dorm	1.19	1.18	99.4	.1	•5
Flurchloridone + SC 1084	.25 + 1.0	Dorm	.93	.92	98.8	е.	6.
SMY 1500	1.0	Dorm	1.04	1.02	97.9	1.3	.8
	2.0	Dorm	1.06	1.05	98.8	.1	1.1
Metribuzin + fluazifop	.5 + .4	Dorm	1.22	1.16	94.6	2.1	3.3
+	.5 + .4	Dorm	1.09	1.07	98.4	1.2	.4
+	.5 + .4	Dorm	1.09	1.09	99.4	.1	•5
+	.5 + .4	Dorm	1.19	1.18	99.1	•5	.4
Metribuzin + SC1084	.5 + 1.0	Dorm	1.01	1.01	99.3	.2	.5
Metribuzin + fluazifop	.5 + .4	Dorm/Post	1.11	1.10	99.7	.3	0
+	.5 + .4	Dorm/Post	1.17	1.16	99.5	.1	.4
+	.5 + .4	Dorm/Post	1.21	1.20	99.3	.7	0
Metribuzin + DPX-Y6202	.5 + .4	Dorm/Post	1.11	1.10	9.66	.1	
Metribuzin + SC 1084	.5 + 1.0	Dorm/Post	1.07	1.05	97.9	.4	1.7
AC 263,499	. 25	Post	.96	. 85	87.6b	1.1	11.3a
M 6316	.25 oz	Dorm	.94	.87	93.1	1.1	5.8a
M 6316	.5 oz	Dorm	.75	.71b	94.3	1.3	4.4
Check	0		1.02	.98	96.7	1.6	1.7
	Mean		1.05	1.02	97.4	.7	1.9
	F-value	ue 2/	1.54	2.07*	4.97*	.884	5.570*
	S.E.X		.099	.095	1.37	.648	1.162
	C.V.	2	9.42	9.23	1.40	97.65	60.96
	L.S.D.		.28	.27	3.93	1.85	3.33

% composition by species separation, calculations made on weight basis. $\frac{1}{2}$

F-value for treatment comparison

Broad = broadleaf weeds Grass = quackgrass

		-	Dandel	ions 1/		% Weed	d Control	rol 6/8/85	2/	
Treatment	Rate	Application	Blooms/ft ² % C 5/16	% Control 7/30	Quack	2 yr Dand	and	l yr Dand	eed	Dand
Metribuzin	• 5	Dorm	.1b	23		95	2	67	124	100
Promamide	1.0	Dorm	6.6b	77a		100	0	0		0
Hexazinone	• 5	Dorm	0p	92a		75	15	87		100
Flurchloridone + SC 1084	.25 + 1.0	Dorm	2.4b	75a		50	10	55		75
SMY 1500	1.0	Dorm	1.2b	85a		50	0	25		75
-	2.0	Dorm	.1b	23a		60	0	40		63
+ -	. + . + . +	Dorm	.20	90a		66	Ś	25		09
Metrihuzin + setnoxydim	. + . + . +	Dorm	. 60	90a		63	0 '	09 00		85
	- + - + - + - + - + - + - + - + - + - +	III III	.11	82a		100	Ω (80		100
+ +	t - + - t	Dorm	.10	100°		100	0 0	30		1901
+	5 + 4	Dorm/Post	.2b	0		83	10	16		06
Metribuzin + sethoxydim	.5 + .4	Dorm/Post	.2b	0		93	n I	65		95
Metribuzin + haloxyfop	+	Dorm/Post	0b	0	,	88	10	40		60
Metribuzin + DPX-Y6202	.5 + .4	Dorm/Post	.4b	55a		75	0	75		95
Metribuzin + SC 1084	.5 + 1.0	Dorm/Post	.5b	90a		95	5	63		100
AC 263,499	.25	Post	0P	47a		50	0	0		0
M 6316	.25 oz	Dorm	2.9b	80a		45	0	0		0
M 6316	.5 oz	Dorm	•	85a		50	0	0		35
Check	0	1	8.6	0		0	0	0		0
	2									
	Me		1.31	62.38						
	- H	F-value 3/	18.3**	8.53**						
	S.	S.E.X	.765	16.73						
•	с.	C.V. %	41.14	26.82						
	г.	L.S.D.	1.55	33.81						

Table 3. Dormant and post herbicide applications to established alfalfa. Northwestern

% weed control ratings (ocular): Quack = quackgrass; 2 yr Dand = second year dandelion growth; 1 yr Dand = 1st year dandelion growth; Seed Dand = seedling dandelion

F-value for treatment comparison

3/

45

8 -,

	Lather The	The second second	Ton/A	Ton/A	14.27 27.34	Ton/A	Ton/A	
Treatment	Rate	Application	Hay lst Cut	Hay 2nd Cut	Total Hay/A	Alfalfa lst Cut	Alfalfa 2nd Cut	Total Alfalfa
Metribuzin	.5	Dorm	1.44	.94	2.38	1.41	63	72 6
Pronamide	1.0	Dorm	1.42	.88	2.30	1.11b	78	1 05
Hexazinone	.5	Dorm	1.64	1.19	2.83	1.63a	1.18	2 819
Flurchlordone + SC1084	4 .25 + 1.0	Dorm	1.44	6	2.37	1.38	60.	2.30
SMY 1500	1.0	Dorm	1.45	0	2.49) (1 02	2.30
SMY 1500	2.0	Dorm	1.34	1.06	2.40	1.30	1.05	2.20
Metribuzin + fluazifop	.5 + .4	Dorm	1.42	•	2.64	n m	1.16	2.55
+	tm .5 + .4	Dorm	1.30	1.09	2.39	1.27	1.07	2.34
+	.5 + .4	Dorm	1.57	1.09	2.66	1.56	1.09	2.65
+	2 .5 + .4	Dorm	1.43	1.19	2.62	1.43	1.18	2.61
+	.5 + 1.0	- Dorm	1.43	1.01	2.44	1.37	1.01	2.38
+	•	Dorm/Post	1.38	1.11	2.49	1.35 .	1.10	2.45
+		Dorm/Post	1.48		2.65	1.45	1.16	2.61
+	•	Dorm/Post	1.50	1.21	2.71	1.50	1.20	2.70
+	•	Dorm/Post	1.30	1.11	2.41	2	1.10	2.38
Metribuzin + SC1084	.5 + 1.0	Dorm/Post	1.37	1.07	2.44		1.05	2.38
AC 263,499	.25	Post	1.34	96.	2.30		.85	2.17
	.25 oz	Dorm	1.49	.94	2.43	1.31	.87	2.18
M 6316	.5 oz	Dorm	1.46	.75	2.21	1.22	.71b	1.93
Check	0		1.51	1.02	2.53	3	.98	2.36
		Mean	1.44	1.05	2.47	1.37	1.02	2.30
		F-value 1/	1.59NS	1.54NS	1.15NS	-	2.07*	2.16*
		S.E.X	.069	660.	1.47		.095	.154
		C.V. %	4.71	9.42	5.89	4	9.23	6.43
		L.S.D.	1.94	.28	.420		.270	.440
1/ F-value for treatment Application Data: Apr	aent comparison Annifeation -	mac/	States -	Daat	Weed	Stage:	Dorm	Post
		4/9/85	35	5/2/85		Quack -	Coodl from	4-5-112-2
	Air Temperature	- 58	rees F	degrees			to 1-3"	beedlings
ALL CONTRACTOR	Soil Temperature	e - 60	H	3 degrees F			•	
	Wind - Eumidity -	4-5 1 192	mph 3.	3-5 mph				
7		2	i	0%				C

Dormant and post herbicide applications to established alfalfa. Northwestern Agricultural Table 4.

PROJECT TITLE:Herbicide evaluations to a new seeding of alfalfaYEAR/PROJECT:1985/754 Weed Control in Farm CropsPROJECT PERSONNEL:1985/754 Weed Control in Farm Crops

Leader - Vern R. Stewart, N. W. Agric. Res. Center, Kalispell Ag. Research Specialist I - Todd K. Keener N. W. Agric. Res. Center, Kalispell

Cooperators - Chemical Company Representatives

SUMMARY:

Several herbicides and combination of herbicides were tested in a new seeding of alfalfa and found to be effective in controlling broadleaf weeds in alfalfa. All herbicides tested resulted in significantly greater alfalfa percentages than the check.

RESULTS:

Early injury ratings on new seeded alfalfa showed that SC5676/R25788 (30# ai/a) and all rates of M6316 (.125 to .5 oz ai/a) caused considerable injury to the crop. Height notes taken prior to harvest showed some recovery from this phytotoxicity yet all those plots were still noticeably less in height.

Good to excellent broadleaf control was observed with all treatments except those including 2,4-DB formulations.

M6316 reduced yields the first harvest. Highest forage yields were obtained from the SC1084 treatments, however the forage contained a high percentage of broadleaf weeds. Excellent alfafla quality (percent alfafla composition) was obtained with the use of SC5676/R25788. Even with plant injury M6316 treatments produced good yields of high quality alfalfa.

heihteide hvalüsthüs to a niv

Table 12. Agronomic data from the evaluation of herbicides on a new seedling of alfalfa grown on the Northwestern Agricultural Research Center in 1985. Field Y-5

Date planted: May 13, 1985

Date harvested: Aug 17,1985

Treatment	Rate # ai/A	Appln.1/ type		ompositi Grass	on 2/ Brdlf		d Tons/A Alfalfa
SC 1084	.25	1-6 lf	79.0	1.1	19.85	1.6	1.2
SC 1034	. с.	1-0 l-	₹4.0a	4.3	4	<u>i - i</u>	- 1.1
SC 1084	1.0	POES	85.3a	.3	14.4b	1.6	1.3
SC 5676/R25788	1.5	Pre Em	99.7a	0	.3b	1.2	1.2
SC 5676/R25788	3.0	Pre Em	99.9a	0	.15	1.0	1.0
Bromoxynıl	.25	Post	94.3a	1.8	З.9Ь	1.1	1.0
Bromoxynıl	.375	Post	88.8a	4.3	6.95	1.3	1.2
Bromoxynıl	.5	Fost	91.3a	2.1	6.65	1.3	1.2
AXF 1309	.5	Post	88.6a	3.0	8.45	1.2	1.0
Bromoxynil +	.25 +	Post	93.9a	2.1	3.96	1.2	1.2
2,4-DB ester AXF 1309 +	.5 .25 +	Post	88.6a	4.8	6.65	1.2	1.1
2,4-DB 2,4-DB ester	.5 .5	Post	89.0a	1.2	9.8b	1.2	1.1
2,4-DB ester	.75	Post	94.3a	2.0	3.65	1.2	1.1
2,4-DB amine	.5	Post	91 . 1a	1.7	7.25	1.3	1.2
2,4-DB amine	.75	Post	89.4a	5.0	5.65	1.4	1.3
M 6316	.125 oz	Post	96.6a	3.1	.3b	1.1	1.1
+ surf 3/ M 6316	.25 oz	Post	97.0a	2.3	.75	1.2	1.1
+ surf M 6316	.5 oz	Post	94.0a	4.3	1.7b	1.1	1.1
+ surf M 6316 + DPX		Post	97.6a	2.4	.03b	1.3	1.2
	.25 oz +	Post	92.1a	5.4	2.5b	1.2	1.1
	.5 oz +	Post	97.1a	2.9	ОБ	1.1	1.1
Y6202 + surf M 6316 + DPX	.5 oz +	Post	96.6a	2.9	.5b	1.0	1.0
	1.0 +	Post	88.6a	3.0	8.4b	1.1	1.0
sethoxydim Check	.4	Nasi (200 anto: 1000	66.0	1.1	32.9	1.2	.8

Table 12. (cont'd)

Treatment	ht Stand Inpur,	% composition Alf Grass	2/ Brdlf	Yield Tons/A Hay Alfalfa
	x	90.9 2.4	6.7	1.2 1.1
	F 4/	2.60** 1.6	3.0**	1.1 .68
	S.E.X.	4.64 . 1.23	4.4	.12 .13
	C.V.%	5.11 51.4	67.1	10.5 12.3
	L.S.D.	13.23 3.52	12.8	.367 .388
	1-6 lf = 1-6 leaf s POES = post emmerge			

Post = post emmergence to crop and weeds

2/ % composition determined by hand separation of vield subsample into separate species components

3/ Surf = surfactant.used R-11 at .25 % v/v

4/ F value for treatment comparison

** Indicates statistical significance at the .01 level

ſ

Table 12. (cont'd)

Treatment	Rate # ai/A	Appln.1 type		ght 7-29	Stand %	Injury 2/	% W FW	eed C AB	ontro SP	1 3/ SIL
SC 1084	.25	1-6 lf	7.3	27.3	88	7	7	52	33	33
SC 1084	.5	1-6 lf	7.3	27.3	90	.5	10	17	0	10
SC 1084	1.0	POES	7.7	27.8	85	.3	33	33	33	33
SC 5676/R25788	1.5	Fre Em	4.3b	27.7	255	S.Oa	100	100	100	100
SC 5676/R25788	Ζ.Ο	Fre Ém	2.3b	20.7b	ób	?. 2a	100	100	100	100
Bromoxynil	. 22	Post	5.7	24.2	715	2.2a	67	63	100	0
Bromoxynil	.375	Post	5.7	25.6	56b	3.7a	93	100	100	0
Bromoxynil	.5	Post	5.7	25.9	615	3.5a	92	75	100	0
AXF 1309	.5	Post	5.7	23.1	65b	2.2a	56	100	100	0
Bromoxynil +	.25 +	Post	5.7	25.9	635	4.0a	70	83	100	0
2,4-DB ester AXF 1309 +	.5 .25 +	Post	5.05	22.6	48b	4.5a	93	100	100	0
2,4-DB 2,4-DB ester	.5 .5	Post	7.0	27.0	83	1.3	60	83	100	17
2,4-DB ester	.75	Post	6.3	26.8	73b	2.3a	100	100	100	0
2,4-DB amine	.5	Post	6.7	26.0	83	1.8	83	100	100	0
2,4-DB amine	.75	Post	6.3	27.2	75b	1.7	63	83	100	33
M 6316 + surf 4	/ .125 oz	Post	2.7ţ	21.2	27ь	7.3a	100	100	100	0
M 6316 + surf	.25 oz	Post	3.0t	23.9	23Ь	7.5a	100	100	92	0
M 6316 + surf	.5 oz	Post	1.75	21.9	22Б	8.1a	100	100	100	20
M 6316 + DPX	.25 oz +	Post	2.7t	23.5	35Ь	6.2a	100	100	100	40
Y6202 + surf M 6316 + DPX	1.0 .25 oz +	Post	2.0t	23.6	25b	7.7a	100	100	100	0
Y6202 + surf M 6316 + DPX		Post	2.3t	22.7	33b	7.0a	100	100	100	10
Y6202 + surf M 6316 + DPX		Post	2.0t	20.0	17b	9.0a	100	100	100	0
Y6202 surf 2,4-DB +	2.0	Post	6.0	24.0	80	1.5	93	100	100	17
sethoxydim Check	.4		6.7	25.1	97	0	0	0	0	0

......

Treatment Height Stand Injury 6-27 7-29 % 2/

1.			
3 7620 U2076	- Keed Centrol 1	er e (c.0.21 Truchers - and -	
	X 4.9	24.5 55.6 4.2	
		k2.5** 18.2**19.8**	
	S.E.X72	2.5 11.3 1.2	
ileys (ish , tsins) .eei	C.V.% 8.5	5.8 11.7 16.7	
	L.S.D. 1.2	4.0 18.6 1.99	
1/ Appln. type 1-6 lf =	1-6 leáf stage	of grass	
PDES = p	ost emmergence s	surface	
		to crop and weeds	
2/ Injury, 0-10 scale 0	= dead plants. 1	0 = health, plant's	
		nnual bluegrass, SP = sheperdspu	rse
		25% v/v silen	
5/ f value for treatment	comparison		
<pre>** Indicates statistical</pre>		the .01 level	
Application data:			
Date: 5-17-85	6-5-85	6-17-85	
Appln: PES	POES	POST	
air temp: 72	52	80	
soil temp: 63	fo 50 los ab beaks	88	
wind: 0 mph	4 mph	0-2 mph	
Rel Hum: 7%	69 % 1 - 6	12% selet redgid draw	
Weeds: none	An bluegrass 1	/2" 1 "	
Crop: 10% emmerges	fanweed 1"	(4)(1:3-5"0°.) 2010 - Cid law	
	Alfalfa: 1st t	rifoliate Silene 1-3"	
		Shep prs 2"	
		Alfalfa: 3rd trifoliat	te
General data: volume 26.	86 gpa, plot siz	e 10'x24', ground speed 6.24 mpt	n,
PSI 32,			
Alfafa variety Maxi	m planted M	lav 13, 1985	
Allala vallety Maxi	m, prantou m		
	r		
	canteel from gra-		

51

4 ...

.

PROJECT TITLE: Evaluation of grass herbicides for control of grass in established stands of alfalfa

YEAR/PROJECT: 1985/754 Weed Control in Farm Crops

PROJECT PERSONNEL:

Leader - Vern R. Stewart, N. W. Agric. Res. Center, Kalispell Ag. Research Specialist I - Todd K. Keener N. W. Agric. Res. Center, Kalispell

Cooperators - Chemical Company Representatives

SUMMARY:

Excellent quackgrass suppression and good control was achieved in applying several differing rates of fluazifop to established alfalfa. The first cutting of hay was at least 90% pure alfalfa.

RESULTS:

Slight plant injury was noted in actively growing alfalfa when treated with higher rates of fluazifop (.188 to .25 lb ai/a), haloxyfop (.20 lb ai/a) and DPX-Y6202 (.20 lb ai/a).

Quackgrass suppression was good in all treatments of fluazifop, sethoxydim, haloxyfop, DPX-Y6202 and SC1084. Quackgrass control was very good when actively growing plants were treated with haloxyfop (.20 lb ai/a) and held the weeds in check throughout the growing season.

First harvest yields were not 'significnatly different when analyzed statistically. Excellent grass control from grass herbicides listed above, except sethoxydim which showed fair to good control was observed in this experiment. All treated plots had greater than 90% pure alfalfa. Fluazifop at the three higher rates, haloxyfop and DPX-Y6202 had better than 90% pure alfalfa at the second cutting. Table 13. Agronomic data from the post herbicide application study on established alfalfa. NWARC Kalispell, MT. in 1985 Field P-2.

Treatment	Rate # ai/A	Alf I/ Vigor	Guackgra Suppres.				
Fluazifop 1/	043	9.6	100	73	68		
inderiop 1/	* VQ-0	7.0	100	/3	00		
Fluazifop	.094	10	100	75	85		
Fluazifop	.125	10	100	57	30		
Fluazifop	.156	9.7	100	67	86		
Fluazifop	.188	10	100	70	77		
Fluazifop	.25	10	100	72	63		
0.E	5.11	č		68.			
Sethoxydim	.20	10	73	50	45		
+ 1 qt/A coo		1	9	12.			
Haloxyfop +.5% v/v sur	.20	9.3	100	80	70		
DPX-Y6202	.20	9.9	100	82	95		
+.5% v/v sur		6.00					
SC 1084	.20	9.7	100	73	52		
+.5% v/v sur	f			• 5 .5			
Check		10	0	0	0		

1/ Fluazifop formulation used was Fusilade 2000 surfactant ATPLUS 411 1 qt/A
2/ Alfalfa vigor 0-10 rating: 10 = normal healthy

plants, 0 = dead plants

C>

54

Trestnert	Fate	i st	cut % @	Bmp 1/	200	rut % c	>mp 1/
	# a1/A	A14	Grs	Brdl+	A1 f	Grs	Brd]f
Fluazifop 1.	.063	91.8	.ib	8.1	82.3	12.8	4.9
Fluazifop	.094	94.4	.15	5.5	85.5	4.8	9.6
Fluazifop	.125	98.4	.15	1.5	86.7	11.0	2.3
Fluazifop	.156	93.4	.15	6.5	93.5	2.6	3.9
Fluazifop	.188	97.8	.3b	1.9	92.2	5.1	2.7
Fluazifop	.25	95.4	.25	4.3	94.4	4.0	1.6
Sethoxydim + 1 qt/A co	.20	92.1	4.8b	3.1	86.5	11.5	2.0
Haloxyfop +.5% v/v su	.20	98.8	.3b	.9	95.6	3.1	1.3
DPX-Y6202 + 5% v/v st	.20	95.1	.26	4.8	96.9	.8	2.3
SC 1084 +.5% v/v st	.20	90.4	.2b	9.4	85.0	13.8	1.2
Check		85.3	'13.3	1.4	88.6	9.3	2.2
	x	93.6	1.8	4.3	89.7	7.2	3.1
	F 2/	1.4	8.5**	.9	2.31	1.61	2.30
	S.E.X.	3.4	1.4	3.1	3.25	3.62	1.61
	C.V. %	3.6	77.5	71.0	3.61	50.5	52.0
	L.S.D.	10.0	4.1	9.0	9.59	10.68	4.73

Aproncase data from the post herbialds

1/ % composition determined by hand separation of green subsample into separate species catagories

2/ F value for treatment comparison

aval ation of Lindserur (glyphoasts) Ka-till slfatla seading

LIBOT FEROMEL

Table 13. (cont'd)

Treatment	Rate	Yi	eld (Ĥ	ay) 1/	Yi	eld (A	lfalfa) 2/
	# ai/A	1 st	2 cd	Total	1 st	2 cd	Total
Fluazifop 1	/ .063	1.3	1.5	2.6	1.2	1.2	2.4
Fluazifop	.094	1.4	1.4	2.8	1.3	1.2	2.5
Fluazifop	.125	1.2	1.7	2.9	1.2	1.5	2.7
Fluazifop	.156	1.3	1.7	3.0	1.2	1.6	2.8
Fluazifop	.188	1.2	1.6	2.8	1.2	1.4	2.6
Fluazifop	.25	1.2	1.5	2.7	1.2	1.4	2.6
Sethoxydim	.20	1.6	1.6	3.2	1.4	1.4	2.8
+ 1 qt/A c				2.8	1.4	4 . 4	2.8
Haloxyfop +.5% v/v s	.20	1.4	1.4	2.8	1.4	1.4	2.0
DPX-Y6202 +.5% v/v st	.20	1.4	1.7	3.1	1.3	1.6	2.9
SC 1084	.20	1.4	1.3	2.7	1.3	1.1	3.4
+.5% V/V 51		NO DOM	010110	800138734	ado Lisua	179 3 8000	
Check	- lousoos	1.5	1.5	3.0	1.3	1.3	2.6
	x	1.4	1.5	2.9	1.3	1.4	2.7
	F 3/	1.94		.82	.80	.80	.91
	S.E.X.		.18	.17	.09	.18	.19
	C.V. %		12.03	5.91	7.20	13.19	
	L.S.D.	.23	.54	.50	. 27	.53	.56

1/ Hay - consists of forage with weed components included

2/ Pure alfalfa alone

e a

3/ F value for variety comparison

Application data: Date 5-6-85, air temp 71 F, soil temp 72 F, wind 0-2 mph, Rel Hum 6%, volume 26.86 gpa, pressure 32 psi, ground speed of spray tractor 2.64 mph,

Crop and weed stages: Quackgrass 3-5 ", Dandelions 5-8 ", Clover 5-7 ", Bluegrass 3", Orchardgrass 4", alfalfa 5-8".

Alfalfa variety: Thor Planted May 1981

Harvest dates: 1st cut 6-12-85 2cd cut 7-24-85

PROJECT TITLE: Evaluation of Landmaster (glyphosate + 2,4-D) for no-till alfafla seeding

YEAR/PROJECT: 1985/754 Weed Control in Farm Crops

PROJECT PERSONNEL:

Leader - Vern R. Stewart, N. W. Agric. Res. Center, Kalispell Ag. Research Specialist I - Todd K. Keener N. W. Agric. Res. Center, Kalispell

Cooperators - Chemical Company Representatives

SUMMARY:

Early spring observations of fall applied Landmaster showed excellent control of broadleaf and grassy weeds in an area that had been no-till seeded to alfalfa. In comparing fall to spring applications the fall treatments performed best throughout the season in broadleaf and grass control as well as being more beneficial in establishing the new seeding of alfalfa.

RESULTS:

Early spring observations (May 2) of fall applied Landmaster showed excellent control of all braodleaf and grass species that existed in the check (see weed list below).

Early summer visual observations of fall and spring applications of Landmaster showed that fall treatments gave better weed control which was advantages for the establishment of the newly seeded alfalfa.

Late summer observations of fall and springLandmaster treatments indicated that fall applied treatments gave the best broadleaf and grass weed control and was more beneficial in the establishment of the newly seeded alfalfa.

Yields of alfalfa from fall applied Landmaster plots were higher than the spring applied plots.

Percent alfalfa composition was greater and percent broadleaf composition less in the fall applied Landmaster plots in comparison to the spring applied treatment.

Table 14. Agronomic data from the Landmaster herbicide study in No-till alfálfa grown on the Northwestern Agricultural Research Center, Kalispell, MT. in 1985.

Date	planted:	May 25,	1985	Har	rvest date:	July 2	6,1985
Treatment	Rate oz form	Appln. time	× Alf		ition 1/ Brdlvs		Tons/A Alfalfa
Landmaster	40	Fall	81.7	5.4	12.9	.8	.8
Landmaster	<u> </u>			Second Second March Second		Lið	1 x 12
Landmaster	108	Fall	72.1	5.6	22.3	1.0	.7
Check		Fall	64.7	9.6	25.7	.6	.4b
Landmaster	40	Spring	56.6	6.0	37.4	.7	.45
Landmaster	54	Spring	62.9	3.7	33.3	1.0	.6
Landmaster	108	Spring	85.5	2.1	12.4	1.0	.8
Check		Spring	50.4	12.2	37.4	.4b	.2b
	x F 2/			5.6	23.1 1.39	.8 5.37*	.6 * 7.29**
	S.E.X. C.V. % L.S.D.			3.88	10.79 46.72 32.72	.10 12.11 .31	.09 16.01 .30

^{1/ %} composition determined by hand separation of yield subsample into separate species.

First reading May 5,1985

Treatment	Rate	Appln.	Bare ground	Grs %	Brdlf %	Alf %
Landmaster	40	Fall	99	0	1	seedling
Landmaster	54	Fall	99	1	0	"
Landmaster	108	Fall	99	0	1	**
Check		Fall	57	15	28	81

4

Table 15. Ocular ratings on percent ground cover for the Landmaster herbicide study grown on the Northwestern Agricultural Research Center in Kalispell, MT. in 1985

Second rating June 5, 1985

-	Treatment	4	Rate oz	Appln.	Bare ground	Grs %	Brdlf %	Alf stand
	Landmaster		40	Fall	90	5	5	good
	Landmaster		54	Fall	92	7	1	good
	Landmaster		108	Fall	97,	0	3	fair-good
	Check		No. of Co.	Fall	20	47	33	fair-good
	Landmaster		40	Spring	35	c	une e	çoed
	Landmaster		54	Spring	98	1	1	good
	Landmaster		108	Spring	99	1	0	fair
	Check	-		Spring	40	25	15	fair-good

Third rating July 25, 1985

Treatment	Rate	Appln.	Bare	Grs	Brdlf	Alf
	OZ		ground	%	%	7.
Landmaster	40	Fall	25	4	4	67
Landmaster	54	Fall	23	8	6	63
Landmaster	108	Fall	24	2	11	63
Check		Fall	43	47	7	3
Landmaster	40	Spring	31	14	17	38
Landmaster	54	Spring	31	11	20	38
Landmaster	108 00	Spring	31	8	29	32
Check		Spring	54	15	25	6
pplication data	a: Type: Date: Air temp:	Fall 10-3-84 60 F	barre gr oubq	at.,	Spring 5-10-84 53 F	irantsi 11
Sc	oils temp: Wind:	64 F 2-3 m	iph		56 F 3 mph	
Unand a base	Rel Hum:	23%			26 %	a tradition of the
Weed stage	Dandelion		tall		5-7 " tal 5-6 " dia	
	Thistles				3-4 "	
				alfalfa	5-6 "	

15' X 200 ', seeding accomplished with a John Deere No-till drill.

PROJECT TITLE:Long term herbicide evaluation in alfalfaYEAR/PROJECT:1985/754 Weed Control in Farm CropsPROJECT PERSONNEL:

Leader - Vern R. Stewart, N. W. Agric. Res. Center, Kalispell Ag. Research Specialist I - Todd K. Keener N. W. Agric. Res. Center, Kalispell

Cooperators: Chemical Company Representatives

SUMMARY:

Excellent first year broadleaf and quackgrass control was obtained when hexazinone, metribuzin or sethoxydim plus metribuzin were applied to alfalfa. No one treatment in this first year of harvest stood out as significantly better in weed control or yield.

RESULTS:

This alfafla stand was established in the spring of 1984 using current alfalfa seeding practices, techniques and herbicides (EPTC + 2,4-DB). The first fall treatments (hexazinone and metribuzin) were applied in the fall of 1984 with subsequent spring applications (sethoxydim) being applied in April of 1985. Table 1 lists treatments that have been applied to date. Table 2 and 3 list all plots with future applications included to give a plan and perspective of the long term evaluation.

Weed populations were not higher in the first year in this experiment. However, evaluations were obtained for quackgrass and existing broadleaf weeds.

Yields for the first season treatments including all three harvests were not significantly different. There was a significant difference in percent alfalfa composition for the first harvest only with the check having the lowest level in comparison to treatments.

Table 1. Effects of certain herbicides on the total forage and alfalfa yields from the long range alfalfa production-study. Northwestern Agricultural Research Center, Kalispell, MT. Field P-2.

tiejulist ,983'tt seet .trept. H. .M.

Treatment	Rate	7.	Alfalfa Total Forage - T/A					Alfalfa Yield - T/A				
	ai/A	H-1	H-2	H-3	H-1	H-2	H-3	Total	H-1	H-2	H-3	Total
Hexazinone	1.0	97	100	100	1.47	1.31	1.00	3.78	1.37	1.31	1.00	3.67
Metribuzin	.5	92	97	98	1.53	1.40	.99	3.92	1.40	1.37	. 97	3.73
Sethoxydim	.4	100	76	98	1.44	1.47	1.02	3.92	1.43	1.41	1.00	3.84
Metribuzin Sethoxydim		100	97	98	1.41	1.37	1.03	3.80	1.40	1.33	1.01	3.73
None 1/		91	96	78	1.51	1.42	.96	3.89	1.37	1.37	.95	3.6B

Harvest dates: | H-1: 6/18/85 | H-2: 7/29/85 | DA H-3: 10/3/85 | DA H

	·
lable 2.	Effect of certain herbicides on total forage and alfalfa yields the
	first year after application in a long range alfalfa production study.
	Northwestern Agricultural Research Center, Kalispell, MT. in 1985
	Field P-2.

Treatm	ent	For	Forage Yield - Ton/A				Alfalfa Yield - Ton/A			
168 8	1	Har 1		Har 3		Har 1	Har 2	Har 3	Total	
Hexaz	84/86/88	1.43	1.32	1.01	3.76	1.36	1.32	1.01	3.69	
Hexaz	84/86	1.44	1.31	.98	3.72	1.39	1.30	.98	3.67	
Hexaz	84	1.55	1.33	1.00	3.87	1.49	1.32	.99	3.80	
Hexaz	86	1.67	1.50	.87	4.04	1.60	1.44	.85	3.89	
Check		1.52	1.50	1.01	4.03	1.32	1.46	.98	3.76	
Metri	84/86/88	1.45	1.57	.92	3.94	1.29	1.56	.90	3.76	
Metri	84/86	1.52	1.32	1.03	3.86	1.44	1.28	1.02	3.74	
Metri	84	1.61	1.31	1.02	3.94	1.44	1.24	. 99	3.68	
Metri	86	1.35	1.42	.93	3.70	1.24	1.40	.92	3.56	
Check		1.56	1.42	.98	3.97	1.40	1.35	.96	3.72	
Seth	84/86/88	1.42	1.43	.94	3.78	1.41	1.39	.92	3.72	
Seth	84/86	1.49	1.36	1.05	3.89	1.49	1.29	1.04	3.81	
Seth	84	1.40	1.61	1.07	4.09	1.40	1.56	1.05	4.02	
Seth	86	1.61	1.39	.96	3.96	1.43	1.30	.93	3.66	
Check		1.45	1.44	.98	3.89	1.36	1.44	.96	3.77	
	84/86/88	1.45	1.43	1.06	3.94	1.45	1.40	1.04	3.89	
	84/86	1.42	1.24	1.01	3.66	1.41	1.21	.99	3.61	
Seth Metri+	84	1.34	1.44	1.02	3.80	1.34	1.35	.99	3.67	
Seth Metri+	86	1.50	1.37	.98	3.85	1.35	1.32	.95	3.62	
Seth Check		1.40	1.33	1.01	3.74	1.25	1.27	.99	3.51	

61

•

Treatm		Harvest 1 % Alfalfa	6/18/85 % Grass	Harvest 2 % Alfalfa	7/29/85 % Grass	Harvest 3 % Alfalfa		
Hexaz	84/86/88	95	5	. 100	0	100	0	
Hexaz	84/86	97	3	100	0	100	0	
Hexaz	84	9 7	3	99	1	100	¢	
Hexaz	86	9ó	4	96	4	÷8	2	
Check		86	14	97	3	98	2	
Metri	84/86/88	90	10	99	1	98	2	
Metri	84/86	96	4	97	3	100	0	
Metri	84	90	10	95	5	97	3	
Metri	86	92	8	98	2	99	1	
Check		89	11	96	4	98	2	
Seth	84/86/88	3 100	0	97	3	98	2	
Seth	84/86	100	0	94	6	99	1	
Seth	84	100	0	97	3	99	1	
Seth	86	89	11	94	6	97	3	
Check		94	6	99	1	99	1	
	84/86/88	3 100	0	98	2	99	1	
	84/86	100	0	98	2	98	2	
Seth Metri	84	100	0	94	6	97	3	
Seth Metri	86	91	9.	97	3	98	2	
Seth Check		89	11	95	5	98	2	

Table 3. Effect of certain herbicides on percent botanical composition for three harvest obtained the first year after application in a long range alfalfa production study. Northwestern Agricultural Research Center, Kalispell, MT. in 1985. Field P-2.

Species composition determined by hand separation of yield subsample Broadleaf weeds present in trace amounts only

Treatme	ent .	Broadlea 5-23	f Control 7-30	Quackgras 5-23	s Control 7-30	
Hexaz	84/86/88	100	100	91	100	
Hexaz	84/86	100	100	84	94	
Hexaz	84	100	100	78	91	
Hexaz	86	75	100	15	63	
Check		0	0	0	0	
Metri	84/86/88	100	100	33	83	
Metri	84/86	100	100	68	70	
Metri	84	100	100	58	69	
Metri	86	100	100	74	88	
Check		0	0	0	0	
Seth	84/86/88	100	100	100	89	
Seth	84/86	100	100	100	59	
Seth	84	100	100	100	73	
Seth	86	100	, 95	46	70	
Check		0	0	0	0	
	84/86/88	100	100	95	79	
Seth Metri+	84/86	100	100	94	68	
Seth Metri+	84	100	100	98	60	
Seth Metri+	86	100	100	25	61	
Seth Check		0	0	0	0	

Table 4. Effect of certain herbicides on the control of grassy and broadleaf weeds in a long range alfalfa study. Northwestern Agricultural Research Center, Kalispell, MT. in 1985. Field P-2

Broadleaf weed species included dandelion, plantain, chickweed, and sheperdspurse.

All weed scores were made by ocular ratings.

 PROJECT TITLE:
 Spring barley variety evaluation

 YEAR/PROJECT:
 1985/756
 Small Grain Production

 PROJECT PERSONNEL:
 Leader - Vern R. Stewart, N. W. Agric. Res. Center, Kalispell

 Research Specialist I - Todd K. Keener
 N. W. Agric. Res. Center, Kalispell

Cooperators - Gene Hockett, USDA-ARS, Bozeman Tom Blake, MSU, Bozeman Montana State University, MT Agric. Experiment Stn.

SUMMARY:

To determine the adaptability of new and introduced spring barley varieties to northwestern Montana, variety trials are grown at the Northwestern Agricultural Research Center and on off station locations. It is these data, collected over many years, that aid in recommending barley varieties for northwestern Motnana.

Three spring barley nurseries were grown this year at Kalispell and included the Intrastate Spring Barley, the Betzes 2-6 Row near Isogenic and an off station nursery. The Betzes 2-6 row near Isogenic was a cooperative trial involving similar varietal crosses and will be reported by Dr. Gene Hockett.

Favorable spring moisture and long hot growing season contributed to excellent barley yields despite the dry summer. May moisture was up 47% while June and July were down 34 and 75%, repsectively.

RESULTS:

Intrastate Spring Barley

Yields were very good this year for the Intrastate spring barley nursery which was grown on a dryland location on the research center. The high yield (135 bu/a - MT 81865) was 30 bushels greater than last year. The average yield was 96.2 bu/a which was almost 6 bu/a more than last year. MT 81865 was the only variety yielding significantly higher than the check variety, Ingrid.

Test weights had been effected by the dry conditions during the summer. The mean weight was 46.3 lbs/bu which is about 2 lbs/bu light from normal years. Twenty-seven varieties had test weights less than Ingrid which were significantly different whereas the varieties Nova and MT 81143were significantly higher.

Lower than normal percent plumps were recorded this year, also relating to the extreme growing conditions experienced this season. Any plump over 83% was significantly higher than the check variety, Ingrid (69.3%).

Heading dates and height varied according to variety. Table 1.

Information for the Betzes 2-6 row Near Isogenic is given in Table 2.

Off Station Nursery

The off station spring barley nursery was grown on the Bill Strange farm this year. Yields ranged from 65 bu/a (Bowman) to 125 bu/a for Gallatin. Clark was used as a check variety for comparison yet no varieties were found to be significantly different after analysis. Gallatin had a test weight which stood out above all other varieites at 50.6 lbs/bu. Percent plumps were normal for this area and ran from 90 to 97%. Height varied according to variety. 66

Table 1. Agronomic data from the Intrastate Spring Barley Nursery grown on the Northwestern Agricultural Research Center, Kalispell, MT in 1985. Field Y-5.

Date seeded: May 5, 1985

Date Harvested: August 5, 1985

	VARIETY	YIELD BU\A	TEST WT LB/BU		HEAD DATE	INCHES	LODG PREVAL	
MT 81865	MT547255/TR206 ·	135.38a	48.30	85.67a	170.336	29.40	.00	.00
PI483237	BOWMAN STEPTOE LINDY	112.31	49.30	87.33a	165.67b	30.18	5.00	. 67
CI 15229	STEPTOE	110.56	42.23b	70.33	167.005	27.95	.00	.00
NA 8	LINDY	109.79	42.405	73.00	165.006	26.90	.00	.00
A R	- UNINEL	114,74	47.20	02.00	1121220	alar / B / Jami	• 00	.00
MT PILE			47.20				.00	
			4		169.87E			
	MELODY/CLARK - 14				167.675	27.00		
		103.17			173.005			.00
	KLAGES/S72114 (TR 441							
	NA 12 CONTRACTOR DATA						.00	.00
	SPIRIT							.00
	HECTOR/KLAGES//KLAGES							
states 14.5 and 14.5 and 14.5 and	HECTOR/KLAGES	100.92	46.67	70.33	169.675	30.45	.00	.00
	PIROLINE	100.92	49.17	60.33	168.005	33.07	.00	.00
CI 158a5								2.33a
01 15854	LEWIS	99.88	48.40	81.57	170.336	31.63	.00	.00
PI483218	HAZEN FISTON	99.00	44.075	61.33	168.005	33.99	30.00a	1.57
VD 22872	FISTON	98.92	46.33b	66.33	171.675	31.23	.00	.00
SI 13827	SHABET Menuet	98.75	46.83	58.33	172.675	33.73	.00	.00
	MENUET	98.08	48.43	64.00	171.00b	29.66	.00	.00
	MT41279/ID765988	97.69	44.03b	56.67	169.006	25.85	.00	.00
VD 02401	VANDERHAVE 024-01	97.60	46.37	44.676	173.006	27.82	.00	.00
VD 30101	VANDERHAVE 301-01 HECTOR/KLAGES	97.46	48.33	87.00a	171.00b	27.43	.00	.00
MT138500	HECTOR/KLAGES	97.33	48.50	66.33	168.675	30.71	.00	.00
MT 8226	LLARK/M1412/9	97.10	46.90	68.33	171.33b	30.97	.00	.00
CI 10083	INGRID V	97.02	47.93	69.33	176.00	29.27	.00	.00
FU 1	TRIUMPH	96.98	46.03b 46.83	62.00	175.33	26.25	.00	.00
	KLAGES#2/8537-68	96.83	46.83	65.33	171.006	28.61	.00	.00
		96.35	47.07	63.00	170.33b	30.45	.00	.00
CI 15514	HECTOR	96.15	48.17	74.00	170.675	22.18	.00	.00
CI 10421		95.92	43.205	60.00	168.005	33.60	23.33a	1.00
		74.42	43.700	74.00	110.000	41.07	.00	.00
	73AB2199/KARLA	95.35	43.57b	51.33	167.33b	27.17	.00	.00
	FAIRFIELD//HECTOR/KLA	95.12	46.87	75.33	171.336	28.61	.00	.00
CI 15857			46.93		170.675	33.99		.00
	PREMIER	94.69	46.67	77.00	173.675	29.13	.00	.00
CI 16181		94.58	45.80b		169.33b	31.50	.00	.00
100 000 000	KARLA/ND1265	94.38	45.23b		166.006	28.22	.00	.00
	ERSHABET	93.81	49.00	68.33	161.67b	28.35	31.67a	.67
I 15860		93.81	44.33b		169.675	30.84	.00	.00
	60AB1810-53/HECTOR	93.46			170.67b	32.02	.00	.00
	CLARK/WA895375	93.29	46.135		170.675	29.79	.00	.00
	KIMBERLY	93.23			176.67	30.45	.00	.00
m1138575	HECTOR/KLAGES	92.88	45.705	78.00	168.675	29.53	.00	.00

		VARIETY	.c. Manazery	mpos	YIELD BU\A	TEST WT LB/BU	% PLUMP	HEAD	HEIGHT INCHES	LODG PREVAL	LODG SEVER
MT 41	1279	KIMBERLY	//HECTOR/KI	LAG	92.81	47.57	73.67	169.00b	29.79	.00	.00
MT 81		MT547123	/MT31952		92.69	47.03	75.33				.00
MT		SUMMIT			92.17	48.33	61.00	172.336	29.27	.00	.00
			VE 4035-82		92.17			170.006	24.80	.00	.00
			LAGES / / KLA			48.63					.00
		75440×21			71. O.M	45. T. D		171.00E	23.73	2 Q	a (<u>) ()</u>
<u> </u>		FiF EX			91.4±	44.971	==.(171.575		00	• ()()
			2B81-4038	2	91.38	44.275		172.005	29.79		.00
		KLAGES#I	/8537-68		90.46			171.00t			.00
ΝE		NOVA				49.47a					.00
		TR440/CL	ARK			43.905					.00
MN		ROBUST				46.27b					1.00
		MOREX				45.675				58.33a	
		KLAGES				45.37b					.00
IF		FLEET				46.175					.00
			/SHORT WOCL		83.25	41.07b	72.67	179.00	28.08	.00	.00
		2590-529			81.44	45.805	69.33	175.00	30.45	6.67	.67
0		MORAVIAN			80.17	48.33	73.67	170.33b	29.53	.00	.00
JR Ξ	3406	WV/CI123	7//ROBAR		77.00	37.976	33.33b	170.675	26.51	.00	.00
XPER	RIMEN	TAL MEANS	S Contraction		96.21	46.34	66.87	170.60	29.52	3.10	.18
TES	ST FO	R VAR.		3/	1.50*	16.18**	4.41**	31.66**	2.65**	1.85**	2.30**
TAND	DARD	ERROR OF	THE MEAN		6.84	.55	5.24	.55	1.56	7.48	.38
			N/MEAN) \$100)	7.11	1.18	7.84	.32	5.28	241.27 2	13.42
SD (0.05)			19.16	1.53	14.67	1.54	4.37	20.93	1.06
		variety									
2/ L	.odgi	ng: prev	valence = %	plot	lodged,		y = angle ned to ge		ing 0 :	= none	
57 F	val	ue for va	ariety comp	ar 1 50	n 😁 😔	5 ES 35	-				
I	Indic	ates stat	tistical si	gnifi	cance at	the .05	level				
* 1	ndic	ates stat	tistical si	gnifi	cance at	the .01	level				
			ficantly gr					05 level			
		s signifi									

.

0

1 ...

67

4 -4

Table 2. Agronomic data from the Betzes 2-6 Row Near Isogenic Nursery. Northwestern Agricultural Research Center, Kalispell, MT. 1985 Field Y-5.

	Date seeded: May 11, 1985		Date harv	ested:	August 5	, 1985
÷0.	1.87b 17% * 34 %	VIELD	TEST UT	s/:	HEAD	UETOUT
	VARIETY	BU/A	LB/BU	FLUMF	DATE ·	INCHES
I 16645	BETZES BEEBE FLUMF	88.15	45.73	90.00	182.00	25.35
I 16636	BETZES CLUB HEAD DER	117.50	50.07	83.67	182.00	36.22
I 16649	BETZES LARGE SEED	138.81	50.50	83.33	169.33	33.86
	HISEBET	117.79	49.80	83.00	177.67	38.19
	Bz #7/FAN, INTERMEDIATE, LAT			80.33	181.67	35.30
IT824981	HISEBET DERIVED	111.44	49.97	80.00	179.33	38.32
	BETZES BEEBE FLUMF DER.			79.67	180.67	36.75
	BETZES LARGE SEED DER			79.00	181.00	38.06
I 16652	BETZES SHORT HAIR ROCHILL	123.12	50.27	78.33	178.33	35.30
1467884		125.19	50.27	78.33	180.33	39.37
I 16648	BETZES PLUMP NORMAL DER	120.29	50.03	77.67	180.33	38.19
	BETZES PLUMP NORMAL		49.73	77.00	178.33	38.32
I 16640	BETZES HIGH DF DER	126.56	49.90	76.33	181.00	35.17
I 16638	Bz #7/FAN, INTERMEDIATE, EAR	121.73	48.93	76.00	172.00	29.00
1 16639	BETZES HIGH DP	129.42	49.67	74.00	179.67	37.40
I 16651	BETZES SHORT HAIR ROCHILL	127.42	49.97	73.33		37.93
I 6398	BETZES ET . 22.	128.67	49.97	73.00	180.00	35.04
T 9472	BETZES SHORT DER	124.56	49.77	71.67	176.33	37.66
	BETZES CLUB HEAD		48.47	71.67	182.00	32.81
	BETZES LOW NO SEED/HEAD D		49.60	70.67	179.00	35.43
	BETZES LOW NO SEED/HEAD		49.47	68.67	168.67	31.36
T 94735	BETZES SHORT	135.77	49.57	66.33	179.33	35.96
	enon = 0 intobolic eine >	e ya fasyar	c. tegtet.	i pi ct	s example	wante -
XPERIMEN	NTAL MEANS	124.85	49.75	76.91	178.50	35.64

LSD (0.05)

22.51 .46 4.66 2.69 4.05

а	from	the	irrigated

ID	#	Variety	Yield	Test Wt.	% Plump	Height
MN	36	Robust	91 . 19.	47.97	95.67	29.97
CI 154	178	Klages	95.94	48.47	91.00	27.69
CI 155	14	Hector	100.75	50.37	90.33	29.28
Cl 158	360 .	Karla	103.44	45.30b	93.67	23.62
A	18	Fremier	69.13	47.77	92.00	21.39
CI 157	73	Morex	83.38	46.93b	93.00	26.90
1T 131	04	Gallatin	125.31	50.57a	94.00	27.30
A7791	75	Andre	93.50	48.17	91.33	24.28
14832	38	Hazen	74.50	44.97Ь	95.33	21.92
I 152	29	Steptoe	102.56	44.505	96.67	23.10
I 156	87	Kimberly	106.50	48.40	92.67	28.22
14832	37	Bowman	65.06	49.27	97.00	24.41
I 158	57	Clark 1/	94.75	48.77	92.67	22.31
I 95	58	Piroline	116.75	49.77	96.00	26.25
I 158	56	Lewis	116.38	50.33	93.00	28.87
SK 763	33	Harington	94.63	48.13	92.00	24.67
		X F value 2/	95.94 1.445	48.10 9.711 * *	93.52 1.406	25.62 1.796
		S.E.X.	224.6	.6039	1.745	5.230
		C.V.	14.63	1.255	1.866	8.036
		L.S.D.	40.54	1.744	5.040	15.11

Table <u>3</u>. Agronomic data from the irrigated Offstation Spring Barley Nursery grown on the Bill Strange farm, Stephensville, MT in 1985.

1/ Check variety

2/ F value for variety comparison

a/ Values significantly less than Clark at the .05 significance level

b/ Values significantly greater than Clark at the .05 significance level

>_

69

: .

RECOMMENDED SPRING BARLEY VARIETIES

FOR WESTERN MONTANA

Six Row type 1. Horsford - dryland 2. Stepford - dryland and irrigated and 3. Karla - irrigated or high moisture TWO ROW TYDE 4. Piroline - dryland and irridated 5. Purcell - dryland 6. Summit - dryland and irrrigated 7. Georgie - irrigated and high rainfall 8. Ingrid - irrigated 9. Lud - irrigated 10.Ershabet - dryland and irrigated 11. Menuet - high rainfall and irrigated 12.Ridawn - dryland or irrigated 13.Clark - dryland feed barley with malting potential under irrigation 14.Bridger 82 - irrigated or high moisture 15.Lewis - dryland feed barley with malting potential under irrigation 16.Gallatin - dryland or irrigated 17.Piston - irrigated 18.Cornel - dryland 19.Bellona - irrigated 20.Premier - irrigated 21.Bowman - dryland and irrigated

CHARACTERISTICS OF RECOMMENDED VARIETIES

- 1. Horsford
 - a. Six row

- b. Low grain yielding ability primarily used for hay
- c. Good lodging resistance
- d. Early maturity
- e. Dryland
 - f. Medium kernal size
 - g. Moderate test weight

Stepford stallds grabiels app 2.

a. Adapted for hay production 082801in1

b. Hooded six row

c. Large kernal size tenset egned

- d. Susceptible to stem rust
- 3. Karla

- a. Six row type b. High yielding ability c. Very good looging resistance d. Early maturity e. dryland or irrigated f. Good shattering resistance g. Moderate test weight
- 4. Firoline

a. Two row b. High yielding ability c. Good lodging resistance d. Mid season maturity e. Dryland or irrigated f. Good kernal size g. Good test weight

5. Purcell -----

- a. Two row
- b. High yielding the could be seen as the
- c. Good lodging resistance
- d. Mid season maturity
- e. Dryland
- f. Large kernal size (annal muzbeM .)
- g. Good test weight good Jast bood ----
- 6. Summit ----
 - a. Two row
 - b. High yielding ability work own
 - c. Good lodging resistance
 - d. Mid season maturity to ter, bood
 - e. Dryland or irrigated to basivad
 - f. Large kernal size
 - g. Good test weight

Georgie 7.

- a. Two row
- b. High yielding ability leav dole ...
- c. Good lodging resistance
- d. Late maturity redam scenes but as
- e. Irrigated made lesh bouldai bood .
- f. Large kernal sizes and said but a
- g. Good test wieght

71

8. Ingrid -----

a. Two row

b. High yielding ability

c. Good lodging resistance

- d. Late maturity
- e. Irrigated
- f. Large kernal size
- g. Good test weight
- 9. Lud

- a. Two row
- b. High vielding ability
- c. Good loderna resistance
- c. _sta natirity
- e. Irrigated
- f. Large kernal size
- g. Good test weight
- 10. Ershabet
 - ----a. Two Row
 - b. High yielding ability
 - c. Fair lodging resistance
 - d. Mid season maturity
 - e. lrrigated or dryland
 - f. Good test weight

11. Menuet

- a. Two row
- b. High yielding ability processor
- c. Good lodging resistance
- d. Late maturity
- e. High rainfall or irrigated
- f. Medium kernal size (song) aphal
- g. Good test weight press real book of
- h. Susceptible to leaf rust and scald

12. Ridawn

- -----
- a. Two row indilide parolers dete b. Adapted for hay production
- c. Good yielding ability open been
- d. Dryland or irrigated
- 13. Clark ----
 - a. Two row
 - b. Dryland feed barley with malting potential under irrigation
 - c. High yielding potential
 - d. Moderate resistance to leaf spot and net blotch
 - e. Mid season maturity
 - f. Good lodging resistance
 - g. Mid size kernal la la server

14. Bridger 82

a. Two row type

- b. High yielding ability
- c. Good lodging resistance
- d. Mid season maturity
 - e. High moisture or irrigated
 - f. Good test weight
 - 15. Lewis
 - a. Two row type
 - 5. Drvland feed barley
 - c. High vielding potential
 - d. Exceliant straw strength
 - e. Mid season maturity
 - f. Good lodging resistance
 - g. Good test weight

16. Gallatin

- Angele project Sought Qurier Southe project address others
- a. Two row type
- b. Feed barley potential
- c. High yielding ability
- d. Excellant strength
- e. Early to mid season maturity
- f. Good lodging resistance

17. Piston

- a. Two row type
- b. High yielding ability
- c. Good test weight
- d. Mid season maturity and dood?
- e. Good lodging resistance and but
- f. Susceptible to leaf scaldy bood ab
- 18. Cornel

- a. Two row type
- b. High yielding ability
- c. Moderate lodging resistance
- d. Mid season maturity
- e. Irrigated or dryland
- f. Large kernal size
- g. Good test weight

19. Bellona

- a. Two row feed barley
- b. Average height
- c. Good yield
- d. Mid-season maturity
- e. Good test weight
- f. Average percent plump

20. Fremier

- a. Two row malting barley
- b. Rough awn, white aleurone, long rachilla hairs

e. High moteture on traige

- c. Resistant to Helminthosporium
- d. Good yield
- e. Average test weight

21. Bowman

- ------
- a. 2 row barley
- b. Smooth awns without an normal bill an
- c. Mid heightnafslash propol bood is
- d. Good yields task of aldrigated
- e. Good test weights

Montana Oat Variety Performance Trial

YEAR/PROJECT: 1985/756 Small Grain Production

PROJECT PERSONNEL:

PROJECT TITLE:

Leader - Vern R. Stewart, N. W. Agric. Res. Center, Kalispell Ag Research Specialist I - Todd K. Keener N. W. Agric. Res. Center, Kalispell Cooperator - Darrell Wesenberg, USDA-ARS

SUMMARY:

To determine the adaptability of new and introduced oat varieties to Montana the Northwestern Uniform Oat Nursery is grown at Kalispell. These data are used in recommending varieties for northwestern Montana.

Even though extreme climatic conditions were experienced this season in the form of a long dry summer there were excellent yields from the oat nursery in Kalispell. Yields were above the high yields obtained last year and are some of the highest on record at the Northwestern Agricultural Research Center. The long hot summer coupled with ample ground water supplies were contributing factors to such high yields in the Northwestern Oat Nursery this year.

RESULTS:

The high yield for this nursery was 228.6 bu/a from the variety Calibre. The mean for nursery was 203 bu/a. The high range of yields varied from 189 to 228.6 bu/a, with no variety varying significantly from the check variety, Otana.

Test weights were affected by the extremely dry growing season with the average being 31.0 lbs/bu. Eight varieties had test weights significantly less than Otana, which was 32.4 lbs/bu.

Heading dates and height varied according to variety. Lodging was minimal in the nursery this year.

Table 1. Agronomic data from the Uniform Nortwestern Dat Nursery grown at the Northwestern Agricultural Research Center, Kalispell, MT in 1985. Field Y-5.

Date seeded: April 11,1985

76

Date harvested: August 12,1985

	VARIETY	Yield Bu∕a	lbs/bu	date	inches	angle	%
W 78286	DUMONT	213.13	32.23	178.00	45.28	1.67	6.67
OT 308	CALIBRE (5 7886)	228.61	31.276	178.00	46.19	1.00	1.67
ID751170	MONIDA	205.42	25.97	175.33	43.95	1.00	3.33
CI esli	MONIDA FAFK CAYUSE/CTANA OGLE	189.32		120.376	45.54		. (XC)
ID 75861	CAYUSE/CTANA	221.02	25.636	180.57a	37.806	.00	.00
CI 9401	DELE	198.21	31.87	172.33b	38.195	.00	.00
ID766843	K71299/3/OTANA/2/COK	216.95	32.33	175.675	38.195	.00	.00
ND 1001	STEELE	197.34	31.37	174.00b	45.41	.00	.00
CI467882	BORDER	205.67	31.00	179.00	38.716	.00	.00
WA 6394	MINN.II-22-220/CAYUS						.00
ID742608	CAYUSE/OTANA	212.94	28.40h	180.33a	37.805	. 00	.00
OT 726	CASCADE	190.38	30.77	178.33	47.77	.00	.00
CI 9297	APPALODSA	200.53	26.675	178.33	36.485	.00	.00
CI 9081	APFALODSA RANDOM	171.21	30.30	174.675	39.245	.00	.00
ID 80988	74AE1952/74AE2608	191.38	28.30b				.00
	CAYUSE						.00
	74AB2608/CAYUSE						.00
CI 9252	DTANA 1/	209.93	32.43	178.33	46.72	.00	.00
VD 1002	OTANA 1/ RL 3057/OTNAN (W 80 FROKER/RL 3038/2/HUD	213.00	33.63	177.00	46.59	.00	.00
ND810917	FROKER/RL 3038/2/HUD	199.84	31.47	177.33b	41.86	.00	.00
A706766	EGDOLON 26/NOBLE	192.20	33.00	176.335	34.51b	.00	
	74AB2608/CAYUSE						.00
ID804725	CAYUSE/74AB1956	203.23	31.97	176.675	30.055	.00	.00
IL753402	COKER 227/3/CI5068/C	196.21	34.93	172.005	36.485	.00	
ID783965	AURORA NYCRR COMPOSI	208.81	29.80	177.00	38.06b	.00	.00
CI 9412	AURORA NYCRR COMPOSI PORTER (P 70408E)	197.65	33.17	178.33	43.83	.00	.00
CI 9409	NY A-11 (NY COMPOSI	190.32	29.00b				.00
VDEDTHEN		207 27	71 00	477 70	70 07	1.4	17
TECT F	ITAL MEANS DR VAR. 37	203.23	31.04	17.32	37.71	. 14	.43
	ERROR OF THE MEAN	203.23 1.71 9.07	4.027*	18.01**	10.44**	. 74	. 7/
	C OF MEAN (MEAN) #100	7.07	.73	. 33	1.1/	.42	1.40
	S OF MEAN/MEAN) #100	4.46	2.99	.30	2.73 3	08.93	337.04
SD (0.05))	25.74	2.63	1.50	3.32	1.19	4.15

2/ Lodging: angle 0=no lodging, 9=lodged to ground, % = percent of plot lodged

3/ F value for variety comparison

** Indicates statistical significance at the .01 level

a/ Values significantly greater than the check at the .05 level.

b/ Values significantly less than the check at the .05 level.

SPRING DAT VARIETIES

1-1-6

RECOMMENDED FOR WESTERN MONTANA

1. Cayuse - irrigated or dryland

- 2. Otana irrigated or high moisture conditions
- 3. Border irrigated
- 4. Monida irrigated and dryland

CHARACTERISTICS OF RECOMMENDED VARIETES

- a. Pale plant green color, yellow kernals at maturity. developed in New York
 - b. High yielding ability means the all
 - c. Low test wieght
 - d. Maturity early to mid-season
 - e. Very good straw strength
 - f. Resistant to Victoria blight and
 - Helminthosporium blight
 - g. Tolerant to " Red Leaf " disease of oats
- 2. Otana

1. Cavuse

- ander statt that even must
- a. Kernal white and plump
- b. Dark blue-green foliage
- c. High yielding
- d. Excellant test weight
- e. Medium to strong straw
- f. Maturity mid season
- g. Resistant to Victoria blight
- 3. Border
 - s and the set of the s

 - b. High yielding ability
 - c. Good straw strength
- d. Good test weight
- e. Mid season maturity
- f. Protein levels equal to cayuse

little is at Share previous Veare, even in comparizing T

- g. Susceptible to red leaf
 - 4. Monidants of result is a line a second structure and
 - a. Kernal white and plump
 - b. High yielding ability
 - c. Good straw strength
 - d. Good test weight
 - e. Mid season maturity
 - f. Good protein levels

Spring Wheat Variety Evaluations

YEAR/PROJECT: 1985/756 Small Grain Production

PROJECT PERSONNEL:

PROJECT TITLE:

Leader - Vern R. Stewart, N. W. Agric. Research Center, Kalispell Ag Research Specialist I - Todd K. Keener N. W. Agric. Research Center, Kalispell Cooperators - Larry Alexander, USDA-ARS, Bozeman Mike Wilson, USDA-ARS, Bozeman R. E. Allan, USDA-ARS, Pullman, WA Wheat Research & Marketing Committee Mont. Ag. Exp. Stn., Mont. State University

SUMMARY:

The spring wheat variety nurseries are used to evaluate and test new lines for production in western Montana.

Three nurseries were grown this year. The two on station trials (Advanced Yield and Western Regional) had extremely good yields with low disease incidence. One off station nursery was grown in Frenchtown this year, but late harvest and extreme weed problems resulted in unreliable data.

RESULTS:

Advanced Yield Nursery

Extremely good yields were taken from the Advanced Yield nursery this year. A record yield of 140.6 bu/a was harvested from plot of the variety Lloyd and 132 bu/a from the variety Owens. Newana was used as a check variety (124.7 bu/a) and in comparison eight varieties had significantly lower yields (Table 1). Test weights were a little light but are a reflection of the dry growing season. The higher test weights that were significantly different from Newana were above 58.7 lbs/bu. Nine varieties were less than Newana and significantly different also.

Practically no disease was observed throughout this nursery and any infection that was noted was insignificant.

Western Regional Nursery

High yields were also taken from the Western Regional Spring Wheat nursery. It is thought that in spite of the drought conditions experienced this summer that ample subsoil moisture contributed to such good yields. The average yield for this nursery was 129.8 bu/a, nearly 21 bu/a higher than the Regional Nursery of 1984. Owens, the check variety, yielded the highest at 151.5 bu/a and ten varieties were significantly lower in yield (Table 2). Test weights were a little lower than previous years, even in comparison to last years data which was also effected by a hot dry season. The average test weight was 56.7 lbs/bu and Owens recorded a test weight of 56.9 lbs/bu. Heading dates and height notes varied by variety.

Off station Spring Wheat Nursery

Due to unusual harvest conditions and severe weed pressure the data acquired from this nursery is not reliable and therefore not released at this time. C>

Table 1. Agronomic data from the Advanced Spring Wheat Nursery grown on Northwestern Agricultural Research Center, Kalispell, MT in 1985. Field Y-5.

Field Y-5. Date seeded: April 11, 1985 Date harvested: September 10, 1985

	VARIETY		YIELD BU/A	TEST WT LBS/BU			
PI476211	LLOYD		140.55	57.63	32.15	178.005	
HYOOOOO	HY320		138.02	56.67	33.33	174.27b	
01 17904	OWENS		171.90		-38.5Ba	177.336	
MT 8353	FM I3/ MT7448		131.18	57.70	27.80	177.006	
MT 8419	MT7031/MT7336		131.00	55.47	37.53	175.00b	
MT 8330	MEXSEL 2315/MT74		128.78	57.73	36.48	176.675	
	S1103/MT7448		128.00	57.00	37.80	176.33b	
MT 8428	MT 7031/MT 7336		126.57	56.20	37.40	176.00b	
MT 8282	PI 345931/MT7440		125.98	54.17b	35.70	175.67b	
SUCCOOOO	SUCCESS		124.88	56.43	37.14	177.67	
	NEWANA /		124.73	57.37	34.91	179.00	
	PONDERA		122.80	57.47	36.75	176.005	
	NK 751		122.72	55.90	33.20	174.33b	
MT 8447	SU73/MT7336		122.43	58.37	44.23a	176.675	
	WRC 80-8		122.25	57.13	35.56	173.00b	
	CI 15838/MT7418		121.43	56.63	36.61	175.33b	
	MT7336/SHORTANA		119.47				
	MT7336/NDRANA		119.35				
	GLENMAN		118.45				
	PM 23/MT7448		117.72	57.07	37.14	176.33b	
	MEDORA		117.68	58.33	49.74a	175.67b	
	STOA		117.63	56.47	43.31a	176.33b	
	MT7421/NEWANA		117.40	57.80	37.93	176.00b	
	CI5838/MARBERG		116.10	55.10	35.43	176.675	
	ND 681/MT 6830		115.87	57.97	45.14a	178.67	
	MT7031/MARBERG		115.03				
	MT7336/SHORTANA		114.20			174.00b	
	MT7448/MT7031		114.18	55.BOb	38.98a	176.00b	
	MT7031/MARBERG		113.17	54.606	35.30	174.33b	
CI 17910			113.13	57.43	45.01a	177.33b	
	PM 23/ MT7448		112.62	58.70a	36.09	177.67	
	MT7448/MT7031		112.20	55.70b	41.21a	172.33b	
	PM 23/ MT7448		111.85	57.57	35.96	177.00b	
	SU73/MT7336		110.72	58.13	44.09a	176.00b	
	SU73/MT7336		110.23	57.67	45.01a	176.67b	
	S1103/MT7448		109.37	55.47b	37.01	172.67b	
DTOODOOO			109.30	57.87	42.78a	172.33b	
	MT7421/NEWANA		109.22	58.13	40.29a	176.675	
CI 17282			108.65	58.90a	45.01a	175.67b	
	PM23/MT7448		108.30	58.13	36.88	175.67b	
	CI 15838/MT7418//PONDE	RA	107.60	57.07	35.43	175.33b	
	MT7421/FORTUNA		103.83b		39.50a	177.67	

--- 079

Agronomic data from the Advances Suring Wheat Aureary growings Agritemations Agricultural Resealsh Contern Fattagald, 55, 21 195

YIELD TEST WT HEIGHT HEADING VARIETY BU/A LBS/BU INCHES DATE -----177.00b 107.685 55.435 CANADA LEADER 44.49a CI 17429 LEW 102.235 57.00 46.33a 180.33 MT 8455 MT7421/MT7336 101.585 57.80 35.70 173.336 CI 15892 WARD (DURUM) 101.05b 57.70 50.79 176.005 99.82b 57.00 45.41a 177.33b CI 13596 FORTUNA MT 8327 N2211/MT7448 98.40b 56.63 34.65 175.67b CI 10003 THATCHER 96.62b 55.67b 46.98a 177.00b EXPERIMENTAL MEANS 39.13 175.99 116.12 56.95 F TEST FOR VAR. 2.67** 5.88** 14.73** 8.91** STANDARD ERFOR OF THE MEAN 1.20 . 47 6.27 .56 C.V. 2: (S OF MEAN/MEAN) \$100 5.40 .82 3.06 .32 LSD (0.05) 1.32 17.59 3.36 1.58

1/ Check variety

2/ F value for variety comparison

a/ Indicates values significantly greater than the check at the .05 level

b/ Indicates values significantly less than the check at the .05 level

Indicates statistical significance at the .05 level

 (13),00
 25,400
 25,400
 25,400

 (14),20
 36,410
 72,400
 21,400

 (14),10
 36,410
 52,400
 21,400

 (14),110
 36,410
 52,400
 21,400

 (14),110
 24,400
 21,400
 21,400
 21,400

 (14),110
 24,400
 21,700
 21,400
 21,700

 (14),110
 26,400
 21,700
 21,700
 21,700

 (14),110
 26,400
 21,700
 21,700
 21,700
 21,700

 (14),110
 26,400
 21,700
 21,700
 21,700
 21,700
 21,700
 21,700
 21,700
 21,700
 21,700
 21,700
 21,700
 21,700
 21,700
 21,700
 21,700
 21,700
 21,700
 21,700
 21,700
 21,700
 21,700
 21,700
 21,700
 21,700
 21,700
 21,700
 21,700
 21,700
 21,700
 21,700
 21,700
 21,700
 21,700
 21,700
 21,700
 21,700
 21,700
 21,700
 21,700
 21,700
 21,700
 21,700
 21,700
 21,700
 21,700

PT 8504 01100/017420 DT000000 PDNRGE MT 8001 MT7021/NE#-00 PT 8028 PHC. NT7448 PT 8028 PHC. NT7448

Table 2. Agronomic data from the Western Regional Spring Wheat Nursery grown on the Northwestern Agricultural Research Center, Kalispell, MT. in 1985. Field Y-5.

Date planted: April 11, 1985 Date harvested: September 10, 1985

1 -

81

I 17904 0000249					DATE	INCHES
0000247	DWENS 1/	ante anno ante ditor della ante dato della della ditori di	151.47	56.90	179.67	37.01
	ABERDEEN BELECTION ABERDEEN BELECTION ABERDEEN BEL. A71531		148.90	56.53	181.00	36.75
1000 2 56	ABERDEEN BELECTION		147.80	57.43	179.00	17.73
D018151	ABERDEEN BEL. A71531		143.43	57.90	181.00	33.50
1251303	W498-165/WA6158		141.00	57.77	181.33a	35.17
0000286	ABERDEEN SELECTION		140.70	56.17	181.00	36.61
I 17903	MCKAY				179.00	
	WYNNE/FMN				178.33	
	POTAM70/FIELDER				180.33	
0000291	BORAH//BORAH/BB"S" R		138.72	56.53	175.33b	35.30
	ABERDEEN SELECTION				181.00	
4007182	K74153/K74093, K80009		137.62		177.67b	
1001643	WYNNE/FMN		100.70	57.20	178.005	35.04
0000285	ABERDEEN SELECTION				174.676	
	JUP/BJY"S"				174.336	
	POTAM70/FIELDER(PENA				180.00	
RS08418	TV18A-CM067/HDRK"S"		130.57		173.675	
RS08417	TV18A-CM067/HORK"S" AU/KAL-BB/BON		128.80		178.00b	
1001415	WYNNE/PWL		128.17		181.33a	
4007181	K73772/BORAH, K790074		127.97	57.83	178.67	37.01
4007075	K73579/BORAH		127.03	57.23	1//.330	33.70
	A71372S-15-3/A71388S		125.32	58.23	175.33b	35.70
001515	WYNNE/FMN PDTAM70/FIELDER				178.33	
					177.675	
	ABERDEEN SELECTION				179.33	
	HORK/YMH/KA//BB,ORS7	r	122.65b	55.77	178.00b	32.41
	MINIVET SIB				177.00b	
	MRN/TBR66//ID0107/3/				181.00	
	ABERDEEN SELECTION			57.00		
	FEDERATION				177.33b	
	WAVERLY				178.67	
	ID0134//ID0064/ID004				178.67	
1302956	WYNNE/UT7254-303		99.05b	55.37b		
4007183	K78504/K79129-33//K7		97.175	56.43	179.67	34.65
PERIMEN	ITAL MEANS		129.76	56.71	178.44	35.75
TEST FO			1.62	5.50	18.73	7.05
	ERROR OF THE MEAN		9.81	.52	.48	1.01
	S OF MEAN/MEAN) \$100		7.56	.92	.27	2.83
SD (0.05			27.69	1.47	1.35	2.86
/ F val	variety ue for variety compar s significantly great				Andrew	

Indicates statistical significance at the .01 level

SPRING WHEAT VARIETIES

RECOMMENDED FOR WESTERN MONTANA

1.	Fortuna		udaajin			
2.	Newana					
3.	Pondera			0000		
4.	Marberg				2	
Soft	t White V	ariety				

CHARACTERISTICS OF RECOMMENDED VARIETIES

Hard Red Varieties

- 1. Fortuna
 - a. Bearded variety
 - b. Good yielding variety
 - c. Medium to tall height
 - d. Medium maturity
 - e. High test weight
 - f. Poor to fair lodging
 - g. Somewhat susceptible to leaf rust
 - h. Resistant to most common races of leaf rust
 - i. Resistant to most common races of stem rust
 - j. Fair to good milling and baking quality

2. Newana

- a. High yielding ability
- b. Semi-dwarf variety
- c. High test weight
- d. High lodging resistance
- e. Good shattering resistance
- f. Resistance to stem rust
- g. Moderately susceptible to leaf rust
- 3. Pondera

- a. High yielding ability
- b. Semi-dwarf variety
- c. High test weight
- d. Mid season maturity
- e. Resistance to stem and stripe rust
- f. Moderately resistant to leaf rust

4. Marberg

- a. Good yielding ability
 - b. Semi-dwarf variety
 - c. Good test weight
 - d. Mid season maturity
 - e. Resistant to stem rust
 - f. Moderate resistance to stripe rust

Soft White Varieties.

- 5. Overs
 - a. Bearded variety from Idaho
 - b. Very high yielding ability
 - c. Semi-dwarf type
 - d. Medium maturity
 - e. Fair test weight
 - f. Good straw strength
 - q. Good shattering resistance
 - h. Resistant to stem and stripe rust

s, Saor Jaerding Variaby Madium to teli hoight Si Madium to teli hoight Si Madium to teli Si Saor ta teli

- h. Restation to rest connon rates of in-
- to the second to meet common team of training as
 - 3. Fair to pood milling and be ing quarit
 - - a. High ytatoing i'.
 - the second second
 - TRUT BO. 178 DRA 4518 Of Substance
 - widerately resistant to leve whe

PROJECT TITLE: Small Grains Production

PERSONNEL:

Leader - Vern R. Stewart, N. W. Agric. Res. Center, Kalispell Research Specialist I - Todd K. Keener N. W. Agric. Res. Center, Kalispell Cooperators - Oscar Buller - Stillwater Location Vergeront Farm - Lake County Ross McIntyre - Ravalli County

SUMMARY:

To determine the adaptability of new and introduced winter wheat varieties to Montana the Western Regional Winter Wheat nurseries are grown at the Kalispell and Stillwater locations. The outstanding cultivars from these trials are then tested under varying growing conditions of western Montana through off station nursery evaluations. These data are used in making recommendations to the Montana producer.

An open winter with less than normal continuous snow cover contributed to high incidence of winter kill especially at the Stillwater location. TCK smut was present in all Regional nurseries yet fairly light in comparison to previous years. Fair growing season conditions resulted in minimal lodging and disease.

RESULTS:

Western Regional Hard Red Wheat

Although the average yield this year (73.0 bu/a) was just slightly less than last year the high yield for 1985 (89.5 bu.) was much less than 1984 (110 bu/a). The narrow range in variety yields could be a reflection of low moisture levels during the growing season. Two varieties yielded significantly higher than the check variety Winridge (UT132434 and WA7171) and three varieties were significantly less in yield (ORCR8320, MT 8003 and ID 284).

Test weights were slightly lower than normal this year in comparison to others and twenty-eight varieties had higher test weights significantly different from Winridge.

The less winterhardy varieties have stand reductions exceeding 50%

TCK smut was observed in nineteen varieties with the average level being around 5% of the varieties showing infection.

Lodging was not drastic yet did appear more severe in the Utah Hansel/Arbon crosses.

Western Regional Hard Red Winter Wheat Nursery - Stillwater

Yields were considerably lower than long term averages at the Stillwater location because of low rainfall. The highest yield was 50 bu/a in the nursery with the Utah Hansel/Arbon crosses producing the two top yields. Test weights are generally lower than average at 52.7 lbs/bu average. Eighteen varieties had significantly higher test weights than Winridge.

Stand losses exceeded 90% in several varieties. WA6820 had the best stand of lines tested at 62.5%.

TCK smut was light at Stillwater although twenty-one entries had smut levels ranging from .25 to 3.75%.

Lodging in this nursery was almost nonexistant.

Western Regional Soft White Winter Wheat Nursery - Kalispell

The dry growing season in 1985 resulted in reduced yield at Kalispell. This year the average yield was 74.5 bu/a, some 20 bushels less than last years average. Seven varieties yielded significantly higher and three varieties were significantly lower than the check variety, Stephens.

Test weights were much lower this year also. The average of 53 lb/bu is seven pounds below the standard weight for wheat.

0I754022 was the only variety significantly different from the check for percent stand. Stands were generally quite uniform.

TCK smut level means were about 6%. Only two varieties, WA7129 and WA7217 were smut free. 0I754989 was very susceptible (28.8%).

Western Regional Soft White Wheat Nursery - Stillwater

Yields were greatly reduced in this experiment when compared to last year and long term averages. Yields ranged from 21.2 to 40.2 bu/a with eight varieties having yields significantly less than Stephens.

Test weights were lower than previous years with the average being 47.8 lb/bu.

The stand mean was 44%. Some entries had less than 25% stand.

TCK smut was observed in all but four entries, however level of infection was very low, with a mean for the experiment of 2%.

Off Station Winter Wheat Nurseries

The 1985 off station winter wheat nurseries were grown on the Ross McIntyre farm (Ravalli County) and the Vergeront Farm (Lake County). Comparing the two location averages it was found that the top three yielding varieties were Lewjain (white), Tyee (white) and Weston (red type wheat). Yields were very low in Ravalli County due to drought throughout the growing season.

The two high test weights from the combined location data were from Hawk and Weston (53.5 and 53.9 lbs/bu respectively). Height varied according to variety and location.

Table 1. Agronomic data from the Western Regional Hard Red Winter Wheat Nursery grown on the Northwestern Agricultural Research Center at Kalispell, MT in 1985. Random block design, four replications. Field E-2.

1 - - -

	VARIETY	YIELD Bu/A	TEST WT LBS/BU	HEAD DATE		HEIGHT	SMUT		LOD6 3/
		rain ann aite bhe ann ann ann aire aire ai			a digan digita atalik Mayo wango tanan kalan din				
	Hansel/Arbon	83.84	56.50a	163.505	95.50	39.07b	.00	5.00	63.75
II 6223	RNL///EI 1410E/ELM//	72.29	57.90a	167.505	57.00	44.07	.95	5.50	71.50
UT145111	Hansel/Arbon	71.41			75.50	40.35b	1.25	5.25	63.50
UT14612(Hansel/Arbon	72.41		163.00b	96.00	3 8. 586		4.50	53.75
CI 17901	WINFIDGE 1/	75.26		165.00		_43.11		4.00	78.50
ID 299	Snowmold tolerant Bu	72.81		163.005		40.85		3.25	47.50b
CI 1442	KHARKOF	62.33	56.43a	166.00	89.50	48.82	8.00a	2.50	
ID 0259	Jeff/E/II-60-155/CI	79.41	59.63a	161.756	78.00b	44.98	.00	2.25	46.25
ID 0282	HGL/ID5006/3/CI14106	83.14	58.28a	162.505	82.75	36.71b	.00	1.75b	16.25b
ID 0280	I1-60-155/2#CI14107/	71.59	57.68a	161.75b		40.94	.00	1.25b	37.506
ID 0283	ATL50/4/R/R//2#CNN/3	B0.03	55.53a	160.75b	91.50	42.22		1.00b	27.50b
ID 297	A68203W-E-1-3-3/A682	76.78	56.75a	165.75	79.75	37.405	.00	.75b	23.756
ID 302	Arbon/3/DM/CLM//Burt	66.80	55.70a	162.506	53.75b	33.965	.00	.50b	18.75b
ID 298	2IT65 or 2CNN or 2MC	73.29	59.05a	164.50	80.005	40.35b	.00	.505	2.50b
WAI	W1 5514/Itana//CercN	85.2	56.802	165.25	80.000	40.94	.25	.500	6.255
DRCR8320	Marne Desprez/Colota	42.91b	54.73a	159.756	43.75b	27.366	2.25	.00b	. 00b
NA2	REA Sel.62/ID 92	70.93	54.98a	164.50	85.75b	37.805	3.50	.00b	.00b
	ID5012/WA5866	65.30	53.20	164.50	70.75b	33.96b	7.25a	.005	.006
NT 8003		56.835		162.75b	93.50	40.065	2.75	.00b	.00b
	Arbon/3/DM/CLM//Burt	62.82	Contraction of the state of the	and the second se		36.025	.00	.005	.00b
	WRR/CI13B37//PI		55.40a		92.50	39.67b		.00b	.005
	GWB127/6WB236-7/Stur	B2.04		158.50b		28.64b		.005	.00b
	Burt/CI12929//DLM/4/			165.75		30.025		.00b	.005
	CI13438/Burt//SM7437			161.50b			2.25	.00b	.00b
	2IT65 or 2CNN or 2MC	59.13b		164.00	56.25b	31.696	.00	.005	.005
	7C/Kavkaz//Nord	82.54		163.50b		35.14b		.00b	.006
CI 13844		71.44	58.08a	162.50b		40.16b	6.25	.00b	.00b
IT 7877		75.73	and designed of the local data	163.00b	and the second se	27.26b		.005	.00b
	OR-ID Sel. F50213-76		54.20	162.00b	and a subscription of the second s			.00b	.00b
	Probstorfer-Extrem/T				70.50b		8.75a		.00b
	ALBA/GNS//FN/SONORA6	76.59		161.255	73.75b			.00b	.00b
	H6L/ID5006/4/II-60-1	70.88	55.45a		57.50b	31.99b		.00b	.00b
	CI13438/Burt//SM7437/3							.00b	.005
		77	E/ 74	1/2 00	79.32	77 10	2.41	1.20	10 41
	NTAL MEANS		56.31			32.881			
F TEST F		4.3711							10.44
	ERROR OF THE MEAN	4.65	.51	.49	3.50	.97	1.74		
	(S DF MEAN/MEAN) \$100	6.37		.30	4.42	2.62		61.32	29.30
LSD (0.0	5)	13.06	1.42	1.38	9.83	2.73	4.88	2.06	27.00

« Date seeded: September 17, 1984 Date harvested: August 6, 1985

3/ Lodging ratings: prevalence rated on 0-9 scale, 0 = no lodging 9 = lodged to ground

4/ F value for variety comparison

Indicates statistical significance at the .01 level

a/ signifies values significantly greater than the check variety at the .05 level

b/ signifies values significantly less than the check variety at the .05 level

Table 2. Agronomic data from the Western Regional Hard Red Winter wheat Nursery grown on the Oscar Buller farm, Kalispell,MT. in 1985. Random block design, four replications.

Date planted: September 18,1984 Date harvested: August 7, 1985

% SURV		% 2, SMUT	/ LODG PREV	LODG 3
13.75	13.75	.00	2.50a	88.75a
	37.506		.50a	12.50a
36.25t	36.255	.50	.50a	7.50a
50.00	50.00	.75	.00	.00
18.75t	18.755	. (V)	.00	, ()()
8.75E	8.755	.00	.00	.00
40.00	40.00	1.00	.00	.00
45.00	45.00	.00	.00	.00
	46.25	.25	.00	.00
	15.005		.00	.00
40.00		.75	.00	.00
	38.75b	3.75	.00	.00
	48.75		.00	.00
	20.005	.25	.00	.00
	10.005		.00	.00
	42.50		.00	.00
	42.50	.00	.00	.00
	56.25		.00	.00
31.25b		1.00	.00	.00
12.506		.00	.00	.00
15.005		.00	.00	.00
	62.50a	3.00	.00	.00
38.75b		.75	.00	.00
	47.50		.00	.00
40.00		.50	.00	.00
55.00		.25	.00	.00
41.25		1.75	.00	.00
	40.00		.00	.00
	37.506		.00	.00
	42.50		.00	.00
	42.50		.00	.00
	45.00		.00	.00
		1.75		.00
ie 101 au	-101-600			
36.63	36.63	.75	.11	5.30
		k 1.49		\$35.21
3.94				2.62
		108.11 1		

1/ Check variety

2/ Ocular rating of TCK smut per plot

3/ Lodging ratings: prevalence rated on 0-9 scale, 0= no lodging 9 = lodged to ground

4/ F value for variety comparison

\$* Indicates statistical significance at the .01 level _____

a/ Values significantly greater than the check at the .05 level

b/ Values significantly less than the check at the .05 level

14-

C>

Table 3. Agronomic data from the Western Regional White Winter Wheat Nursery grown on th Northwestern Agricultural Research Center, Kalispell, MT in 1985. Random block design. Field E4.

089

1 - - -

8.	1. 52. (Date planted: Sept	ember 17,	1984 I	Date Harve	sted: f	August 6,	1985
CI	Number	Variety	Yield Bu/A	Test Wt. Lbs/Bu	Heading Date	% Surv	% 1/ Smut	Height Inches
WA	7215	76/W5052/Daws,Vh	91.0	56.53a	163.2a	88.25	4.750	33.5
OR	7996	SPN/63189-66-71/	87.7a	51.65	165.5a	84.50	2.625	32.0
WF.	7168	DERED/RAEDER, VCD	-87.0a	51.17a	154.Sa	79.5Ò	.500	30.5
WA	6912	BVR/CI15923/NGS,	87.Ja	51.30	166.Ja	82.75	3.000	29.8
CI	17917	TRES (WA 6698)	86.5a	56.05a	164.2a	90.50	.750	33.6
WA	7163	VPM/MOS951/2*OR	82.5a	52.32a	165.7a	85.50	1.500	32.1
WA	7166	VPM/MOS421/2*TY	82.1a	50.45	164.0a	85.75	1.500	30.8
ORCW	V 8314	7C/CND/CAL/3/YM	81.0	51.23	161.2	76.25	2.250	30.6
ORCW	8113	SPN/63189-66-71	79.5	50.67	162.0	83.00	4.500	30.3
WA	7129	MORO/CI13645/2*	79.5	55.83a	163.5a	84.50	.0000	29.6
OI 7	65784	ROMANIA FONDEA/	79.5	57.78a	161.5	77.25	9.500	28.7
WA	7216	V77254,DASIS/WA	77.8	52.60a	168.0a	79.50	1.750	29.6
CI	13740	MORO	77.0	53.60a	163.5a	89.75	.6250	38.7a
OR	836	STEPHENS/PI1734	76.9	49.80	163.5a	82.50	2.000	34.9
WA	7217	VPM/MOS951/2*BRB	76.3	55.40a	166.0	90.75	.0000	31.6
ORCW	8423	ND/P101/BB/GLL	75.9	57.25a	161.0	85.00	8.000a	31.8
CI	13968	NUGAINES	75.0	54.98a	163.5a	78.75	7.250	28.9
ORCW	8318	1523/DC DWF/RFS	72.1	50.53	165.7a	70.00	3.500	32.1
WA	7169	VH7340,CI14484/	72.0	49.30	164.5a	78.75	16.00	31.2
CI	17596	STEPHENS 2/	71.6	50.23	161.2	79.25	2.750	29.6
WA	7165	VPM/MOS421/2*RE	71.0	52.43	163.5a	80.00	.2500	27.1
OR	8270	MCD/ROMANIAN/OR	66.0	50.23	163.5a	80.25	5.750	28.6

(CI Numbe	r Va	ariety	Yiel Bu/A		Test Wt. Lbs/Bu	Heading Date	% Surv	% 1/ Smut	Height Inches
OF	CW 8421	PJB84	1/1543/Y	MH 66.	0	51.08	165.5a	77.75	5.000	32.5
Wł	7218	VPM/m	105421/RD	R 64.	3	50.18	166.5a	79.25	.7500	31.5
C	17962	PHOEN	IIX,WW33	63.	2	57.18a	156.56	64.25b	8.750a	26.5
C	1442	KHARK	OF	62.	5	54.98a	166.5a	87.75	17.50a	41.4a
03	754989	MNIM/	KAL/BB	58.	ЗЫ	56.48a	162.5a	76.25	28.75a	30.1
03	754022	RDL/S	U92/KALI	A 54.	75	52.58a	lėi.O	a0.005	1 0. 50a	
01	11755	ELGIN		54.	2ь	52.70a	166.Ja	75.50	18.75a	37.6a
F- SE C\	ERALL MI RATIO TI TRT ME (SE/ME) (0.05)	RTS ANS AN)	05.09 05.26	74. 9.23 3.4 4.57 9.59	2** 1 6	53.02 25.00 ** .5247 .9896 1.476	163.8 29.35** .4373 .2669 1.230	80.45 4.061** 3.520 4.375 7.899	5.819 16.95** 1.659 28.52 4.667	31.5 17.1** 2.065 2.583 2.290
2/ ** a/	F value Indicat Values	e for va tes stat s signif	riety co istical icantly (nce a han t	t the .01 he check	at the .05			
2/ ** a/	F value Indicat Values	e for va tes stat s signif	riety co istical icantly (mparison significa greater t	nce a han t the	t the .01 he check	at the .05 the .05 le			
2/ ** a/	F value Indicat Values	e for va tes stat s signif	riety co istical icantly (mparison significa greater t	nce a han t the	t the .01 he check check at	at the .05 the .05 le	evel		
2/ ** a/	F value Indicat Value Value	e for va tes stat s signif s signif	riety co istical icantly icantly	mparison significa greater t less than	nce a han t the	t the .01 he check check at	at the .05 the .05 le	evel		
2/ **	F value Indicat Value Value	e for va tes stat s signif s signif	riety co istical icantly icantly	mparison significa greater t less than	nce a han t the	t the .01 he check check at	at the .05	evel	64 PONS 2772 9080	
2/ **	F value Indica Value Value	a for va tes stat s signif s signif	riety co istical icantly icantly	mparison significa greater t less than	nce a han t the	t the .01 he check check at	at the .05	evel	4404 44 2557 - 2572 6	
2/ ** a/	F value Indica Value Value	e for va tes stat s signif s signif	riety co istical icantly icantly	mparison significa greater t less than	nce a han t the	t the .01 he check check at	at the .05 the .05 le	evel	44 PONS 2227 = 2228 2028 2028 2038 2038 2038 2038 2038	
2/ ** a/	F value Indicat Value Value	e for va tes stat s signif s signif	riety co istical icantly icantly	mparison significa greater t less than	nce a han t the	t the .01 he check check at	at the .05 the .05 le	evel	14 2000 2572 2572 26705 27705 277005 27705 27705 27705 27705 27705 27705 27705 27700	
2/ ** a/	F value Indica Value Value	e for va tes stat s signif s signif	riety co istical icantly icantly	mparison significa greater t less than	nce a han t the	t the .01 he check check at	at the .05 the .05 le	evel	44 POHA 2552 - 2603 - 2603 - 2604 - 2	
2/ ** a/	F value Indicat Value Value	e for va tes stat s signif s signif	riety co istical icantly icantly	mparison significa greater t less than	nce a han t the	t the .01 he check check at	at the .05 the .05 le	evel	 4 40.43 4	
2/ ** a/	F value Indicat Value Value	e for va tes stat s signif s signif	riety co istical icantly icantly	mparison significa greater t less than	nce a han t the	t the .01 he check check at	at the .05 the .05 le	evel		
2/ ** a/	F value Indicat Value Value	e for va tes stat s signif s signif	riety co istical icantly icantly	mparison significa greater t less than	nce a han t the	t the .01 he check check at	at the .05 the .05 le	evel	 40.40 <	

Table 4. Agronomic data from the Western Regional White Winter Wheat Nursery 'grown on the Oscar Buller farm, Kalispell, MT. in 1985. Random block design.

% % 2/ Height CI Number Yield Test Variety Bu/A Lb/Bu Surv Smut Inches 6912 BVR/CI15923/NGS,V 40.2 47.50 38.75 .1250 25.6 WA 7215 76/WE052/DAWS.VHD 53,75 .7500 29.0 WA 39.0 47.05 7996 HYS/YAYLA/WA4995/ 37.4 60.00 .2500 28.7 OF. 48.08 26.2 36.9 47.23 50.00 .6250 CI 17596 STEF'HENS 1/ CI 17917 TRES (WA 6698) 36.1 50.95a 42.50 .5000 27.6 26.5 WA 7163 VPM/M0S951/2* 0R68 35.8 46.40 50.00 .0000 28.1 ORCW 8314 7C/CNO/CAL/3/3/YMH 35.7 46.35 50.00 1.875 24.1 54.35 35.005 4.250 OI 765784 ROMANIA FONDEA 12-34.2 ORCW 8113 SPN/63189-66-71/BZ 55.00 1.750 25.8 33.0 45.386 VPM/MOS421/2*RAEDR 32.7 48.90 42.50 .0000 22.0 WA 7165 26.7 48.93 46.25 1.000 ORCW 8423 ND/P101/BB/GLL 31.3 23.7 WA 7166 VPM/MOS421/2*TYEE 31.2 47.55 41.25 .6250 25.9 WA 7217 VPM/MOS921/2*BRB 30.7 47.75 52.50 .1250 55.00 .2500 24.7 WA 7816 CERCO/RAEDER, VJ08, 30.4 45.85 45.98 37.50 5.375 25.7 OR 836 STEPHENS/PI173438 30.3 25.2 30.3 49.48a 47.50 2.250 CI 13968 NUGAINES 25.3 OR 8270 MCD/ROMANIAN/OR 71 29.6 45.455 38.75 .5000 RDL/SU92/KALIAN/BB 28.755 3.000 24.9 OI 754022 28.8 48.60 41.25 .0000 25.5 WA 7218 VPM/MOS 421/RDR 28.6 47.80 47.50 .5000 27.9 1523/DC DWF/RBS,F1 28.5 45.03b ORCW 8318 25.7 36.255 3.750 OI 754989 MNIM/KAL/BB 28.25 49.45a ORCW 8421 PJB 841/1543/YMH/6 27.5b 46.93 40.00 .6250 25.3 32.50b .1250 25.4 WA 7219 MORO/CI13645/2*CH/ 25.9b 44.05b

Date planted: September 18,1984 Date harvested: August 7, 1985

	CIN	umber		Variety	Yield Bu/A	Test Lb/Bu	% Surv	% 2 Smut		Height Inches
C	CI 1	3740	MORO		25.6b	44.985	55.00	.2500		30.0
C	DI I	1442	KHARKO	Eng perio	25.1b	49.90a	52.50	8.000a		38.1a
i.	A	7216	V77254	, DASIS/WA63	24.8b	48.60	47.50	.0000		25.3
C	CI 1	7962	PHOENI	X,WW33	22.9b	52.50a	25.00Ь	1.750		24.1
h	A	7169	VH7434	0,CI14484/66	22.5b	44.756	38.75	6.750		23.5
C	51 1	1755	ELGIN		21.2b	46.90	42.50	13,88		31.8
F	F-RAT BE TR CV (S	LL MEA IO TRI T MEAN E/MEAN 0.05)	TS 3/ NS N)		30.5 2.81** 3.02 9.908 8.50	47.75 17.94** .5534 1.159 1.557	4.476 10.11	*1.988** 2.207	15 15	26.40 11.94 ** .888 3.312 2.47
2		TCK s		ing by ocula		ation				
2 3 * a	2/ % 3/ F \$* I \$/ V	TCK s value ndicat alues	e for var tes stat: signific signific	riety compar istical sign cantly great cantly less	ison 1ficance er than t than the	at the .0 he check check at	at the the .05	.05 leve	1	
2 3 * a	2/ % 3/ F \$* I \$/ V	TCK s value ndicat alues	e for var tes stat: signific signific	riety compar istical sign cantly great cantly less	ison Ificance er than t than the	at the .0 the check check at	at the the .05	.05 leve	-1 -1 -0 	
2 3 * a	2/ % 3/ F \$* I \$/ V	TCK s value ndicat alues	e for var tes stat: signific signific	riety compar istical sign cantly great cantly less	ison Ificance er than t than the	at the .0 he check check at	at the the .05	.05 leve	:1 :1 :0 :1 : : : :	
2 3 * a b	2/ % 3/ F \$** I \$* V \$2/ V	TCK s value ndicat alues alues	e for van es stat: signific signific	riety compar istical sign cantly great cantly less	ison 1ficance er than t than the	at the .0 the check check at	at the the .05	.05 leve level		
2 3 * a b	2/ % 3/ F ** I a/ V b/ V	TCK s value ndicat alues alues	e for van es stat: signific signific	riety compar istical sign cantly great cantly less	ison Ificance er than t than the	at the .0 the check check at	at the the .05	.05 leve level		
2 3 * a b	2/ 2/ 3/ F ** I a/ V b/ V	TCK s value ndicat alues alues	e for van es stat: signific signific	riety compar istical sign cantly great cantly less	ison 1ficance er than t than the	at the .0 he check check at	at the the .05	.05 leve level		
2 3 * a b	2/ 2 3/ F ** I a/ V b/ V	TCK s value ndicat alues alues	e for van es stat: signific signific	riety compar istical sign cantly great cantly less	ison 1ficance er than t than the	at the .0 the check check at	at the the .05	.05 leve level		
2 3 * a b	2/ 2 3/ F ** I a/ V b/ V	TCK s value ndicat alues alues	e for van es stat: signific signific	riety compar istical sign cantly great cantly less	ison 1ficance er than t than the	at the .0 he check check at	at the the .05	.05 leve level		
2 3 * a b	2/ 2 3/ F ** I a/ V	TCK s value ndicat alues alues	e for van es stat: signific signific	riety compar istical sign cantly great cantly less	ison Ificance er than t than the	at the .0 the check check at	at the the .05	.05 leve level		
2 3 4 5	2/ % 3/ F ** I a/ V b/ V	TCK s value ndicat alues alues	e for van es stat: signific signific	riety compar istical sign cantly great cantly less	ison Ificance er than t than the	at the .0 he check check at	at the the .05	.05 leve level		
2 3 * a	2/ 2 3/ F ** I a/ V b/ V	TCK s value ndicat alues alues	e for van es stat: signific signific	riety compar istical sign cantly great cantly less	ison 1ficance er than t than the	at the .0 he check check at	at the the .05	.05 leve level		
2 3 4 5	2/ 2 3/ F ** I a/ V	TCK s value ndicat alues alues	e for van es stat: signific signific	riety compar istical sign cantly great cantly less	ison Ificance er than t than the	at the .0 the check check at	at the the .05	.05 leve level		

Table 5. Agronomic data from the offstation winter wheat nurseries grown in Lake and Rivalli Counties in 1985.

Date planted : Lake Sept. 23, 1984 Rivalli Oct. 1, 1984 Date harvested: Lake August 1,1985 Rivalli July 31, 1985

CI Number	Variety	Type	Yield			Test Wt			Height		
		1/		Lake		Rivl	Lake	X	Riv1	Lake	X
J R 792	Triumph/Lancer	R	13.2	40.1	26.7	50.3	51.2	50.8	21.5	30.9	26.2
I 17909	Leujain	W	15.6	47.1	31.4	41.6	46.8	44.2	17.6	25.9	21.8
II 17772	Type	W	13.2	48.4	31.0	37.4	45.9	41.6	16.5	25.3	20.9
A 7045	Lind Sel. B	R	10.9	45.9	28.4	4 2.4	51.2	46.8	17.0	24.9	21.0
JR 68007	Hill 81	W	10.0	48.7	29.4	42.1	50.2	46.2	18.2	26.8	22.5
CI 17902	Winridge	R	10.8	39.7	25.3	46.6	53.3	50.0	18.2	28.5	23.4
CI 14586	Luke	W	10.8	44.7	27.8	42.1	47.8	45.0	18.5	24.6	21.6
CI 11727	Weston	R	14.0	52.2	33.1	50.6	56.4	53.5	23.8	29.5	26.7
ID 3518	WA 4765/3/BEZ//BL	R	10.8	48.4	29.6	44.7	47.0	45.9	17.8	25.8	21.8
CI 17596	Stephens	W	15.5	35.7	25.6	46.7	46.5	46.6	19.6	26.6	23.1
A 6820	GWB/127/GWB 236	R	17.1	44.6	30.9	46.7	53.3	50.0	18.2	24.6	21.4
DRC 8113	SPN//63185-66-71/	W	8.8	36.8	22.8	39.2	46.1	42.7	19.3	25.8	22.6
I 17950	Faro	W	8.2	44.8	26.5	37.4	46.2	41.8	16.4	23.9	20.2
CI 17149	Daws	W	7.9	41.0	24.5	39.9	50.3	45.1	16.8	24.3	20.6
IA 6696	Daws/WA 5829 VHO	W	10.9	41.3	26.1	43.3	52.4	47.9	14.3	24.4	19.4
IA 234	Hawk	R	11.6	38.2	24.9	54.4	53.3	53.9	17.9	22.1	20.0
						061 1947 - 1947 - 1947 - 1947					
		X F 2/	2/ 1.95**		* 2.73**		49.9 23.7**		18.4 25.9 4.95**5.77**		
		SEX C.V.		2.90 6.65		.49	.69 1.38		2.19		

1/ Type wheat : R = Red, W = White

2/ F value for variety comparison

93

1 ----

WINTER WHEAT VARIETIES

RECOMMENDED FOR WESTERN MONTANA

Hard Red Varieties

- 1. Winalta dryland
- 2. Cheyenne dryland
- 3. Winridge dryland

Soft White Varieties

- 4. Luke drvland or irrigated
- 5. Lewjain dryland and irrigated

CHARACTERISTICS OF RECOMMENDED VARIETIES

- 1. Winalta
 - a. Bearded variety
 - b. Fair yielding
 - c. Tall type
 - d. Maturity early to mid season
 - e. Good test weight
 - f. Weak straw strength
 - o. Good shattering resistance
 - h. Susceptible to dwarf smut and sawfly infestations
 - i. Resistant to stripe rust
 - i. Moderate resistance to stem rust

2. Cheyenne

- a. Bearded variety
- b. Good yielding
- c. Tall type
- d. Maturity early to mid season
- e. Good test weight
- f. Weak straw strength
- q. Susceptible to shattering
- h. Moderate resistance to stripe rust and sawfly
- Susceptible to dwarf smut, stem rust, and sawfly infestation
- j. Good milling and baking qualities

3. Winridge

- a. High yielding ability
- b. Tall type
- c. Good test weight
- d. Resistant to shattering
- e. Resistant to lodging
- f. Resistant to dwarf smut, stripe rust and Cephalosporium stripe
- g. Winter hardy
- h. Acceptable protein, milling and baking qualities

SOFT WHITE VARIETY

4. Luke

a. Bearded variety

b. Good yielding

c. Semi-dwarf type

- d. Maturity mid season
- e. Fair test weight
- 4. Poor to fair straw strength
- g. Resistant to shatering
- h. Resistant to dwarf smut and stripe rust
- i. Foot rot tolerant
- j. Good baking and milling quality for cake flours

Designed - drylass

5. Lewjain

- a. Awned variety
- b. White chaffed with common head
- c. Semi-dwarf (douged deep cool
- d. Good yield

e. Good test weight

- f. Mid season maturity
- g. Resistant to some races of common bunt and dwarf bunt

h. Somewhat resistant to stripe rust and Cephalosporium.

i. Susceptible to leaf rust and stem rust

JURN STRAD OF GIRLEDSTRAD

PROJECT TITLE: Dwarf Bunt Tillage Study (TCK)

PROJECT/YEAR: 756/1985

PROJECT LEADER: Vern R. Stewart, Northwestern Agricultural Research Center, Montana Agricultural Experiment Station, Kalispell, MT. 97

PROJECT PERSONNEL: Jim Hoffman (USDA), Todd K. Keener - Research Specialist Don Mathre, Plant Pathology Dept., Allen Taylor, Plant and Soil Science Department, MSU, Bozeman, MT.

SUMMARY:

Dwarf bunt (Tilletia controversa kuhn) continues to be one of the major problems in the production of winter wheat in Northwestern Montana. Varietal resistance, seed treatment with fungicides, and cultural practices have been used as tools in controlling this disease.

Several tillage methods are being evaluated in an area where there is a high level of dwarf smut. Research plots were seeded after fall seedbed preparation was completed. The first year's yields (and other agronomic data) from this test were obtained in August of 1984. The second year measurements were made in August of 1985.

1984 RESULTS:

Smut levels (% smut and number of smut heads/ 3 ft of row) were highest from plots where the Claridge Technique was used. Yields were significantly differently in plots where tillage was used in comparison to the No-Till plots. The highest yield, test weight, and number of heads per three feet of row were recorded in the Conventional Tillage I plots). Table 2.

1985 RESULTS:

Smut levels were very low in 1985. In the No-till treatment no smut was found. The highest level of smut was found in the Claridge technique treatment. Table 2.

Yields were significantly reduced in the minimum and No-till plots due to severe weed infestation (irregardless of herbicide maintenance sprays) and poor seedling establishment.

The greatest number of heads per foot of row was seen in the Claridge tillage plots followed closely by the Conventional II tillage plots. Table 2.

FUTURE PLANS:

The third year of tillage practices was completed this fall and winter wheat seeded into the various tillage plots. A continuation of tillage practices is planned to observe the long range effects on dwarf bunt frequency in relation to cultural techniques.

Table 1. Description of tillage techniques

1. Conventional Tillage I

Fall plow (after harvest) Disc, rod weed, and harrow during the fallow season Prepare seedbed for fall seeding 2. Conventional Tillage II

Spring plow Disk, rod weed, harrow during fallow period Frepare seedbed for fall seeding

3. Minimum Tillage

98

Disc in fall, use herbicides to control weeds during season Disc, harrow, and seed in fall (two discings total)

4. Claridge Technique

Use one-way (shallow discing apparatus) Disc following one-way, keep black during summer Rod weed to finish seedbed

5. No-Till

Table 2.

Control weeds using herbicides as needed during fallow period Seed with Melrow drill (minimum tillage drill)

Tillage tech.	Yield	Bu/A	Test Wt.	# Heads/ 3ft		# Smut.	/ 3ft	% Smut 1/	
~	1984	1985	lbs./ Bu	1985	1985	1984	1985	84	85
Creation and the			1 sala na ma na ma na ma	. 3991	4 - 40 E - 3	167.013		and also have not and and	
Conventional I	40.0a	42.15	58.3	49.5a	40.8a	2.3	1.4	4.6	3.4at
Conventional II	29.7a	47.7a	56.8	42.8ab	49.2a	3.2	3.3	7.5	6.8a
Minimum Tillage	26.9a	21.6c	56.7	26.8c	29.0c	1.6	.3	6.0	1.15
Claridge Tech.	29.8a	41.45	55.6	34.2bc	52.1a	6.7	2.3	19.6	4.5at
No - Till	11.15	25.2c	54.3	19.6c	38.5ab	1.4	0	7.1	ОЬ
х	27.5	35.6	56.3	34.57	41.9	3.03		8.96	3.15
F 2/		49.6**						2.46	3.55%
S.E.X.		1.63			5.10	1.39		4.34	
C.V. L.S.D.					12.17	46.09 NS		48.5 NS	

Agronomic data from the TCK Tillage study grown on the Oscar

1/ % smut determined by dividing number of smut heads/ 3 ft by the number of heads per 3 ft of row.

2/ F value for technique comparison

Means within a column followed by a common letter are not significantly different at the 5% probability level according to the Multiple Range Test.

In 1984 plots were seeded October 13, 1983 with Wanser at 70 # seed per acre In 1985 plots were seeded September 19,1984 with Wanser at 70 # seed per acre