FORTYSECOND ANNUAL REPORT 1990

Northwestern Agricultural Research Center of the Agricultural Experiment Station Montana State University

> 4570 Montana 35 Kalispell, MT 59901

Prepared by

Vern R. Stewart Professor of Agronomy and Superintendent Leon E. Welty Professor of Agronomy Todd K. Keener Agric. Research Specialist II Louise S. Prestbye Agric. Research Specialist I

Contents of this report may not be published or reproduced in any form without consent of the research workers involved.

TABLE OF CONTENTS

Project No.		Page No.
	DISTRIBUTION	1
	ADMINISTRATION	2
		2
	PHYSICAL PLANT	3
	GENERAL FARM	3
	ACTIVITIES	4
	CLIMATOLOGY	5
754	WEED CONTROL IN FARM CROPS	
	Chemicals Used in Herbicide Studies 1988-89,	
	NWARC, Kalispell, MT	17
	Bedstraw Herbicide Study	19
	Combination Herbicide Study	22
	Curtail/Assert Plantback Study, Second Year,	
	Kalispell, MT	28
	Crop Tolerance of Three Spring Wheat & Spring Barley	22
	Varieties to Express and Express plus 2,4-D	33
	Fargo/Showdown Rate and Incorporation Study on Newana Spring Wheat	37
	Newana Spring wheat	57
	Gromwell Herbicide Study in Winter Wheat	41
	Canola Herbicide Evaluations	45
	Reduced Rates of Wild Oat Herbicides on Gallatin	1-
	Spring Barley	47
	Alfalfa Herbicide Evaluations	49
	Permarmint Harbiaida Study	5%

Project No.

755	FORAGE CROP INVESTIGATIONS	
	1980 Intrastate Alfalfa Yield Trial-Dryland	59
	1986 Intrastate Alfalfa Yield Trial-Irrigated	61
	-1988 Intrastate Alfalfa Yield Trial-Irrigated	62
	1989 Intrastate Alfalfa Yield Trial-Dryland	64
	1989 Intrastate Alfalfa Yield Trial-Irrigated	67
	_ 1990 Intrastate Alfalfa Yield Trial-Dryland	70
	1990 Intrastate Alfalfa Yield Trial-Irrigated	71
	Berseem Clover Variety Trial-Irrigated	72
	Grass Species Forage Nursery-Irrigated	73
	Evaluation of Teff (<u>Eragrostis Tef</u>) as a Forage Crop in Montana	74
	Winter Triticale Forage-Dryland	75
	Winter Rape Forage Trial-Dryland	76
756	SMALL GRAIN PRODUCTION	
	Spring Barley Variety Evaluations	78
	Uniform Northwestern Oat Nursery	88
	Spring Wheat Variety Evaluations	90
	Winter Wheat Variety Evaluations	99
758	MISCELLANEOUS AND PULSE CROP INVESTIGATIONS	
	Dryland Pea Variety Yield Trial	105
	Dryland Lentil Variety Yield Trial	106
	Spring Rapesed Variety Trial	108
	Winter Rapeseed (Canola) Variety Trial-Dryland	109
	Statewide Legume Adaptation Trial-Irrigated	112
	Annual Forage Legume Management For Sustaining Nitrogen	113
	Legume Rotation Study	114

DISTRIBUTION OF THE 1990 NORTHWESTERN AGRICULTURAL RESEARCH CENTER REPORT

COPIES 1 Plant & Soil Science Department 3 Research Center Staff, N.W. Agricultural Research Center 11 County Extension Agents in Northwestern Montana Program Coordinator - Richard Williams Deer Lodge - Barbara Andreozzi - Bruce McCallum Flathead - Wesley Williams Granite - Jack Stivers Lake Lincoln - Kevin Chamberlain Mineral Missoula - Gerald Marks - David Streufert Powell - G. Rob Johnson Ravalli Sanders - John Halpop Agricultural Stabilization and Conservation, Kalispell 1 1 Flathead Chapter Future Farmers of America 1 Soil Conservation Service, Kalispell 5 Feed Mills Co-op Supply, Inc., Ronan Equity Supply Co., Kalispell Farmers Union Ex., Kalispell Westland Seeds, Inc., Ronan Lake Glacier View Farm, Ronan 1 MSU Western Agricultural Research Center

ADMINISTRATION 750

The Administration Project at the Northwestern Agricultural Research Center includes expenses for the overall operation of the center, personnel and office equipment purchased.

Full Time Staff Members

Years in Service

Vern R. Stewart - Supt. & Prof. Agronomy (Began April 1952)	38
Leon E. Welty - Prof. Agronomy (Began January 1973)	17
Oscar Buller - Agric. Res. Tech. I (Began January 1984 retired September 1990)	6.75
Gary Haaven - Ag Research Spec. I (Began April 1982)	8
Shirley Jones - Secretary II (Began June 1989quit Sept. 1990)	1.75
Todd Keener - Ag Research Spec. II (Began March 1978)	12
Louise Prestbye - Ag Research Spec. I (Began May 1983)	7
Elaine M. Sprenger - Secretary II (Began August 1990)	.25

Part Time Employees:

Kenneth J. Paulson (March 24 through April 6) Christopher Steele (October 11 through December 17)

Student Employees:

David L. Roys (May 14 through September 10) David L. Wagner (May 23 through June 4) David C. Overstreet (June 6 through November 2) Helen Hedstrom (June 6 through September 7) Brandon M. Lattin (July 10 through September 14)

GENERAL FARM 751

3

The General Farm Project (751) supports all research projects. This includes items purchased and used in the total research program. A self-propelled, walk behind tiller was purchased April, 1990.

PHYSICAL PLANT 752

The Physical Plant Project (752) includes the maintenance of buildings and grounds at the Northwestern Agricultural Research Center.

The Crops Research Building (office and dry lab) was re-sided in 1990. Also did some remodeling and put new carpet in Residence #2.

822-9

ACTIVITIES 1990

Date	Activity	Who	Where
1/19	NWARC and WARC Advis. Comm. Meeting	Stewart Welty	Allentown
1/22	Mint Growers Meeting	Stewart Welty	Kalispell
1/24	MAES Administration Meeting	Stewart Welty	Bozeman
1/29-2/1	MAES Planning Conference	Stewart Welty	Bozeman
2/14	Equity Supply Meeting - Talk	Welty	Kalispell
3/6	County Agent Update - Talk	Stewart Welty	Ronan
4/5	SCS Personnel Meeting - Talk	Welty	Kalispell
5/2	County Agent Meeting	Stewart Welty	Allentown
6/4	SCS Conservation Tour	Welty	Missoula
6/6	Forage Prod. School - Talk	Welty	Bozeman
6/25	FFA Tour	Stewart Welty	Kalispell
7/19	Northwestern Agric. Res. Ctr. Field Day	and the second sec	Kalispell
7/24	Summer Conference	Stewart Welty	Sidney
7/31	County Agent Tour	Stewart Welty	Kalispell
8/8	Satellite Weather Station Meeting	Stewart Welty	Kalispell
9/4-9/5	Superintendent's Meeting	Stewart Welty	Lewistown
10/15-17	Annual Conference	Stewart Welty	Bozeman
10/20-25	ASA Meeting	Stewart Welty	San Antonio
10/30	Research Center Faculty	Stewart Welty	Kalispell
11/6	PNW Forage Conference	Welty	Moscow, ID
11/14	Advisory Committee Meetings	Stewart Welty	Missoula & Kalispell
		1.0	-

CLIMATOLOGICAL DATA NORTHWESTERN AGRICULTURAL RESEARCH CENTER Kalispell, MT

Northwestern Agricultural Research Center climatological data is recorded and sent to the National Oceanic and Atmospheric Administration to be published in the <u>Climatological Data</u>. Daily maximum and minimum temperatures, soil temperatures at four and eight inches and precipitation are recorded. This data has been recorded since January 1949.

The 1989-90 growing season (Sept. 1989 - Aug. 1990) at the Northwestern Agricultural Research Center in Creston contained several new extremes. Total average precipitation was 26.01 inches, 6.35 inches above the mean of 19.66 inches. Several months had precipitation 50% greater than the normal averages (Oct. 71%, Nov. 152%, Mar 49%, May 61%, July 49%, and Aug. 50%). The above normal precipitation in fall helped to recharge the soil profile, aided winter wheat establishment, and provided excellent moisture for spring seedbeds. The only months with below average moisture were January (-36%), February (-16%), and June (-3%). Harvest was aided by a dry period in the first half of August but rain later in the month delayed some spring wheat and barley harvest causing slight sprouting and lodging.

The mean temperature for the season was 44 degrees (F) which was .7 degrees greater than the long term average. Mean temperatures were higher in six of the months in 1989-90 with the January mean being much warmer than previous recordings (8.3 degrees higher). January is historically the coldest month at the Northwestern Agricultural Research Center yet February and November had lower average temperatures this year. Although a warmer year on the average there was a significant cool, wet period from mid-May to mid-June. During this time several spring plantings yellowed, were slowed in growth, and displayed injury to early post emergence herbicide sprays.

The frost-free period (149 days) from May 10th to October 6th was the longest on record at the Northwestern Agricultural Research Center (37 days longer than the 41 year average).

Snow cover was scattered throughout the winter. The longest continuous snow cover was 28 days (Dec. 10, 1989 to Jan 7, 1990). Another 19 day period of continuous snow cover was Feb 12th through Mar 2, 1990. Other scattered days throughout the winter brought the total number of days with measurable snow to 69. The last snowfall was on April 10th with one inch measured. There were no hard freezes combined with wind that contributed to winter kill in winter wheat. During the lowest temperatures of the season in February there was adequate snowcover.

Slight to moderate disease levels were observed in small grain this year. Low levels of leaf rust and powdery mildew were noted in winter wheat during the late season. Dwarf bunt was moderate in some winter wheat varieties. No diseases were noted in the spring barley nurseries. Slight leaf rust symptoms were observed in scattered spring wheat varieties but occurred late in the season. Soil temperatures were monitored September - November and May - August and did not vary for long term averages.

Following is a list of tables giving a complete description of the weather for the crop year (September 1989 through August 1990) and 1990 (January through December).

- Table 1. Summary of climatic data by months for 1989-90 crop year (September through August) and averages for the period 1949-90 at the Northwestern Agricultural Research Center, Kalispell, MT.
- Table 2. Summary of temperature data at the Northwestern Agricultural Research Center on a crop year basis, September 1, 1949 through August 31, 1989. (Average)

- Table 3. Summary of temperature data at the Northwestern Agricultural Research Center on a crop year basis, September 1, 1949 through August 31, 1990. (Max.)
- Table 4. Summary of temperature data at the Northwestern Agricultural Research Center on a crop year basis, September 1, 1949 through August 31, 1990 (Min.)
- Table 5. Summary of precipitation records at the Northwestern Agricultural Research Center on a crop year basis September 1, 1949 through August 31, 1990.
- Table 6. Precipitation by day for crop year September 1, 1989 through August 31, 1990, Northwestern Agricultural Research Center, Kalispell, MT.
- Table 7. Frost free period at the Northwestern Agricultural Researh Center from 1950 through 1990.
- Table 8. Temperature extremes at the Northwestern Agricultural Research Center, Kalispell, MT from 1950-1990.
- Table 9. Summary of temperature records at the Northwestern Agricultural Research Center, January 1950 through December 1990.
- Table 10. Summary of precipitation records at the Northwestern Agricultural Research Center, Kalispell, MT, January 1950 through December 1990.

IT	EM		*							*				-	Total or Average
Precipitatio			848	ar ar ar i	5 6 G		e 10- 10-	Q-0-5	s s a	51 52 54	5 6 0	Q Q Q	ar far far		
Current	Year		1.50	2.29	3.75	1.92	0.96	1.00	1.76	1.63	3.74	2.68	2.34	2.44	26.01
Avg. 194	9 to	1989-90	1.65	1.34	1.49	1.64	1.50	1.19	1.18	1.40	2.32	2.75	1.57	1.63	19.66
Mean Tempera		(F)													
Current	Year		52.7	42.7	35.8	25.3	30.5	24.5	34.8	45.2	49.8	57.2	65.2	64.8	44.0
Avg. 194	9 to	1989-90	53.4	43.3	32.7	25.6	22.2	27.6	33.7	43.3	51.6	58.5	64.1	63.0	43.3
Last killing	fros	st in sp	ring												
1990						88.A	May 10	(31 d	egrees	F)					
Avg. 194	9-90						May 25	10.0	112						
First killin	g fro	ost in f	a11										in in si		
1990															
Avg. 194	9-90						Septen	ber 14	F						
Frost Free P	eriod	1							888						
1990							149			040					
Avg. 194	9-90						113								
Maximum summ	ner te	emperatu	re			94 d	egrees	Fon	August	: 16, 1	.990				

Table 1. Summary of climatic data by months for 1989-90 crop year (September thru August) and averages for the period 1949-90 at the Northwestern Agricultural Research Center, Kalispell, MT.

In this summary 32 degrees is considered a killing frost.

					Degree	o ram	CHICLE						
YEAR	SEPT.	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	MEAN
949-50	54.1	41.5	38.5	25.0	4.2	25.6	31.2	41.9	49.7	57.0	64.0	62.5	41.3
950-51	53.8	45.9	31.5	29.5	20.2	27.7	27.0	42.1	50.0	54.2	64.7	60.4	42.3
951-52	50.6	40.8	30.8	16.9	18.0	26.6	29.3	45.8	52.4	56.7	61.8	62.8	41.0
952-53	56.0	45.5	30.4	27.6	36.0	32.9	37.2	41.2	49.5	54.6	64.3	63.1	44.9
953-54	56.1	46.2	37.0	31.3	21.1	31.2	29.6	40.8	52.5	54.9	63.4	60.1	43.7
954-55	52.9	41.5	38.8	28.8	25.7	22.1	24.5	39.1	47.7	58.8	62.7	62.2	42.1
955-56	52.5	44.6	23.5	21.8	23.3	20.9	31.5	44.2	54.0	59.0	64.8	62.0	41.8
956-57	55.2	44.1	30.9	28.5	10.2	23.4	33.3	43.7	55.6	59.7	65.4	62.4	42.7
957-58	55.8	41.4	32.1	32.4	29.1	30.4	32.2	43.6	59.6	62.3	65.2	67.9	46.0
958-59	55.5	44.6	32.8	28.2	24.7	23.1	35.3	45.2	48.1	59.9	64.5	61.0	43.6
959-60	53.0	43.9	25.5	27.6	19.4	25.2	32.3	44.3	50.6	59.6	68.8	60.6	42.6
960-61	55.0	45.2	34.4	24.9	27.8	37.0	38.3	42.0	52.6	64.7	66.2	67.8	46.3
961-62	49.6	42.3	28.2	23.6	17.4	25.7	30.9	47.2	51.5	58.6	62.1	62.1	41.6
962-63	54.7	44.7	38.0	32.5	11.8	33.1	38.7	43.2	51.4	59.4	63.0	64.9	44.6
963-64	58.7	47.4	35.8	24.0	28.5	28.3	30.6	42.8	51.1	58.7	64.3	58.9	44.1
964-65	51.2	43.7	33.7	22.1	30.2	28.7	28.6	45.2	50.6	57.6	64.6	63.6	43.3
965-66	46.4	47.6	35.0	28.8	26.3	27.7	34.5	42.9	54.3	56.0	64.5	61.7	43.8
966-67	59.3	43.4	33.4	30.2	31.0	33.2	32.9	40.6	52.2	59.4	66.1	67.2	45.7
967-68	61.0	45.9	33.8	25.2	23.3	32.8	41.2	42.0	49.8	59.0	64.6	61.3	45.0
968-69	53.8	42.9	33.4	19.9	13.1	24.0	29.6	47.1	53.9	58.8	62.3	63.6	41.9
969-70	56.0	40.0	35.2	27.7	21.9	29.9	32.8	40.2	53.2	62.0	64.8	62.6	43.9
970-71	48.7	40.1	31.3	26.2	23.6	29.9	33.2	43.6	52.5	54.9	61.9	68.2	42.8
971-72	49.5	40.4	34.1	22.2	17.0	27.3	38.5	40.6	51.9	59.3	61.5	65.9	42.4
972-73	50.2	40.3	33.7	19.9	20.7	27.8	37.7	42.2	51.5	57.5	65.1	64.5	42.6
973-74	53.3	44.1	29.3	30.8	21.0	32.3	33.6	42.7	48.0	61.5	64.8	61.6	43.6
974-75	52.8	43.6	34.8	30.1	21.5	21.5	29.9	37.6	48.6	55.9	69.1	59.8	42.1
975-76	52.1	42.9	35.4	27.5	27.7	29.9	31.0	43.4	51.9	54.5	63.4	61.3	43.4
976-77	55.2	42.4	33.1	28.6	20.0	30.9	34.4	45.0	49.7	61.5	62.6	62.8	43.9
977-78	51.7	42.5	30.4	22.0	21.6	26.1	34.3	43.7	48.1	59.1	63.4	60.3	41.9
978-79	53.7	43.7	27.2	18.8	4.1	24.9	34.7	42.3	51.5	59.4	65.0	65.4	40.9
979-80	56.9	46.6	30.7	33.0	16.3	29.0	32.6	47.1	54.8	56.9	63.5	58.6	43.8
980-81	54.1	45.3	35.8	32.2	30.1	31.3	38.5	44.5	52.5	53.8	62.8	66.4	45.6
981-82	55.3	43.2	36.0	27.0	21.6	24.5	37.5	39.4	49.8	59.8	61.1	63.0	43.2
982-83	53.4	41.0	29.1	25.9	30.3	33.8	37.9	42.4	51.9	57.6	59.6	65.4	44.0
983-84	50.4	42.9	36.6	11.1	27.6	32.4	38.3	42.2	48.7	56.4	65.3	64.6	43.0
984-85	49.5	40.0	32.6	20.6	19.2	19.0	30.8	44.8	53.7	57.6	68.3	60.2	41.4
985-86	47.8	40.8	18.6	18.3	25.4	25.6	40.6	43.8	53.7	63.9	59.9	66.1	42.0
986-87	50.2	43.0	30.3	24.9	22.2	27.9	35.0	47.8	55.6	61.6	62.9	59.8	43.4
987-88	56.1	43.3	35.3	25.4	20.5	30.3	37.8	45.7	51.4	60.9	63.7	63.9	44.5
988-89	53.4	43.4	36.3	23.3	27.5	12.4	28.8	44.2	49.6	59.8	65.4	61.9	42.2
989-90	52.7	42.7	35.8	25.3	30.5	24.5	34.8	45.2	49.8	57.2	65.2	64.8	44.0
EAN	52.1	42.3	32.7	25.6	22.2	27.6	33.7	43.3	51.6	58.5	64.1	63.0	43.2

Table 2. Summary of temperature data at the Northwestern Agricultural Research Center on a crop year basis, September 1, 1949 through August 31, 1990.

Mean temperature for all years = 43.0

Table 3. Summary of temperature data at the Northwestern Agricultural Research Center on a crop year basis, September 1, 1949 through August 31, 1990.

		AV	erage	maximu	ım temp De	grees			inu yea				
YEAR	SEPT.	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	MEAN
1949-50	71.4	52.4	45.7	32.1	14.4	34.6	38.4	52.3	63.1	70.1	78.6	79.5	52.7
1950-51	70.9	55.8	38.2	36.3	28.7	36.6	37.3	57.9	63.2	66.6	82.4	77.0	54.2
1951-52	64.2	47.5	37.2	23.6	25.9	35.7	39.5	61.8	65.7	70.2	79.2	79.5	52.5
1952-53	73.4	62.6	40.6	33.2	41.3	39.1	46.8	51.5	62.5	66.8	83.3	79.5	56.7
1953-54	72.3	61.0	45.6	36.7	29.1	38.4	40.0	51.0	67.2	67.0	80.1	74.4	55.2
1954-55	66.4	53.4	45.9	34.9	31.8	31.2	33.9	48.1	60.5	74.7	76.9	82.4	53.3
1955-56	67.6	55.5	30.8	29.2	30.7	30.1	39.7	57.4	67.5	73.3	81.2	77.8	53.4
1956-57	71.0	53.7	37.6	35.5	19.0	33.2	43.3	55.3	70.2	72.4	82.1	80.0	54.4
1957-58	74.3	50.5	40.1	38.5	33.7	37.9	43.5	54.4	77.5	75.7	80.8	85.5	57.7
1958-59	69.7	57.9	39.6	34.1	31.8	31.9	43.9	57.9	61.5	74.3	83.2	76.3	55.2
1959-60	64.0	53.6	33.9	33.3	27.5	34.1	43.4	56.1	63.0	74.8	88.7	74.1	53.9
1960-61	72.1	57.8	41.1	29.8	35.0	43.1	48.2	51.6	65.3	82.0	83.7	86.3	58.0
1961-62	62.3	53.3	35.1	30.4	26.0	33.4	40.5	60.7	62.7	74.2	79.2	77.5	52.9
1962-63	71.7	54.7	43.8	37.9	19.9	41.4	48.9	55.7	67.1	71.8	79.6	82.5	56.3
1963-64	74.6	59.4	43.4	30.2	35.1	37.7	39.7	53.3	63.5	71.4	80.3	72.9	55.1
1964-65	63.9	55.0	41.0	28.9	35.1	36.9	41.0	57.6	64.3	71.4	80.8	77.1	54.4
1965-66	57.5	61.1	42.6	35.4	31.8	35.3	45.4	54.8	69.8	69.1	81.2	78.4	55.2
1966-67	74.9	55.1	41.1	35.8	36.7	40.9	41.3	52.6	66.0	73.3	84.8	87.2	57.5
1967-68	78.9	55.8	41.3	30.8	31.5	40.8	52.6	54.2	63.4	72.2	82.7	75.7	56.7
1968-69	65.9	53.1	40.6	27.3	20.8	32.5	40.9	59.5	68.7	72.0	78.9	83.0	53.6
1969-70	70.4	49.7	43.0	32.8	28.5	36.2	42.5	49.7	67.9	75.5	79.1	80.9	54.7
1970-71	62.5	52.2	40.0	34.1	30.6	38.6	41.6	56.2	66.4	67.3	78.0	87.5	54.6
1971-72	64.2	53.1	41.2	30.9	27.1	35.9	47.9	51.7	64.7	72.4	76.9	83.3	54.1
1972-73	64.0	51.3	41.4	28.6	30.6	38.5	47.7	53.8	65.8	69.6	83.7	83.2	54.9
1973-74	67.6	56.3	36.8	36.5	28.5	39.6	43.5	53.1	59.2	76.2	80.3	77.6	54.6
1974-75	70.9	61.4	43.2	37.4	32.0	31.5	39.4	48.1	61.2	68.5	85.5	73.0	54.3
1975-76	69.4	52.3	40.4	35.1	36.2	37.6	40.1	54.3	66.2	66.3	79.0	74.4	54.3
1976-77	73.2	57.7	42.1	36.1	28.0	39.1	42.7	60.2	61.9	77.0	76.6	77.4	56.0
1977-78	64.7	55.4	38.5	29.4	28.8	35.5	45.5	54.3	58.1	72.6	77.5	74.2	52.9
1978-79	65.7	59.2	35.9	28.2	13.7	33.2	45.3	52.5	64.3	73.9	81.5	82.8	53.0
1979-80	74.1	59.5	37.8	39.2	25.2	35.9	40.8	60.4	66.9	69.0	77.0	73.2	54.9
1979-80	66.9	59.0	43.9	39.2	34.0	38.9	49.7	54.8	63.3	63.8	78.1	85.0	56.4
		54.1	44.9	34.2	29.7	33.3	45.8	50.5	62.5		75.0	80.6	54.6
1981-82	70.8			33.0	36.8	42.2		55.2		74.3			
1982-83	69.2	53.2	36.9	19.9	34.6	42.2	47.5		66.4	70.6	73.1	82.9	55.6
1983-84	65.1	56.0	43.7				46.8	54.2	60.4		82.8	83.3	54.7
984-85	63.9	52.2	40.4	28.2	25.3	29.1	42.7	56.8	68.7	73.2	88.0	75.0	53.6
1985-86	60.4	51.3	26.7	25.2	34.0	36.6	51.6	55.1	66.1	78.5	73.0	84.1	53.6
1986-87	59.9	54.3	38.0	30.9	29.5	34.2	43.4	61.3	67.9	75.7	76.5	74.9	53.9
1987-88	73.5	59.9	43.0	32.6	29.0	39.3	46.1	58.5	63.8	74.1	79.5	82.6	56.8
1988-89	69.0	62.0	42.7	30.3	35.3	21.8	36.1	56.6	61.1	72.6	81.6	75.0	53.7
1989–90	68.5	54.0	42.4	30.5	36.4	33.9	44.8	57.3	60.5	68.9	79.7	79.5	54.7
IEAN	66.7	54.1	39.2	31.6	29.0	35 2	43.4	55.1	64.8	72.0	80.2	79.4	54.8

Mean temperature for all years = 54.2

Table 4. Summary of temperature data at the Northwestern Agricultural Research Center on a crop year basis, September 1, 1949 thru August 31, 1990.

				Averag			emperat ahrenhe	ure by it	month	and y	vear		
YEAR	SEPT.	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	MEAN
1949-50	36.7	35.0	31.2	17.8	-6.0	16.6	23.9	31.5	36.3	43.9	49.4	45.5	30.2
1959-51	36.6	36.0	24.8	22.6	11.7	18.8	16.6	26.2	36.7	41.7	46.9	43.7	30.2
1951-52	37.0	34.0	24.4	10.1	10.0	17.4	19.1	29.8	39.1	43.1	44.3	46.1	29.5
1952-53	38.6	28.3	20.2	21.9	30.6	26.7	27.5	30.9	36.5	42.3	45.3	46.7	33.0
1953-54	39.8	31.4	28.4	25.9	13.1	24.0	19.2	30.6	37.7	42.8	46.7	45.7	32.1
1954-55	39.3	29.5	31.6	22.7	19.5	13.0	15.0	30.0	34.9	42.8	48.5	42.0	30.7
1955-56	37.3	33.6	16.1	14.4	15.9	11.7	23.3	30.9	40.5	44.7	48.2	46.1	30.2
1956-57	39.4	34.4	24.2	21.5	1.4	13.6	23.2	32.0	40.9	47.0	48.7	44.8	30.9
1957-58	37.2	32.3	24.1	26.2	24.5	22.8	20.9	32.8	41.7	48.8	49.5	50.3	34.3
1958-59	41.2	31.2	26.0	22.2	17.5	14.2	26.6	32.4	34.7	45.4	45.8	45.6	31.9
1959-60	42.0	34.1	17.0	21.8	11.2	16.3	21.1	32.4	38.1	44.3	48.8	47.0	31.2
1960-61	37.9	32.5	27.6	19.9	20.6	30.9	28.4	32.3	39.8	47.4	48.7	49.2	34.6
1961-62	36.8	31.2	21.2	16.8	8.7	17.9	21.2	33.7	40.3	43.0	45.0	46.6	30.2
1962-63	37.6	34.6	32.2	27.1	3.7	24.7	28.4	30.6	35.7	47.0	46.4	46.9	32.9
1963-64	42.7	35.3	28.1	17.7	21.8	18.9	21.4	32.2	38.6	46.0	48.3	44.9	33.0
1964-65	38.4	32.3	26.4	15.3	25.3	20.4	16.2	32.7	36.9	43.8	48.4	50.0	32.2
1965-66	35.2	34.0	27.4	22.1	20.8	20.0	23.6	30.9	38.7	42.8	47.7	45.0	32.4
1966-67	43.6	31.7	25.6	24.6	25.3	25.5	24.5	28.6	38.4	45.4	47.4	47.2	34.0
1967-68	43.1	35.9	26.3	19.4	15.0	24.8	29.7	29.8	36.1	45.7	46.4	46.8	33.3
1968-69	41.7	32.6	26.1	12.5	5.4	15.4	18.2	34.6	39.0	45.5	45.7	43.5	30.0
1969-70	41.6	30.3	27.4	22.6	15.3	23.4	23.0	30.7	38.5	48.2	50.5	44.3	33.0
1970-71	34.9	27.9	22.5	18.3	16.5	21.0	24.8	31.0	38.6	42.3	45.7	48.8	31.0
1971-72	34.7	27.6	26.9	13.5	7.7	18.6	29.0	29.0	39.2	46.3	45.8	48.5	30.6
1972-73	36.4	29.2	25.9	11.1	11.0	17.4	27.8	29.6	36.4	44.4	46.5	45.8	30.1
1972-75	38.9	32.0	21.8	25.2	13.5	25.1	23.6	32.4	36.7	46.9	49.5	45.6	32.6
1974-75	34.7	25.7	26.3	22.9	10.9	11.5	20.4	27.1	36.1	43.3	52.7	46.5	29.8
1975-76	34.7	33.4	30.3	20.0	19.1	22.2	22.0	32.4	37.6	42.6	47.8	48.3	32.5
1976-77	37.2	27.2	24.1	21.1	12.0	22.6	26.1	29.9	37.4	46.0	47.8	48.2	31.7
1977-78	38.6	29.5	22.2	14.6	14.5	16.7	23.2	33.1	38.1	45.6	49.2	46.4	31.0
1977-78	41.7	28.3	18.4	9.3	-5.6	16.5	24.0	32.1	38.7	44.9	49.2	48.0	
	39.7	33.7	23.6	26.8	7.5	22.1		33.7			50.0		28.7
1979-80 1980-81		31.6			26.2		24.5		42.7	44.7		44.0	32.8
	41.3		27.7	25.1		23.8		34.2	41.7	43.7	47.6	47.8	34.8
1981-82	39.7	32.2		19.8	13.5	15.7	29.2	28.4	37.2	45.3	47.3	45.4	31.7
1982-83	37.6	28.8	21.4	18.7	23.7	25.3	28.4	29.5	37.5	44.7	46.1	48.0	32.5
1983-84	35.6	29.7	29.5	2.4	20.6	24.0	29.9	30.2	37.1	43.6	47.8	46.0	31.4
1984-85	35.2	27.7	24.7	13.0	13.2	9.0	18.8	32.7	38.7	42.0	48.5	45.5	29.1
1985-86	35.2	30.2	10.6	11.4	16.9	14.5	29.6	32.5	41.3	49.3	46.8	48.1	30.5
1986-87	40.5	31.6	22.6	18.8	14.9	21.6	26.6	34.2	43.3	47.4	49.4	44.7	33.0
1987-88	38.7	26.5	27.6	18.1	11.5	21.3	29.5	33.0	39.0	47.7	47.9	45.2	32.2
1988-89	38.6	32.9	29.8	16.3	19.7	2.9	21.4	31.8	38.1	46.9	49.3	48.7	31.4
1989-90	36.9	31.3	29.3	20.1	24.7	15.2	24.7	33.2	39.1	45.4	50.6	50.0	33.4
MEAN	38.4	31.4	25.1	18.8	14.7	19.1	23.9	31.4	38.4	45.0	47.9	46.5	31.7

Mean temperature for all years = 31.7

		Tot	al pre	cipita	tion i	n inch	les by	month	and ye	ar			
YEAR	SEPT.	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	MEA
1949-50	1.03	1.05	1.67	0.92	2.62	1.13	2.31	0.84	0.15	3.90	3.12	0.75	19.4
1950-51	0.52	2.30	1.16	2.48	0.94	1.29	0.62	2.32	3.77	2.26	1.03		21.5
1951-52	1.49	5.62	1.01	3.31	1.03	0.98	0.97	0.17	1.32	3.95	0.56		21.1
1952-53	0.13	0.05	0.60	0.98	1.84	1.14	0.98	2.07	2.00	3.31	0.50 T		14.7
1953-54	0.71	0.03	0.87	1.30	2.65	0.79	0.83	0.79	1.52	2.98	2.91		19.1
1954-55	1.09	0.54	1.00	0.43	1.00	1.31	0.44	0.82	1.18	1.86	3.08	0.00	
1955-56	1.64	1.89	1.97	2.38	1.76	1.53	0.87	1.28	1.06	4.20	2.13		23.9
		1.10	0.53	0.96	1.47	1.14	0.75	1.20	1.75	2.51	0.52		13.8
1956-57	1.16												
1957-58	0.10	1.59	0.96	1.76	1.56	2.67	0.97	1.47	2.20	2.56	0.84	0.58	
1958-59	1.99	1.16	2.90	2.77	1.95	1.33	0.75	1.62	4.10	1.75	T		21.2
1959-60	4.22	3.36	4.32	0.34	1.67	1.10	1.01	1.23	3.27	0.69	0.13		23.7
1960-61	0.55	1.44	1.72	1.24	0.65	1.46	1.96	2.26	4.02	1.45	0.76	0.64	
1961-62	3.40	1.22	1.77	2.09	1.33	1.15	1.59	0.96	2.59	1.15	0.11	0.72	
1962-63	0.58	1.85	1.31	0.91	1.69	1.21	0.85	1.07	0.57	5.00	1.44		18.5
1963-64	1.46	0.75	0.95	1.70	1.46	0.41	1.57	0.87	3.33	3.86	3.01		21.0
1964-65	2.27	0.85	1.62	3.62	2.25	0.64	0.24	2.55	0.81	2.30	1.15	4.74	
965-66	1.72	0.21	1.31	0.55	1.42	0.67	0.53	0.76	1.18	6.57	2.49	1.64	19.0
1966-67	0.79	1.34	3.33	1.68	1.50	0.62	1.27	0.99	1.30	2.53	0.02	0.01	15.3
1967-68	0.91	1.88	0.62	1.16	0.79	1.15	0.68	0.57	3.92	2.22	1.00	3.42	18.3
1968-69	4.51	2.39	1.59	3.12	3.05	0.75	0.69	1.39	1.19	5.21	0.70	0.09	24.6
1969-70	1.54	1.90	0.31	1.14	3.10	0.89	1.49	0.76	1.97	4.37	3.08	0.44	20.9
1970-71	1.79	1.38	1.75	0.99	1.84	0.77	0.69	0.58	2.45	4.42	1.31	1.11	19.0
1971-72	0.94	0.87	1.70	1.62	1.10	1.65	2.11	0.95	1.48	3.28	1.77	0.98	18.4
1972-73	1.38	1.84	0.80	2.19	0.52	0.56	0.70	0.45	1.13	2.14	0.01	0.63	
1973-74	1.37	1.41	2.95	1.94	1.35	1.32	1.40	3.36	1.82	1.80	1.01	0.62	
1974-75	0.80	0.12	1.10	1.31	1.56	1.08	1.50	1.27	1.50	1.40	1.08	4.26	
1975-76	1.18	2.96	0.85	1.39	0.91	1.12	0.34	1.92	1.90	2.49	1.49	3.42	
976-77	0.96	0.62	0.73	0.86	0.83	0.71	1.40	0.41	2.90	0.52	3.60		15.0
977-78	2.84	0.56	1.62	4.10	2.15	0.99	0.72	2.54	3.56	2.63	3.90	3.34	
978-79	1.90	0.15	0.96	0.91	1.70	1.45	0.82	2.33	2.67	1.23	0.40		16.3
979-80	1.03	1.75	0.50	1.03	1.53	2.03	0.97	1.88	5.48	3.89	1.08		23.6
980-81	1.20	0.83	0.78	2.58	1.81	1.85	2.17	1.75	3.86	4.70	1.17	0.96	
981-82	0.77	0.56	1.49	1.91	2.38	1.48	1.16	1.60	1.25	2.41	2.06		18.2
1981-82	2.37	0.75	1.39	1.60	0.93	0.85	1.71	2.41	1.20	2.96	3.66	1.16	
982-85	1.70			2.57	0.93	2.19		1.93	2.91	2.90	0.31	0.55	
		1.13	1.96				1.81						
984-85	2.15	2.25	1.40	1.29	0.31	1.28	0.90	1.31	2.81	1.89	0.35	1.62	
.985-86	5.35	1.55	1.61	0.51	2.39	2.33	0.50	1.34	2.92	1.83	2.09	0.81	
.986-87	3.63	0.80	1.78	0.63	0.38	0.46	3.47	1.15	1.89	1.95	4.85	0.98	
987-88	0.81	0.12	0.91	1.18	0.98	1.03	0.77	1.36	3.60	1.98	1.07	0.13	
.988-89	2.30	0.62	1.39	1.69	1.39	1.48	2.29	1.09	2.70	2.05	2.70	3.69	
.989–90	1.50	2.29	3.75	1.92	0.96	1.00	1.76	1.63	3.74	2.68	2.34	2.44	26.0
ŒAN	1.61	1.31	1 45	1.60	1 47	1.17	1.18	1.40	2.32	2.75	1.57	1.63	10 (

Table 5. Summary of precipitation records at the Northwestern Agricultural Research

Mean precipitation for all crop years = 19.66

Table 6. Precipitation by day for crop year, September 1, 1989 through August 31, 1990. Northwestern Agricultural Research Center, Kalispell, MT.

DATE		OCT. 1989	1989	1989	1990	1990	1990		1990	1990	1990	AUG. 1990
1		0.40			. 2.1 19	0.11	, leat	.080	201	0.90		
2	0 28	0 04							0.08	0 08		
3	0.09	3.01	0.28		0.13				0.05	0.00	0.70	
4	0.13		0.67	0.08	0.03							
5	16.00		0.28 0.67 0.07	0.60	0.08		0.01			Т		
6										T	0.22	
7			0.10	0.09	Т						0.04	
8			0.03	0.03	0.11	Т	0.17		0.06	Т		
9				0 04	0.19	0.02						
10	0.03			0.24	0.02	0.08		0.07				
11		0.18	0.05	0.02		Т	0.12	Т		0.43		
12			1.52	0.02		0.04	0.33	0.08	0.07	0.04		
13		0.06	0.38			0.13	0.59	0.03	0.27	0.04	0.07	
14		0.07	0.09	0.07	0.01		0.08	0.34	0.08	0.04 T		
15				0.04	Т			0.02				
16			0.03	Т	0.10	0.40			0.33			0.22
17			0.03	0.08		0.18			Т	0.17		0.12
18	0.85		0.13	Т					0.03			0.04
19	0.12		0.13	0.12			Т		0.13			т
20				0.20			0.34			0.02		0.24
21		0.25		0.13	0.02	0.04	0.01		0.11			0.72
22		0.53			0.10		0.11	0.10				0.45
23					0.03		Т	0.02	0.1/			0.08
24		0.41	0.10					0.10	0.05	0.05		
25			0.02							0.02		
26					0.04			0.08	0.24	-	0.73	0.26
27								0.15			0.28	0.23
28			0.03					0.51	0.02	0.30		
29				0.07	0.04			0.11	0.08			
30					0.00				0.89			0.08
31		0.12		0.01	Т		Т		0.08 0.89 0.02			Т
TOTAL	1.50	2.29	3.75	1.92	0.96	1.00	1.76	1.63	3.74	2.68	2.34	2.44

YEAR		TE FREEZE	TEMPERAT DEGREE	DATE FIRST FR		TEMPERATURE DEGREES F	FROST FREE SEASON
1950	Ju	ne 10	32	 Sept.	11	29	93
1951	Ju	ne 1	29	Sept.	15	29	106
1952	Ju	ne 14	32	Sept.	8	29	86
1953	Ma	y 23	32	Sept.	16	31	116
1954	Ma		31	Sept.	30	26	124
1955	Ma	and the second sec	28	Sept.		31	111
1956	Ma		26	Sept.	2	32	122
1957	Ma		30	Sept.	9	30	109
1958	Ma		31	Sept.		31	136
1959		ne 11	32	Aug.	30	30	80
1960		ne 18	32	Sept.	6	32	80
1961	Ma		32	Sept.		29	129
1962	Ma		32	Sept.	3	25	96
1963	Ma		28	Sept.		32	119
1964	Ma		26	Sept.	11	28	109
1965	Ju		30	Sept.	6	31	91
1966	Ma		26	Sept.		28	135
1967	Ma		28	Sept.		32	120
1968	Ma		32	Sept.		32	124
1969		ne 13	28	Sept.	6	32	85
1970	Ma		32	Sept.	10	31	122
1971	Ju		32	Sept.	14	28	69
1972	May	-	32	Sept.	12	32	131
1973	May		31	Sept.	2	31	103
1974	May		31	Sept.	2	30	107
1975	May		32	Sept.	12	32	110
1976	May		30	Sept.	8	30	110
1977	May		29	Sept.	27	28	133
1978	May		31	Sept.	17	28	116
1979	May		31	Oct.	1	32	123
1980	Jui		32	Sept.	24	31	111
1981	May		28	Sept.	24	25	142
1982	May		31		15	23	108
1983	May		31	Sept.	6	31	114
1984	Jui		32	Sept.	13	30	103
1985	May		26	Sept.	7	32	117
1986	May		31	 Sept.	7	31	114
1987	May		28	Sept.	17	29	114
1988	May		30	Sept.	12	30	131
1989	May		32	Sept.	9	29	110
1990	May		31	Oct.	6	24	149
1990	ridy	10	J1	0000	с I –	24	147
Mean f	or						
		31	30	Sept.		30	113

Table 7. Frost free period at the Northwestern Agricultural Research Center from 1950 thru 1990.

YEAR	MINIMUM DATE	TEMPERATURE DEGREES F	MAXIMUM DATE	TEMPERATURE DEGREES F
	DAIL			DEGREED F
1950	Jan. 30	-40	Aug. 31	88
1951	Jan. 28	-25	Aug. 2	92
1952	Jan. 1	-14	Aug. 31	90
1953	Jan. 6	8	July 12	97
1954	Jan. 20	-32	July 6	90
1955	Mar. 5	-20	June 22	96
1956	Feb. 16	-25	July 22	90
1957	Jan. 26	-34	July 13	91
1958	Jan. 1	2	Aug. 11	94
1959	Nov. 16	-30	July 23	96
1960	Mar. 3	-32	July 19	98
1961	Jan. 2	0	Aug. 4	100
1962	Jan. 21	-32	Aug. 16	92
1963	Jan. 30	-24	Aug. 9	94
1964	Dec. 17	-28	July 8	91
1965	Mar. 24	-10	July 31	89
1966	Mar. 4	- 7	Aug. 2,25	91
1967	Jan. 24	2	Aug. 19	95
1968	Jan. 21	-23	July 7	94
1969	Jan. 25	-13	Aug. 24	97
1970	Jan. 15	-14	Aug. 21,25	92
1971	Jan. 12	- 8	Aug. 6, 9	96
1972	Jan. 28	-24	Aug. 9,10	92
1973	Jan. 11	-22	July 11	97
1974	Jan. 5	-18	June 16,20	93
1975	Jan. 12, Feb. 9	-16	July 12	96
1976	Feb. 5	- 4	July 27	90
1977	Dec. 31	-11	June 7	97
1978	Dec. 31	-31	July 16	91
1979	Jan. 1	-31	July 20	97
1980	Jan. 29	-20	July 23	92
1981	Feb. 21	-21	Aug. 26,27	97
1982	Feb. 9,10	0.0	Aug. 8	91
1982	Dec. 25	-23 -29	Aug. 8	97
1985	Jan. 18		July 27	
1984	Jan. 30	-14 -24	July 9,11,23	
1985	Nov. 10	0		~~
1986				
1987	Jan. 16, Dec. 3		July 27	
	Jan. 6 Feb. 4, 5	-17	July 22, Aug. 6	92
1989		-20	Aug. 1	96
1990	Feb. 14	-10	Aug. 16	94

Table 8. Temperature extremes at the Northwestern Agricultural Research Center, Kalispell, MT from 1950-1990.

Table 9. Summary of temperature records at the Northwestern Agricultural Research Center, January 1950 through December 1990.

			AVE	RAGE T				H AND	YEAR				
							HRENHE						
DATE	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	OCT.	NOV.	DEC.	MEAN
1950	4.2	25.6	31.2	41.9	49.7	57.0	64.0	62.5	53.8	45.9	31.5	29.5	41.4
1951	20.2	27.7	27.0	42.1	50.0	54.2	64.7	60.4	50.6	40.8	30.8	16.9	40.5
1952	18.0	26.6	29.3	45.8	52.4	56.7	61.8	62.8	56.0	45.5	30.4	27.6	42.7
1953	36.0	32.9	37.2	41.2	49.5	54.6	64.3	63.1	56.1	46.2	37.0	31.3	45.8
1954	21.1	31.2	29.6	40.8	52.5	54.9	63.4	60.1	52.9	41.5	38.8	28.8	43.0
1955	25.7	22.1	24.5	39.1	47.7	58.8	62.7	62.2	52.5	44.6	23.5	21.8	40.4
1956	23.3	20.9	31.5	44.2	54.0	59.0	64.8	62.0	55.2	44.1	30.9	28.5	43.2
1957	10.2	23.4				59.7							
1958	29.1	30.4											
1959	24.7												
1960	19.4	25.2											
1961	27.8	37.0											45.0
1962	17.4	25.7					62.1	62.1	54.7				
1963	11.8	33.1											
1964	28.5	28.3		42.8									42.8
1965	30.2	28.7		45.2			64.6		46.4				
1966	26.3	27.7					64.5	61.7					
1967	31.0	33.2			52.2			67.2					45.7
1968	23.3	32.8		42.0			64.6	61.3					
1969	13.1	24.0		47.1			62.3	63.6	56.0				
1970	21.9	29.9		40.2			64.8	62.6	48.7				
1971	23.6	29.9		43.6			61.9		49.5			22.0	
1972	17.0	27.3	38.5			59.3	61.5	65.9	50.2				
1972	20.7	27.8	37.7			57.5	65.1	64.5	53.3				43.7
1974	21.0	32.3	33.6	42.7		61.5	64.8	61.6	52.8				43.9
1974	21.0	21.5	29.9			55.9	69.1	59.8	52.0				41.8
			31.0	43.4			63.4						
1976	27.7	29.9										28.6	43.5
1977	20.0	30.9	34.4				62.6	62.8	51.7 53.7				42.8
1978	21.6	26.1	34.3			59.1	63.4					18.8	
1979	4.1	24.9		42.3					56.9				
1980	16.3			47.1					54.1			32.2	
1981								66.4					
1982	21.6	24.5				59.8		63.0	53.4		29.1		42.2
1983	30.3	33.8	37.9	42.4		57.6	59.6	65.4	50.4			11.1	43.3
1984	27.6	32.4	38.3	42.2		56.4		64.6	49.5		32.6	20.6	
1985	19.2	19.0	30.8	44.8		57.6	68.3	60.2	47.8		18.6	18.3	39.9
1986	25.4	25.6	40.6	43.8		63.9	59.9	66.1	50.2		30.3	24.9	
1987	22.2	27.9		47.8		61.6	62.9	59.8	56.1	43.2	35.3	25.4	
1988	20.5	30.3	37.8	45.7		60.9	63.7	63.9	53.8		36.3	23.3	44.6
1989	27.5	12.4	28.8	44.2		59.8	65.4	61.9	52.7		35.8	25.3	42.2
1990	30.5	24.5	34.8	45.2	49.8	57.2	65.2	64.8	59.2	41.9	36.1	16.5	43.8
MEAN	22.2	27.6	33.7	43.2	51.6	58.5	64.1	63.0	53.5	43.4	32.6	25.4	43.2

Table 10. Summary of precipitation records at the Northwestern Agricultural Research Center, Kalispell, MT, January 1950 thru December 1990.

		Г	Cotal H	recipi	tation	(inch	nes) by	Montl	ns and	Years			
DATE	JAN.	FEB.	MAR.	APR.		JUNE			SEPT.		NOV.	DEC.	TOTAL
1950	2.62	1.13	2.31	0.84	0.15	3.90	3.12	0.75	0.52	2.30	1.16	2.48	21.28
1951	0.94	1.29	0.62	2.32	3.77	2.26	1.03	2.86	1.49	5.62	1.01	3.31	26.52
1952	1.03	0.98	0.97	0.17	1.32	3.95	0.56	0.69	0.13	0.05	0.60	0.98	11.43
1953	1.84	1.14	0.98	2.07	2.00	3.31	Т	1.62	0.71	0.03	0.87	1.30	15.87
1954	2.65	0.79	0.83	0.79	1.52	2.98	2.91	3.79	1.09	0.54	1.00	0.43	19.32
1955	1.00	1.31	0.44	0.82	1.18	1.86	3.08		1.64	1.89	1.97	2.38	17.57
1956	1.76	1.53	0.87	1.28	1.06	4.20	2.13	3.21	1.16	1.10	0.53	0.96	19.79
1957	1.47	1.14	0.75	1.22	1.75	2.51	0.52	0.78	0.10	1.59	0.96	1.76	14.55
1958	1.56	2.67	0.97	1.47	2.20	2.56	0.84	0.58	1.99	1.16	2.90	2.77	21.67
1959	1.95	1.33	0.75	1.62	4.10	1.75	T	0.91	4.22	3.36	4.32	0.34	24.65
1960	1.67	1.10	1.01	1.23	3.27	0.69	0.13	2.43	0.55	1.44	1.72	1.24	16.48
1961	0.65	1.46	1.96	2.26	4.02	1.45	0.76	0.64	3.40	1.22	1.77	2.09	21.68
1962	1.33	1.15	1.59	0.96	2.59 0.57	1.15	0.11	0.72 2.10	0.58	1.85 0.75	1.31 0.95	0.91	14.25 18.79
1963 1964	1.69	0.41	1.57	0.87	3.33	3.86	3.01	1.64	2.27	0.85	1.62	3.62	24.51
1965	2.25	0.64	0.24	2.55	0.81	2.30	1.15	4.74	1.72	0.21	1.31	0.55	18.47
1965	1.42	0.67	0.53	0.76	1.18	6.57	2.49	1.64	0.79	1.34	3.33	1.68	22.40
1967	1.50	0.62	1.27	0.99	1.30	2.53	0.02	0.01	0.91	1.88	0.62	1.16	12.81
1968	0.79	1.15	0.68	0.57	3.92	2.22	1.00	3.42	4.51	2.39	1.59	3.12	25.36
1969	3.05	0.75	0.69	1.39	1.19	5.21	0.70	0.09	1.54	1.90	0.31	1.14	17.96
1970	3.10	0.89	1.49	0.76	1.97	4.37	3.08	0.44	1.79	1.38	1.75	0.99	22.01
1971	1.84	0.77	0.69	0.58	2.45	4.42	1.31	1.11	0.94	0.87	1.70	1.62	18.30
1972	1.10	1.65	2.11	0.95	1.48	3.28	1.77	0.98	1.38	1.84	0.80	2.19	19.53
1973	0.52	0.56	0.70	0.45	1.13	2.14	0.01	0.63	1.37	1.41	2.95	1.94	13.81
1974	1.35	1.32	1.40	3.36	1.82	1.80	1.01	0.62	0.80		1.10	1.31	16.01
1975	1.56	1.08	1.50	1.27	1.50	1.40	1.08	4.26	1.18	2.96	0.85	1.39	20.03
1976	0.91	1.12	0.34	1.92	1.90	2.49	1.49	3.42	0.96	0.62	0.73	0.86	16.76
1977	0.83	0.71	1.40	0.41	2.90	0.52	3.60	1.50	2.84	0.56	1.62	4.10	20.99
1978	2.15	0.99	0.73	2.54	3.56	2.63	3.90	3.34	1.90	0.15	0.96	0.91	23.76
1979	1.70	1.45	0.82	2.33	2.67	1.23	0.40	1.79	1.03	1.75	0.50	1.03	16.70
1980	1.53	2.03	0.97	1.88	5.48	3.89	1.08	2.45	1.20	0.83	0.78	2.58	24.70
1981	1.81	1.85	2.17	1.75	3.86	4.70	1.17	0.96	0.77	0.56	1.49	1.91	23.00
1982	2.38	1.48	1.16	1.60	1.25	2.41	2.06	1.17	2.37	0.75	1.39	1.60	19.62
1983	0.93	0.85	1.71	2.41	1.20	2.96	3.66	1.16	1.70	1.13	1.96	2.57	22.24
1984	0.80	2.19	1.81	1.93	2.91	2.07	0.31	0.55	2.15	2.25	1.40	1.29	19.66
1985	0.31	1.28	0.90	1.31	2.81	1.89	0.35	1.62	5.35	1.55	1.61	0.51	19.49
1986	2.39	2.33	0.50	1.34	2.92	1.83	2.09	0.81	3.63	0.80	1.78	0.63	21.05
1987	0.38	0.46	3.47	1.15	1.89	1.95	4.85	0.98	0.81	0.12	0.91	1.18	18.15
1988	0.98	1.03	0.77	1.36	3.60	1.98	1.07	0.13	2.30	0.62	1.39	1.69	16.92
1989	1.39	1.48	2.29	1.09	2.70	2.05	2.70	3.69	1.50	2.29	3.75	1.92	26.85
1990	0.96	1.00	1.76	1.63	3.74	2.68	2.34	2.44	Т	2.32	1.37	2.60	22.84
	1	1 10		1 10	0.00	0.75		1	1	1	1 10	1 10	
MEAN	1.50	1.19	1.18	1.40	2.32	2.75	1.57	1.63	1.63	1.37	1.48	1.68	

CHEMICALS USED IN HERBICIDE STUDIES 1989-90, NWARC, KALISPELL,MT

Common name	Trade name	Chemical name	Company
Imazamethabenz (AC 222,293		<pre>m- toluic acid, 6-(4-isopropyl-4-methyl-` 5-oxo-2-imidazolin-2-yl)-methyl ester and p-toluic acid, 2(4-isopropyl-4-methyl 5-oxo-2-imidazolin-2-yl)-methyl ester</pre>	Am. Cyanamide -
Bentazon	Basagran	3-(1-methylethyl)-(1H)-2,1,3-benzothia- diazin-4(3H)-one 2,2-dioxide	BASF
Bromoxynil	Buctril	3,5-dibromo-4-hydroxybenzonitrile	Rhone Poulenc
Bromoxynil + MCPA	Bronate /Brominal+	3,5-dibromo-4-hydroxybenzonitrile + [(4-chloro- <u>o</u> -tolyl)oxyl]acetic acid	Rhone Poulenc, Un. Carbide
Chlorsulfuruon	Glean	2-chloro-NEE(4-methoxy-6-methyl-1,3,5- triazin-2-yl)amino]carbonyl]benzenesul fonamide	DuPont
Clopyralid	Stinger	3,6-dichloro-2-pyridinecarboxylic acid	Dow
Clopyralid + 2,4-D	Curtail	3,6-dichloro-2-pyridinecarboxylic acid + (2,4-dichlorophenoxy)acetic acid	Dow
Clopyralid + MCPA	Curtail M	3,6-dichloro-2-pyridinecarboxylic acid [(4-chloro- <u>o</u> -tolyl)oxyl]acetic acid	Dow
Dicamba	Banvel	3,6-dichloro-2-methoxybenzoic acid	
Diclofop-m	Hoelon	2-[4-(2,4-dichlorophenoxy)phenoxy pro- panoic acid	Hoechst Roussel
Difenzoquat	Avenge	1,2-dimethyl-3,5-diphenyl-1H-pyrazolium	Am. Cyanamide
DPX-L 5300	Express	Methyl 2 [[[[N-(4-methoxy-6-methyl- 1,3,5-triazin-2-yl) methylamino] carbonyl]amino]sulfonyl]benzoic acid	DuPont
DPX-R 9674	Harmony Ext	ra 2:1 ratio of DPX-M6316 + DPX-L5300	DuPont
EPTC	Eptam	<u>S</u> -ethyl dipropylthiocarbamate	Stauffer/ICI
Ethalfluralin	Sonalan	N-ethyl-N-(2-methyl-2-propenyl)-2,6- dinitro-4-(trifluoromethyl)benzenamine	Elanco
Fenoxaprop	Puma	(+)-2-[4-[(6-chloro-2-benz-oxazoly)oxy] phenoxy]propanoic acid	Hoechst/ Roussel

Chemicals used in 1990 (Cont'd)

Common name	Trade name	Chemical name	Company
Fenoxaprop +2,4-D + MCPA	Tiller	Fenoxaprop ethyl, 2,4-Dester, and MCPA ester (see respective chemistries)	Hoechst/ Roussel
Fluazifop	Fusilade	<pre>(R)-2-[4-[[5-(triflouromethyl)-2-pyridiny oxy]phenoxy]propanoic acid</pre>	1] ICI Am.
Glyphosate	Roundup	<u>N</u> -(phosphonomethyl) glycine	Monsanto
Imazethapyr	Pursuit	(+)-2-E4,5-dihydro-4-methyl-4(1-methyl ethyl)-5-oxo-1H-imidazol-2-yl]-5-ehtyl -3-pyridinecarboxylic acid	Am. Cyanamide
MCPA	MCPA	[(4-chloro- <u>o</u> -tolyl)oxyl]acetic acid	As available
Metribuzin	Sencor or Lexone	4-amino-6- <u>tert</u> -butyl-3-(methylthio)- <u>as</u> triazin-5(4 <u>H</u>)one	Mobay DuPont
Pyridate	Tough	O-(6-chloro-3-phenyl-4-pyridazinyl)-S- octyl carbonothioate	Agrolinz
Sethoxydim	Poast	2[(1-ethoxyimino)butyl]-5[(2-ethylthio)- propyl]-3-hydroxy-2-cyclohexen-1-one	BASF
Triallate	Fargo	S-(2,3,3-trichloro-2-propenyl)bis(1- methyl ethyl)carbamothioate	Monsanto
Trifluralin	Treflan	2,6-dinitro-N,N-dipropyl-4-(trifluoro- methyl)benzeneamine	Elanco
2,4-D	2,4-D	(2,4-dichlorophenoxy)acetic acid	Cenex
2,4-DB	2,4-DB	4-(2,4-dichlorophenoxy)butyric acid	Rhone Poulenc

18

>

PROJECT TITLE: Bedstraw weed control in Gallatin spring barley.

YEAR/PROJECT: 1990/754

INVESTIGATORS: Leader - Vern R. Stewart, Todd Keener - Research Specialist

- OBJECTIVE: To evaluate timing of the herbicide applications of Assert, Bronate, and the combinations of those herbicides for control of bedstraw (Galium aparine).
- SUMMARY: Yield, test weight and percent plump were not significantly different when comparing applicatons of Assert, Bronate and the combinations of those herbicides at three application dates. Bedstraw was effectively controlled by Bronate and Assert plus Bronate at all application dates.

RESULTS:

The experiment was established in a field of Gallatin spring barley. Plots 10 feet by 20 feet were laid out in a randomized complete block with four replications. Treatments were applied May 17, May 26 and June 3. Applications were made with a research-type, tractor mounted sprayer using 24.85 gpa, 8002 nozzles, and 32 PSI.

Application data:	May 17	May 26	June 3
Air temp	63 F	59 F	55 F
Soil temp	60 F	60 F	53 F
Rel Hum.	18 %	31 %	42 %
Wind (MPH)	2-4	0-3	0
Cloud cover	CLDY	Clear	CLDY
Soil moisture	Top - v good	good	dry
	Sub - v good	good	good
Crop stage:	5 1f	5-7" tillere	d 7-10 "
Bedstraw(25	/ft2) 1/4-1/2"	1/2-1 1/2"	1-5"
Fanweed (12	/ft2) 1" tall	10-12 lvs, 2	" 5-8"

Similar rates of Assert and Bronate applied alone, or in combination at three application dates had no effect on yield, test weight or percent plump.

Slight crop injury was observed where Assert and Assert plus Bronate applications were made. Early height readings were significantly less in all Assert treatments as well as for the two later application dates of Assert plus Bronate. The height reductions were not seen in the later height measurements. In a similar study done last year significant height reductions were recorded as late as harvest in all treatments.

Heavy bedstraw populations were effectively controlled by Assert plus Bronate as well as Bronate alone at all three appliction dates. Assert alone failed to provide effective bedstaw control. The later application of Assert plus Bronate was least effective of the three treatment dates (90%). All applications, except Assert applied on 6/3, effectively controlled fanweed. A low level of chickweed control vas observed with all herbicide applications.

In a similar study conducted last year seeding and applications were three weeks later in the season. Plant injury was greater

and there were significant differences in all components (yield, test weight and weed control) except percent plump. The study this year was initiated earlier and had better yields, good weed control and less plant injury.

Table 1.	. Agronomic data from the Bedstraw Herbicide Stu	udy, Mahugh farm.
	Kaispell, MT in 1990.	
	Planting date: May 8, 1990 Harvested: Augu	ist 10, 1990
- Andrew Alter	the inner shirtle marginers have the row have	and the second of the

Treatment	Rate	Appln Date	Yield Bu/A	Test Wt Lb/Bu	% Plump	Crop /1 Injury	Height (In)6/21	Height (In)8/3
Assert	1.2 pts	5/17	124.3	52.13	96.33	.6667	25.59	38.45
Assert	1.2 pts	5/26	127.5	52.47	96.67	.3333	25.59	38.71
Assert	1.2 pts	6/3	118.8	52.23	96.33	.1667	24.15	37.14
Assert + Bronate	1.2 pts 1.5 pts	5/17	130.8	52.30	95.67	.1667	25.85	38.32
Assert + Bronate	1.2 pts 1.5 pts	5/26	136.7	52.40	95.00	.5000	25.07	38.19
Assert + Bronate	1.2 pts 1.5 pts	6/3	131.7	52.37	95.67	.6667	25.20	38.98
Bronate	1.5 pts	5/17	135.9	52.40	96.00	.0000	25.98	39.76
Bronate	1.5 pts	5/26	131.9	52.67	96.33	.5000	24.93	38.58
Bronate	1.5 pts	6/3	131.0	52.37	94.33	.1667	26.90	38.45
Check	- Tors	and the s	138.5	52.97	96.00	.0000	27.43	38.32
•	Mean		130.7	52.43	95.83	.3167	25.67	70.40
	F Rat	io	.9809	.9228		1.030	2.439	38.49
	P Val		. 4921	. 5347	.4522	.4582	.0479	.3870
		/Mean)	4.611	.4674	.7241	79.04	2.382	2.740
	LSD		17.91	.7281	2.062	.7437	1.816	3.134

1/ Crop Injury: 0-10 rating, 0 = no injury, 10 = dead plants. Rated 6/12/90

2

Treatment	Rate	Date		Per	cent Weed	Control	1/	
Treetmente	THEE	Date	BS 6/12		FW 6/12			CW 7/12
Assert	1.2 pts	5/17	35.00	46.67	68.33	96.67	.0000	33.33
Assert	1.2 pts	5/26	15.00	30.00	37.33	100.0	.0000	31.67
Assert	1.2 pts	6/3	.0000	20.00	6.667	33.33	.0000	33.33
Assert + Bronate	1.2 pts 1.5 pts	5/17	97.67	98.67	99.33	100.0	10.00	93.33
Assert + Bronate	1.2 pts 1.5 pts	5/26	87.67	96.33	93.33	100.0	16.67	65.00
Assert + Bronate	1.2 pts 1.5 pts	6/3	61.67	90.00	71.67	100.0	.0000	50.00
Bronate	1.5 pts	5/17	95.67	93.33	98.67	100.0	33.33	66.67
Bronate	1.5 pts	5/27	94.33	98.33	99.00	100.0	33.33	66.67
Bronate	1.5 pts	6/3	61.67	98.33	66.67	100.0	.0000	66.67
Check			.0000	.0000	.0000	.0000	.0000	.0000
nollari Nollari	Mean	teog 1 1 post	54.87	67.17	64.10	83.00	9.333	50.67
	F Rat	io	22.32	24.62	10.13	221.5	.7642	1.695
	P Val		.0000	.0000	.0000	.0000	.6602	.1584
		/Mean)	15.34	11.63	18.42	2.902	169.9	40.18
	LSD	(.05)	25.00	23.21	35.09	7.157	47.11	60.49

1/ Percent Weed Control taken on two dates, 6/12/1990 and 7/12/1990
BS = Bedstraw (Galium aparine) FW = Fanweed (Thlaspi arvense)
CW = Chickweed (Stellaria media)

PROJECT TITLE: Combination Herbicide Study

YEAR/PROJECT: 1990/754

INVESTIGATORS: Leader - Vern R. Stewart, Todd Keener, Research Specialist

OBJECTIVE: To determine the effectiveness of broadleaf and wild oat herbicide treatments in combination for broad spectrum weed control.

RESULTS:

Newana spring wheat strips were planted April 19, 1990 using a International press-type drill with 7 inch spacing. Seed depth was 1 1/2 inches in a seedbed that had been first fall plowed, spring disced, cultivated and then packed. Herbicide plots were established perpendicular to the 12 foot grain strips. Herbicides were applied at the three leaf stage of wild oats using a research-type, tractor mounted sprayer. Plots were 10 feet by 12 feet with treatments being replicated four times in a randomized complete block design. A volume of 27.57 gpa was applied using 8002 nozzles at 32 PSI. Previous crop was spring barley. A surfactant was used at .25% v/v for imazamethabenz, fenoxaprop and DPX-R9674 while 1 pt/A was used with diclfop. A Hege plot combine was used for harvest.

Application data. Date date: May 22, 1990 Air temp: 50 F Soil temp: 53 F Wind: 0-1 mph Soil moisture: Top-good Subsoil-v.good Rel. Humidity: 41% Clouds: Hazy Crop stage: 4-5 leaf, tillering Weed stage: Henbit (Lamium amplx.) - 2 leaves Chickweed (Stellaria media)- 4-6 leaves Campion (Silene latifolia)- 4 leaves Wild oats (Avena fatua) 3 leaf

A good broadleaf and wild oat population in the test area and little disease pressure resulted in a excellent evaluation of tank mix herbicides. Stand reduction was slight in a few treatments where 2,4-D and MCPA were combined with bromoxynil or DPX-R9674. Table 1.

All combination treatments that included one of the three wild oat herbicides tested had yields significantly higher than the check. The four treatments that were equal to, or less than the check in yield were the broadleaf treatments alone. The high yield was harvested from a plot treated with bromoxynil and diclfop (92.7 bu/A). The check plot yield was 40.01 bu/A. Although yield reductions were mainly a result of wild oat competition rather than herbicides injury slight yield reductions were observed where phenoxy herbicides were tank mixed with formulated phenoxy herbicides (Tiller herbicide contains both 2,4-D and MCPA).

All three wild oat herbicides gave good to excellent wild oat control but were antagonistically effected in some tank mixes. Imazamethabenz combined with bromoxynil and/or MCPA had decreased wild oat control compared to when applied alone. Diclfop wild oat control was decreased when tank mixed with bromoxynil, 2,4-D, or with bot Fenoxaprop was the most consistent in wild oat control when tank mixed

with only slight antagonism recorded with mixtures of 2,4-D.

The four broadleaf herbicides applied alone resulted in test weights of grain that were equal to or less than the check. All other test weights were significantly higher than the check. Lodging was also severe in the plots treated only with broadleaf herbicides and not present in other treatments.

Broadleaf weed control was not greatly enhanced or antagonized by most tank mixes except where DPX-R9674 or additional phenoxy herbicides were added to the pre-package blend of fenoxaprop + 2,4-D + MCFA (Tiller herbicide).

SUMMARY:

Additional phenoxies added to formulated phenoxy herbicide treatments did cause slight decreases in yields. The addition of DFX-R9674 to diclofop, imazamethaenz, and fenoxaprop did not significantly change yield, test weight, and weed control when evaluated on Newana spring wheat. Addition of the butoxyethyl ester of 2,4-D (Weedon LV4) to fenoxaprop decreased yields and wild oat control yet gave better broadleaf weed control than the iosocty ester of 2,4-D in the formulation of fenoxaprop + MCPA + 2,4-D.

FUTURE PLANS:

The combination herbicide evaluations have been an active part of weed investigations in Kalispell but most may be absorbed into an economical weed management, maximum economic yield program next year.

175 9 175 9 186 1 196 1 197 9 19

Treatment	Form.	Rate	% Std Reduction	CKWD	Weed Contr HNBT	ol 6/22/90 COCKL	1/ WOAT	% Wild Oat 7/3	Control 7/13
<pre>Imazamethabenz. + .25% v/v surf</pre>	2.5 EC	.38 #	.0000	10.00	17.50	45.00	98.00	92.75	98.00
Diclofop + surf 1 pt/A	3.0 EC	.75 #	. 2500	21.25	20.00	.0000	93.00	89.25	90.25
enoxaprop + S	.58 EC	.074 #	.8821	32.42	33.29	23.23	99.56	94.12	99.08
enoxaprop+MCPA+ 2,4-D	3.08 EC	.66 #	.2500	35.00	40.00	25.00	93.50	95.75	97.00
romomynil	4.0 EC	.25 #	.0000	58.75	69.75	75.00	23.75	.0000	.0000
Bromomxynil + MCPA	4.0 EC 3.8 EC	.25 # .25 #	.0000	31.25	37.50	50.00	.0000	.0000	.0000
PX-R9674 +.25% Surf	75 DF	.014#	.0000	92.75	88.50	70.00	.0000	5.000	.0000
+.252 Surt 2,4-D	3.8 EC	.5 #	.0000	43.75	62.50	52.50	.0000	.0000	.0000
romomxynil +diclofop + surf	4.0 EC 3.0 EC	.25 # .75 #	.0000	.0000	.0000	.0000	94.50	99.00	94.00
Bromomxynil + MCPA +diclofop + surf	4.0 EC 3.8 EC 3.0 EC	.25 # .06 # .75 #	1.250	49.50	47.00	49.75	97.50	87.75	73.75
PX-R9674 +.25% S +diclfop + surf		.014# .75 #	.0000	87.50	88.75	98.75	91.25	93.00	86.50
2,4-D +diclfop + surf	3.8 EC 3.0 EC	.5 # .75 #	.0000	17.50	22.50	25.00	68.75	40.00	32.50
romom*ynil + Imaza.+.25% S			2.000	73.75	79.75	85.00	94.75	88.00	82.00
romomxynil + MCPA + Imaza.+.25% S	4.0 EC 3.8 EC 2.5 EC	.25 # .25 # .38 #	1.250	49.75	56.25	37.50	92.75	93.25	87.00
PX-R9674 +.25% S + Imaza.+.25% S		.014#	.5000	97.50	93.75	100.0	97.50	99.25	97.00
,4-D + Imaza.+.25% S	3.8 EC 2.5 EC	.5 # .38 #	1.000	52.50	75.00	70.00	98.00	98.75	96.50
romomxynil		.25 #	.7500	25.00	25.00	35.00	97.25	96.50	96.00

Table 1. Crop injury and weed control data from the Combination Herbicide Study. NWARC, Kalispell, MT. R13

- Continued -

		% Std	P	ercent Weed	Control 6/22	Control 6/22/90		lat Control
Treatment	Form. Rate	Reduction	CKWD	HNBT	COCKL	WDAT	7/3	7/13
Bromomxynil +	4.0 EC .25 #	1.500	56.25	46.00	50.00	95.25	97.50	97.50
MCPA	3.8 EC .25 #							
+ Fenoxa + S	.58 EC .074 #							
PX-R9674 +.25% S		1.250	92.50	93.25	87.50	97.00	96.25	94.50
+ Fenoxa + S	.58 EC .074 #							
,4-D	3.8 EC .5 #	2.500	42.50	65.00	52.50	89.00	94.00	88.50
+ Fenoxa + S	.58 EC .074 #							I (Appendix
romomxynil	4.0 EC .25 #	1.250	42.50	55.00	62.00	99.50	94.50	96.50
+ Fenoxa+MCPA+ 2,4-D	3.08 EC .66 #							
romomxynil +	4.0 EC .25 #	3.000	90.00	85.25	80.00	99.00	96.75	94.75
MCPA	3.8 EC .25 #							
+ Fenoxa+MCPA+ 2,4-D	3.08 EC .66 #							
PX-R9674 +.25% S	75 DF .014#	2.250	99.50	97.75	100.0	98.75	92.75	90.00
+ Fenoxa+MCPA+			34.33		69,85			
2,4-D								
	3.8 EC .5 #	1.500	46.00	57.75	47.50	71.75	85.00	80.75
2,4-D + Fenoxa+MCPA+ 2,4-D	3.08 EC .66 #	1.300	40.00	37.73	47.30	/1./J	63.00	60.75
heck		.0000	.0000	.0000	.0000	.0000	.0000	.0000
a anta atau anna atau igan anna fagu gun para fagu anna anna agu gun atau anna		000		59.28	12.07	75 70	33 6 3	Lincleon 77.75
	OVERALL MEAN		50.25	54.65	53.35	75.38	72.95	
	F-RATIO TRTS		3.683	3.235	2.674	17.52	67.05 .0000	6.892
	CV (SE/MEAN)							
	LSD(0.05 by t):		31.70 44.60	30.32 46.40	34.99 52.14	11.72 25.00	6.420 13.25	22.41 46.77
/ Weed headings:			10.14					
	ickweed (Stellar: nbit (Lamium amp)							
COCKL = wh	ite cockle (Lych ld oat (Avena fai	nis alba)						
WUHI - WI								

Table 1 (Cont'd). Crop injury and weed control data from the Combination Herbicide Study. NWARC.

Treatment	Form	Rate	Yield	Test Wt	Height	Lo	dging 1/	
		lb ai/A	Bu/A	1b/Bu	Inches	Z	Angle	
203	645	0829	16.844	1448	1997 D. 199			
leazamethabenz + .25% surf	2.5 EC	.38 #	84.64	59.97	35.04	.0000	.0000	
Diclofop + surf (1 pt/A)	3.0 EC	.75 #	72.91	59.88	34.84	.0000	.0000	
Fenoxaprop + S	.58 EC	.074 #	76.58	59.97	34.84	.0000	.0000	
enoxaprop+MCPA+ 2,4-D	3.08 EC		80.55	60.00	34.35	.0000	.0000	
romomxynil	4.0 EC	.25 #	43.64	57.40	35.43	52.50	5.000	
	114 20	120 8	10101	57.10	00.70	UL IV	5.000	
Bromomxynil + MCPA	4.0 EC 3.8 EC	.25 # .25 #	27.61	51.60	34.55	83.75	7.750	
PX-R9674 +.25% S	75 DF	.014#	50.14	56.10	35.04	46.25	4.250	
2,4-D	3.8 EC	.5 #	36.89	55.40	34.45	23.75	4.500	
romomxynil +diclofop + surf	4.0 EC 3.0 EC	.25 # .75 #	92.66	60.25	35.43	.0000	.0000	
romomxynil + MCPA +diclofop + surf	4.0 EC 3.8 EC 3.0 EC	.25 # .06 # .75 #	68.95	59.08	34.35	.0000	.0000	
PX-R9674 +.25% S +diclofop + surf		.014#	82.27	59.92	34.65	.0000	.0000	
,4-D +diclfop + surf	3.8 EC 3.0 EC	.5 # .75 #	62.35	57.95	34.84	.0000	.0000	
romomtynil + Imaza. + .25%	4.0 EC 5 2.5		70.55	59.28	34.55	.0000	.0000	
romomxynil + MCPA	4.0 EC 3.8 EC	.25 #	76.53	59.08	35.04	.0000	.0000	
+ Imaza.+.25% S		.38 #						
PX-R9674 +.25% S + Imaza.+.25% S	75 DF 2.5 EC	.014# .38 #	74.38	59.85	34.35	.0000	.0000	
,4-D + Imaza.+.25% S	3.8 EC 2.5 EC	.5 # .38 #	66.69	58.57	32.97	.0000	.0000	
romomxynil + Fenoxa + S		.25 #	82.69	57.80	34.94	.0000	. 0000	

Table 2. Agronomic data from the Combination Herbicide Study. NWARC, Kalispell, MT in 1990

- Continued -

Treatment	Form Rate		Yield	Test Wt	Height	Lod	ging		
	я ы	lb ai/A	Bu/A	1b/Bu	Inches	Z	Angle		
Bromomxynil +	4.0 EC	.25 #	81.66	60.00	34.74	.0000	.0000	Given an	
MCPA + Fenoxa + S	3.8 EC	.25 #		สมองเสดง					
DPX-R9674 +.25% S	75 DF	.014#	73.28	59.85	34.74	.0000	.0000		
+ Fenoxa + S	.58 EC	.074 #							
2,4-D			64.09	59.00	33.86	.0000	.0000		
+ Fenoxa + S	.58 EC	.074 #						YON BILL	
Bromomxynil + Fenoxa+MCPA+ 2,4-D	4.0 EC 3.08 EC	.25 # .66 #	B3.04	59.88	34.45	.0000	.0000	9 90.20 90 90 01.00 8 1.00 70	
Bromomaxynil +	4.0 EC.		69.B6	59.62	34.15	.0000	.0000	ua bio e	
MCPA + Fenoxa+MCPA+ 2,4-D	3.8 EC 3.08 EC	.25 # .66 #							
DPX-R9674 +.25% S + Fenoxa+MCPA+ 2,4-D		.014#	73.12	59.88	33.56	.0000	.0000		
2,4-D + Fenox + MCPA +2,4-D	3.8 EC	.5 #	63.03	58.67	33.66	.0000	.0000		
Check		1074) 	40.01	55.72	35.14	56.25	6.250		
Cot Ridwa	0	VERALL MEAN =	67.93	58.67	34.56	10.50	1.110	ကြန်ဘာ ကြည့်ဆို	
	F	-RATIO TRTS =	8.388	14.69	1.355	10.59	11.10		
		-VALUE TRTS = V (SE/MEAN) =		.0000	.1601 1.448	.0000 67.82	.0000		
		SD(0.05 by t)=		1.496	1.411	20.07	1.981		

Table 2 (Cont'd). Agronomic data from the Combination Herbicide Study. NWARC, Kalispell.

1/ Lodging notes: X = percent of plot lodged angle = degree of lodging, 0 = none, 9 = lodged to ground

promise tegs towest in the Glean plots where backey, cold

41.14

PROJECT TITLE: Curtail/Assert Plantback Study, second year (Kalispell)

YEAR/PROJECT: 1990/754

INVESTIGATORS: Leader - Vern R. Stewart, Todd Keener - Research Specialist

OBJECTIVE: To evaluate the residual effect of both Curtail and Assert to subsequent plantings of rotational crops one year after application.

RESULTS: Eight crops were planted in strips across each of three replications that had been previously treated (on June 7, 1989) with Assert and/or Curtail. Glean was applied as a comparison residual herbicide. Barley, peas, sugar beets, alfalfa, canola, sunflower and lentils were planted with a research plot seeder on May 5. Potato plots were seeded by hand on May 31, 1991.

Crops were monitored throughout the growing season. Plant height and crop injury (by chemical residue) were recorded. Biomass assays and yields were obtained for each crop at maturity. Potato, sugar beet, pea, and sunflower yields were harvested by hand. A Hege plot combine was used to harvest barley, canola, and swathed lentils. An Almaco forage harvester was used to harvest the alfalfa plots. Harvest dates are listed below with other plot data.

Сгор	Seedin per		Harvest Date	Herbicide 1/ prod/A	Yield Sample
Barley	70	#	Sept 7	Bromox 1 pt	Grain bu/A
Canola	7	#	August 10	Stinger 2/3pt	Seed 1b/A
Alfalfa	12	#	August 23	Bromqx 1 pt	Hay Tons/A
Potato	2000	#	Sept 13	Lexone .76#	Potato #/A
Sugar beet	:s 10	#	Sept 13	Stinger 2/3pt	Biomass kg
Peas	125	#	August 1	Lexone .17#	Biomass, kg
Lentil	60	#	Sept 7	Lexone .17#	Seed, 1b/A
Sunflower	5	#	Sept 4	la la Torrana d'un declar la compre e States	Biomass, Kg Heads only

1/ For general weed control.

Yield or biomass data obtained from each of eight crops was not significantly different when comparing treated plots with the check, except where Glean had been applied and sunflowers replanted. The crop yields and biomass were lowest in the Glean plots where barley, peas, canola, and lentils had been replanted one year after treatment. Although not statistically significant potato yields were lowest in the plots previouly treated with Curtail M and Assert plus Curtail. Growing conditions (dryland) at this test site were not comparable to those in

normal potato, sugar beet or alfalfa rotations. It is necessary to weigh data accordingly and realize further testing under high moisture, or irrigated conditions is necessary to accurately detect Assert or Curtail residual effect on these crops.

Height data (Table 2) were least for all crops in plots that had been previously treated with Glean. Significant height differences were noted in lentils, peas and canola. All other treatments did not significantly alter height of the eight crops.

Crop injury ratings (Table 3) obtained July 10, 1990 showed Glean residual affecting all crops planted back into soils treated last year.

SUMMARY:

Yield, biomass data, height, and crop injury ratings indicate no adverse effects of residual Assert or Curtail on barley, peas, sugar beets, potato, alfalfa, canola, sunflower, and lentils replanted one year after treatment at normal use rates. Further plantback testing under high moisture conditions is desirable for potato, sugar beet and alfalfa.

FUTURE PLANS:

No future plans are scheduled for this test area because the effects of chemical residue to subsequent crops planted the following year were not detected.

		2.53			

Table 1. Yield and biomass data from the Curtail/Assert Study plantback crops seeded one year after application. N. W. Agricultural Research Center, Kalispell, MT in 1989.

Date planted: May 4, 1990 Harvested at various dates Field R-14 Biomass yields in Kilograms, other yields given as specified.

Treatment	Prod/Acre or (ai/A)	9/7 Barley Bu/A	8/1 Peas Kg/plot	9/13 S.Beets Kg/plot	9/13 Spuds 1bs/A	8/23 Alfalfa T/A	8/10 Canola lbs/A	9/4 Sunfwr Kg/plat	9/7 Lentil lbs/A
Curtail	2 pt (.58#)	43.8	2.567	3.783	702.9	2.60	899.8	10.63	197.8
Curtail	2 2/3 pt (.79#)	44.7	3.917	4.483	735.8	2.51	819.7	12.37	334.1
Curtail M	1 3/4 pt (.6#)	45.8	4.000	3.433	570.9	2.40	776.6	13.10	250.7
Curtail M	2 1/3 pt (.8#)	44.0	3.150	4.033	779.3	2.74	663.5	13.05	286.8
Assert	1.2 pt (.375)	45.3	3.300	3.433	680.5	2.45	822.9	12.33	117.1
Assert	1.5 pt (.47#)	45.2	3.600	3.567	976.9	2.64	771.6	11.62	220.2
Assert + Curtail	1.2 pt + 2 pt (.38#+.6#	43.7	3.050	3.200	538.0	2.67	721.1	12.65	336.5
Assert + Curtail M	1.2 pt + 1 3/4 pt (.38#+.6#	46.0	3.283	3.517	735.8	2.53	866.1	12.23	226.0
6lean + Surf(.25%)	1/3 oz. (.25oz)	41.3	2.450	3.267	823.5	2.44	702.6	8.350	113.2
Check		45.2	3.133	3.267	966.4	2.26	797.3 -	12.53	146.2
	LL MEAN =	44.59	3.245	3.598	751.0	2.52	783.8	11.89	228.9
	IO TRTS =	.1164	1.254	.6527	.9774	.6538	.3140	2.429	1.247
	UE TRTS =	.9993	.3242	.7517	. 4946	.7509	.9671	.0487	.3276
	E/MEAN) =	9.160	13.92	13.79	19.52	6.945	16.71	7.745	29.28
LSD(0	.05 by t)=	12.11	1.342	1.475	435.6	.5210	389.2	2.735	199.2

1

Table 2. Height data from the Curtail/Assert Study plantback crops seeded one year after applications. N. W. Agricultural Research Center, Kalispell, MT. in 1989.

						3000				and p
Treatment	Prod/Acre or (ai/A)	Lentil	Peas	Sunflwr	S.beets	Alf	Canola	Barley	Potato	
Curtail	2 pt (.58#)	23.00	22.67	34.33	17.67	19.33	24.33	22.67	21.67	1143
Curtail	2 2/3 pt (.79#)	27.33	25.00	35.67	17.00	20.00	24.67	24.00	23.00	
Curtail H	1 3/4 pt (.6#)	27.33	26.33	38.33	16.67	18.33	23.00	22.33	21.00	
Curtail M	2 1/3 pt (.8#)	27.33	25.00	32.00	16.67	17.67	23.00	22.33	19.33	
Assert	1.2 pt (.375#)	26.33	24.67	31.67	13.33	19.67	24.67	24.00	17.33	
Assert	1.5 pt (.47#)	27.67	25.00	32.00	16.67	17.67	24.67	22.33	20.33	
Assert + Curtail	1.2 pt + 2 pt (.38#+.6#)	27.33	25.00	32.00	17.00	20.00	24.67	24.00	22.33	
Assert + Curtail	1.2 pt + 1 3/4 pt (.38#+.6#)	27.33	25.00	35.67	17.00	20.00	24.67	24.00	19.33	
6lean + Surf(.25%)	1/3 oz.	19.67	16.33	22.67	13.00	16.00	16.00	21.67	16.67	
Check		25.00	26.67	34.00	17.33	18.67	24.00	24.00	20.00	
OVERALL I		25.83	24.17	32.83	16.23	18.73	23.37	23.13	20.10	
F-RATIO P-VALUE		3.702	2.791	1.663	1.370	.6560	2.547	1.170	1.623	
CV (SE/M		5.264	7.304	9.856	8.677	8.775	7.169	3.779	7.955	
LSD(0.05	by t)=	4.041	5.245	9.615	4.185	4.884	4.977	2.597	4.751	

Date planted: May 4, 1990 Harvested on various dates. Height taken 6/26/90.

Table 3. Crop injury data from the Curtail/Assert Study plantback crops seeded one year after applications. NW. Ag. Research Center, Kalispell, MT.

Date planted: May 4, 1990 Crop injury rated on 7/10/90; 0-10 scale, 0=no injury, 10=dead plants

Treatmen	t	Prod/Acre or (ai/A)	Lent	Pea	Sunf	Beet	Alf	Can	Bar	Pot
	101110	.991363 01024	2 154	2,9995,5	NAL LUNA	1983	11.7782	VICE C	1200 C 200 C 200	taning data ang migrati pananan ng
Curtail		2 pt (.58#)	0	0	0	0	0	0	.7	0
Curtail		2 2/3 pt (.79#)	.2	0	0	0	0	0	0	.3
Curtail	M	1 3/4 pt (.6#)	0	0	0	0	0	0	0	0
Curtail	M	2 1/3 pt (.8#)	0	0	0	0	0	.2	0	1.0
Assert		1.2 pt (.375#)	0	0	0	0	0	0	0	.5
Assert		1.5 pt (.47#)	0	0	0	0	0	.5	0	.5
Assert + Curtail		1.2 pt + 2 pt	.7	0	.3	0	0	.2	.2	0
		(.38#+.6#)								1
Assert + Curtail		1.2 pt + 1 3/4 pt	.7	0	.3	1.7	0	0	0	.3
		(.38#+.6#)								
Glean + Surf(.:	25%	1/3 oz. (.25oz)	4.5	5.3	4.7	5.8	6.7	6.0	1.3	2.7
Check	14.41	14.07 21.47	.3	.3	.7	.3	0	.5	.5	.3
	26,00	00.5% 00.4%	19.54	that.	(4), 10,	14.44	NV .755			
	OVER	ALL MEAN =	.6333	.5667	.6000	.7833	.6667	.7333	.2667	.566
	F-RA	TIO TRTS =	5.740	15.73	8.396	3.421	57.14	19.76	.8774	4.61
	P-VF	ALUE TRTS =	.0007	.0000	.0001	.0113	.0000	.0000	.5695	.002
•	CV (SE/MEAN) =	71.29	74.66	83.23	127.6	41.83	57.10	178.5	65.5
	LSD	(0.05 by t) =	1.718	1.257	1.484	2.971	.8286	1.244	1.414	1.10

3

PROJECT TITLE: Crop Tolerance of Three Spring Wheat and Spring Barley Varieties to Express and Express plus 2,4-D.

YEAR/PROJECT: 1990/754

INVESTIGATORS: Leader - Vern R. Stewart, Todd Keener - Research Specialist

DBJECTIVE: To evaluate three spring wheat and three spring barley varieties for crop tolerance to use rates of Express and Express plus 2,4-D.

RESULTS: Three spring barley varieties (Gallatin, Russel, Bearpaw) and three spring wheat varieties (WB 926, Newana, and Penawawa) were planted in four row plots, four feet by 10 feet using a research plot seeder. Each variety was planted at 60 lbs/acre iM a block of six varieties, which was then treated with one of six herbicide treatments. Each of these treatment blocks was replicated four times in a complete randomized block, split plot design. All treatments were applied at the five leaf stage of the grain using a research plot sprayer. Where weeds were not controlled with herbicides undesirable plants were mechanically removed creating a weed free environment. A Hege plot combine was used to harvested the experiment.

In both spring wheat and spring barley there were no significant differences measured in yield, test weight, % plump (barley only), height, and heading date among treatments means. As expected there were significant differences measured between varieties in test weight, % plump, height and heading date.

SUMMARY:

Express and Express plus 2,4-D at normal use rates did not affect yield, test weight, % plump, height, and heading dates of spring barley or spring wheat varieties. There were varietal differences in test weight, % plump, height, and heading date.

FUTURE PLANS:

At this time there are no future plans for this project.

1

Table 1. Agronomic data from the Express Crop Tolerance Study on Spring Barley and Spring Wheat. Northwestern Agricultural Research Center, Kalispell, MT.

Yield (Bushels/Acre)

Treatment	(Rate	Gallatin	Russel	Bearpaw	Mean	WB 926	Newana	Penewawa	Mean
149	ing bar	100 167113	Sea Jani	SC SALTOR	e three	TRUIS 9 OF		22011312.2	
Express	.25 oz	119.3	120.2	117.5	119.0	86.9	89.2	100.9	92.3
Express	.5 oz	131.5	126.2	116.1	124.6	97.8	95.9	95.2	96.3
Express + 2,4-D	.25 oz 4 oz	124.3	130.9	115.3	123.5	106.7	98.5	98.9	101.3
Express + 2,4-D	.25 oz 8 oz	129.1	124.6	119.0	124.2	97.9	94.1	111.4	101.1
Bronate	.375 #	127.8	118.5	119.7	122.0	100.4	89.3	100.8	96.8
Check	en de o	125.5	123.9	124.4	124.6	102.7	92.5	101.3	98.8
3783 	Mean Diffe			118.7 wriety and		98.7 ent means		101.4 ificant	2

Test Weight (1bs/bu)

Treatment.	/Rate	Gallatin	Russel	Bearpaw	Mean	WB 926	Newana	Penewawa	Mean
Express	.25 oz	48.8	46.2	45.5	46.8	56.9	58.4	57.9	57.2
na na sentencia de la composición de la		48.2	45.1	45.6	46.3	57.8	59.0	56.8	57.9
Express.+ 2,4-D		48.8	45.6	45.5	46.7	58.1	58.7	57.1	58.0
Express + 2,4-D	.25 oz 8 oz	49.3	45.9	46.9	47.4	57.5	58.7	58.0	58.1
Bronate	.375 #	49.6	46.6	46.5	47.7	58.1	58.6	58.0	58.2
Check		48.3	46.2	47.8	47.4	57.8	59.1	56.9	57.9
	LSD (.()5) betwee	een trea n spring	barley m	eans = .	57.7 non-signif 7096 lb/b 4633 lb/bu	u (P=.0		

Percent Plump

ALS M LED	Goud ne St.		358 8W	anals	Mar Maril
Treatment	Rate	Gallatin	Russel	Bearpaw	Mean
Express	.25 oz	97.8	99.0	98.0	78.3
Express	.5 oz	96.8	98.3	98.3	97.8
Express + 2,4-D		97.0	98.5	98.5	98.0
Express + 2,4-D	.25 oz 8 oz	97.5	98.5	98.5	98.2
Bronate	.375 #	98.0	98.8	97.8	98.2
Check		97.5	98.3	98.5	98.4

Mean 97.4 98.7 98.3 Differences between treatment means are non-significant LSD (.05) between variety means = .6082 (P = .0005)

Height (Inches) June 15, 1990

Treatment/Rate	Gallatin	Russel	Bearpaw	Mean	WB 926	Newana	Penewawa	Mean
Express .25 oz	15.4	15.2	15.4	15.3	12.7	10.9	12.1	11.9
Express .5 oz	15.8	13.3	15.3	14.8	13.0	11.4	11.6	12.0
Express + .25 oz 2,4-D 4 oz	13.9	13.4	15.5	14.2	13.0	10.2	11.0	11.4
Express + .25 oz 2,4-D 8 oz	14.2	13.8	15.5	14.5	13.3	10.9	11.5	11.9
Bronate .375 #	16.2	14.7	16.1	15.7	14.7	11.3	13.1	13.0
Check	14.7	13.3	15.1	14.3	12.0	9.6	11.5	11.1
LSD (.	15.0 rences bet .05) betwe	ween tre en sprin	g barley	ans are variety	means = .	ificant 5893 (P		

LSD (.05) between spring wheat variety means = .6146 (P=.0000)

2

Height (Inches) August 2, 1990

Treatment/F	Rate	Gallatin	Russel	Bearpaw	Mean	WB 926	Newana	Penewawa	Mean
Express .	.25 oz	35.6	34.0	34.1	34.6	32.3	32.8	34.3	33.1
Express	.5 oz	34.7	32.5	33.3	33.5	32.7	32.7	34.5	33.3
Express + . 2,4-D	.25 oz 4 oz	34.5	33.4	34.9	34.3	33.0	33.1	33.2	33.1
Express + . 2,4-D	.25 oz 8 oz	33.9	32.5	33.8	33.4	32.1	32.8	32.2	32.4
Bronate .	,375 #	35.7	34.7	35.0	35.2	32.1	32.9	35.3	33.4
Check		33.2	32.9	34.3	33.4	32.4	32.9	34.5	33.2

Mean 33.6 33.3 34.2 Mean 32.4 32.8 34.0 Differences between treatment means are non-significant LSD (.05) between spring barley variety means = .9279 inches (P=.0269) LSD (.05) between spring wheat variety means = .6143 inches (P=.0000)

Heading Date (Julian)

i di unut (annani) inor

Treatment.	/Rate	Gallatin	Russel	Bearpaw	Mean	WB 926	Newana	Penewawa	Mean
Express	.25 oz	180.3	180.0	184.0	181.4	179.0	184.3	184.8	182.8
Express	.5 oz	180.3	180.0	184.0	181.4	179.0	183.5	184.8	182.4
Express + 2,4-D	.25 oz 4 oz	179.8	179.8	184.0	181.2	179.0	184.8	184.5	182.8
Express + 2,4-D		180.3	180.0	183.0	181.1	179.3	185.0	184.5	182.9
Bronate	.375 #	180.5	180.0	185.0	181.8	179.0	184.3	184.5	182.6
Check	¢. <u>U</u>	180.3	180.0	181.8	180.7	179.0	184.8	184.8	182.8
-	LSD	180.2 erences be (/05) betw (.05) betw	wen spri	ng barley	variety	e non-sign / means =	ificant .6772 (

PROJECT TITLE: Fargo/Showdown Rate and Incorporation Study on Newana Spring Wheat

YEAR/PROJECT: 1990/754

PROJECT PERSONNEL: Leader - Vern R. Stewart, Todd K. Keener - Research Specialist, NWARC, Kalispell, MT.

DBJECTIVE: Determine crop tolerance and evaluate incorporation methods of two triallate formulatons.

SUMMARY: A second incorporation of triallate four days after the application and first incorporation contributed to significant increases in yield, test weight, and percent wild oat control with significantly less lodging.

RESEARCH METHODS:

Two formulations of triallate were applied at two rates to a test area on 4/19/90 using a Valmar TM 240 air-granular applicator. Treatments were immediately incoporated (one-pass) after aplication using a vibra-shank field cultivator set to a depth of 2-3 inches. Half of the test plots were incorporated again, perpendicular to the previous incoporation, four days after the applications (4/23/90). The entire test area was then seeded to Newana spring wheat at 60 lbs/A using a press drill. The test area was fertilized at seeding with 200 lb/A of 29-14-0. Each plot was 40' X 40' with three replications. The test was a split-plot randomized complete block design.

A uniform application of Bronate plus Harmony Extra (1/4 lb + 3/8 oz ai/A) was applied for broadleaf weed control on 6/6/90. Yields were obtained from 144 square foot (4' X 36') subplots utilizing a Hege plot combine on 9/5/90.

RESULTS:

Significant differences were found in yield, test weight, percent wild oat control, and severity of lodging when data was compared from once incorporated versus twice incorporated plots. All treated plots had significantly higher yields, test weights and % wild oat (Avena fatua) control with much less severity and prevelance of lodging than the check plots. Flant injury was noted in all treated plots and was significantly greater in the plot treated with the high rate of Fargo. Flant injury did not vary significantly across incorporation regimes.

The significant increases noted in yield or test weight and the occurance of greatly reduced lodging can mainly be attributed to increases in percent wild oat control that was obtained by the double/delayed incorporation technique. This increase in wild oat control was significantly greater in all the double/delay incorporation treatments in comparison to the single incorporation plots.

Agronomic data demonstrated that Fargo, and especially Showdown, are more effective in spring wheat if twice incoporated by the methods used in this study. Lodging was virtually eliminated in all treated plots when triallate granules were applied and double/delay incoporated.

Table	1.	Agronomic data	from the	e Fargo/S	howdown	Rate	and In	corpor-
		ation Study on	Newana	Spring	wheat g	rown	on the	North-
		western Agric	ulutural	Research	Center	in	Kalispe	11, MT.

.

Treatment	Rate	1 X	2X	Treatment
011298 00.1	1b ai/A	Incorp.	Incorp.	Means
Fargo	1.0	48.92	63.88	56.40
Fargo	1.25	50.70	76.65	63.37
Showdown	1.0	46.85	81.11	64.13
Showdown	1.25	35.90	68.68	52.29
Check	() () () () () () () () () () () () () (5.99	9.23	7.60
Incorport	ation Means	37 44	59.96	and the section
LSD (.05)) between t	reatment means	eans = 43.20 bu = 21.66 bu/A (ns not signific	P=.0000)
LSD (.05) LSD (.05)) between t) between i go/Showdown	reatment means nteraction mea Rate and Inco	a = 21.66 bu/A (ins not signific poration Study	P=.0000) ant (P=.2101)
LSD (.05) LSD (.05) able 2. Farg) between t) between i go/Showdown T	reatment means nteraction mea Rate and Inco EST WEIGHT (L	s = 21.66 bu/A (ins not signific poration Study B/BU)	P=.0000) ant (P=.2101)
LSD (.05) LSD (.05)) between t) between i go/Showdown T	reatment means nteraction mea Rate and Inco	a = 21.66 bu/A (ins not signific poration Study	P=.0000) ant (P=.2101)
LSD (.05) LSD (.05) able 2. Farg) between t) between i go/Showdown T Rate	reatment means nteraction mea Rate and Inco EST WEIGHT (L 1 X	a = 21.66 bu/A (ins not signific proration Study B/BU) 2X	P=.0000) ant (P=.2101) . (Cont'd) Treatment
LSD (.05) LSD (.05) able 2. Farg) between t) between i go/Showdown T Rate 1b ai/A	reatment means nteraction mea Rate and Inco EST WEIGHT (L 1 X Incorp.	a = 21.66 bu/A (ins not signific prporation Study B/BU) 2X Incorp.	P=.0000) ant (P=.2101) . (Cont'd) Treatment Means
LSD (.05) LSD (.05) able 2. Farg Treatment Fargo) between t) between i go/Showdown T Rate 1b ai/A 1.0	reatment means nteraction mea Rate and Inco EST WEIGHT (L 1 X Incorp. 59.83	a = 21.66 bu/A (ins not signific proration Study B/BU) 2X Incorp. 60.70	P=.0000) ant (P=.2101) . (Cont'd) Treatment Means 60.27
LSD (.05) LSD (.05) able 2. Farg Treatment Fargo Fargo) between t) between i go/Showdown T Rate 1b ai/A 1.0 1.25	reatment means nteraction mea Rate and Inco EST WEIGHT (L 1 X Incorp. 59.83 59.03	a = 21.66 bu/A (ins not signific proration Study B/BU) 2X Incorp. 60.70 60.13	P=.0000) ant (P=.2101) . (Cont'd) Treatment Means 60.27 59.58

Incorporation Mean 57.21 59.05

LSD (.05) between incorporation means = 3.29 lb/bu (P=.0328) LSD (.05) between treatment means = 1.77 lb/bu (P=.0000) LSD (.05) between interaction means not significant (P=.3034)

Table 3. Agronomic data from the Fargo/Showdown Rate and Incorporation Study on Newana Spring wheat grown on the Northwestern Agriculutural Research Center in Kalispell, MT.

Treatment Rate 1b ai/A 1 X Incorp. 2X Incorp. Treatment Means Fargo 1.0 .83 .67 .75 Fargo 1.25 1.17 1.50 1.33 Showdown 1.0 .50 .50 .50 Showdown 1.25 .67 .83 .75 Check 0.00 0.00 0.00		- Constanting	PLANT INJ	URY 1/	
Fargo 1.25 1.17 1.50 1.33 Showdown 1.0 .50 .50 .50 Showdown 1.25 .67 .83 .75	Treatment				
Showdown 1.0 .50 .50 .50 Showdown 1.25 .67 .83 .75	Fargo	1.0	.83	.67	.75
Showdown 1.25 .67 .83 .75	Fargo	1.25	1.17	1.50	1.33
energies defens off restry from feet. Will rescultion	Showdown	1.0	.50	.50	.50
Check 0.00 0.00 0.00 0.00	Showdown	1.25	.67	.83	.75
	Check		0.00	0.00	0.00

Incorporation Means .63 .70

LSD (.05) between incorporation means not significant (P=.822) LSD (.05) between treatment means = .996 (P=.0161) LSD (.05) between interaction means not significant (P=.9538)

1/ Plant injury rated on 0-10 scale; 0 = no injury, 10 = dead plants

an oppland		% WILD DAT CO	NTROL 2/	استقويذهو بالمقاتية
Treatment	Rate lb ai/A	1 X Incorp.	2X Incorp.	Treatment Means
Fargo	1.0	35	68	51.7
Fargo	1.25	32	74	52.8
Showdown	1.0	38	68	53.0
Showdown	1.25	33	75	54.2
Check		0	0	0.0

Table 4. Fargo/Showdown Rate and Incorporation Study. (Cont'd)

Incorporation Means 27.7

57.0

LSD (.05) between incorporation means = 8.48 (P=.0000) LSD (.05) between treatment means = 22.70 (P=.0000) LSD (.05) between interaction means not significant (P=.0747) 2/ Wild oat percent control by ocular observation

Treatment Rate lb ai/A	1 X Incorp.	2X Incorp.	Treatment Means
	Sever Prev	Sever Frev	Sever Prev
Fargo 1.0	2.7 5.0	0.0 0.0	1.3 2.5
Fargo 1.25	5.3 26.7	0.0 0.0	2.7 13.3
Showdown 1.0	4.0 23.3	0.0 0.0	2.0 11.7
Showdown 1.25	4.0 28.3	0.0 0.0	2.0 14.7
Check 00.0	8.7 96.0	8.7 96.0	8.7 96.0

Table 5. Fargo/Showdown Rate and Incorporation Study. (Cont'd)

atton toudy on Newara, Boring, Wheet grown contries North-

LODGING SEVERITY AND PREVALENCE 1/

Incorporation Means 4.93 35.9 1.73 19.2

Severity (Sever)
LSD (.05) between incorporation means = 5.87 (P=.0346)
LSD (.05) between treatment means = 5.171 (P=.0035)
LSD (.05) between interaction means not significant (P=.6112)
Prevalence (Prev)
LSD (.05) between incorporation means not significant (P=.0514)
LSD (.05) between treatment means = 34.25 (P=.0000)
LSD (.05) between interaction means not significant (P=.6254)
1/ Lodging rated by ocular observations. Severity is the degree
the wheat has lodged to ground and is rated on a 1 to 9 scale.
0 = no lodging (perpendicular to ground),9 = lodged to ground.

Prevalence is the percentage of plot that has lodged

3

PROJECT TITLE: Gromwell herbicide study in winter wheat

YEAR/PROJECT: 1990/754

PROJECT PERSONNEL: Leader - Vern R. Stewart, Todd Keener, Research Specialist, NWARC, Kalispell, MT. 41

DBJECTIVE: Evaluation of several herbicide and herbicide combinations for control of gromwell and blue mustard in winter wheat.

SUMMARY:

Several herbicides gave excellent control of gromwell and blue mustard in winter wheat which resulted in yields significantly higher than the check.

RESEARCH METHODS:

A herbicide study was established in a new seeding of Daws winter wheat that had a severe infestation of gromwell (Lithospermum arvense) and a moderate population of blue mustard (Chorispora tenella). Treatments were applied post emmergence using a research-type, tractor mounted sprayer. A Hege combine was used to harvest the study. Plots were 10' by 25' with four replications in a randomized complete block design. Application data and weed rating information can be seen in Table 3.

RESULTS:

Minor indications of winter wheat injury were apparent in thinned plots or reduced plant growth in the phenoxy treatments. Plant injury was sustained through the season in the Bromoxynil + DPX-R9674 treeatments. Uniform growth was observed for all other treatments at grain maturity.

Control of gromwell and blue mustard was detected soon after application with treatments of bromoxynil, and combinations with bromoxynil. The sulfonylureas, having a slower mode of action, did not effectively control gromwell and blue mustard until the last rating (5/19/90). No antagonism was observed with the bromoxynil plus sulfonylurea tank mixes. Increased activity of bromoxynil in control of gromwell and blue mustard was seen with increased rates. Clopyralid, dicamba and the phenoxies alone gave poor broadleaf control.

Effective broadleaf weed control in several treatments resulted in yields that were significantly greater than the check (table 1). Bromoxynil, the sulfonyl ureas, metribuzin and combinations of the sulfonylureas plus bromoxynil were among those treatments. The yields from plots treated with the phenoxy herbicides (2,4-D and MCPA) were depressed in most treatments, indicating possible plant injury. The low yields from clopyralid, dicamba, and imazamethabenz applications is related to the poor broadleaf weed control.

Test weights were lowest in the check as a result of weed competition. Height was greatest in the check and lower in all treated plots, an indication of plant responses to each of the herbicide treatments. 42

Table 1. Agronomic data for the gromwell herbicide study in winter wheat, Polson, MT. in 1990.

Treatment	Form.	Rate 15 ai/A	Yield Bu/A	Test Wt 1b/bu	Height Inches
Check	easeal 1200 17	, Stewart. Kelth <u>pell</u>	40.25	57.95	35.24
Bromoxynil	2 EC	.187	51.04	58.88	32.48
Bromoxynil	2 EC	.375	51.74	58.90	31.30
Bromoxynil + DPX-L5300 + S	2 EC 75 WP	.187	53.27	59.45	32.58
Bromoxynil + MCPA	2 EC 2 EC	.187 .187	53.55	59.88	32.58
Bromoxynil + MCPA	2 EC 2 EC	.375 .375	47.55	59.08	31.30
Bromoxynil DFX-R9674 + S	2 EC 75 WP	.187 .008	57.49	58.22	31.79
Bromoxynil DPX-R9674 + S	2 EC 75 WP	.187 .016	52.81	59.15	31.10
)PX-R9674 + S + MCFA ester	75 WP 4 EC	.016 .24	50.37	58.78	31.10
1CPA ester	4 EC	.75	43.15	59.25	30.71
2,4-D ester	4 EC	.5	43.39	59.73	30.51
)PX-R9674 + S	75 WP	.016	54.85	59.00	33.07
)PX-L5300 + S	75 WP	.016	53.33	58.63	32.09
lopyralid	3.0 EC	.09	37.51	58.53	31.40
Clopymalid + 2,4-D	2.38 EC	2.7 pt.form	40.98	58.92	30.61
Clopyralid + MCPA	2.77 EC	2.3 pt form	48.79	59.22	32.38
Clopyralid + dicamba	3.0 EC 4 EC	.09	31.09	58.63	30.51
Dicamba	4 EC	.125	41.14	59.05	33.46
Imezamethabenz	2.5 EC	1.5	40.29	58.53	31.89
l etribuzin	75 DF	.375	53.03	59.35	32.87
F-RATIC CV (SE)	_ MEAN =] TRTS = /MEAN) =]5 by t)=		47.28 5.827** 6.190 8.288	58.95 1.114 .7590 1.267	31.95 1.502 3.020 2.733

COLOR TRANSPORTED AND A COLOR OF A COLOR OF

Table 2. Agronomic data from the gromwell herbicide study in winter wheat, Polson, MT 1990.

Treatment	Form.	Rat e ai/A	Crop 4/23	Injury 1/ 5/16	% Gromwell 4/23	Control 5/16	% Bluemst 4/23	Control 5/16
Check		68/61/	.0000	.0000	.0000	.0000	.0000	.0000
Bromoxynil	2 EC	.187	.0000	.0000	62.50	77.75	55.00	89.75
Bromoxynil	2 EC	.375	.0000	.0000	46.00	96.25	47.50	98.75
Bromoxynil + DPX-L5300 + S	2 EC 75 WP	.187 .008	.1000	.1250	42.50	97.50	37.50	99.75
Bromoxynil + MCPA	2 EC 2 EC	.187 .187	.0000	.0000	52.50	85.00	52.50	93.75
Bromoxynil + MCPA	2 EC 2 EC	.375 .375	.0000	.2500	40.00	95.30	50.00	97.50
Bromoxynil DPX-R9674 + S	2 EC 75 WP	.187 .008	.0000	.0000	47.50	97.25	45.00	97.00
Bromoxynil DPX-R9674 + S	2 EC 75 WP	.187 .016	.2500	.3750	50.00	99.75	32.50	100.0
DPX-R9674 + S _ + MCPA ester	75 WP 4 EC	.016 .24	.0000	.1250	.0000	98.50	10.00	97.25
MCPA ester	4 EC	.75	.0000	.0000	2.500	33.25	5.000	56.25
2,4-D ester	4 EC	.5	.0000	.2500	5.000	51.25	20.00	61.25
DFX-R9674 + S	75 WP	.016	.2500	.2500	.0000	90.50	.0000	95.75
DPX-15300 +S	75 WP	.016	.1000	.1250	.0000	98.50	.0000	97.50
Clopyralid	3.0 EC	.09	.0000	.1250	.0000	7.500	.0000	23.75
Clopyralid + 2,4-D	2.38 EC	2.7 pt.form	.2500	.1250	.0000	17.50	.0000	56.25
Clopyralid + MCPA	2.77 EC	2.3 pt form	.0000	.0000	.0000	12.50	5.000	37.50
Clopyralid + dicamba	3.0 EC 4 EC	.09	.0000	.0000	2.500	12.50	2.500	18.75
Dicamba	4 EC	.125	.0000	.0000	.0000	3.750	.0000	.0000
Imezamethabenz	2.5 EC	1.5	.0000	.1250	.0000	22.50	.0000	36.25
tribuzin	75 DF	.375	.0000	.2500	.0000	98.00	.0000	98.75
<pre>1/ Crop injury: 0-10 rating, 0 = no injury 10 = dead plar</pre>	F-RAT CV (S	ALL MEAN = IO TRTS = GE/MEAN) = 0.05 by t)=	.47-01 .7945 218.3 .3070	.1063 .8380 119.9 .3609	5.199	58.81 15.43 17.27 28.76	18.13 3.258 66.57 35.71	67.79 14.20 14.25 27.35

Table 3. Application and weed score information, gromwell herbicide study in winter wheat, Polson, MT 1990

Date planted: September 22, 1989 Harvested: August 7, 1990 Application and rating data: Date: 4/18/90 Type Application: Post Soil Temp: 52 F Air temp: 56 F Rel Hum: 35% Cloud cover: clear Wind: 0-5mph, SE Soil Moisture: good Crop stage : 4-5 leaf, 2cd tiller, 5-8" tall. Surfactant (+ S) added to all sulfonylurea treatments at .25% v/vWeed stages: Purple mustard, seed to 6", mostly 2-3" Gromwell, 1-5", mostly 3" other weeds present : wild buckwheat, sowthistle, chickweed, and false flax. Type sprayer: Research plot sprayer, 27.57 gpa, 8002 nozzles, 32 psi, 2.64 mph speed, 17-19" height. Plot size 10' X 25' Rating information: Evaluation 1 Date: 4/23/90 By: TKK/VRS Scale: Injury 0-10, 0 + no injury, 10 = dead plants % control = percentage of weeds controlled Crop stage: 5-8", fully tillered Weed Stage Density 1. Blue mustard 5-8" flwring 3-5/sg ft 2-5" flwring 1-3/sq ft 2. Gronwell By: TKK Date: 5/16/90 Evaluation 2 Scale: Injury 0-10, 0 + no injury, 10 = dead plants % control = percentage of weeds controlled Crop stage: 12-15" Weed Stage Density 8-10" 1. Blue mustard 15-20/sq ft 2. Gromwell 10-12" 12/ sq ft

PROJECT TITLE: Canola Herbicide Evaluations

YEAR/PROJECT: 1990/754

INVESTIGATORS: Leader - Vern R. Stewart, Todd Keener - Research Specialist

OBJECTIVE: Evaluate preplant and post emmergence herbicides in spring canola for crop tolerance and weed control.

RESEARCH METHODS:

Six herbicide treatments were evaluated on Tolbin spring canola for crop tolerance and weed control. Two herbicides (trifluralin and ethalfluralin) were applied pre plant incorporated (PPI) while other treatments (DPX - A7881, clopyralid, sethoxydim, and pyridate) were post emmergence (PDST) applications. PPI treatments were applied May 7, 1990 and twice incorporated with a roto-tiller. POST applications were applied June 14, 1990, approximately 1 month after canola emmergence. All applications were made using a tractor-mounted, research type sprayer. Canola was seeded in 12 foot strips using a research seeder and 10' herbicide plots were established across the strips. At harvest 3' swaths were cut through each plot and set aside to dry. After drying the harvest samples were then threshed with a Hege combine.

DOCT

Application data Type: Date: Air temp

Type:	FFI	FUSI
Date:	5/7/90	6/14/90
Air temp (F)	40	65
Soil temp (F)	49	60
Rel Humid. %	35	20
Wind (mph)	3-5	3
Sky	Cldy	Clear
Topsoil moist.	Fair	V. good
Subsoil Moist.	V. good	V. good
Crop Stage	N/A	6-8 leaf
Canola emmerged	d on 5/15/90	

DDT

RESULTS:

Slight crop injury and stand thinning were observed with ethalfluralin but was not noted later in the season. Plant counts taken June 25, 1990 did not show significant reduction in plant numbers for PPI treated plots versus the check. Plant numbers were lowest in plots treated with pyridate and ethalfluralin plus clopyralid. Height was significantly reduced in plots treated with ethalfluralin plus DPX-A7881, ethalfluralin plus clopyralid, pyridate, and pyridate plus clopyralid. Initial injury to canola was seen with POST applications of clopyralid to plots previously treated with ethalfluralin as well as the post emmergence pyridate applications. Height notes taken later in the season (June 2, 1990) showed differences between treated and non-treated plots as non-significant. Wild oats (Avena fatua) were partially controlled by ethalfluralin, trifluralin, and sethoxydim. The PPI applications of ethalfluralin and trifluralin gave equal wild oat control as POST applications of sethoxydim. Yields were affected, in part, by wild oat competition as well as reactions to herbicide applications. Clopyralid and

sublight the solution should be

pyridate treated plots had the lowest yields of herbicide treatments as a result of chemical injury. All other treatments had yields equal to, or greater than, the check plot. A significantly higher yield was harvested from plots with trifluralin (PPI) plus clopyralid (POST). In this study canola tolerated trifluralin, ethalfluralin, DPX-A7881, sethoxydim, and light rates of clopyralid.

6

Six harbicide risations were evaluated on Talbin spring cohola for grob toletarow and weed control. Two herbicides (trifteratify and ethal-turalin) wore applied on plant incorporated (FF) (wolly other interaction (16%) - ATB03, clopyralid, sethoxydia, and period to wore post essengence (PDRT) applied ions, PPI treatestic wire applied for " 1790, and taige secongerated with a rolo-tiller. FORT applied for were applied sure 14. (FPO; approximately (Ather cendia order and a reaction of the encal PI applied sure second in 12 foot strips (interaction applied for the second of the second of the strips (interaction applied for applied sure second in 12 foot strips (interaction applied order the second of the second of the strips (interaction applied for applied sure second in 12 foot strips (interaction applied order in the second of the second of the strips (interaction applied order applied sure second in 12 foot strips (interaction applied order in the second of the second of the strips (interaction applied order in the second of the second of the strips (interaction applied of the interaction applied and the strip strips) (interaction applied of the interaction of the second of the strips (interaction applied of the interaction of the second of the strips) (interaction of the interaction of the second of the strips (interaction of the interaction of the second of the strips) (interaction of the interaction of the second of the strips) (interaction of the interaction of the second of the strips) (interaction of the interaction of the second of the strips) (interaction of the interaction of the interaction of the second of the strips) (interaction of the interaction of the interaction of the second of the strips) (interaction of the interaction of the

	. สสาวที่ เวลาประส	
	Confesses and an english	

· PESIZ TS

Stipation of an university and stand intining services where an all structure of an and inted isser in the season. First counts the dame 25, 1979 and not show sometions reduction in plant numbers for 49 treater with numbers and structions. First numbers when invest in plats treater with numbers and structionalin plus clove show of the plat treater with numbers and structionalin plus clove show of the 1981. Structure to day the sole struction of the structure in plats we treater with numbers and structions in plats and plus of the 1981. Structure to day the sole structure with structure in the structure interval to day to conside any sear with 5031 optimizing in the structure the structure of the sole structure between the structure in the most structure previously treated with structures taken in the most resonance the structure of the sole structure is the sole as the most interval to day the structure of the structures is an interval of the structure of the sole clove of the structures taken in the most resontructure of the sole clove of the structures is the sole interval of the structure of sole of the structures is the sole interval of the structure of structure of the structures is the sole interval of the structure of structure of the structures is the sole interval of the structure of structure of structures is the structure of the structure is structure of structure of the structures in the sole structure of structure of structure of structures is the structure of the structure structure of structure of structures is the structure of the structure structure of the structure of the structure of structure of the structure structure of the structure of PROJECT TITLE: Reduced Rates of Wild Oat Herbicides on Gallatin Spring Barley

YEAR/PROJECT: 1990/754 INVESTIGATORS: Leader - Vern R. Stewart, Todd Keener - Research Specialist

OBJECTIVE: Evaluation of reduced rates of wild oat herbicides for effective control of wild oats.

RESEARCH METHODS:

Herbicide plots were established in a seeding of Gallatin spring barley that had a moderate infestation of wild oats (Avena fatua). Plots were 10' X 20' and replicated four times in a randomized complete block design. Herbicides were applied post emmergence using a research, tractor-mounted sprayer when the barley was in the five leaf stage and the wild oats were in the 3-5 leaf stage. A light rain shower occurred 3 hours after herbicide applications. Harvest samples were taken August 16, 1990 using a Hege plot combine.

Application data: Date: 5/29/90 Rel Humid. 52%

Date: 5/29/9	0	Air temp 60) F	Soil	temp	63 F
Rel Humid. 5	2%	Wind 0-2 MPH	1	Cloud	y	
Top soil - m	oist	Sub soil- mo	oist			Lenyab III
Barley - 5 1	eaf to ti	llering	Wild Oats	s - 3	to 5	leaf

RESULTS:

Noticeable discoloration occurred in spring barley with applications of diclofop and fenoxaprop at normal rates and reduced rates with ammonium sulfate. No significant differences were found in yield, test weights and height among herbicide treatments. Percent plumps were very low in the check due to the wild oat competition and lodging. All herbicide treatments, except fenoxaprop and the high rate of diclofop, had higher percent plumps than the check. Spring barley showed additional crop reaction to fenoxaprop resulting in percent plumps that were equal to the check. Although slight height reductions were noted in diclofop and fenoxaprop plots on June 4th, there were no significant differences noted at harvest.

Percent wild oat control was equal when using reduced rates of diclofop and fenoxaprop plus ammonium sulfate (2 % by weight) as compared to applications of those herbicides at normal rates (.73 and .074 # ai/A respectively). Imazamethabenz had better percent wild oat control at reduced rates while difenzoquat wild oat control was less at reduced rates with ammonium sulfate. As these are only first year observations more research is needed before effective use of reduced rates can be substantiated and recommended. Continued evaluations of reduced herbicide rates is planned in the future.

1

Treatment	Rate 1b ai/A	Appln.	Yield 15/A	Plts/ sq ft	Height In. 6/25	Height In. 8/2	% W Oat Control
Ethalfluralin	.75 #	PPI	1230.	47.67	6.594	29.82	77.50
Trifluralin	1.0 #	PPI	1114.	51.33	8.071	28.44	80.00
DPX-A7881 + .25% surf	.016 #	POST	1012.	46.33	8.268	27.85	42.50
Clopyralid	.1875#	POST	967.7	49.00	11.32	32.87	5.000
Clopyralid + 2 pt/A C.O.C.	.1875#	POST	889.0	46.67	9.744	29.23	.0000
Ethalfluralin + DPX-A7881 + .25% surf	.75 # .016 #	PPI POST	1238.	48.00	7.283	29.92	91.25
Ethalfluralin + Clopyralid	.75 # .1875#	PPI POST	1256.	40.00	4.823	21.26	74.25
Trifluralin + DPX-A7881 + .25% surf	1.0 # .016 #	PPI POST	1216.	41.00	8.169	29.13	86.50
Trifluralin + Clopyralid	1.0 # .1875#	PPI POST	1487.	48.33	8.760	30.51	93.00
Sethoxydim + 1 qt COC	.28 #	POST	1214.	48.00	8.661	28.64	87.50
Sethoxydim + 2 pt COC + Clopyralid	.28 #	POST	1305.	51.00	7.874	30.81	77.00
Pyridate	.80 #	POST	524.2	39.67	3.445	25.59	.0000
^D yridate + + Clopyralid	.80 # .1875	POST POST	668.9	47.00	4.331	28.05	.0000
Check		8. v3r6. 87. 76. 7	1186.	51.00	9.547	31.59	.0000
	OVERALL F-RATIO P-VALUE CV (SE/I	TRTS = TRTS =	1093. 9.597 .0000 7.647	46.79 1.789 .0764 6.232	7.635 8.051 .0000 10.17	28.84 1.852 .0650 7.162	51.04 17.82 .0000 18.80
		5 by t)=	239.2	8.340	2.211	5.908	27.45

Table 1. Agronomic data from the preplant and post emergence herbicide applications to canola. Northwestern Agicultural Research Center, Kalispell, MT. in 1990. Field R-13

PROJECT TITLE: Alfalfa Herbicide Evaluati	lions	
---	-------	--

1990/754

YEAR/PROJECT:

INVESTIGATORS: Leader - Vern R. Stewert, Todd Keener - Research Specialists

OBJECTIVE: Evaluation of herbicide and herbicide combinations for broadleaf weed control in a new seeding of alfalfa.

RESEARCH METHODS:

A new seeding of Oneida alfalfa was planted April 25, 1990 with no pre-plant herbicides applied. On June 6, 1990 post emmergence broadleaf herbicides were applied at the two and one half trifoliate stage of alfalfa. A tractor mounted, research-type sprayer was used for herbicide applications. Plots were 10' by 20' and replicated four times in a randomized complete block design. Harvest samples were taken for each of two cuttings using an Almaco forage harvester. Percent species compositions were determined for each treatment in both harvest by taking a sub-sample of each plot, separating that sample into different plant groups (alfalfa, broadleaves and grasses) and determining percent composition by weight.

Application data: Post emmergence application of broadleaf herbicides Date: June 6, 1990 Air temp (F) 68 Soil temp (F) 68 Rel Humid: 25% Wind (mph) 0-2 Sky: Cloudy Topsoil moisture - very good Subsoil moisture - very good Alfalfa stage 2 1/2 trifoliate Weed stages: Fanweed 2-3" (Thlaspi arvense) Shepherdspurse 1-2" (Capsella bursa-pastoris) Chickweed seedling (Stellaria media)

RESULTS:

Herbicide treatments that gave excellent control of the three weed species evaluated (fanweed, shepherdspurse, and chickweed) were the combination treatments of imazethapyr plus 2,4-DB amine, bentazon, or bromoxynil. Any of those four herbicides alone were weak on one of the three weed species. Besides the above listed herbicide treatments, those applications effective against fanweed and sheperdspurse in a new seeding of alfalfa were bromoxynil, and bromoxynil plus either 2,4-DB or pyridate. Height was significantly reduced for most combination treatments shortly after application. Table 1. Height differences were not detected at first harvest.

None of the treatments resulted in hay yields greater than the check yet the majority of combination herbicide treatments provided higher alfalfa percentages for the first cutting. Table 2. There were no weed populations in the second cutting of alfalfa. Table 3.

Plante	ed April 19	7, 1990	Harves	ted: August	18, 1990	
Treatment	Rate 15 ai/A	Yield Bu/A	Test Wt Lb/bu	% Plump	Height Inches	Wild C 7/26
Difenzoquat	1.0#	85.56	50.02	85.75	41.14	83.25
Difenzoquat Am. sulfat		88.22	48.18	87.50	39.07	62.50
Imazamethaber + surf.	nz .38#	84.09	50.50	86.50	39.86	70.00
Imazamethaber + Am. sul.		83.41	49.70	87.00	39.37	86.75
Diclofop + su	urf .75#	91.84	49.15	79.00	38.88	96.25
Diclofop + su + Am Sulfa		85.03	50.30	86.00	39.17	96.75
Fenoxaprop + surf.	.07#	90.04	48.40	77.00	39.86	98.25
Fenoxaprop + Am. sul.+		83.28	50.13	81.50	39.47	98.00
Check		80.12	47.30	73.75	40.16	.0000
A at the the	endmon she	linova ev	ota that gar	in trant of	ria ko MA	
	L MEAN =	85.73	49.30	82.67	39.67	76.86
	IO TRTS =		.9023	2.688*	1.592	12.40*
	JE TRTS =		.5386	.0256	.1740	.0000
		4.951	2.376	3.725	1.384	11.66
· ISD(0	.05 by t)=	12.39	3.419	8.988	1.602	26.17

Table 1. Agronomic data from the wild oat herbicide-reduced rate study, NWARC, Kalispell, MT in 1990. Field R-9. Planted April 19. 1990 Harvested: August 16. 1990

* Indicates statistical significance at the .05 level of probability

Ammonium sulfate applied at 2% by weight (17 lbs/ 100 gal).

1

		A Charles		12, 19				
Treatment	Rate 1b ai/A	PLANT INJ 1/	Percent FNWD	Weed	Control CKWD	Heigh 6/20	ot (In) 7/23	Plants/ Sq Ft 6/20
Bentazon + COC	.5 #	.0000	5.000	17.50	42.50	5.46	27.76	34.88
Bromoxynil	.375 #	.0000	100.0	96.25	17.50	4.53	28.05	30.38
2,4-DB ester	.75 #	.0000	.0000	.0000	.0000	5.41	27.46	31.38
Bentazon + CDC + 2,4-DB ester	.5 # .75 #	.0000	27.50	.0000	12.50	4.53	26.77	38.25
Bromoxynil + 2,4-DB ester	.25 # .75 #	.0000	97.50	95.00	20.00	4.53	27.85	28.63
Imazethapyr + + 2,4-DB amine	.063 # .75 #	.0000	100.0	98.75	93.75	4.28	28.54	32.25
Imazethapyr + + Bentazon + COC	.063 # .5 #	.0000	100.0	100.0	100.0	4.48	28.54	31.00
Bromoxynil + Imazethapyr	. 25 # .063 #	.3125	100.0	100.0	98.75	4.13	27.36	31.00
Imazethapyr	.063 #	.1250	81.25	57.50	73.75	4.48	27.26	36.13
Pyridate	1.2 #	.1250	70.00	66.25	22.50	4.53	27.46	34.63
Pyridate + Bromoxynil	.8 # .25 #	1.625	100.0	100.0	27.50	3.79	25.48	27.00
Pyridate + 2,4-DB	.8 # .75 #	.2500	85.00	73.75	15.00	4.97	26.48	28.88
Pyridate + Bentazon + COC	.8 # .5 #	.0000	86.25	87.50	62.50	4.97	28.15	33.50
Check	7630	.0000	.0000	.0000	.0000	5.51	27.95	28.88
P-VALUE	_ MEAN = D TRTS = E TRTS = /MEAN) =	.1741 8.655 .0000 84.02	68.04 28.12 .0000 11.31	63.75 32.47 .0000 11.39		2.642	32.34 2.017 .0425 7.563	27.52 .0351 .0351 1.998

Table 1. Agronomic data from the alfalfa herbicide study, Y-3, NWARC, Kalispell, MT in 1990. Planted April 25, 1990 Field Y-2

1/ Plant injury rated on 0-10 scale; 0 = no injury, 10 = dead plants

2/ Percent weed control by ocular observation. FNWD = fanweed, SPPRS =
 Sheperdspurse, Chickweed = chickweed.

	Rate	+ Per	cent Composi	tion 1/-	Yield	(Tons/A)
Treatment	lb ai/A	Alfalfa	Brdlvs	Grass	Hay	Alfalfa
Bentazon + COC	.5 #	86.13	12.77	1.102	2.868	2.487
Bromoxynil	.375 #	98.47	.0375	1.498	2.508	2.467
2,4-DB ester	.75 #	82.32	17.41	.2700	2.767	2.283
Bentazon + COC + 2,4-DB ester	.5 # .75 #	86.40	13.41	.1900	2.483	2.145
Bromoxynil + 2,4-DB ester	.25 # .75 #	99.97	.0325	.0000	2.568	2.568
Imazethapyr + + 2,4-DB amine	.063 # .75 #	99.60	.4000	.0000	2.512	2.503
Imazethapyr + + Bentazon + COC	.063 # .5 #	100.0	.0000	.0000	2.515	2.515
Bromoxynil + Imazethapyr	. 25 # .063 #	100.0	.0000	.0000	2.412	2.412
Imazethapyr	.063 #	94.60	5.037	.3600	2.420	2.287
Pyridate	1.2 #	97.76	2.240	.0000	2.558	2.505
Pyridate + Bromoxynil	.8 # .25 #	99.89	.0425	.,6500	2.243	2.243
Pyridate + 2,4-DB	.8 # .75 #	96.87	2.900	.2325	2.368	2.293
• Pyridate + Bentazon + COC	.8 # .5 #	99.30	.7000	.0000	2.685	2.668
Check		85.23	13.80	.9650	2.872	2.438
	_ MEAN =		4.913	.3345	2.556	2.415
F-RATI(J TRTS =	3.364	3.323	1.302	2.802	1.030
	E TRTS =		.0015	.2499	.0056	.4456
	(MEAN) =		71.83	128.4	4.315	5.909
LSD (0.0	(5 by t) =	10.32	10.09	1.228	.3154	.4082

Table 2.First harvest data from the alfalfa herbicide study, 1990.Planted April 25, 19901st Cut July 24, 1990

1/ Percent composition determined by hand separation of species. Green weight, in regards to total weight from the subsample determines percent composition of each species.

	Rate		nt Composi	tion 1/-	Yield	(Tons/A)
Treatment	lb ai/A	Alfalfa	Brdlvs	Grass	Hay	Alfalfa
Bentazon + COC	.5 #	100.0	.0000	.0000	2.642	2.642
Bromoxynil	.375 #	100.0	.0000	.0000	2.193	2.193
2,4-DB ester	.75 #	100.0	.0000	.0000	2.347	2.347
Bentazon + COC + 2,4-DB ester	.5 # .75 #	100.0	.0000	.0000	2.170	2.170
Bromoxynil + 2,4-DB ester	.25 # .75 #	100.0	.0000	.0000	1.918	1.918
Imazethapyr + + 2,4-DB amine	.063 # .75 #	100.0	.0000	.0000	2.523	2.523
Imazethapyr + + Bentazon + COC	.063 # .5 #	100.0	.0000	.0000	2.520	2.520
Bromoxynil + Imazethapyr	. 25 # .063 #	100.0	.0000	.0000	2.410	2.410
Imazethapyr	.063 #	100.0	.0000	.0000	2.250	2,250
Pyridate	1.2 #	100.0	.0000	.0000	2.138	2.138
Pyridate + Bromoxynil	.8 # .25 #	100.0	.0000	.0000	1.878	1.878
Pyridate + 2;4-DB	.8 # .75 #	100.0	.0000	.0000	2.210	2.210
^p yridate + Bentazon + COC	.8 # .5 #	100.0	.0000	.0000	2.683	2.683
Check		100.0	.0000	.0000	2.500	2.500
	LL MEAN =	100.0	.0000	.0000	2.313	0
	IO TRTS =	200 B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.0000	.0000	.6764	2.313
	UE TRTS =		.0000	.0000	.7639	.6964
	E/MEAN) =		.0000	.0000	12.88	.7639
	.05 by t) =		.0000	.0000	.8524	12.88
1/ Percent composi						

Table	3.	Second harvest	data from	the	alfalfa hert	bicide st	tudy,	1990.
		Planted April :	25, 1990		2cd Cut S	September	r 28,	1990

1/ Percent composition determined by hand separation of species. Green weight, in regards to total weight from the subsample determines percent composition of each species.

PROJECT TITLE: Peppermint Herbicide Study

YEAR/PROJECT: 1990/754

PROJECT PERSONNEL: Leader - Vern R. Stewart, Todd K. Keener - Research Specialist. Northwestern Agricultural Research Center, Kalispell, MT.

OBJECTIVES: Evaluation of post emergence herbicides for control of common groundsel (Senecio vulgaris) and bedstraw (Galium aparine) in established peppermint.

SUMMARY: Pyridate, bentazon, bromoxynil, and tank mix combinations of those herbicides provided excellent control of common groundsel. Pyridate in tank-mix combination with bromoxynil, bentazon, and clopyralid demonstrated excellent control of bedstraw but applied alone provided only fair control. Slight plant injury was observed with the majority of treatments but these symptoms and the moderate chlorosis and leaf burn caused by bromoxynil applications were not detected at mid-season.

RESEARCH METHODS: The experiment was conducted in an established field of peppermint using a randomized complete block design with three replications. Herbicide treatments were applied on June 4, 1990 using a research-type, tractor mounted sprayer. The test site was established to observe crop tolerance and herbicide action of several post emmergence treatments on a severe population of common groundsel and bedstraw in peppermint.

Crop and spray data are included in the table below:

App1	ication	data:		
	Date:	June 4,	1990	
	Soil t	emp (F):	50	
	Wind v	elocity:	3 - 6 mph	
	Sky: p	artly cl	dy	

Air temp (F): 46 Rel Humid. 38% Wind Direct.: SSW ~ Soil Moisture: V. good

Crop and weed stages: Peppermint: 2 - 5"

- * Common groundsel: seedling 5", the majority of plants (90%) were seedlings < 1'in diameter. There were approximately 10 plants/ft2.
 - Bedstraw: seedling to 8" tall, mostly about 3" tall. The bedstraw population was scattered and varied throughout the study although several severe infestations where located in the test area.
 - Other weeds were observed yet could not be rated in the evaluation due to the low weed population. These were blue mustard (Chorispora tenella), dandelion (Taraxacum officinale), and wild pansey (Viola arvense).

RESULTS:

After the post emmergence applications of herbicides some measure of plant injury was detected in each treated plot. There was moderate chlorosis and leaf burn observed in the bromoxynil plots. The plant injury reactions to bromoxynil as well as the slight leaf burn and curl symptoms of the other treatments were not detected at mid season (the second week of July). The majority of the June 4th herbicide applications gave excellent groundsel control yet did not give effective bedstraw control. The groundsel seedlings were uniform in size while the bedstraw had a more varied range of growth stages.

55

Pyridate, bromoxynil, bentazon, and the combinations of these herbicides performed very well in controlling common groundsel. The combinations of pyridate with clopyralid, sethoxydim, and fluazifop performed equally in groundsel control. Clopyralid did not add to the groundsel weed control that was achieved with applying pyridate alone. Clopyralid applied alone had little effect on groundsel or bedstraw.

There appeared to be no atagonistic effects of groundsel control with the tank mixes that included the grass herbicides sethoxydim and fluazifop. There was antagonism toward bedstraw weed control with fluazifop or sethoxydim in combination with pyridate plus clopyralid. Weed rating data from the 1990 study suggests that clopyralid tank mixed with pyridate may be synergistic and can contribute to increased bedstraw control.

Bedstraw was effectively controlled with tank mixes of pyridate* plus clopyralid, bromoxynil, and bentazon. All the broadleaf herbicides tested alone did not effectively reduce the bedstraw weed population, however pyridate did show some selectivity towards that weed with fair control.

Initial plans were to have sequential applications of fluazifop and sethoxydim for grassy weed control. The later applications were canceled due to lack of grassy weeds.

Additional Weed Observations:

Although not evaluated under test conditions the following observations were made of other weeds and possible weed control:

Pyridate + bromoxynil appears to have some selectivity to blue mustard (Chorispora tenella).

Pyridate + clopyralid or bromoxynil appeared to show fair control activity on dandelion.

Pyridate alone and combined in tank mix with clopyralid or bentazon had no herbicidal activity on wild pansey (Viola arvense).

AI/A Common Trade Form. Form/A -----Pyridate Tough 3.75 EC .9 lb 1.9 pts. 3 EC .1875 lb Clopyralid Stinger .5 pt. 2 EC .25 16 Buctril 1 pt. Bromoxynil Bentazon Basagran 4 EC 1.5 16 1.5 pt 1.5 EC 2.45 pt .46 lb Sethoxydim Poast Fluazifop Fusilade 1 EC .1875 lb 1.5 pt

Herbicide common and trade names with rates

Treatment	Rate ai/A	Plant Injury June 1/	Chlor.	<u>xicity</u> Leaf Burn	Leaf	<u>% Weed</u> Common Groundsel	<u>Control</u> <u>3/</u> Bedstraw
Pyridate	.90 lb	.83	.00	1.3	.00	100.0	65.00
Clopyralid	.1875 16	.83	.00	1.0	.67	38.33	.0000
Pyridate + Clopyralid	.90 lb .1875 lb	.50	.00	.33	.61	99.67	96.67
Pyridate + Clopyralid + Sethoxydim *	.1875 16	. 42	.00	. 67	.00	95.00	33.33
Pyridate + Clopyralid + Fluazifop **	.1875 lb	.83	.00	.67	.00	95.67	58.33
Pyridate + Sethoxydim *	.90 1b .46 1b	.33	.00	.67	.00	96.67	66.67
Pyridate + Fluazifop **		. 42	.00	.33	.33	98.33	66.67
Clopyralid + Sethoxydim *		.50	.00	.33	.33	50.00	.0000
Clopyralid + Fluazifop **		.33	.00	.67	.00	41.67	.0000
Pyridate + + Bromoxynil	.90 1b + .25 1b	4.0	2.0	2.0	1.3	100.0	99.67
Pyridate + + Bentazon	.90 15 + 1.5 15	.42	.00	. 67	.33	100.0	91.67
Bromoxynil	.25 16	1.2	.33	1.0	.67	100.0	31.67
Bentazon	1.5 16	.50	.00	.67	.00	99.33	33.33
Check	19 C	.00	.00	.00	.00	.0000	.0000
P-VALUE TRTS		.791 .000 33.7 .775	.167 .000 53.5 .259	.738 .018 41.5 .891	.309 .010 77.3 .696	79.62 .0000 7.378 17.08	45.93 .0195 50.72 67.72

1

Table 1. Agronomic data from the 1990 Peppermint Herbicide Trial. Evans Farm, Kalispell, MT.

Footnotes to Table 1. 1990 Peppermint Herbicide Trial, Evans farm, Kalispell. Plots 10' X 20', 3 reps + 1 plot buffer = .0184 A, gpa=27.57 */ 2 pts DASH or C.O.C. per acre Amt H20/plot=1920 ml ******/ 1 % v/v C.O.C. per acre 1/ Plant Injury rated 6/21/90 on 0-9 scale, 0 = no injury, 9 = dead plants 2/ Phytotoxicity symptoms caused by treatments: Chlor = chlorosis or yellowing of leaves Leaf burn = Leaf necrosis Curl = leaf curl 3/ Percent Weed control, Ocular ratings: 0 - 100% Common groundsel (Senecio vulgaris) Bedstraw (Galium aparine)

57

Test	Crop	Variety	Seeded with 1/	Rate/A	Depth Seeded	Planted	Harvested
Bedstraw	spring barley	Gallatin	IH drill	60#	1"	5/8/90	8/10/90
Combo	spring wheat	Newana	Resrch drill	60#	1 1/2"	4/19/90	8/31/90
Express	spring bar/wht	6 vars.	Resrch drill	60#	1 1/2"	4/23/90	8/30/90
Fargo/Show	spring wheat	Newana	IH drill	60#	1 1/2"	4/23/90	9/5/90
Gromwell	winter wheat	Daws KOOL -	Press drill	60#	1"	9/22/89	8/7/90
Canola	spring canola	Tolbin	Resrch drill	6# (en	1/2"	5/8/90	8/15/90
Reduced	spring barley	Gallatin	IH drill	60#	1 1/2"	4/19/90	8/16/90
Alfalfa Herb Stdy	alfalfa	Oneida	IH drill	12#	1/2"	4/25/90	6/24/90 9/28/90

Test and Equipment Specifications - 1990 NWARC, Kalispell, MT.

1/ Equipment:

Seeders: Press drill - typical farm use press type grain drill double disc openers, 7" spacing

Resrch - Research plot drill (H and N Equip), double disc openers, 6 or 12" spacing

IH - International Harvester press type drill, double disc openers, 7" spacing

Sprayer:

Tractor-mounted, research type sprayer. 10' spray boom with compressed air. 8003 nozzles, 32 psi, approx 2.6 mph

1

Harvesters:

- Hege 125B plot combine, 4 foot header (grain) - Almaco forage harvester, 4 foot cutter bar (forage)

YEAR/PROJECT: 1990/755 1980 INTRASTATE ALFALFA YIELD TRIAL -DRYLAND

PERSONNEL: Leader - Leon Welty Research Specialist - Louise Prestbye

First harvest was obtained on 6/28/90. Baker, Perry, Ladak-65, Vancor, Armor, Classic, WL 220, and Spredor II had the highest yields. Spectrum, Anchor, Thor, Marathon, and Raidor had the lowest. Second harvest yields ranged from 1.71 t/a (Baker) to 0.69 t/a (Marathon). Third harvest yields ranged from 1.31 t/a (Armor) to 0.66 t/a (Spredor II). Total forage yields for 1990 ranged from 4.61 t/a for Baker to 2.55 t/a for Raidor. Total yields over the 11 years ranged from 44.60 t/a for Ladak-65 to 35.56 t/a for Marathon.

DRYLAND ALFALFA TRIAL SEEDED 1980 - KALISPELL - 1990

VARIETY	HARVEST 1 6/28/90	HARVEST 2 8/15/90 YIELD (18.2	ARVEST 3 10/1/90	21.3 29.3	TOTAL
BAKER	1.68	1.71		1.22		4.61
PERRY	1.71	1.62		1.21		4.54
LADAK-65	1.69	1.48		1.11		4.28
VANCOR	1.43	1.49		1.23		4.15
Armor	1.41	1.41		1.31		4.13
CLASSIC	1.46	1.44		1.13		4.03
CASCADE	1.39	1.32		1.27		3.98
WL 220	1.48	1.26		1,22		3,96
RANGER	1,37	1.19		1.30		3,86
SUPER 721	1.28	1.22		1,29		3,79
Spectrum	1.24	1.12		1.21		3.57
ANCHOR	1.19	1.16		1.07		3.42
SPREDOR II	1.56	1.15		0.66		3.37
VERNAL	1.31	1.12		0.93		3.36
THOR	1.20	1.07		1.06		3.33
MARATHON	1.08	0.69		0,83		2.60
RAIDOR	0.97	0.74		0.84		2.55
LSD(0.05)	0.31	0.43		0.30		0.87
P-VALUE	0.00	0.00		0.00		0.00
CV(s/mean)	13.5	20.7		16.5		14.0
D						
Pesticides:	1980 - Eptam + 2 Fall 1984, 1986 Fall 1988 - Lexe	, 1987 - Sen			a	

10/26/89 - Sencor - 1 lb AI/a

59

INTRASTATE ALFALFA YIELD TRIAL - SEEDED 1980

KALISPELL - DRYLAND 1980-1990 YIELDS

				avin	Y	IELDS -	t/a					
VARIETY	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	TOTAL
LADAK-65	1.48	4.29	2.81	3.31	3.19	4.76	4.26	5.74	5.08	5.40	4.28	44.60
VANCOR	1.81	4.48	2.51	2.98	3.41	5.59	4.44	5.82	4.54	4.73	4.15	44.46
ARMOR	1.79	4.14	2.34	2.91	3.12	5.36	4.49	6.04	4.83	4.84	4.13	43.99
BAKER	1.91	4.07	2.30	2.61	3.01	5.04	4.26	6.20	4.66	4.96	4.61	43.53
ANCHOR	1.70	4.53	2.68	2.65	3.05	5.04	4.56	5.63	4.39	4.34	3.42	41,99
PERRY	1.67	4.06	2.38	2.43	3.18	4.79	3.86	5.24	4,79	4.99	4.54	41.92
CASCADE	1.86	3.90	2.42	2.67	3.09	5.52	4.24	5.61	4.15	4.44	3.98	41.88
SPREDOR II	1.52	4.74	2.48	3.19	3.55	5.22	4.28	5.28	3.85	4.37	3.37	41.85
SUPER 721	1.45	3.99	2.44	2.85	3.00	5.35	4.21	5.36	4.70	4.56	3.79	41.70
THOR	1.99	4.73	2.75	2.71	3.32	5.17	4.42	5.36	3.85	3.83	3.33	41.46
SPECTRUM	1.80	4.63	2.69	2,80	3.07	4.93	3.93	5.47	4.28	3.95	3.57	41.12
WL 220	1.69	4.02	2.01	2.46	3.40	4.99	4.06	5.48	4.26	4.44	3.96	40.77
CLASSIC	1.74	3.78	2.05	2.83	2.81	4.84	4.09	5.29	4.60	4.37	4.03	40.43
VERNAL	1.79	4.09	2.62	2.32	2.97	4.82	4.03	5.28	4.17	4.38	3.36	39.83
RAIDOR	1.84	4.40	2.40	2.86	3.33	5.43	3.93	4,99	3.35	3,50	2.55	38.58
RANGER	1.34	3.38	2.32	2.34	2.41	4.20	3.50	4.69	4.05	4.06	3.86	36.15
MARATHON	1.66	4.07	2.39	2.44	2.86	4.52	3.53	4.83	3.27	3.39	2.60	35.56
LSD(0,05)		0.49	0.72	0.61	0.92	1.26	0.86	0.83	0.86	0.85	0.87	
P-VALUE		0.00	0.73	0.08	0.78	0.78	0.49	0.06	0.01	0.00	0.00	
CV(s/mean)		8.3	20.8	15.8	20.9	17.5	14.7	10.8	12.1	11.6	10.0	
Precip(in)	23.6	23.7	18.2	21.0	19.9	17.6	23.2	22.0	13.9	23.39	26.51	
FERTILIZER:		1980 - P2			. 1	HERBICIDE	S: 1980					
		81 - P203						84,1986,				I/a
	Spring	1984 - Pi						88 - Lexi			I/a	
			20 - 50				10/26/8	9 - Senci	or - 1	lb AI/a		
			- 40 lb									
	Fall 19	86 - P205										
			- 120 1									
			50 lbs/									
	Fall 19	89 - P205										
			- 120 1									
		5 -	50 lbs/	a								

0 - Zotim + Z,4-03 1984, 1986, 1987 - Sercor - 1 15 1-988 - Lekone - 0.75 15 Alla

(V26/83 - Sector - 3 18 41/s

YEAR/PROJECT: 1989/755 1986 INTRASTATE ALFALFA YIELD TRIAL-IRRIGATED

PERSONNEL: Leader - Leon Welty Research Specialist - Louise Prestbye In cooperation with Dr.Ray Ditterline, Bozeman

The nursery was harvested 6/20/90 and then plowed down. The highest yielding varieties were Centurion, Baker (with and without additional K), Verta+, Exp.339, Sparta, and NY8412. The lowest yielding varieties - Spredor II, Vernal and Thor, are not Verticillium wilt resistant.

1986 INTRASTATE ALFALFA YIELD TRIAL KALISPELL, IRRIGATED, 1990

		c (20 (00	
UNDTERV	MTNO	6/20/90 YIELD	
VARIETY	MTNO		
CENTUDION	177	t/a 3.31	Cardina Jaha 1/20/06
CENTURION	177		Seeding date: $4/30/86$
BAKER-K*	189	3.27	Fertilizer: 5/15/86 - P205 - 180 lbs/a
VERTA +	175	3.26	* 3/25/87 - K plots - 100 lbs/a
EXP. 339	176	3.24	Fall 1987 - P205 - 110 lbs/a
SPARTA	174	3.16	K plots- K20- 100 lbs/a
BAKER	123	3.15	S - 45 lbs/a
NY 8412	186	3.14	Pesticides: 4/29/86 - Eptam + 2,4 DB
EXCALIBUR	178	3.08	7/2/86 - Imidan - 1 lb AI/a
NY 8413	187	3.06	10/20/87 - Sencor - 1 lb AI/a
SURPASS	181	3.02	10/28/88 - Lexone75 lbs AI/a
AP 45	182	3.00	10/25/89 - Sencor - 1 lb AI/a
WL 316	144	2.99	
WL 225	184	2.95	
ELEVATION	172	2.85	
LADAK 65	2	2.83	
APOLLO II	183	2.83	
LADAK 65-K*	190	2.80	
BLAZER	173	2.76	
ANSTAR	180	2.75	
WL 83-2	185	2.67	
THOROBRED	179	2.44	
VERNAL	8	2.43	
SPREDOR II	128	2.33	
VERNAL-K*	188	2.33	
THOR	1	2.20	
			Partilliaars - P108 - 178, 10s/a in 1988
LSD(0.05)		0.20	()92/DI - B/IN 82 I - saoure: september 10/D
P-VALUE		0.00	
CV (s/mean)		4.9	
	1000 100 10 1 100		

PERSONNEL: Leader - Leon Welty Research Specialist - Louise Prestbye In cooperation with Dr.Ray Ditterline, Bozeman

First harvest was cut on 6/12/90. DK-125, Legend, Sure, and Sparta had the highest yields (3.16-3.36 t/a). AgriBoss and Kingstar had the lowest yields (2.81-2.64 t/a). At second harvest DK-125, Legend, Sure, and Edge had the highest yields, while Wrangler, Ladak-65, Kingstar, and Vernal had the lowest. At fall harvest on 10/12 DK-125 and Legend again had the highest yields, while AgriBoss, Wrangler, Ladak-65, Kingstar and Vernal had the lowest. The top yielding varieties for 1990 were DK-125, Legend, and Sure. AgriBoss, Wrangler, Ladak-65, Kingstar and Vernal had the lowest yields.

Total yields for the 1988 - 1990 seasons ranged from 18.76 t/a for to DK-125 to 15.03 t/a for Ladak-65.

1988 INTRASTATE ALFALFA YIELD TRIAL KALISPELL - IRRIGATED - 1990

	FALL	VERT WILT		YIEL	D	
VARIETY	DORMANCY	RESIST	6/12/90	8/9/90	10/12/90	TOTAL
				t/	1	
DK-125	3	R	3.36	3.31	1.98	8,65
Legend	4	R	3.23	3.10	1.93	8.26
Sure	3	R	3,19	3,22	1.76	8.16
WL-316	4	R	3,13	2.92	1.65	7.69
Vista-661	3	MR	3.04	2.86	1.77	7.67
Vista-663	3	MR	3.13	2.78	1.75	7.66
Sparta	3	R	3.16	2.74	1.69	7.59
Edge	4	R	2,94	3.00	1.65	7.58
Garst-636	2	R	3.07	2.73	1.61	7.40
Premier	4	R	2,98	2.86	1.52	7.36
Pioneer 5432	4	R	3.04	2.75	1.56	7.34
Arrow	3	R	3.03	2.63	1.63	7.29
WL-225	2	R	3.02	2.57	1.60	7.19
Thor	4		2.97	2.69	1.52	7.17
ICB-34	4	LR	2,95	2.60	1.52	7.07
AgriBoss	3	MR	2.81	2.48	1.33	6.61
Wrangler	2	LR	3.07	2.16	1,36	6.59
Ladak-65	1-2	S	3.00	2,03	1.23	6.26
Kingstar	3	R	2.64	2.32	1.27	6.23
Vernal	2	· · · ·	2.86	2.10	1.23	6.18
LSD(0.05)			0.21	0.35	0.19	0.55
P-VALUE			0.00	0.00	0.00	0.00
CV(s/mean)			5.0	9.2	8.5	5.2

Seeding date: 5/3/88 Fertilizer: P205 - 176 lbs/a in 1988 Pesticide: Sencor - 1 lb AI/a - 10/26/89

INTRASTATE ALFALFA TRIAL - SEEDED 1988 KALISPELL - IRRIGATED

	VERT W.	1988	1989	1990	TOTAL 1988-90
VARIETY	RESIST.	with Ge.	t/a	1	
DK-125	R	2.92	7.19	8.65	18.76
Legend	R	2.99	7.06	8.26	18.31
Sure	R	2.98	7.05	8.16	18.19
Sparta	R	2.99	6.98	7.59	17.56
Pioneer 5432		2.91	7.28	7.34	17.53
Vista-661	MR	2.89	6.93	7.67	17.49
WL-316	R	2.86	6.90	7.69	17.45
Edge	R	2.84	6.92	7.58	17.34
Garst-636	R	2.90	6.94	7.40	17.24
ICB-34	LR	2.86	7.27	7.07	17.20
Vista-663	MR	2.80	6.63	7.66	17.09
Thor	<u>a 7 - 4</u> 6 4	2,95	6.94	7.17	17.06
Arrow	R	2.79	6.88	7.29	16.96
Premier	R	2.72	6.81	7.36	16.89
WL-225	R	2.75	6.75	7.19	16.69
AgriBoss	MR	2.82	6.84	6.61	16.27
Wrangler	LR	2.81	6.68	6.59	16.08
Kingstar	R	2.77	6.83	6.23	15.83
Vernal	si <u>ss</u> prid	2.66	6.60	6.18	15.44
Ladak-65		2.64	6.13	6.26	15.03
LSD(0.05)		0.31	0.30	0.55	
P-VALUE		0.00	0,00	0,00	
CV(s/mean)		7.8	3.1	5,3	
				-,-	

Seeding date: 5/3/88 Fertilizer: 1988 - P2O5 - 176 lbs/a Pesticides: 10/26/89 - Sencor - 1 lb AI/a

YEAR/PROJECT: 1990/755 1989 INTRASTATE ALFALFA YIELD TRIAL -DRYLAND

PERSONNEL: Leader - Leon Welty Research Specialist - Louise Prestbye In cooperation with Dr. Ray Ditterline, MSU

.

Twenty-three alfalfa varieties were seeded in a RCB design with four replications on 24 April, 1989. In the second year of this study, first harvest was obtained on 6/21/90. 5364, VS-872, Vernema, Thor, Apollo Supreme, Sabre, Eagle, 86I-08, 5262, VS-775, and Ladak-65 had the highest yields (3.13 - 2.79 t/a), while MF-87758, AP-8735, Vernal, Wrangler, and WL-317 had the lowest (2.25 - 2.56 t/a). There were no significant differences among second harvest yields, obtained 8/15/90. Fall harvest (10/1/90) yields ranged from 0.73 t/a (Ladak-65) to 1.12 t/a (5364), reflecting Ladak-65's poor regrowth potential. Total yields for 1990 ranged from 5.51 t/a (MF-87758) to 6.76 t/a (5364), but the differences were not quite significant (P=0.07). The average fall dormancy rating for the 11 highest yielding varieties is '4', while the 11 lowest yielding varieties average '2'. Apparantly the winter was not severe enough to favor dormancy level over regrowth ability. <u>Vert.</u> wilt resistance averaged 'MR' for the top yielding 12 varieties and 'LR' for the 11 lower yielding varieties, possibly indicating selection for resistance to this disease.

1989 INTRASTATE ALFALFA YIELD TRIAL KALISPELL - DRYLAND - 1990

VARIETY	FALL V DORMANCY	VERT WILT RESIST	HARVEST-1 6/21/90	HARVEST-2 HAN 8/15/90 10 Yield-t/a	0/1/90 TOTAL
5364	4	MR	3.01	2.64	1,12 6,76
VS-872			2.80	2,80	1.11 6.71
Arrow	3	R	2.76	2.88	1.04 6.68
Fortress	4	R	2,73	2,85	1,01 6,58
Vernema	4	MR	2.87	2.71	0.98 6.55
Thor	4		2.79	2,60	1.04 6.42
Garst-630	4	MR	2.65	2.66	1.07 6.37
Apollo Supreme	e 4	R	2.97	2,53	0.87 6.37
Sabre	4	HR	3.13	2,41	0.81 6.34
XAL-72			2,68	2.60	1.06 6.34
Eagle	4	MR	2.93	2.49	0.88 6.30
Garst-636	2	R	2.72	2.74	0.85 6.30
Cimarron VR	5	LR	2.63	2.61	1.05 6.29
86I-08		8 C , X	2.84	2.49	0.92 6.24
5262	2	LR	2,91	2.51	0,79 6,21
VS-775	40 , 3	3 29	3,11	2,23	0,87 6,20
Milkmaker	3	88.5	2,63	2.56	0.84 6.02
WL-317	3	R	2,48	2.54	1.00 6.01
Wrangler	2	LR	2,56	2,52	0,90 5,97
Vernal	2	E. K. E	2.49	2,59	0.86 5.94
Ladak-65	1-2	S	2,79	2.32	0,73 5,83
AP-8735		6 L. C.	2,52	2.37	0.88 5.77
MF-87758		3,11	2,25	2.34	0.92 5.51
LSD(0,05)			0.37	0.51	0.18 0.74
P-VALUE			0.00	0,67	0.00 0.07
CV(s/mean)			9.4	14.2	13.3 8.5
	5.77				

Seeding date: 4/24/89 Fertilizer: P205 - 176 lbs/a - 1989 Pesticide: Sencor - 1 lb AI/a - 10/26/89

1989 INTRASTATE ALFALFA YIELD TRIAL KALISPELL - DRYLAND

	FALL VI	ERT WILT			
VARIETY	DORMANCY	RESIST	1989	1990	TOTAL
				-t/a	
5364	4	MR	3.31	6.76	10.07
VS-872	1.0		3,72	6.71	10.43
Arrow	3	R	3,40	6.68	10.08
Fortress	4	R	3,61	6.58	10.19
Vernema	4	MR	3.20	6.55	9.75
Thor	4	- 13 . C	2.95	6.42	9.37
Garst-630	4	MR	3.58	6.37	9.95
Apollo Supreme	4	R	3.15	6.37	9.52
Sabre	4	HR	3.29	6.34	9.63
XAL-72		2 , Eren	2.98	6.34	9.32
Eagle	4	MR	3.09	6.30	9.39
Garst-636	2	R	2.96	6.30	9.26
Cimarron VR	5	LR	3.43	6.29	9.72
86I-08	St. -	· · · · · · · · · · · · · · · · ·	3.20	6.24	9.44
5262	2	LR	3.13	6,21	9.34
VS-775	26 36		3.11	6.20	9.31
Milkmaker	3		3.08	6.02	9.10
₩L-317	3	R	3.03	6.01	9.04
Wrangler	2	LR	3.02	5.97	8.99
Vernal	2		3.04	5.94	8.98
Ladak-65	1-2	S	2.86	5.83	8.69
AP-8735	,		2.95	5.77	8.72
MF-87758			2,83	5.51	8.34
			-> s∖sdi	50.0S	
LSD(0.05)			0.36	0.74	
P-VALUE			0.01	0.07	
CV(s/mean)			8.1	8,5	

Seeding date: 4/24/89 Fertilizer: P205 - 176 lbs/a - 1989 Pesticide: Sencor - 1 lb AI/a - 10/26/89

YEAR/PROJECT: 1990/755 1989 INTRASTATE ALFALFA YIELD TRIAL -IRRIGATED

PERSONNEL: Leader - Leon Welty

. .

Research Specialist - Louise Prestbye

In cooperation with Dr. Ray Ditterline, MSU Bozeman

Twenty-eight alfalfa varieties were seeded in an RCB design with four replications on 5/20/89. First harvest of 1990 was on 6/21. VS-775, 5262, and 5364 had the highest yields (3.39 - 3.55 t/a), and AP-8735, NC831XMTV1-V2, WL-88-9, Vernal, and Ladak-65 had the lowest yields (2.93 - 2.74 t/a). Second harvest was obtained 8/15/90. Yields ranged from 2.70 t/a (XAL-72) to 1.68 t/a (Ladak-65). Fall harvest, 10/12/90, yielded from 1.11 t/a (XAL-72) to 0.73 t/a (Ladak-65). Total season yields were highest for VS-775, 5262, XAL-72, VS-872, Fortress, Vernema, Garst-636, Eagle, 86I-08, and 5364 (7.10 - 6.61 t/a). Ladak-65, with 5.18 t/a total yield, produced significantly less than any other variety. Nine of the top 14 yielding varieties had some resistance to Vert wilt, while only 4 of the lowest 14 had resistance.

1989 INTRASTATE ALFALFA YIELD TRIAL KALISPELL - IRRIGATED - 1990

	FALL	VERT WILT		YIELD		
VARIETY	DORMANCY	RESIST	6/21/90			TOTAL
				t/a	1	
VS-775 5262 XAL-72 VS-872 Fortress Vernema Garst-636 Eagle 86I-08 5364 Cimarron VR Milkmaker Apollo Supreme Arrow MF-87758 MTV4-V1 WL-87-21 AP-8735 Sabre WL-317 Thor NC831XMTV1-V2 Glean-Cycle 1 WL-88-9 Garst-630	3 4 3 4 4	LR R MR R MR HR MR LR S R R HR R HR R HR R HR R	3.05 3.20 3.03 3.01 3.06 2.93 3.07 3.18 3.11 2.75 2.77 2.87 3.09	2.46 2.22 2.48 2.37 2.55 2.29 2.47 2.37 2.48 2.47 2.21 2.27 2.22 2.55 2.50 2.28 2.10	0.98 1.03 1.11 1.04 1.10 0.97 1.01 1.02 1.02 1.01 0.99 0.93 1.01 0.99 1.10 0.99 1.10 0.92 1.00 1.02 1.02 1.02 0.98 1.01 0.98 1.01 0.98 1.02 0.98 1.01 0.99	7.04 6.99 6.72 6.67 6.62 6.62 6.62 6.62 6.53 6.53 6.53 6.49 6.35 6.15
Wrangler	2	LR	2.99	1.94	0,83	5.76
Vernal Ladak-65	1-2	S	2.74 2.77	2.11 1.68	0.87 0.73	5.72 5.18
LSD(0.05) P-VALUE CV(s/mean)			$0.21 \\ 0.00 \\ 4.7$	0.40 0.00 12.0	0.06 0.00 4.7	0.52 0.00 5.8

Seeding date: 4/20/89 Fertilizer: P205 - 176 lbs/a in 1989 Pesticide: Sencor - 1 lb AI/a - 10/26/89

Astes was

1989 INTRASTATE ALFALFA YIELD TRIAL KALISPELL - IRRIGATED

VARIETY DORMANCY RESIST 1989 1990 TOTAL VS-775 3.26 7.10 10.36 S262 2 LR 2.94 7.04 9.98 XAL-72 2.80 6.99 9.79 VS-872 3.27 6.82 10.09 Fortress 4 R 3.47 6.76 10.23 Vernema 4 MR 3.38 6.72 10.10 Garst-636 2 R 2.85 6.67 9.52 Eagle 4 MR 2.97 6.62 9.59 661-08 HR 3.06 6.61 9.49 Cimarron VR 5 LR 3.20 6.58 9.78 Milkmaker 3 S 2.92 6.53 9.45 Apollo Supreme 4 R 2.79 6.52 9.31 Arrow 3 R 3.08 6.49 9.57 MTV4-V1 2.62 <t< th=""><th></th><th>FALL</th><th>VERT WILT</th><th>sec.al. for the</th><th>-YIELD</th><th></th></t<>		FALL	VERT WILT	sec.al. for the	-YIELD	
VS-775 3.26 7.10 10.36 S262 2 LR 2.94 7.04 9.98 XAL-72 2.80 6.99 9.79 VS-872 3.27 6.82 10.09 Fortress 4 R 3.47 6.76 10.23 Vernema 4 MR 3.38 6.72 10.10 Garst-636 2 R 2.85 6.67 9.52 Eagle 4 MR 2.97 6.62 9.59 861-08 HR 3.06 6.42 9.68 S364 4 MR 2.88 6.61 9.49 Cimarron VR 5 LR 3.20 6.58 9.78 Milkmaker 3 S 2.92 6.53 9.45 Arrow 3 R 3.08 6.49 9.57 MF-87758 2.62 6.48 9.10 MIV4-V1 2.87 6.36 <	VARIETY	DORMANCY	RESIST	1989	1990	TOTAL
S262 2 LR 2.94 7.04 9.98 XAL-72 2.80 6.99 9.79 VS-872 3.27 6.82 10.09 Fortress 4 R 3.47 6.76 10.23 Vernema 4 MR 3.38 6.72 10.10 Garst-636 2 R 2.85 6.67 9.52 Eagle 4 MR 2.97 6.62 9.59 861-08 HR 3.06 6.62 9.68 S364 4 MR 2.88 6.61 9.49 Cimarron VR 5 LR 3.20 6.58 9.78 Milkmaker 3 R 3.08 6.49 9.57 MF-87758 2.72 6.49 9.21 MTV4-V1 2.62 6.48 9.10 WL-87-21 2.87 6.36 9.29 Ap-8735 2.87 6.35					t/a	
S262 2 LR 2.94 7.04 9.98 XAL-72 2.80 6.99 9.79 VS-872 3.27 6.82 10.09 Fortress 4 R 3.47 6.76 10.23 Vernema 4 MR 3.38 6.72 10.10 Garst-636 2 R 2.85 6.67 9.52 Eagle 4 MR 2.97 6.62 9.59 861-08 HR 3.06 6.62 9.68 S364 4 MR 2.88 6.61 9.49 Cimarron VR 5 LR 3.20 6.58 9.78 Milkmaker 3 R 3.08 6.49 9.57 MF-87758 2.72 6.49 9.21 MTV4-V1 2.62 6.48 9.10 WL-87-21 2.87 6.36 9.29 Ap-8735 2.87 6.35						
XAL-72 2.80 6.99 9.79 VS-872 3.27 6.82 10.09 Fortress 4 R 3.47 6.76 10.23 Vernema 4 MR 3.38 6.72 10.10 Garst-636 2 R 2.85 6.67 9.52 Eagle 4 MR 2.97 6.62 9.59 861-08 HR 3.06 6.62 9.68 5364 4 MR 2.88 6.61 9.49 Cimarron VR 5 LR 3.20 6.58 9.78 Milkmaker 3 S 2.92 6.53 9.45 Apollo Supreme 4 R 2.79 6.52 9.31 Arrow 3 R 3.08 6.49 9.57 MF-8758 2.72 6.48 9.10 WL-87-21 2.87 6.36 9.29 ML-87-21 2.87 6.35 <td></td> <td>1 . 1<u>55</u>4 85</td> <td>1-55.15</td> <td></td> <td></td> <td></td>		1 . 1 <u>55</u> 4 85	1-55.15			
VS-872 3.27 6.82 10.09 Fortress 4 R 3.47 6.76 10.23 Vernema 4 MR 3.38 6.72 10.10 Garst-636 2 R 2.85 6.67 9.52 Eagle 4 MR 2.97 6.62 9.59 86I-08 HR 3.06 6.62 9.68 S364 4 MR 2.88 6.61 9.49 Cimarron VR 5 LR 3.20 6.58 9.78 Milkmaker 3 S 2.92 6.53 9.45 Apollo Supreme 4 R 2.79 6.52 9.31 Arrow 3 R 3.08 6.49 9.57 MTV4-V1 2.62 6.48 9.10 WL-87-21 - 2.62 6.48 9.10 WL-87-21 - 2.87 6.39 9.26 Sabre 4 HR 2.93 6.36		2	LR			
Fortress 4 R 3.47 6.76 10.23 Vernema 4 MR 3.38 6.72 10.10 Garst-636 2 R 2.85 6.67 9.52 Eagle 4 MR 2.97 6.62 9.59 861-08 HR 3.06 6.62 9.68 5364 4 MR 2.88 6.61 9.49 Cimarron VR 5 LR 3.20 6.58 9.78 Milkmaker 3 S 2.92 6.53 9.45 Apollo Supreme 4 R 2.79 6.52 9.31 Arrow 3 R 3.08 6.49 9.57 MF-87758 2.62 6.48 9.10 WL-87-21 3.26 6.46 9.72 AP-8735 2.87 6.39 9.26 Sabre 4 HR 2.93 6.36 9.29 WL-317 3 R 2.96 6.35		S. D. TELeiv	ta Frip Link an			
Vernema 4 MR 3.38 6.72 10.10 Garst-636 2 R 2.85 6.67 9.52 Eagle 4 MR 2.97 6.62 9.59 86I-08 HR 3.06 6.62 9.68 S364 4 MR 2.88 6.61 9.49 Cimarron VR 5 LR 3.20 6.58 9.78 Milkmaker 3 S 2.92 6.53 9.45 Apollo Supreme 4 R 2.79 6.52 9.31 Arrow 3 R 3.08 6.49 9.57 MTV4-V1 2.62 6.48 9.10 WL-87-21 2.86 6.36 9.29 MTV4-V1 2.86 6.35 9.31 Mor 4 HR 2.93 6.36 9.29 WL-87-21 2.87 6.35 9.31 Thor 4 2.95 6.35	VS-872	a colToits	VIET . CE			
Garst-636 2 R 2.85 6.67 9.52 Eagle 4 MR 2.97 6.62 9.59 86I-08 HR 3.06 6.62 9.68 5364 4 MR 2.88 6.61 9.49 Cimarron VR 5 LR 3.20 6.58 9.78 Milkmaker 3 S 2.92 6.53 9.45 Apollo Supreme 4 R 2.79 6.52 9.31 Arrow 3 R 3.08 6.49 9.57 MF-87758 2.72 6.49 9.21 MTV4-V1 2.62 6.44 9.10 WL-87-21 2.87 6.39 9.26 Sabre 4 HR 2.93 6.36 9.29 WL-317 3 R 2.96 6.35 9.31 Thor 4 2.95 6.35 9.30 NC831XMTV1-V2 2.66 6.24						10.23
Eagle 4 MR 2.97 6.62 9.59 86I-08 HR 3.06 6.62 9.68 5364 4 MR 2.88 6.61 9.49 Cimarron VR 5 LR 3.20 6.58 9.78 Milkmaker 3 S 2.92 6.53 9.45 Apollo Supreme 4 R 2.79 6.52 9.31 Arrow 3 R 3.08 6.49 9.57 MF-87758 2.62 6.48 9.10 WL-87-21 2.62 6.48 9.10 WL-87-21 2.87 6.39 9.26 Sabre 4 HR 2.93 6.36 9.29 Sabre 4 HR 2.93 6.36 9.29 Sabre 4 2.95 6.35 9.31 Thor 4 2.95 6.35 9.30 NC831XMTV1-V2 - 2.66 6.15						
86I-08 HR 3.06 6.62 9.68 5364 4 MR 2.88 6.61 9.49 Cimarron VR 5 LR 3.20 6.58 9.78 Milkmaker 3 S 2.92 6.53 9.45 Apollo Supreme 4 R 2.79 6.52 9.31 Arrow 3 R 3.08 6.49 9.57 MF-87758 2.72 6.49 9.21 MTV4-V1 2.62 6.48 9.10 WL-87-21 2.62 6.48 9.10 WL-87-21 2.87 6.39 9.26 Sabre 4 HR 2.93 6.36 9.29 WL-317 3 R 2.96 6.35 9.30 NC831XMTV1-V2 2.33 6.32 8.65 Glean-Cycle 1 2.66 6.24 8.90 WL-88-9 2.65					6.67	9.52
5364 4 MR 2.88 6.61 9.49 Cimarron VR 5 LR 3.20 6.58 9.78 Milkmaker 3 S 2.92 6.53 9.45 Apollo Supreme 4 R 2.79 6.52 9.31 Arrow 3 R 3.08 6.49 9.57 MF-87758 2.72 6.49 9.21 MTV4-V1 2.62 6.48 9.10 WL-87-21 3.26 6.46 9.72 AP-8735 2.87 6.39 9.26 Sabre 4 HR 2.93 6.36 9.29 WL-317 3 R 2.96 6.35 9.31 Thor 4 2.95 6.35 9.30 NC831XMTV1-V2 2.66 6.24 8.90 WL-88-9 2.65 6.16 8.81 Garst-630 4 MR 3.00 6.15<		4				
Cimarron VR 5 LR 3.20 6.58 9.78 Milkmaker 3 S 2.92 6.53 9.45 Apollo Supreme 4 R 2.79 6.52 9.31 Arrow 3 R 3.08 6.49 9.57 MFvarow 3 R 3.08 6.49 9.21 MTV4-V1 2.62 6.48 9.10 WL-87-21 2.62 6.48 9.10 WL-87-21 2.87 6.39 9.26 Sabre 4 HR 2.93 6.36 9.29 WL-317 3 R 2.96 6.35 9.31 Thor 4 2.95 6.35 9.30 NC831XMTV1-V2 2.66 6.24 8.90 WL-88-9 - 2.65 6.16 8.81 Garst-630 4 MR 3.00 6.15 9.15 Wrangler 2 LR 2.63 5.76						
Milkmaker 3 S 2.92 6.53 9.45 Apollo Supreme 4 R 2.79 6.52 9.31 Arrow 3 R 3.08 6.49 9.57 MF-87758 2.72 6.49 9.21 MTV4-V1 2.62 6.48 9.10 WL-87-21 2.62 6.48 9.10 WL-87-21 2.62 6.446 9.72 AP-8735 2.87 6.39 9.26 Sabre 4 HR 2.93 6.36 9.29 WL-317 3 R 2.96 6.35 9.30 NC831XMTV1-V2 2.33 6.32 8.65 Glean-Cycle 1 2.65 6.16 8.81 Garst-630 4 MR 3.00 6.15 9.15 Wrangler 2 LR 2.63 5.76 8.39 Vernal 2 2.64						
Apollo Supreme 4 R 2.79 6.52 9.31 Arrow 3 R 3.08 6.49 9.57 MF-87758 2.72 6.49 9.21 MTV4-V1 2.62 6.48 9.10 WL-87-21 2.87 6.39 9.26 Sabre 4 HR 2.93 6.36 9.29 WL-317 3 R 2.96 6.35 9.31 Thor 4 2.95 6.35 9.30 NC831XMTV1-V2 - 2.66 6.24 8.90 WL-88-9 - 2.65 6.						
Arrow 3 R 3.08 6.49 9.57 MF-87758 2.72 6.49 9.21 MTV4-V1 2.62 6.48 9.10 WL-87-21 3.26 6.46 9.72 AP-8735 2.87 6.39 9.26 Sabre 4 HR 2.93 6.36 9.29 WL-317 3 R 2.96 6.35 9.31 Thor 4 2.95 6.35 9.30 NC831XMTV1-V2 2.33 6.32 8.65 Glean-Cycle 1 2.66 6.24 8.90 WL-88-9 2.65 6.16 8.81 Garst-630 4 MR 3.00 6.15 9.15 Wrangler 2 LR 2.63 5.76 8.39 Vernal 2 2.64 5.18 7.64 LSD(0.05) 0.32 0.52 0.00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
MF-87758 2.72 6.49 9.21 MTV4-V1 2.62 6.48 9.10 WL-87-21 3.26 6.46 9.72 AP-8735 2.87 6.39 9.26 Sabre 4 HR 2.93 6.36 9.29 WL-317 3 R 2.96 6.35 9.31 Thor 4 2.93 6.36 9.29 WL-317 3 R 2.96 6.35 9.31 Thor 4 2.95 6.35 9.30 NC831XMTV1-V2 2.33 6.32 8.65 Glean-Cycle 1 2.66 6.24 8.90 WL-88-9 2.65 6.16 8.81 Garst-630 4 MR 3.00 6.15 9.15 Wrangler 2 LR 2.63 5.76 8.39 Vernal 2 2.64 5.18 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
MTV4-V1 2.62 6.48 9.10 WL-87-21 3.26 6.46 9.72 AP-8735 2.87 6.39 9.26 Sabre 4 HR 2.93 6.36 9.29 WL-317 3 R 2.96 6.35 9.31 Thor 4 2.95 6.35 9.30 NC831XMTV1-V2 2.33 6.32 8.65 Glean-Cycle 1 2.66 6.24 8.90 WL-88-9 2.65 6.16 8.81 Garst-630 4 MR 3.00 6.15 9.15 Wrangler 2 LR 2.63 5.76 8.39 Vernal 2 2.64 5.18 7.64 LSD(0.05) 0.32 0.52 0.00 0.00 P-VALUE 0.00 0.00 7.9 5.8		3	R			
WL-87-21 3.26 6.46 9.72 AP-8735 2.87 6.39 9.26 Sabre 4 HR 2.93 6.36 9.29 WL-317 3 R 2.96 6.35 9.31 Thor 4 2.95 6.35 9.30 NC831XMTV1-V2 2.33 6.32 8.65 Glean-Cycle 1 2.66 6.24 8.90 WL-88-9 2.65 6.16 8.81 Garst-630 4 MR 3.00 6.15 9.15 Wrangler 2 LR 2.63 5.76 8.39 Vernal 2 2.64 5.18 7.64 LSD(0.05) 0.32 0.52 0.00 0.00 P-VALUE 0.00 0.00 7.9 5.8			TITETTIC			
AP-8735 2.87 6.39 9.26 Sabre 4 HR 2.93 6.36 9.29 WL-317 3 R 2.96 6.35 9.31 Thor 4 2.95 6.35 9.30 NC831XMTV1-V2 2.33 6.32 8.65 Glean-Cycle 1 2.66 6.24 8.90 WL-88-9 2.65 6.16 8.81 Garst-630 4 MR 3.00 6.15 9.15 Wrangler 2 LR 2.63 5.76 8.39 Vernal 2 2.64 5.72 8.36 Ladak-65 1-2 S 2.46 5.18 7.64 LSD(0.05) 0.32 0.52 0.00 0.00 CV (s/mean) Ver (s/mean) 7.9 5.8 5.8 5.8 5.8		N9 88	RESIST			
Sabre 4 HR 2.93 6.36 9.29 WL-317 3 R 2.96 6.35 9.31 Thor 4 2.95 6.35 9.30 NC831XMTV1-V2 2.33 6.32 8.65 Glean-Cycle 1 2.66 6.24 8.90 WL-88-9 2.65 6.16 8.81 Garst-630 4 MR 3.00 6.15 9.15 Wrangler 2 LR 2.63 5.76 8.39 Vernal 2 2.64 5.72 8.36 Ladak-65 1-2 S 2.46 5.18 7.64 LSD(0.05) 0.32 0.52 0.00 0.00 P-VALUE 0.00 0.00 7.9 5.8						
WL-317 3 R 2.96 6.35 9.31 Thor 4 2.95 6.35 9.30 NC831XMTV1-V2 2.33 6.32 8.65 Glean-Cycle 1 2.66 6.24 8.90 WL-88-9 2.65 6.16 8.81 Garst-630 4 MR 3.00 6.15 9.15 Wrangler 2 LR 2.63 5.76 8.39 Vernal 2 2.64 5.72 8.36 Ladak-65 1-2 S 2.46 5.18 7.64 LSD(0.05) 0.32 0.52 0.00 0.00 P-VALUE 0.00 0.00 0.00 0.00 CV (s/mean) 7.9 5.8 5.8						
Thor 4 2.95 6.35 9.30 NC831XMTV1-V2 2.33 6.32 8.65 Glean-Cycle 1 2.66 6.24 8.90 WL-88-9 2.65 6.16 8.81 Garst-630 4 MR 3.00 6.15 9.15 Wrangler 2 LR 2.63 5.76 8.39 Vernal 2 2.64 5.72 8.36 Ladak-65 1-2 S 2.46 5.18 7.64 LSD(0.05) 0.32 0.52 0.00 0.00 P-VALUE 0.00 0.00 7.9 5.8						
NC831XMTV1-V2 2.33 6.32 8.65 Glean-Cycle 1 2.66 6.24 8.90 WL-88-9 2.65 6.16 8.81 Garst-630 4 MR 3.00 6.15 9.15 Wrangler 2 LR 2.63 5.76 8.39 Vernal 2 2.64 5.72 8.36 Ladak-65 1-2 S 2.46 5.18 7.64 LSD(0.05) 0.32 0.52 0.00 0.00 CV(s/mean) 7.9 5.8 5.8			R			
Glean-Cycle 1 2.66 6.24 8.90 WL-88-9 2.65 6.16 8.81 Garst-630 4 MR 3.00 6.15 9.15 Wrangler 2 LR 2.63 5.76 8.39 Vernal 2 2.64 5.72 8.36 Ladak-65 1-2 S 2.46 5.18 7.64 LSD(0.05) 0.32 0.52 0.00 0.00 P-VALUE 0.00 0.00 7.9 5.8		4				
WL-88-9 2.65 6.16 8.81 Garst-630 4 MR 3.00 6.15 9.15 Wrangler 2 LR 2.63 5.76 8.39 Vernal 2 2.64 5.72 8.36 Ladak-65 1-2 S 2.46 5.18 7.64 LSD(0.05) 0.32 0.52 0.00 0.00 P-VALUE 0.00 0.00 7.9 5.8			9			
Garst-630 4 MR 3.00 6.15 9.15 Wrangler 2 LR 2.63 5.76 8.39 Vernal 2 2.64 5.72 8.36 Ladak-65 1-2 S 2.46 5.18 7.64 LSD(0.05) 0.32 0.52 0.00 0.00 P-VALUE 0.00 0.00 7.9 5.8						
Wrangler 2 LR 2.63 5.76 8.39 Vernal 2 2.64 5.72 8.36 Ladak-65 1-2 S 2.46 5.18 7.64 LSD(0.05) 0.32 0.52 0.00 0.00 P-VALUE 0.00 0.00 7.9 5.8						
Vernal 2 2.64 5.72 8.36 Ladak-65 1-2 S 2.46 5.18 7.64 LSD(0.05) 0.32 0.52 0.00 0.00 P-VALUE 0.00 0.00 7.9 5.8						
Ladak-65 1-2 S 2.46 5.18 7.64 LSD(0.05) 0.32 0.52 P-VALUE 0.00 0.00 CV(s/mean) 7.9 5.8			LR			
LSD(0.05) 0.32 0.52 P-VALUE 0.00 0.00 CV(s/mean) 7.9 5.8						
P-VALUE 0.00 0.00 CV(s/mean) 7.9 5.8	Ladak-65	1-2	S	2.46	5.18	7.64
P-VALUE 0.00 0.00 CV(s/mean) 7.9 5.8	66 1.75			5		
CV(s/mean) 7.9 5.8						
Endek 53 (-2 -2 -2 - 2 - 1 -2 - 1 -2 - 1 - 2 - 2 -						
1111 2717 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	CV(s/mean)			7.9	5.8	
ML 317						
	Sanding data.	1/20/90				

Seeding date: 4/20/89 Fertilizer: P205 - 176 lbs/a in 1989 Pesticide: Sencor - 1 lb AI/a - 10/26/89

YEAR/PROJECT: 1990/755 1990 INTRASTATE ALFALFA YIELD TRIAL -DRYLAND

PERSONNEL: Leader - Leon Welty Research Specialist - Louise Prestbye In cooperation with Dr.Ray Ditterline, Bozeman

Twenty alfalfa varieties were seeded in an RCB design with four replications on 18 April, 1990. Stand establishment, as determined by counting seedlings within a 2 x 40" grid, averaged 91% with no significant differences among varieties. First harvest was obtained on 8/2/90. Husky, Arrow, and Spredor II, had the highest yields (1.82-1.79 t/a), while Runner and Wilson (1.44-1.22 t/a) had the lowest. Fall harvest was cut on 3 October. VS 655 had the highest yield (1.57 t/a), while Wrangler had the lowest (1.00 t/a). The varieties with the highest total yields for 1990 were Husky and Multi-plier (3.31 & 3.28 t/a), while Wrangler and Wilson had the lowest yields (2.52 & 2.33 t/a).

1990 INTRASTATE ALFALFA YIELD TRIAL KALISPELL - DRYLAND

VARIETY	FALL DORMANCY	VERT WILT RESIST	8/2/90	YIELD 10/3/90	TOTAL
Husky Multi-plier VS 655 Ultra Arrow WL 225 Spredor II DK 135 DK 122 5472 Allegiance 5262 5364 Aggresor Mngrn-14 Ladak 65 WL 317 Runner Wrangler	DORMANCY 3 3 3 2 1 4 4 3 2 4 4 1-2 3 2 6	RESIST R R R R R M R L R L R M R L R M R L R L	1.82 1.78 1.70 1.65 1.79 1.67 1.79 1.65 1.63 1.52 1.64 1.64 1.64 1.61 1.53 1.75 1.62 1.44 1.53	t/a 1.50 1.50 1.57 1.53 1.32 1.43 1.30 1.44 1.45 1.45 1.45 1.56 1.43 1.35 1.36 1.37 1.35 1.13 1.25 1.30 1.00	3.31 3.28 3.27 3.18 3.10 3.10 3.09 3.08 3.07 3.07 3.07 3.07 3.07 3.07 3.06 3.01 3.00 2.97 2.88 2.88 2.87 2.74 2.52
Wilson	6	$1 - 22$ IA ± 1	1.22	1,11	2.33
LSD(0.05) P-VALUE CV(s/mean)			0.26 0.01 11.1	0.21 0.00 10.9	0.40 0.00 9.5

Seeding date: 4/18/90 Fertilizer: P205 - 176 lbs/a

YEAR/PROJECT: 1990/755 1990 INTRASTATE ALFALFA YIELD TRIAL -IRRIGATED

PERSONNEL: Leader - Leon Welty Research Specialist - Louise Prestbye In cooperation with Dr.Ray Ditterline, Bozeman

Twenty alfalfa varieties were seeded in an RCB design with four replications on 18 April, 1990. Stand establishment, as determined by counting seedlings within a 2×40 " grid, ranged from 92% (Wilson) to 100% (DK 135, DK 122, and Mngrn-14). First harvest was obtained on 8/2/90. Ultra and Multi-plier had the highest yields (2.71 & 2.45 t/a), while Wilson (1.72 t/a) had significantly lower yield than any other variety. Fall harvest was cut on 11 October. DK 135 and Multi-plier had the highest yields (2.19 & 2.23 t/a), while Wilson had the lowest (1.49 t/a). The varieties with the highest total yields for 1990 were Ultra and Multi-plier (4.88 & 4.68 t/a), while Wilson had significantly lower yields than any other variety (3.21 t/a). Husky, which was the top yielding variety in the dryland nursery, was only 7th highest under irrigation.

1990 INTRASTATE ALFALFA YIELD TRIAL KALISPELL - IRRIGATED

VARIETY	FALL DORMANCY	VERT WILT RESIST	STAND %	8/2/90	YIELD 10/11/90 t/a	TOTAL
Ultra Multi-plier VS 655 WL 225 PK 105	3 3 2	R R R	98 97 98 95	2.71 2.45 2.31 2.35	2.16 2.23 2.14 2.07	4.88 4.68 4.45 4.43
DK 135 DK 122 Husky 5472 5364 Arrow WL 317 5262 Aggresor	4 3 4 4 4 3 3 2 4	MR MR MR R R LR R LR R	100 100 95 98 98 98 98 97 97	2.23 2.28 2.20 2.20 2.26 2.20 2.24 2.22 2.24 2.22 2.06	2.19 2.12 2.07 2.01 1.95 1.96 1.88 1.76 1.85	4.42 4.41 4.30 4.22 4.21 4.16 4.12 3.98 3.91
Spredor II Allegiance Runner Ladak 65 Wrangler Mngrn-14 Wilson	$ \begin{array}{r} 1 \\ 3 \\ \\ 1-2 \\ 2 \\ \\ 6 \end{array} $	R S LR 	95 97 93 95 93 100 92	2.06 2.13 1.99 2.00 2.01 2.00 1.72	1.80 1.72 1.68 1.55 1.54 1.54 1.49	3.86 3.85 3.67 3.55 3.54 3.54 3.21
LSD(0.05) P-VALUE CV(s/mean)			4 0.00 2.6	0.27 0.00 7.5	0.17 0.00 5.6	0.32 0.00 4.8

Seeding date: 4/18/90 Fertilizer: P205 - 176 lbs/a YEAR/PROJECT: 1990/755 BERSEEM CLOVER VARIETY TRIAL -IRRIGATED

PERSONNEL: Leader - Leon Welty Research Specialist - Louise Prestbye

Four varieties of berseem clover were planted 4/30/90. Plots were harvested 7/20, 8/14 and 9/19. Total yields ranged from 3.82 t/a (Multicut) to 3.07 t/a (VS 8902), but differences were not statistically significant. The only significant differences were obtained from the 8/14 harvest, with Multicut and VS 8903 yielding more than Bigbee and VS 8902.

BERSEEM VARIETY TRIAL KALISPELL, MT - 1990

VARIETY	lst	Harvest 7/20/90	2nd Harvest 8/14/90	9/19/90	Total
Multicut		1.16	1.39	1.27	3.82
VS 8903		1.17	1.42	1.09	3.68
Bigbee		1.40	0.86	0.97	3.23
VS 8902		1.32	0.98	0.77	3.07
LSD(0.05)		0.34	0.25	0.52	0.76
P-VALUE		0.34	0.00	0.29	0.19
CV(S/MEAN)		13.7	11.0	25.5	11.1

Seeding date: 4/30/90Fertilizer: 5/23 - 44 lbs/a P205 Irrigations: $2 \times 2'' = 4''$

YEAR/PROJECT: 1990/755 GRASS SPECIES FORAGE NURSERY-IRRIGATED

PERSONNEL: Leader - Leon Welty Research Specialist - Louise Prestbye

Seven species of perennial grasses were dormant seeded on 11/5/87. The nursery was harvested three times in 1990. Kenmont tall fescue and Regar meadow brome produced the most forage. Jose tall wheatgrass, Slender wheatgrass and Shoshone beardless wild rye produced the least. Highest total yield, 1988-1990, was produced by Latar orchardgrass, and lowest yield by Shoshone wild rye.

IRRIGATED GRASS STUDY - KALISPELL, 1990 SEEDED 1987

SPECIES	First Harvest 6/8/90	Second Harvest 8/6/90		Total 1990	Total 1988-90
DI LOILD					
Latar					
Orchardgrass	3.26	1.38	0.96	5.59	18.67
Regar					
Meadow Brome	3,29	1,56	0.82	5.67	18.05
Kenmont Tall Fescue	3.71	1.79	0.90	6.39	16,96
Garrison	5.71	1.75	0.90	0.39	10.90
Creeping Foxtail	2.73	1.19	0,27	4.19	11.61
Jose					
Tall Wheatgrass	2.38	0.89	0.25	3.51	11.14
Slender	2, 22	0.52		2 20	0.01
Wheatgrass Shoshone	2.32	0.52	0.05	2.89	8,91
Beardless Wild Rye	1.73	1.29	0.11	3.13	7,95
	C	318	2.12 1.7	213.3	1.51
LSD(0.05)	0.44	0.25	0.23	0.74	
P-VALUE CV(s/mean)	0.00	0.00 13.6	0.00	0.00	
CT (S/mean)	10.6	13.0	32.4	11.1	

YEAR/PROJECT: 1990/755 EVALUATION OF TEFF (<u>ERAGROSTIS</u> <u>TEF</u>) AS A FORAGE CROP IN MONTANA.

PERSONNEL: Leader - Leon Welty Research Specialist - Louise Prestbye In cooperation with Dr.Joyce Eckhoff, Sidney

This study was undertaken to determine if Teff, a warm season annual grass used as a food grain in Ethiopia and a hay crop in parts of Africa, can be grown in Montana. Six lines of this species were seeded on 5/16/90 on dryland in a randomized complete block design with 4 replications. Plots consisted of 4 fifteen foot rows spaced one foot apart with 2 feet between plots. Plots were harvested for hay yield on 8/7/90 and 9/24/90. Samples of hay were saved for guality analysis.

No significant yield differences were detected among cultivars at either harvest or for total yield. First harvest yields averaged 2.23 t/a, and second harvest yields averaged 1.64 t/a.

TEFF VARIETY TRIAL - KALISPELL, MT Seeded 1990

VARIETY		states barrent there are a set of the	TOTAL 🕥
	Forage	field (t/a	a)
1. L.S.	0.10		0.00
MT123	2.12	1.71	3.83
MT241	2.30	1.59	3.89
MT66	2.23	1.56	3.79
MT177	2.23	1.65	3.88
SD100	2.21	1.68	3.88
MT247	2.28	1.64	3.91

No significant differences by F-test (P<=0.05)

Seeding date: 5/16/90 Fertilizer: 5/23/90 - P205 - 44 lbs/a N - 68 lbs/a

YEAR/PROJECT: 1989-90/755 WINTER TRITICALE FORAGE TRIAL-DRYLAND

PERSONNEL: Leader - Leon Welty Research Specialist - Louise Prestbye

Triticale (X <u>Triticosecale</u> Wittmack, variety Jenkins), a hybrid of wheat and rye, was seeded 9/20/89 at 72 lbs/a. Half the plots were harvested twice (6/18 and 7/12) and half harvested three times (5/17, 6/18 and 7/12). Cutting twice produced 5.71 t/a total dry matter and cutting three times produced 3.41 t/a. Protein varied from 8.2% (1st harvest, 2-cut system) to 19.3% (2nd harvest, 2-cut system). Although the 3-cut system produced less total dry matter, the high protein content of the forage resulted in the same total protein yield as the 2-cut system.

WINTER TRITICALE (Variety 'Jenkins') KALISPELL, 1989-90 DRYLAND

			<u> </u>	I	HARVES	ST				en o o o e Sianeille	
			/90			8/90	03	-7/12/9	90	TO	TAL
	DMY	%P	PYLD	DMY	%P					DMY t/a	PYLD lbs/a
3-Cut 2-Cut										3.41 5.71	
								LSD (O	05)	0 32	96

LSD(0.05)	0.32	96
P-VALUE	0.00	0.61
CV(s/mean)	5.9	6.9

Seeding date: 9/20/89 Seeding rate: 72 lbs/a Crop year precipitation: 26.51" Fertilizer: 37 lbs N/a & 46 lbs P205/a Previous crop: alfalfa

1/ Dry matter Yield
2/ % Protein
3/ Protein yield (% protein x DMY)

YEAR/PROJECT: 1989-90/755 WINTER RAPE FORAGE TRIAL - DRYLAND PERSONNEL: Leader - Leon Welty Research Specialist - Louise Prestbye

Six varieties of winter rape were seeded 8/29/89. Experimental design was a split plot with three replications consisting of two main plots (with fall harvest and without fall harvest), and six subplots (varieties) randomized within each whole plot. The fall harvest treatments were cut 11/22/89. Civastro and Polaris produced the most forage (1.06 & 0.99 t/a), followed by Purple Top, Forage Star, Emerald (0.76 - 0.69 t/a) and Premier, which had significantly lower yield (0.31 t/a) than any other variety. In the spring of 1990 all varieties but Premier in the fall harvested plots had winterkilled, while all varieties in the uncut plots survived. Premier apparently demonstrated the linkage between dormancy and winter hardiness, having produced the least fall growth and survived the winter.

Plots in the uncut fall treatment were harvested three times in 1990. At first harvest Purple Top was high yielder with 2,90 t/a, and Emerald and Polaris were lowest (1.14 & 1.10 t/a). At second harvest Premier and Emerald yielded significantly more forage than the other varieties. At third harvest Premier and Emerald again produced much more regrowth (1.62 & 1.38 t/a) than the other varieties (0.17 - 0.27 t/a). Premier and Emerald had significantly higher total season yields than the other varieties and Polaris had significantly less than any other. Premier and Emerald also had significantly higher total protein yields than the other varieties due mainly to their superior total dry matter yields. Protein content varied from 27.6% (Premier, 1st harvest) to 21.6% (Polaris, 2nd harvest).

77

KALISPELL, MT

VARIETY	Harv-1 5/17/90	TOTAL DRY MATT Harv-2 6/19/90	Harv-3	1990 YIELD
Premier Emerald Purple Top Forage Star Civastro Polaris	1.56 (27.6) 1.14 (25.9)	1/ 1/	1.62 (21.8) 1.38 (24.3) 0.22	
LSD(0.05) P-VALUE CV (s/mean)	0.32 0.00 10.2		0.00	0.61 0.00 8.4
1/ % protein		1. NY MI 870246 W		
		TOTAL PROTEIN	YIELD	
VARIETY	Harv-1 5/17/90	Harv-2	Harv-3 7/12/90	1990 YIELD
Premier Emerald Purple Top Forage Star Civastro Polaris	856 596 1258 932 790 548	990 1095 479 624 635 546	702 674	2548 2365 1737 1556 1425 1094
LSD(0.05) P-VALUE CV (s/mean)	189 0.00 12.5		an a	331 0.00 10.2
	e: 8/29/89 Freflan - 1/2 lb	AI/a PPI - 8/2	1/89	

Herbicide: Treflan - 1/2 1b Al/a PP1 - 8/2 Fertilizer: 44 lbs P205/a - 10/25/89 85 lbs N/a - spring 1990 PROJECT TITLE: Spring Barley Variety Evaluations

YEAR/PROJECT: 1990/756

INVESTIGATORS: Leaders - Vern R. Stewart and Tom Blake, Research Specialists - Todd Keener and Pat Hensleigh

OBJECTIVE: Evaluation of spring barley varieties for yield, quality and improved resistance to foliar diseases for future adaptation and release to Montana grain growers. Evaluation of new and introduced spring barley varieties in various growing conditions of western Montana.

SUMMARY:

1990 Intrastate Spring Barley -

Yields for the 1990 season were very similar to 1989 yields. The mean yield this year was 93.36 bu/A (last year 93.73 bu/A). Gallatin had a yield of 90.7 bu/A which was 12 bushels lower than 1989 and 15 bushels less than the 1987 harvest. Only thirteen varieties yielded above 100 bu/A. The variety MT 870246 was the only variety that had a significantly higher yield than Gallatin (the check variety). Test weights were better this year than in 1989 but about equal to the 1987 readings. Percent plumps were normal for this location and there was no lodging or disease. Table 1.

1990 Early Yield Trial -

Sixty four spring barley lines were evaluated under high moisture conditions during the 1990 growing season. Although foliar diseases can be moderate to severe in the Kalispell area this year there was very little disease recorded in the spring grain nurseries. This may be related to extremes in weather that we experienced in early spring and at harvest time. Yields were very good for this nursery. All but two varieties yielded above 100 bushels per acre while the highest yields were above 150 bu/A. Test weights and percent plumps were very good, averaging 50.64 lbs/bu and 94.5% respectively. Lodging did not occur until late in the season so yields were not greatly affected. Table 2.

Offstation Spring Barley -

Offstation spring barley nurseries were seeded in three locations this year.

- Ravalli County Robert Christ farm, Hamilton, MT.
 - Lake County Starkle farms, Ronan, MT

- Ravalli Counnty - Western Agriculural Reserch Center, Corvallis, MT.

All locations were irrigated and recieved adequate rainfall during the growing season. Yields were good to excellent for the majority of entries and most varieties had average to above average test weights. Disease incidence was slight to non-existent in all areas. Lodging was

prevalent at the Hamilton and Ronan locations.

The nursery located at the Robert Christ farm in Hamilton had yields in excess of 115 bushel per acre for all varieties. The top yielding variety (BA 2601), a Bush Agriculture entry, yielded 148.4 bu/A. All test weights in the nursery, except for Steptoe, were above 50 lbs/bu. Percent plumps averaged 95.13% and lodging was prevalent in all but one variety (BA 2601). Table 3.

Yields from the nursery grown on the Starkle farm in Ronan ranged from 87.8 to 126.5 bu/A. Steptoe had the highest yield. The average test weight weight was 48.84 lbs/bu. Percent plumps were the lowest of all three locations which may be related to the high incidence of lodging. Table 4.

Yields from the nursery located on the Western Agricultural Research Center in Corvallis exceeded 100 bu/A for all entries. The three highest yields were from BA 1215, BA 1202, and BA 2601. Test weights were very good at this location with 52.38 lb/bu as the test average. Percent plump were less than would be expected from this area. Lodging was slight to moderate at the this location. Table 5.

Data giving means for all three offstation locations is in Table 6.

NS 77021 Princes: NS 77021 Princes: NS 70070 Columbia NS 70070 Lindy/Ms NS 78054 Barones: NS 78054 Barones: NS 78054 Barones: NS 78054 Barones: NS 86609 MT 8114: NS 86609 MT 8114: NS 865169 2B85-402 NS 865169 2B86-516 NS 86601 MT 8114: NS 87509 MT 8161 NS 87509 MT 8161 NS 87509 MT 8161 NS 7633 Harring! NS 7633 Harring! NS 76333 Harring! NS 76334 Harring! NS 76335 Steptoe NT 81161 Lewis/H NS 760326 Lewis/H NS 760326 Lewis/H NS 760326 Lewis/H NS 760326 Lewis/A NS 760224<	C secols secret getting	YIELD		% PLUMP	HEADING	HEIGHT
NS 77021 Princes: NT870070 Columbia N403007 Coors Ad NT40523 Hector/M NT870120 Lindy/Ma NT85133 Clark/La NT851145 WA 89083 NA854026 2B85-402 NT851145 WA 89083 NA854026 2B85-402 NT851032 Lewis/M NA865169 2B86-516 NT851032 Harring NT851032 Harring NT85104 MT 41918 NT85105 Steptoe NT88205 Steptoe NT88205 Steptoe NT8141918 Narring NT88205 Steptoe NT88205 Steptoe NT88205 Steptoe NT888010 Robust / Ma NT870105 Hazen/UN NT88010 <t< th=""><th>ſΥ</th><th>BU/A</th><th>LB/BU</th><th></th><th>DATE</th><th>IN</th></t<>	ſΥ	BU/A	LB/BU		DATE	IN
11870070 Columbia 3403007 Coors Ad 11140523 Hector/M 11870120 Lindy/Ma 11870120 Landy/Ma 11870120 Baroness 11886609 MT 81143 11851145 WA 89083 0A854026 2B85-403 11881145 WA 89083 0A854026 2B85-403 11881032 Lewis/M 0A851049 2B86-510 11887509 MT 81619 11887103 Harring 11881145 MT 41918 11881145 MT 41918 1188205 Steptoe/ 1188205 Steptoe/ 11840326 Lewis/H 11840326 Lewis/H 11840326 Lewis/A 11840326 Lewis/A 1188010 Robust/D 1188010	/Westbred 501	111.87a	48.70b	100.00	168.00	38.98
3403007 Coors All 1T140523 Hector/l 1T870120 Lindy/Ma 1T870120 Lindy/Ma 1T870120 Lindy/Ma 1T870120 Lindy/Ma 1T870120 Lindy/Ma 1T870120 Lindy/Ma 1T870120 Baroness 1T870120 Steptoe 1T870120 Steptoe 1T886609 MT 81143 21 15229 Steptoe 1T851145 WA 89083 0A854026 2B85-4024 1T851145 WA 89083 0A854026 2B85-4024 1T851032 Harring 1T851032 Harring 1T851032 Harring 1T851032 Harring 1T851041 MT 41918 IT860326 Lewis/H 1T860326 Lewis/H IT860326 Lewis/H IT870109 ID 76871 IT88010 Robust/H IT870105 Hazen/UI IT860219 Lewis/Ap IT860219 Lewis/Ap <td< td=""><td>esse</td><td>108.56</td><td>48.70b</td><td>89.00</td><td>172.00a</td><td>29.40</td></td<>	esse	108.56	48.70b	89.00	172.00a	29.40
High Hector/High High High Hi	bia/Lindy	108.12	47.975	96.00	168.67	35.17
HT870120 Lindy/Ma HT870120 Lindy/Ma HT83533 Clark/La HS 78054 Baroness HT886609 MT81143 LT15229 Steptoe HT851145 WA 89083 A8654026 2885-403 HT851145 WA 89083 A865169 2885-403 HT851032 Lewis/M HT851032 Harring HT851032 Harring HT851195 MT41918 HT851195 MT41918 HT851161 MT 41918 HT851161 MT 41918 HT851012 Lewis/H H503701 Coors D HT860326 Lewis/H H503701 Coors D H7860224 Lewis/H H7870109 HD 76871 H388010 Robust/H H7870105 Hazen/UH H7870105 Hazen/UH H7870105 Hazen/UH H7860219 Lewis/Ap H7851011 Clark/MA H870105 Hazen/UH H870105 </td <td>AC84-030-07</td> <td>108.08</td> <td>50.506</td> <td>98.00</td> <td>173.67a</td> <td>33.99</td>	AC84-030-07	108.08	50.506	98.00	173.67a	33.99
IT 83533 Clark/La IS 78054 Baroness IT886609 MT 81143 DI 15229 Steptoe IT851145 WA 89083 CI 15229 Steptoe IT851145 WA 89083 CI 15229 Steptoe IT851145 WA 89083 CI 15229 Steptoe IT861572 Lewis/M CI861572 Lewis/M CI861572 Lewis/M CI861572 Lewis/M CI87509 MT 81619 CI8751032 Harring CI851161 MT 41918 CI851161 MT 41918 CI851161 MT 41918 CI851011 Coors D CI860224 Lewis/H CI870109 ID CI870109 ID CI870105 Hazen/UT CI870105 Hazen/UT CI88010 Robust CI80010 Robust CI80011 Clark/M CI870	r/Klages	105.46	51.876	93.00	170.67	37.53
15 78054 Baroness 17886609 MT 8114 21 15229 Steptoe 17851145 WA 8908 28454026 2885-402 2845169 2885-402 2845169 2885-402 17861572 Lewis/M 2845169 2886-512 17887509 MT 81612 17851032 Harring 17851032 Harring 17851195 MT41918 17851161 MT 41918 17851161 MT 41918 17851161 MT 41918 17851161 MT 41918 178503701 Coors D 17860326 Lewis/H 1503701 Coors D 17860224 Lewis/Ap 17870109 ID 76871 17888010 Robust/D 17870105 Hazen/UT 17870105 Hazen/UT 17870105 Hazen/UT 17870105 Hazen/UT 17870105 Hazen/UT 17870105 Hazen/UT 17870105 Hazen/UT <tr< td=""><td>/Martin</td><td>103.88</td><td>47.70b</td><td>97.00</td><td>168.00</td><td>38.85</td></tr<>	/Martin	103.88	47.70b	97.00	168.00	38.85
HT886609 MT 8114; II 15229 Steptoe HT851145 WA 8908; GA854026 2B85-40; HT861572 Lewis/M GA854026 2B85-40; HT861572 Lewis/M GA854026 2B85-40; HT861572 Lewis/M GA85169 2B86-51; HT851032 Harring HT851032 Harring HT851195 MT41918; HT851161 MT 41918; HT851161 Lewis/H S03701 Coors D HT860326 Lewis/H S03701 Coors D T860326 Lewis/H H370109 ID 76871 T888010 Robust/H H370105 Hazen/UH I 9558 Piroling N 36 Robust T T860219 Lewis/Ap I 15856 Lewis	/Lamont	103.79	52.13b	97.00	170.33	35.30
115229 Steptoe 17851145 WA 89083 0A854026 2B85-403 0A854026 2B85-403 0A854026 2B85-403 0A854026 2B85-403 0A854026 2B85-403 0A85169 2B86-513 0A851032 Harring 0A85104 MT 41918 0A85105 Steptoe 0A333 Harring 0A335 Clark/TF 0A3701 Coors DF 0A1215 2B82-852	esse have beed and a	103.62	51.636	90.00	172.00a	33.33
IT851145 WA 8908 IT851145 WA 8908 IT861572 Lewis/M IT861572 Lewis/M IT861572 Lewis/M IT861572 Lewis/M IT861572 Lewis/M IT861572 Lewis/M IT861032 Harring IT851032 Harring IT851032 Harring IT851195 MT41918 IT851161 MT 41918 IT85104 Lewis/H IT860326 Lewis/H IT860326 Lewis/H IT860224 Lewis/A IT870109 ID 76871 IT88010 Robust/H IT870105 Hazen/UI IT870105 Hazen/UI IT860219 Lewis/A IT860219 Lewis/A IT860219 Lewis/A IT9534 Gallatir IT985005 Clar	143/Lewis	102.13	51.906	93.00	171.00	38.32
IT851145 WA 8908 IA854026 2B85-402 IT861572 Lewis/M IA865169 2B86-512 IT861572 Lewis/M IA865169 2B86-512 IT887509 MT 81619 IT851032 Harring IT851175 MT41918 IT851161 MT 41918 IT851016 Lewis/H S03701 Coors DH IS60326 Lewis/H IS70107 ID 76871 IS88010 Robust/H IS31228 Bearpaw T851011 Clark/W IS31228 Bearpaw T850019 Lewis/Ap I 5856 Lewis T860219 Lewis/Ap I 15856 Lewis T851005 Clark/II <td>oe dia anti-</td> <td>101.83</td> <td>47.23b</td> <td>96.00</td> <td></td> <td></td>	oe dia anti-	101.83	47.23b	96.00		
A854026 2885-402 A865169 2886-516 A865169 2886-516 A865169 2886-516 A865169 2886-516 A865169 2886-516 A865169 2886-516 A865102 Harring A8651032 Harring A8651195 MT41918 A851195 MT41918 A83435 Clark/TF A83435 Clark/TF A83435 Clark/TF A83435 Steptoe A88205 Steptoe A88205 Steptoe A1215 2882-853 IT86010<		100.77	52.00b	98.00		38.85
IT861572 Lewis/M IA865169 2B86-517 IT887509 MT 81619 IT851032 Harring IT851195 MT41918 IT851161 MT 41918 IT851161 MT 41918 IT8510161 MT 41918 IT88205 Steptoe IT8161 Lewis/H 503701 Coors DH T860326 Lewis/H IT860326 Lewis/H IT860224 Lewis/AP T870109 ID 76871 T888010 Robust/1 IS31228 Bearpaw T851011 Clark/W T870105 Hazen/UT I 9558 Piroline N 36 Robust T860219 Lewis/Ap I I 15856 Lewis T851005 Clark/II I		100.29			170.00	36.61
A865169 2886-516 A865169 MT 81619 A867509 MT 81619 A867509 MT 81619 A8651032 Harring A8651195 MT41918 A8651195 MT41918 A8651195 MT41918 A8651195 MT41918 A8651161 MT 41918 A835 Clark/TF A833 Harring A188205 Steptoe A188205 Steptoe A188205 Steptoe A188205 Steptoe A1215 2882-853 A1215 2882-853 A1215 2882-853 A1215 2882-853 T860224 Lewis/Ap T870109 ID 76871 T888010 Robust/J I531228 Bearpaw T851011 Clark/W T860219 Lewis/Ap I 15856 Lewis T851005 Clark/II I491534 Gallatir D 9866 ND7014/F T850053 Clark/NI <td></td> <td>100.15</td> <td>52.405</td> <td></td> <td>171.00</td> <td>39.11</td>		100.15	52.405		171.00	39.11
IT887509 MT 81619 IT851032 Harring IT851032 Harring IT851195 MT41918, IT851195 MT41918, IT851161 MT 41918, IT851205 Steptoe, IT88205 Steptoe, IT88005 Steptoe, IT860326 Lewis/H IT860326 Lewis/H IT870109 ID 76871 IT88010 Robust/J IT88010 Robust/J IT88010 Robust/J IT870105 Hazen/UI IT870105 Hazen/UI IT860219 Lewis/Ap IT860219 Lewis/Ap IT851005 Clark/II I491534 Gallatir D 9866 ND7014/F T850053 Clark/NI		99.83	51.73b		172.33a	38.71
IT851032 Harringi IT851032 Harringi IT851195 MT41918, IT851195 MT41918, IT851161 MT 41918, IT851161 Lewis/H IT888205 Steptoe, IT8161 Lewis/H IS03701 Coors DH IS60326 Lewis/H IT860326 Lewis/H IT860224 Lewis/Ap IT870109 ID 76871 IT888010 Robust/H IT870105 Hazen/UI IT870105 Hazen/UI IT860219 Lewis/Ap IT860219 Lewis/Ap IT860219 Lewis/Ap IT851005 Clark/II I491534 Gallatir D 9866 ND7014/H IT850053 Clark/NI A 2601 M31/High		99.81	51.075		170.00	37.27
IT886601 MT 81143 IT851195 MT41918 IT851195 MT41918 IT851161 MT 41918 IT888205 Steptoe IT888205 Steptoe IT8161 Lewis/H IS03701 Coors DH IS03224 Lewis/Ap IT88010 Robust/H IT870105 Hazen/UI IT860219 Lewis/Ap IT860219 Lewis/Ap IT860219 Lewis/Ap IT851005 Clark/II I491534 Gallatir D<9866		99.79	51.905		171.67	35.43
IT851195 MT41918, IT851161 MT 41918, IT851161 Lewis/H IT888205 Steptoe, IT8161 Lewis/H IS03701 Coors DH IS03224 Lewis/TH IS00224 Lewis/AP IS0010 Robust/D IS31228 Bearpaw IT850011 Clark/WH IT870105 Hazen/UD IT860219 Lewis/AP IT860219 Lewis/AP IT850053 Clark/II I491534 Gallatir D 9866 ND7014/F IS0053 Clark/NI A <td></td> <td>99.19</td> <td>52.77b</td> <td></td> <td>170.33</td> <td>35.96</td>		99.19	52.77b		170.33	35.96
T 83435 Clark/TF T851161 MT 41916 K 76333 Harring T888205 Steptoe, T 81161 Lewis//F 503701 Coors DF T860326 Lewis/TF I 15478 Klages A 1215 2882-853 T860224 Lewis/Ap T870109 ID 76871 T888010 Robust/1 I531228 Bearpaw T851011 Clark/WF T870105 Hazen/UT I 9558 Piroling N 36 Robust T860219 Lewis/Ap I 15856 Lewis T851005 Clark/II I491534 Gallatir D 9866 ND7014/F T850053 Clark/NI A 2601 M31/High T887103 MT 81535		98.33	51.336		170.00	34.65
T851161 MT 41918 K 76333 Harring T888205 Steptoe T 81161 Lewis//F 503701 Coors DF T860326 Lewis//F T860326 Lewis/FF 15478 Klages A 1215 2882-852 T860224 Lewis/Ap T870109 ID 76871 T888010 Robust/1 T851011 Clark/WF T870105 Hazen/UT T851011 Clark/MF T850019 Lewis/Ap T851011 Clark/MF T850019 Lewis/Ap T851011 Clark/MF T850053 Clark/II 1491534 Gallatir D 9866 ND7014/F T850053 Clark/NE A 2601 M31/High T887103 MT<81535		97.94	51.536		171.33	35.83
K 76333 Harring T888205 Steptoe, T 81161 Lewis// 503701 Coors D T860326 Lewis/TF I 15478 Klages A 1215 2882-852 T860224 Lewis/Ap T870109 ID 76871 T888010 Robust/I I531228 Bearpaw T851011 Clark/WA T870105 Hazen/UI I 9558 Pirolina N 36 Robust T860219 Lewis/Ap I 15856 Lewis T851005 Clark/II I491534 Gallatir D 9866 ND7014/F T850053 Clark/NI A 2601 M31/High T887103 MT 81535		97.46	51.00b		171.00	35.04
T888205 Steptoe, T 81161 Lewis//F 503701 Coors DF 503701 Coors DF 7860326 Lewis/TF I 15478 Klages A 1215 2882-852 7860224 Lewis/Ap 7870109 ID 76871 7888010 Robust/1 78382010 Robust/1 1531228 Bearpaw 7851011 Clark/W4 7870105 Hazen/U1 1 9558 7860219 Lewis/Ap 7851005 Clark/M4 7851005 Clark/II 1491534 Gallatir 0 9866 ND7014/F 7850053 Clark/NI A 2601 M31/High 7887103 MT 81535		97.12	50.406		171.67	34.25
T 81161 Lewis//H 503701 Coors DH T860326 Lewis/TF I 15478 Klages A 1215 2882-853 T860224 Lewis/Ap T870109 ID 76871 T888010 Robust/I I531228 Bearpaw T851011 Clark/WA T870105 Hazen/UI I 9558 Piroling N 36 Robust T860219 Lewis/Ap I 15856 Lewis T851005 Clark/II I491534 Gallatir D 9866 ND7014/H T850053 Clark/NI A 2601 M31/High T887103 MT 81535	-	96.98	46.97b		166.33b	38.19
503701 Coors D T860326 Lewis/TF I 15478 Klages A 1215 2882-852 T860224 Lewis/Ap T870109 ID 76871 T888010 Robust/I I531228 Bearpaw T851011 Clark/WA T870105 Hazen/UI I 9558 Piroline N 36 Robust T860219 Lewis/Ap I 15856 Lewis T851005 Clark/II I491534 Gallatir D 9866 ND7014/E T850053 Clark/NI A 2601 M31/High T887103 MT 81535		76.78 96.44	48.77b		170.33	35.56
T860326 Lewis/TF I 15478 Klages A 1215 2882-853 T860224 Lewis/Ap T870109 ID 76871 T888010 Robust/1 I531228 Bearpaw T851011 Clark/WA T870105 Hazen/U1 I 9558 Piroline N 36 Robust T860219 Lewis/Ap I 15856 Lewis T851005 Clark/II I491534 Gallatir D 9866 ND7014/E T850053 Clark/NI A 2601 M31/High T887103 MT 81535		76.44	52.63b		167.67	28.61
I 15478 Klages A 1215 2882-857 T860224 Lewis/Ap T870109 ID 76871 T888010 Robust/J I531228 Bearpaw T851011 Clark/WA T870105 Hazen/UT I 9558 Pirolina N 36 Robust T860219 Lewis/Ap I 15856 Lewis T851005 Clark/II I491534 Gallatir D 9866 ND7014/P T850053 Clark/NI A 2601 M31/High T887103 MT 81535		76.42 96.29			170.67	
A 1215 2882-852 T860224 Lewis/Ap T870109 ID 76871 T888010 Robust/1 I531228 Bearpaw T851011 Clark/W4 T870105 Hazen/U1 I 9558 Pirolina N 36 Robust T860219 Lewis/Ap I 15856 Lewis T851005 Clark/II I491534 Gallatir D 9866 ND7014/P T850053 Clark/NI A 2601 M31/High T887103 MT 81535		70.27 95.33	52.105			37.66
T860224 Lewis/Ap T870109 ID 76871 T888010 Robust/1 I531228 Bearpaw T851011 Clark/W4 T870105 Hazen/U1 I 9558 Pirolina N 36 Robust T860219 Lewis/Ap I 15856 Lewis T851005 Clark/II I491534 Gallatir D 9866 ND7014/F T850053 Clark/NI A 2601 M31/High T887103 MT 81535			50.33b		173.00a	35.83
T870109 ID 76871 T888010 Robust/1 I531228 Bearpaw T851011 Clark/WA T870105 Hazen/UT I 9558 Piroline N 36 Robust T860219 Lewis/Ap I 15856 Lewis T851005 Clark/II I491534 Gallatir D 9866 ND7014/E T850053 Clark/NE A 2601 M31/High T887103 MT 81535		94.44	52.27b		174.00a	34.12
T888010 Robust/1 I531228 Bearpaw T851011 Clark/W4 T870105 Hazen/U1 I 9558 Piroline N 36 Robust T860219 Lewis/Ap I 15856 Lewis T851005 Clark/II I491534 Gallatir D 9866 ND7014/E T850053 Clark/NI A 2601 M31/High T887103 MT 81535		94.00	51.17b		171.33	34.78
I531228 Bearpaw T851011 Clark/W4 T870105 Hazen/U1 I 9558 Piroline N 36 Robust T860219 Lewis/Ap I 15856 Lewis T851005 Clark/II I491534 Gallatir D 9866 ND7014/E T850053 Clark/NE A 2601 M31/High T887103 MT 81535		93.87	53.10b		169.33	35.96
T851011 Clark/WA T870105 Hazen/UT I 9558 Pirolina N 36 Robust T860219 Lewis/Ap I 15856 Lewis T851005 Clark/II I491534 Gallatir D 9866 ND7014/B T850053 Clark/NI A 2601 M31/High T887103 MT 81535		93.79	50.90b		168.67	42.78
T870105 Hazen/UT I 9558 Pirolina N 36 Robust T860219 Lewis/Ap I 15856 Lewis T851005 Clark/II I491534 Gallatir D 9866 ND7014/E T850053 Clark/NI A 2601 M31/High T887103 MT 81535		93.19	49.976	93.00	172.67a	35.04
I 9558 Piroline N 36 Robust T860219 Lewis/Ap I 15856 Lewis T851005 Clark/II I491534 Gallatir D 9866 ND7014/E T850053 Clark/NE A 2601 M31/High T887103 MT 81535		92.69	51.87b	96.00	171.67	37.40
N 36 Robust T860219 Lewis/Ap I 15856 Lewis T851005 Clark/II I491534 Gallatir D 9866 ND7014/E T850053 Clark/NE A 2601 M31/High T887103 MT 81535		92.21	49.30b	98.00	168.67	41.08
T860219 Lewis/Ap I 15856 Lewis T851005 Clark/II I491534 Gallatir D 9866 ND7014/E T850053 Clark/NE A 2601 M31/High T887103 MT 81535		92.04	53.27		169.67	39.11
I 15856 Lewis T851005 Clark/II I491534 Gallatir D 9866 ND7014/E T850053 Clark/NE A 2601 M31/High T887103 MT 81535		91.87	51.33b		169.33	43.96
T851005 Clark/II 1491534 Gallatir D 9866 ND7014/E T850053 Clark/NE A 2601 M31/High T887103 MT 81535	/Apex	90.92	48.576	87.00	171.67	32.02
I491534 Gallatir D 9866 ND7014/E I850053 Clark/NE A 2601 M31/High I887103 MT 81535		90.87	51.97b	93.00	171.00	35.70
D 9866 ND7014/E T850053 Clark/NE A 2601 M31/High T887103 MT 81535		90.73	50.53b	97.00	170.33	35.04
7850053 Clark/NE A 2601 M31/High 7887103 MT 81535		90.71	54.20	94.00	169.67	36.75
A 2601 M31/High 7887103 MT 81535		90.42	53.40	99.00	169.33	36.22
1887103 MT 81535		90.23	51.606	98.00	171.00	37.66
	igh Extract Comp.	90.23	49.176	91.00	171.00	33.60
406615 Coors AC	535/Lewis	90.02	51.07b	96.00	170.67	33.20
	AC84-066-15	89.46	51.13b	92.00	174.33a	28.48
T851425 MT 51549	549/Lewis	89.02	50.406	94.00	171.00	35.17
T851012 Clark/WA	WA877178	88.75	50.305		171.33	38.06

Table 1. Agronomic data from the Interstate Spring Barley nursery grown on the Northwestern Agricultural Research Center in 1990. Planted: March 30, 1990 Harvested: August 6, 1990 Field A2.

81

CI 15857 Clark 88.54 50.836 94.00 170.67 35.70 MT889102 Apex/Lewis 88.33 52.475 99.00 166.67 37.53 PI483127 Russell 88.25 49.906 94.00 165.67b 35.56 MT884806 Minerva Mutant/Gallatin 87.44 53.80 94.00 170.67 33.73b MT889106 Apex/Lewis 87.15 52.105 98.00 166.005 36.75 MT860756 Gallatin/Bellona 85.81 52.67b 93.00 171.67 33.33b MT886610 MT 81143/Lewis 85.35 52.47b 93.00 170.67 35.56

84.67

84.54

84.52

84.42

83.08

82.96

82.60

81.38

77.35

80.54

78.62

Table 1 (Cont'd.) Agronomic data from the Interstate Spring Barley nursery.

YIELD

BU/A

LB/BU

51.575 99.00

51.635 99.00

49.175 99.00

52.175 91.00

51.306 96.00

49.605 97.00

48.406 86.00

50.275 96.00

57.17b 57.00

52.736 94.00

51.73b 95.00

TEST WT % PLUMP HEADING HEIGHT

DATE

171.67

168.00

170.33

170.33

167.005

172.33a

170.00

173.33a

173.67a 31.89b

167.00b 43.70a

172.00a 32.94b

IN

34.91

41.86a

36.35

36.35

41.21a

27.17b

36.35

34.91

	EXPERIMENTAL MEANS 93.36 51.21	.00 170.35 36.06
	F TEST FOR VAR. 00.000 1.47** 22.20**	.00 6.81** 9.56**
ISD (0.05) 18.10 1.06 2.12 2.95	C.V. 2: (S OF MEAN/MEAN) *100 6.93 .74	.00 .45 2.93
	LSD (0.05) 18.10 1.06	.00 2.12 2.95

1/ Check variety

MTSU 247 Shonkin

VARIETY

MT851224 ID810264/MT 41918

MT887406 MT 81619/Chalky Glenn

8500905 Coors DH85-009-05

8202805 Coors AC82-028-05

MT861596 Lewis/MT 41549

AC 1798 Steffi

MT881809 Columbia/Hazen

MT887510 MT 81619/Lewis

CI 15773 Morex

CI 15514 Hector

a/ Values significantly higher than the check at the .05 level

b/ Values significantly lower than the check at the .05 level

Indicates statistical significance at the .05 level of probability

****** Indicates statistical significance at the .01 level of probability

Table 2. Agronomic data from the Early Yield Spring Barley nursery grown on the Northwestern Agricultural Research Center, Kalispell, MT in 1990. Planted: April 2, 1990 Harvested: August 15, 1990 Field Y-4.

32

	3740	YIELD	TEST WT	%	HEAD	HT		GING
	VARIETY	BU/A	LB/BU	PLUMP	DATE	(IN)	SEVER	. PREV
ROOODET	Fleet/Bowman	153.46	50.40	00 00	176.67	35.56	.00	00
	Steptoe/Robust	152.23			171.00	37.40	.00	.00
	Steptoe/Columbia	152.23			174.00	41.73	2.67	16.67
	Morex/ID910719	149.42	50.60		171.00	42.91	.00	.00
	Unitan/Robust	147.42	48.90		172.00	43.70	.67	30.00
	WA889278/Bowman	148.23	50.77		175.00	41.08	.00	
	Unitan/Robust	145.17			172.33	44.09	.00	.00
	Lewis/ID91019	143.15	51.70		172.33	39.50		
		143.13	47.50		172.67		.00	.00
CI 15229		142.30			172.67	38.32	.00	.00
	Morex/ID910719					45.14	.00	.00
CI 15478	-	141.02			175.33	39.63	1.33	58.00
	MT4126/Piroline	137.92			173.00	38.32	. 67	8.33
	WA889278/Bowman	137.90			174.33	39.63	2.00	16.67
	Fleet/Abee	136.94			174.33	29.27	.00	.00
	Unitan/Robust	136.73	48.63		172.00	46.33	1.33	18.33
	Morex/ID910719	136.60			170.33	41.60	.00	.00
	Hector/Fleet	136.33			173.00	30.18	.00	.00
	Fleet/Menuet	136.19			175.67	27.69	.00	.00
	MT81161/Harr.	133.54			172.33	38.71	.00	.00
	Hector/Bowman	132.63			173.00	40.94	2.67	99.00
	WA889278/Bowman	131.75			174.00	40.55	.00	.00
	Gallatin/Piro	128.50			173.33	41.34	2.67	63.00
	MT41279/Teton	128.06			173.00	37.14	.67	33.00
	Robust/ID910719	127.69			172.00	46.19	.00	.00
	WA889278/Bowman	127.25			172.33	38.06	1.67	16.67
	Gallatin/Piro	126.75			173.00	41.60	1.33	58.00
	MT81161/Harrg.	126.71	51.53		172.67	39.76	.00	.00
	WA889278/Azure	126.06			173.00	41.99	.00	.00
	Unitan/Robust	126.06			171.33	44.49	.00	.00
	Hector/Bowman	125.23			172.33	41.34	2.00	64.67
	Bowman/Lewis	124.52	51.17		174.00	36.35	2.33	63.00
	WA889278/Clark	123.44	52.23		174.00	39.89	.00	.00
	Lewis/ID91019	122.83	48.70	69.00	171.33	36.22	.00	.00
17890020	Gallatin/Piro	121.50			171.67	40.55	2.67	82.67
17890136	Summit/Piro	120.83	50.87	93.00	174.00	41.47	5.33	66.33
	MTB1161/Harr.	120.75			171.00	38.45	. 67	33.00
17890038	Lewis/ID91019	119.85	48.07	71.00	170.67	40.55	5.00	13.33
IT890031	Hector/Fleet	119.81	51.93	96.00	172.33	37.53	3.33	76.67
17890034	Hector/Fleet	119.46	49.20	71.00	172.33	27.95	.00	.00
17890098	Robust/Azure	118.67	46.60	57.00	172.67	37.93	4.00	99.00
17890016	Gallatin/Apex	117.35	53.10	90.00	176.33	36.75	2.33	25.00
SK 76333	Harrington	116.44	50.73	93.00	173.00	38.19	1.33	66.00
	Robust/ID910719	116.27	50.27		173.00	46.06	1.00	8.33
		115.40			172.67	33.60	2.33	76.00

	VARIETY		YIELD BU/A	LB/BU		HEAD DATE	HT (IN)		GING
	Morex/Col		115.31	50.77		172.00	46.98	. 67	8.33
	MT4126/Mo	rav III	113.71	52.23		172.67	38.45	1.33	49.67
CI 15773	MOFex MT4126/Mo		113.60	51.10		171.67	48.56	.00	.00
			112.58 111.98	51.30 53.07		170.00	38.71	.67	33.00
	Gallatin/					172.33	39.11	3.67	99.00
	Hector/F1		111.50	50.40		173.00	29.27	.00	.00
	WA889278/		111.21	52.87		173.33	41.60	2.67	99.00
	Drought S	el. 2	111.19	51.57		173.00	38.06	2.67	58.00
CI 15514		8082 SA	109.67	51.70		173.33	40.81		99.00
	Gallatin/		108.67	53.47		174.00	38.98	1.00	16.67
	Drought S		107.25	49.97		171.67	34.38	1.67	16.67
	WA889278/		106.90	52.03		173.00	41.21	2.33	58.00
	Fleet/Gal		105.81	51.50		174.33	38.19	. 67	30.00
	MT47219/B		104.42	51.57		172.33	38.71		63.00
	Drought S		104.13	50.50		172.00	40.81	3.00	82.67
	Drought S		103.17	47.77		170.67	42.78	2.67	43.33
	Drought S		103.06	48.07		172.67	44.49	2.67	33.33
	Drought S		102.88			171.00	43.96	2.33	10.00
	Fleet/Gal		97.98	49.63		173.00	30.05	.67	16.67
17890071	MT47219/B	owman	97.71	51.33	95.00	170.33	39.24	1.67	66.00
EXPERIMEN	NTAL MEANS		124.08	50.64	.00	172.68	39.38	1.33	30.84
TEST FO				*19.70*			*18.04*		
	(S/MEAN) \$1	00	9.25	1.24	.00	.55		122.01	94.73
SD (0.05		7 92	18.55	1.01	.00	1.53	2.97	2.62	47.21
				2.4 0					

Table 2 (Cont'd). Agronomic data from the Early Yield Spring Barley nursery

CI/STATE		YIELD	TEST WT	%	HT	- LOD	GING -
NUMBER	VARIETY	BU/A	LB/BU		IN	SEVER	
BA 2601	BA 2601	148.41a	51.276	95.33	33.60b	.00	.00
CI 15229		146.76a			39.11	5.00	88.33
CO 3	Moravian 3	141.96a	52.63	94.33	34.78b	5.33	56.67
PI483127	Russell	138.49a	50.37b	94.67	38.32	1.33	10.00
BA 1202	BA 1202	136.62	53.50	98.67	39.11	3.67	64.67
CI 15478	Klages	135.57	51.67b	96.67	35.56	2.00	10.00
BA 1215	BA 1215 (BA 8529)	134.33	52.20	95.00	37.40	2.67	23.33
VD 3	Menuet	129.40	54.13	97.67	35.83	. 67	3.33
CI 15856	Lewis	127.99	54.00	95.00	39.50	4.33	61.33
78Ab6871	Crystal	125.98	52.93	93.33	38.98	3.33	36.67
CI 15773	Morex	125.07	51.03b	92.00b	43.18a	6.33	71.00
CI 15857	Clark	122.61	53.87	97.67	38.19	3.00	28.33
SK 76333	Harrington	121.74	51.406	97.00	35.30	2.33	16.67
ND 9866	ND 7014/Bowman sib	121.65	54.47	98.67	38.71	3.67	50.00
CI 10083	Ingrid	121.36	53.47	95.33	36.61	3.67	33.33
PI531228	Bearpaw	119.93	50.07b	92.00b	38.98	5.67	83.00
CI 15514	Hector	119.67	53.43	93.33	41.47	6.67	71.33
	Gallatin 1/			97.33	38.32	3.67	39.67
MT851012	Clark/WA877178			93.00	40.03	7.33	86.33
MT140523	Hector/Klages	115.66	51.33b	89.00b	38.71	5.67	63.00
	ITAL MEANS	128.54	52.30	05 17	70.00	7 00	44 05
				95.13	38.08	3.82	44.85
F TEST FO	S OF X/X) \$100	4.92	\$ 5.90*) 1.24			* 1.56	2.13
LSD (0.05		4.92	1.24		3.16 3.45	41.94 4.58	43.66
	variety	18.10	1.00	J. 10	3.43	4.00	56.06

Table 3. Agronomic data from the Offstation Spring Barley Nursery grown on the Christ farm, Hamilton, MT (Ravalli Co.). Planted: April 12, 1990 Harvested: August 8, 1990

Indicates statistical cignificance at the .05 level of probability Indicates statistical significance at the .01 level of probability Values significantly greater than the check variety at the .05 level Values significantly less than the check variety at the .05 level Table 4.Agronomic data from the Offstation Spring Barley Nursery grown
on the Starkle farm in Lake County in 1990.
Planted: April 20, 1990Harvested: August 9, 1990

CI/STATE			YIELD	TEST WT	7	HEIGHT		SING
Number	VARIETY		BU/A	LB/BU	PLUMP	IN	SEVER	PREV
15000	Charabas		10/ 54-	47 07	0E 00-	7/ / 1		00
78Ab6871	Steptoe		126.54a 123.58a		95.00a 94.33a	36.61 37.14	.00	.00
	ND 7014/Bow		118.02a		91.67a	37.89a	1.00	3.33
	BA 1202	lieur	117.19a		71.07a 93.33a			20.00
	Menuet		115.17a		91.67a		.67	3.33
	BA 2601		115.15a		72.33	36.22		30.00
	Hector/Klage		114.44a	49.20	84.33a	37.80		30.00
CI 15856		96180 -	113.63a	50.43	91.00a	37.66		23.33
	Klages		112.71a		71.33	39.50a		31.67
	Moravian 3		109.83a	48.27	79.67a		2.67	16.67
	BA 1215 (BA	8529)	108.63a		89.67a	37.93	3.00	40.00
CI 15773			106.94a		91.67a	45.80a		8.33
	Clark/WA8771	78	106.58a	48.60	84.67a	40.03a	4.00	76.67
CI 15857		87.00	101.25		83.00a	38.19		72.67
CI 15514			98.15	49.33	79.00a	37.93		87.67
	Bearpaw			47.93	85.33a	36.75		61.67
CI 10083				47.97	73.33	36.35		79.67
	Harrington		90.79	47.33	79.00a	37.53	5.67a	53.33
		1/	89.21	49.60	68.33	34.91	1.33	33.00
PI483127	Russell		87.83	45.47b	70.33	33.46	.00	.00
VOCOTHEN	ITAL MEANS	100.10	107.42	48.84	83.45	37.89	2.85	33.83
TEST FO						4 4.18**		3.83 3.87)
	S OF X/X) \$100	6.50	3.68*)	1.79	4.28		4.78	43.73
.V. 2: 1	5 UF X/X/¥100	0.00		2.50	4.28	3.65	3.65	43.73

1/ Check variety

Indicates statistical cignificance at the .05 level of probability Indicates statistical significance at the .01 level of probability A Values significantly greater than the check variety at the .05 level Values significantly less than the check variety at the .05 level

CI/STATE NUMBER VARIE	ТҮ		TEST WT LBS/BU		HEIGHT IN		GING R PREV
		and a state of the second s	na go da an la contra contra talla (oraș				
BA 1215 BA 121	5 (BA 8529)	152.40	53.47	97.33	37.01	.00	.00
BA 1202 BA 120			53.43	99.00	40.16a	.00	.00
	1.85.856.19			96.33	35.83	.00	.00
PI491534 Gallat			53.37	92.00	35.96	.00	.00
SK 76333 Harrin				97.67	36.22	1.00	6.67
PI483127 Russel				98.00	38.19	.00	.00
CI 15857 Clark		133.90		96.67	36.22	.00	
PI531228 Bearpa	W	128.31	51.60	96.00	35.83	2.33	20.00
MT140523 Hector			53.00	88.67	36.35	. 67	5.00
ND 9866 ND 70	14/Bowman si	b 117.81	53.90	94.33	38.19	1.33	6.67
CI 15514 Hector			53.00	89.33	35.56	2.00	16.67
CO 3 Moravi	an 3	115.04	53.00	86.33	34.25	.00	.00
MT851012 Clark/	WA877178	112.79	51.50	87.00	37.93	3.00	30.00
CI 15229 Stepto	e.80 x00.08	111.816	48.20b	87.00	35.96	2.67	26.67
CI 15478 Klages			50.87b	83.67	34.51	.00	.00
CI 10083 Ingrid		110.40b	53.73	92.00	34.25	2.33	16.67
CI 15856 Lewis		108.54h	53.63	95.00	36.35	.00	.00
CI 15773 Morex		106.985	50.27b	83.33	42.78a	1.67	33.00
VD 3 Menuet		104.066	53.17	95.33	36.09	.00	.00
78Ab6871 Crysta	1	100.546	51.60	81.33	33.86	.00	.00
EXPERIMENTAL ME	ANS	123.87	52.38	91.82	36.57	85	8.07
TEST FOR VAR.		2.47**					
C.V. 2: (S OF X		8.56					
SD (0.05)				14.45	3.37	3.14	

Table 5.Agronomic data from the Offstation Spring Barley nursery grown
on the Western Research Center in Corvallis, MT (Ravalli Co.).
Planted: April 12, 1990Harvested: August 8, 1990

1/ Check variety Indicates statistical significance at the .05 level of probability Indicates statistical significance at the .01 level of probability a/ Values significantly greater than the check variety at the .05 level b/ Values significantly less than the check variety at the .05 level

JMBER VARIETY	BU/A	TEST WT LB/BU	PLUMP	HT IN		JING PREV
A 2601 BA 2601	135.8	50.0	88.0	35.2	.6	10.0
I 15229 Steptoe	128.4	48.2	92.9	37.2	2.6	38.3
D 3 Moravian 3	122.3	51.3	86.8	35.0	2.7	24.5
1483127 Russell	122.2	49.3	87.7	36.7	. 4	3.3
A 1202 BA 1202	135.2	52.4	97.0	40.3	1.8	28.2
I 15478 Klages	119.8	49.9	83.9	36.5	2.2	13.9
A 1215 BA 1215 (BA 8529)	131.8	51.7	94.0	37.5	1.9	21.1
D 3 Menuet	116.2	52.6	94.9	36.2	.5	2.2
I 15856 Lewis	116.7	52.7	93.7	37.8	2.6	28.2
BAb6871 Crystal	116.7	51.6	89.7	36.7	1.4	13.3
I 15773 Morex	113.0	50.4	89.1	43.9	2.9	37.4
I 15857 Clark	119.3	52.5	92.5	37.5	2.7	33.7
< 76333 Harrington	118.1	50.6	91.2	36.4	3.0	25.6
D 9866 ND 7014/Bowman sib	119.2	52.6	94.9	39.9	2.0	20.0
I 10083 Ingrid	108.9	51.7	86.9	35.7	3.8	43.2
1531228 Bearpaw	115.3	49.9	91.1	37.2	4.8	54.9
I 15514 Hector	111.6	51.9	87.2	38.3	4.2	59.2
1491534 Gallatin 1/	117.1	52.2	85.9	36.4	1.7	24.2
T851012 Clark/WA877178	112.5	50.7	88.2	39.3	4.8	64.3
T140523 Hector/Klages	119.0	51.2	87.3	37.6	3.7	32.7
			na ante hanne ant bes an analikens en anantaden		ang gala da tang gara sa sa sa ka ka katalap	2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
XPERIMENTAL MEANS	119.9	51.2	90.1	37.5	2.5	28.9

Table 6. Offstation Spring Barley Averages for the three locations grown in western Montana in 1990 (Lake and Ravalli Co.).

PROJECT TITLE: Uniform Northwestern Oat Nursery

YEAR/PROJECT:	1990/756
INVESTIGATORS:	Leader – Vern R. Stewart, Todd Keener – Research Specialist
OBJECTIVE:	Evaluation of new and introduced oat varieties for yield and disease resistance in Montana.

RESULTS:

The 1990 Uniform Oat Nursery results were very similar to last season. The high yield was 229.13 bu/A. Eight varieties yielded above 200 bu/A. The mean yield was 184.38 bu/A. Otana, the check variety, yielded 173.31 bu/A with seven entires having yields that were significantly greater. In comparison to Otana many varieties had lower test weights. The mean was 33.46 lb/bu and the variety Trucker had the highest at 39.03 lb/bu. No varieties are performing better that Otana and Monida in regards to yield and test weight. Little lodging occured until after mid-season when all but eleven of the 30 entries had some lodging.

Table 1. Agronomic data from the Uniform Oat Nursery grown on the Northwestern Agricultural Research Center in 1990. Field Y-4 Harvested: August 28, 1990 Date planted: April 2, 1990

STATE or		TEST WT	HEADING	HEIGHT		GING
CI NUMBER VARIETY	BU/A	LB/BU	DATE	IN	PREV.	SEVER
auguster na data serter data a	stell mus sh(naz):	1999,999,999 13 r	n bre w	91 - 21 - 23 91 - 70	no ches a	
83AB3119 Cayuse/76Ab6843	229.13a	33.70b	181.67	33.66b	.00b	.001
80Ab5807 74AB2608/Cayuse	218.32a	34.23b	180.33	41.73b	50.00	3.67
83AB3250 Cayuse/Monida	217.88a	33.90b	182.67a	36.815	64.67	6.00
80Ab5322 Border/74Ab1956	210.79a	35.53	181.67	34.65b	.00b	.00
80Ab988 74AB1952/74AB2608	209.76a	33.70b	180.33	32.09b	.006	.001
82Ab1178 74AB1952/75AB1576	208.48a	34.90b	178.00b	33.86b	8.33b	1.33
82Ab248 Cayuse/Monida	203.20a	34.20b	182.67a	36.426	89.67	6.00
86AB664 Ogle/75Ab861	202.05	34.30b	180.33	41.346	66.00	2.00
CI467882 Border	196.71	33.07b	182.33a	41.93b	92.67	5.33
81Ab5792 74Ab2608/Cayuse	195.71	33.47b	177.00b	38.19b	59.67	2.33
82Ab1142 74ab1952/74ab2608	194.74	33.43b	179.33b	33.66b	.00b	.001
CI 8263 Cayuse	194.43	33.03b	180.00	42.13b	92.67	5.33
CI483126 Monida (ID 751170)	193.27	36.00	181.00	46.46	99.00	5.00
83AB3725 74Ab1952/74Ab2608	191.09	35.73	178.67b	34.456	.00b	.00
CI 9401 Ogle	185.87	32.806	175.67b	39.57b	6.675	1.33
W 80474 Riel (RL 3057/Otana)	181.75	35.27	179.67	47.44	41.33	3.00
86AB1867 81Ab5772/Ogle	180.78	35.43	174.006	35.43b	.00b	.00ł
W 78286 Dumont	178.56	35.13	180.00	45.28b	96.00	3.00
CI 9252 Otana 1/	173.31	36.90	180.67	49.41	82.67	3.67
OT 308 Calibre	172.06	35.40	180.00	48.62	96.00	4.00
W 82056 Robert (OT 212/RL 30	170.22	32.73b	181.67	44.495	31.675	2.00
CI 9297 Appaloosa	166.16	31.405	181.67	42.91b	99.00	8.004
NP871754 Ogle/OT 3215, NZ 841	165.63	29.205	182.67a	27.56b	.00b	.001
NP871742 Ogle/OT 32-15,Sel. N	164.19	29.705	183.67a	25.986	.00b	. OOb
ND820603 Valley	163.26	31.206	179.67	42.526	33.00b	1.00
NPB88301 Ogle/OT 3215//Border	161.94	28.97Ь	181.00	28.54b	.00b	. OOL
NPB86801 Minamax	155.79	29.20b	182.005	27.95b	.00b	. 00b
CI 6611 Park	152.70	32.73b	180.67	47.83	66.67	5.33
NPB88304 Ogle/OT 3215//Border	152.48	29.77Ь	180.33	26.386	.006	.005
SD810109 Trucker (Moore//Dal/	141.14	39.03a	175.67b	45.876	66.00	3.33

EXPERIMENTAL MEANS	184.38	33.47	180.17	38.44	41.39	2.39
F TEST FOR VAR.	4.74**	14.69**	27.94**	38.90**	6.55**	4.48**
C.V. 2: (S OF MEAN/MEAN) \$100	5.62	1.90	.24	2.96	37.60	47.21
LSD (0.05)	29.33	1.80	1.21	3.29	44.05	3.19

1/ Check variety

** Indicates statistcal significance at the .01 level of probability

a/ Values significantly greater than the check at the .01 level

b/ Values significantly less than the check at the .01 level

PROJECT TITLE: Spring Wheat Variety Evaluations

YEAR/PROJECT: 1990/756

INVESTIGATORS: Leader - Vern R. Stewart, Todd Keener - Research Specialist

OBJECTIVE:

To determine the adaptability of new and introduced spring wheat varieties grown under high moisture conditions in Montana. Evaluation of new and introduced spring wheat varieties in various growing conditions of western Montana.

RESULTS:

Western Regional Spring Wheat -

The yields taken from the Western Regional Spring Wheat nursery were some of the highest since the 1987 harvest. The range of yields was 73.25 to 126.45 bu/A. Owens had a yield of 111.83 bu/A, which was well above the nursery mean yield of 97.96 bu/A. Test weights were normal for spring wheat this season averaging 57.56 lb/bu. The test weights were higher than those of 1989 yet much lower than those recorded in 1988. Low test weights in spring wheat, like those recorded this year, are often a result of long periods of precipitation prior to harvest. There was very little disease or lodging in this nursey.

1990 Advanced Yield Nursery -

The mean yield for this nursery was 93.48 bu/A, 16 bushels per acre less than the average last year. The yields ranged from 79.9 to 125.05 bu/A. Owens had the top yield with all the other entries having yields that were significantly lower. The second highest yield was Lloyd at 108.78 bu/A. Pengwawa yielded 102.12 bu/A and had a test weight of 57.60 lb/bu. Only five of the 36 entries had yields in excess of 100 bu/A. Test weights averaged 57.98 lb/bu, which is equal to last year. Heading dates and height did not vary from the averages that have been recorded over the years.

Offstation Spring Wheat Variety Evaluation -

Offstation spring wheat nurseries were seeded in two locations this year.

- Ravalli County - Robert Christ farm, Hamilton, MT.

- Lake County - Starkle farms, Ronan, MT

All locations were irrigated and recieved adequate rainfall during the growing season. Yields were good to excellent for the majority of entries and most varieties had average test weights. Disease incidence was low or non-existent in all areas. There was no lodging at the Hamilton and Roman nursery sites.

Ravalli County Offstation Spring Wheat -

1

Yields from the offstation nursery grown on the Robert Christ farm

in Hamilton ranged from 43.9 to 113.9 bu/A. Penawawa had the highest yield at this location. Owens and Stoa both had yields that were above 100 bu/A. The average test weight was 56.0 lbs/bu which was lower than expected for this area. Lew and Lancer had test weight averages less than 50 lbs/bu. There was no lodging in this nursery. A high population of wild oats was controlled by an Avenge application. Table 3.

Lake County Offstation Spring Wheat -

The nursery located at the Starkle farm in Ronan had yields in the range of 48.8 to 85.7 bu/A. The top yielding variety (Amidon), a North Dakota entry, yielded 85.7 bu/A. All test weights in the nursery were slightly less than anticipated. Amidon had the highest test weight at 59.10 lb/bu. There was no lodging in this nursery. Table 4.

Averages for both 1990 Offstation Spring Wheat locations are given in Table 5.

1990 Triticale Variety Nursery -

c10107

1

Yields were slightly less than the 1988 and 1989 yields and ranged from 54.95 to 77.98 bu/A (based on 60 lb/bu test weights). As last year, the varieties of Juan and Welsh had some of the highest yields. Test weights were slightly lower this year, heading dates were a little later and height averages were less than in the previous years. Table 6.

89.96 S

2

assed poisse (to) no enviouted;

CI/STATE			TYPE	YIELD	TEST WT	HEAD	HEIGHT
NUMBER	VARIETY		2/	BU/A	LB/BU	DATE	IN
	ID228/A73262S-11682-	3-91	SW	126.45	59.80a		
	TREASURE/ID246		SW	118.87	57.00b		
	UT78S147-125/906R		HR	115.55	58.63		
	RICK/UT 78S 147-125		HR	115.15			
	OWENS/ID159		SW	113.97		177.67	
	ID232/A75120S-2214-1		SW	113.70		178.00	
	STERLING/BLISS		SW	113.50			
	K80296/NK751		HR	113.47			
CI 17904		1/	SW	111.83	58.30	178.00	
	LEWI-3M,5(F9 SEMIDWA		SW	111.78	57.77	179.33a	
	SPSWE 9		SW	110.48			
	SN64/HN4//REX/3/EDCH		HR	107.87		177.67	
	K7400315/PTM705.47		SW	107.27			
	K73579/BORAH		HR	107.22		177.33	
JT 2534	UT78S147-209/906R		HR	106.88		177.00	37.80
R487316	SAP SIB/MON SIB		SW	104.15	55.206		
A 7183	WAKANZ		SW	103.45	55.87b		
	UT 78S 147-209/906R		HR	103.07	59.27a	179.33a	36.61
	SPHWE 11		HW	102.48		177.67	29.66
JC 786	YOLO'S'/YRR,CA810041		HR	102.15		176.00b	27.82
	LEWI-EM, 4 (F9SEMIDWAR		SW	102.13			
17613945	RICK/UT78S147-125		HR	102.10		179.33a	
	A7612S-2/A75141S-2-1		HR	101.73		176.675	
IT580646	UT77W1054-1777/906R		HR	101.45		178.00	
	K78504/K74129-33//K7		SW	99.53			
D 412	A761025-1-2/EMU'S'		HR	99.13		176.336	
	PENAWAWA		SW	98.30		178.00	
R487475	AGA/6*'YR'		HR	97.25	56.00b	175.676	24.93
I 17903	MCKAY		HR	94.80b			
D 417	ID 182/FIELDWIN		SW	93.78b	59.27a	176.00b	33.73
	SPHRE 16		HR	92.83b		175.33b	
R487456	CT.S		HR	88.25b	57.97	176.006	30.71
IC 638	SERRA		HR	87.875	58.17	176.00b	31.76
D 367	A76102S-1-2/ID 134		HR	87.18b	58.43	178.00	35.43
R487380	SPHWE 13		HW	86.925	55.33b	175.33b	24.41
D 419	ID 204/ID 134		HR	85.72b	59.80a	177.67	33.60
I 4734	FEDERATION		SW	85.23b	54.97b	178.67	42.39
R487279	SPHWE9		ΗW	85.07Ь	56.83b	175.006	27.17
EWIEM01	LEWI-EM, 1 (F9 SEMIDWA		SW	84.72b	55.50b	179.00	32.41
	JUP/BJY.S//DOVE.S		HR	81.97b	57.13b	175.676	31.76
IC 784	STA/YRR, CA770284-0D-		HR	80.206	55.93b	174.00b	25.33
	STA/YRR, CA770284-0D-		HR	79.386		176.00b	24.15
KF 8022			HW	73.25b	56.80b		26.64

Table 1. Agronomic data from the Western Regional Spring Wheat nursery grown on the Northwestern Agricultural Research Center.

EXPERIMENTAL MEANS

99.96 57.56 177.40 33.12

Statistics on following page

CI/STATE NUMBER	VARIETY	Gant Loong Loon and States	YIELD BU/A	TEST WT LB/BU	HEAD DATE	HEIGHT
EXPERIMEN	TAL MEANS		99.96	57.56	177.40	33.12
F TEST FO	R VAR.		4.66**	33.24**	16.89**	27.09**
C.V. 2: (S OF MEAN/MEAN) \$100		5.73	. 47	.20	2.46
LSD (0.05)		16.12	.76	1.02	2.29
1/ Chark	variety					

Statistical data from the Western Regional Spring Wheat nursery

1/ Check variety

2/ TYPE = HR (Hard red), SW (Soft white), HW (Hard white)
** Indicates statistical significance at the .01 probability level

a/ Values significantly greater than the check at the .01 level

b/ Values significantly less than the check at the .01 level

Table 2. Agronomic data from the Advanced Yield Spring Wheat nursery grown on the Northwestern Agricultural Research Center in Kalispell, MT.

Planted: April 2, 1990 Harvested: August 15, 1990

CI/STATE NUMBER	VARIETY	YIELD BU/A	TEST WT LB/BU	HEADING DATE	HEIGHT IN
CI 17904	OWENS 1/	125.05	58.47	178.00	37.66
PI476211		108.786			
MT 8289	TANAGER'S'	108.03b	58.63	175.67b	33.465
MT 8182	YDING "S"/PCI "S"-287	103.756	56.73b	176.33b	34.386
WA 6920	PENAWAWA	102.125	57.60	177.67	34.516
ND 606	AMIDON	99.92b	58.23	178.67	43.968
MT 8836	MT7648/ANTIZANA	99.38b		179.00	40.03a
CI 17438	CANDO	99.23b			
MT 8626	CI15838/MT7418//PONDERA	98.67b			
MT 8824	MARBERG/MT7746	96.75b	58.07	175.67b	36.75
MT 8845	MT7648/MT7746	96.68b			36.88
CI 17282	CROSBY	96.52b	59.40	177.00	44.62a
CI 17430	NEWANA	96.43b		178.00	34.655
MT 8841	MT7648/MT7746	95.93b			
CI 13596	FORTUNA	94.58b			
MT 8858	MT7421/BUTTE	94.53b	58.07	178.00	36.48
WB LAKER	WestBred Laker	94.22b		180.00a	36.09
CI 17828	PONDERA	93.80b	58.47	176.00b	34.915
MT- 8849	RS6880/MT7819	93.32b			37.66
CI 15930	OLAF	92.83b	56.40b	176.33b	36.75
CI 17910	ALEX	90.47b	59.00	179.00	42.524
PI483235	GLENMAN	89.55b	58.37	178.67	36.09
MT 8651	CI15838/MT7418//PONDERA	89.125	58.07	177.33	
MT 8402	MT7336/SHORTANA	88.85b	58.30	175.00b	33.465
PI478289	MONROE	88.586		175.00b	
CI 17429	LEW	87.80b	59.30	178.33	44.49a
DT 433	MEDORA	87.08b	57.97	176.676	
BZ984326	WFB BZ 984-326	86.025	57.67	174.67b	35.436
ND 582	STOA	85.936	57.97	178.00	43.83a
C982-324	RAMBO	85.80b	57.87	177.67	32.946
CI 17790	LEN	84.28b	57.07b		
MT 8612	CI15838/MT7418//PONDERA	83.65b		176.00b	35.566
MT 8833	PONDERA/ANGUS	83.406		175.33b	36.88
CI 10003	THATCHER	83.35b	55.57b	177.67	44.75a
PI 15892	WARD	81.07b			
PI486139		79.90b			

EXPERIMENTAL MEANS	93.48	57.98	177.01	37.49
F TEST FOR VAR.	4.03**	3.98**	14.44**	44.33**
C.V. 2: (S OF MEAN/MEAN) \$100	4.82	.76	.23	1.87
LSD (0.05)	12.71	1.24	1.15	1.98

****** Indicates statistical significance at the .01 level of probability 1/ Check variety

a/ Values significantly greater than the check at the .05 level

b/ Values significantly less than the check at the .05 level

CI/STATE NUMBER	VARIETY T	YPE	YIELD BU/A	TEST WT LB/BU	HEIGHT IN
WA 6920	PENAWAWA	SW	113.94a	56.07	33.46
CI 17904	OWENS	SW	113.76a	58.00	35.70
ND 582	STOA	HR	101.08a	57.67	41.99a
CI 15930	OLAF	HR	95.48	57.07	36.35
CI 17828	PONDERA	HR	92.50	57.63	35.04
CI 17790	LEN	HR	89.02	57.23	35.04
CI 17430	NEWANA 1/	HR	88.29	57.67	33.73
ND 606	AMIDON	HR	86.87	56.07	44.36a
C982-324	RAMBO	HR	84.98	58.60	33.46
ND 618	GUS	HR	84.03	58.33	37.01a
WPB 926R	WESTBRED 926R	HR	80.67	57.03	30.456
ND 626	GRANDIN	HR	77.88	58.53	36.75
WPB 906R	WESTBRED 906R	HR	77.03	57.20	29.66b
PI483235	GLENMAN	HR	74.39b	53.77b	35.96
MT 8402	MT7336/SHORTANA	HR	72.696	56.50	32.41
CI 13596	FORTUNA	HR	71.93b	55.93	43.57a
NDCUT	CUTLESS	HR	69.32b	52.77b	38.32a
CANLANC	LANCER	HR	68.44b	49.80b	43.96a
CI 17910	ALEX	HR	60.02b	55.50	39.76a
CI 17429	LEW	HR	43.88b	48.77b	37.66a
EXPERIMEN	ITAL MEANS		82.31	56.01	36.73
F TEST FO	IR VAR.		14.88**	10.75**	15.60**
C.V. 2: (S OF MEAN/MEAN)	\$100	5.30	1.49	2.93
LSD (0.05	;)		12.49	2.39	3.08

Table 3. Agronomic data from the Offstation Spring Wheat Nursery grown on
the Christ farm in Hamilton, MT (Ravalli Co.) in 1990.Planted: April 12, 1990Harvested: September 6, 1990

1/ Check variety

2/ TYPE = SW (Soft white), HR (Hard Red)

a/ Values significantly greater than the check at the .01 level

b/ Values significantly less thatn the check at the .01 level

** Indicates statistical significance at the .01 level of probability

CI/STATE NUMBER		TYPE 27	YIELD BU/A	TEST WT LB/BU	
ND 606		HR	85.72	59.10	42.39a
	WESTBRED 926R	HR	83.62		
	WESTBRED 906R	HR	82.03		
ND 618		HR	80.43		
	MT7336/SHORTANA	HR	79.42	57.57	
	STOA	HR	78.33		40.42a
CI 15930		HR	78.13		34.38a
	PONDERA	HR	74.20		
	GRANDIN	HR	72.63		
CI 17910		HR	72.43		42.65a
CI 17904		SW	72.28		
	NEWANA 1/	HR	72.22		
	PENAWAWA	SW	71.70		
C982-324		HR	70.80		
CI 17790		HR	68.67		
	FORTUNA	HR	57.426		43.70a
CANLANC		HR			42.26a
	GLENMAN	HR			34.78a
NDCUT		HR	52.05b		35.43a
CI 17429		HR	48.77b		40.94a
EXPERIMEN	NTAL MEANS		70.44	56.18	35.52
F TEST FO				3.52**	
	(S OF X/X) \$100			1.60	2.38
LSD (0.05			14.75		2.42

Table 4. Agronomic data from the Offstation Spring Wheat nursery grown on the Starkle farm, Ronan, MT in Lake County. Planted: April 20, 1990 Harvested: September 6, 1990

a/ Values significantly greater than the check at the .01 level

b/ Values significantly less than the check at the .01 level

** Indicates statistical significance at the .01 level of probability

CI/STATE	TYPE 2/	VARIETY	YIELD BU/A	TEST WT. LB/BU	HEIGHT
NUMBER	21		BU/H		INCHES
CI 17429	HR	LEW	46.33	52.74	39.30
ND CUT	HR	CUTLESS	60.69	55.20	36.88
CANLANC	HR	LANCER	61.58	52.82	43.11
PI483235	HR	GLENMAN	63.86	53.72	35.37
CI 13596	HR	FORTUNA	64.68	55.45	43.64
CI 17910	HR	ALEX	66.23	56.85	41.21
VD 626	HR	GRANDIN	75.26	57.63	36.29
1T 8402	HR	MT7336/SHORTANA	76.06	57.04	31.30
0982-324	HR	RAMBO	77.89	58.04	33.20
CI 17790	HR	LEN	78.85	56.18	33.34
NPB 906R	HR	WESTBRED 906R	79.53	56.27	29.66
CI 17430	HR	NEWANA 1/	80.26	57.10	32.29
NPB 926R	HR	WESTBRED 926R	82.15	56.30	30.25
VD 618	HR	GUS	82.23	57.77	36.22
CI 17828	HR	PONDERA	83.35	57.70	33.47
406 DI	HR	AMIDON	86.30	57.59	43.38
CI 15930	HR	OLAF	86.81	56.59	35.37
D 582	HR	STOA	89.71	56.99	41.21
IA 6920	SW	PENAWAWA	92.82	54.62	32.61
CI 17904	SW	OWENS	93.02	55.34	34.52

Table 5. Averages for the 1990 Lake and Ravalli County Offstation Spring Wheat Nurseries.

Mean

76.38

56.09

36.13

1/ Check variety

2/ TYPE = HR (Hard red), SW (Soft white)

Table 6.	Agronomic	: data from	n the 1990) Offstation	Triticale	nurser)
	grown on	the Northv	vestern A	Agricultural	Research	Center.
	Planted:	March 30,	1990	Harvested:	September	4, 1990

CI/STATE NUMBER '	VARIETY	YIELD BU/A 1/	TEST WT LB/BU	HEADING DATE	HEIGHT IN
TRITOT44	WAPITI	77.98	50.87	173.33	45.28
TRITJUAN	JUAN	75.57	51.97	174.00	42.65
TRITWELS	WELSH	69.42	48.27	173.00	44.23
CI 17430	NEWANA	68.50	57.73	173.00	32.55
TRITKRAM	KRAMER	68.43	46.57	170.33	38.45
TRITKARL	KARL	66.03	47.67	169.67	34.38
TRITOSUN	SUNLAND	62.57	53,80	173.00	37.66
TRITBEAG	BEAGLE 82	58.22	47.87	172.67	43.31
TRITCARM	CARMAN	57.30	47.97	172.00	43.04
TRITMARV	MARVAL	54.95	47.13	171.67	44.09
EXPERIMEN	ITAL MEANS	65.90	49.98	172.27	40.56
F TEST FO		11.50**	3.07*	.81	3.17*
	S OF X/X) *100	6.76	. 61	.30	3.86
LSD (0.05		13.24	.90	1.52	4.65

1/ Yield determined by 60 lb/bu test weight

* Indicates statistical significance at the .05 level of probability

** Indicates statistical significance at the .01 level of probability

PROJECT TITLE: Winter Wheat Variety Evaluations

YEAR/PROJECT: 1990/756

INVESTIGATORS: Leader - Vern R. Stewart, Todd K. Keener - Research Specialist. 99

OBJECTIVE: To evaluated winter wheat varieties for adaptability, yield, quality, and disease resistance.

RESULTS:

Moderate winter temperatures, ample precipitation through the season and a warm summer contributed to favorable yields in the winter wheat nurseries this year. The regional nurseries survived the winter conditions and were in excellent condition by early spring. Although there were not long periods of snow cover this year dwarf bunt (TCK) levels were moderate to high in some varieties. Excellent yields were harvested from both the Regional Hard Red and Soft White Winter wheat nurseries.

- 1990 Western Regional Hard Red Winter Wheat Nursery

With favorable weather and few disease problems the yields for this nursery were very high ranging from 127.45 bu/A to 46.23 bu/A. Six Oregon entires were the top yielding varieties in the nursery (Table 1). Test weights were good with few varieties weighing below 60 bu/A. Lodging was moderate to severe and occured in all but eight of the thirty-six varieties. Dwarf smut (TCK) was detected in all but six of the entries and was as high as 22.5% in Hybritech QT 549. Table 1.

- 1990 Western Regional Soft White Winter Wheat Nursery

Yields were very good in this nursery. The mean yield was 118.71 bu/A with all but three of the fourty entries having yields in excess of 100 bu/A. The yields of Kharkof and Elgin were depressed due to the degree of lodging and dwarf smut (TCK) infection. Dwarf smut was light throughout the nursery but was found at some level in all but five entries. Test weights were mostly above 60 lbs/bu in this trial with the average being 60.63 lb/bu. Lodging was much less in the soft white winter wheats with only eight varieties having light to moderate levels. Table 2.

- 1990 Intrastate Winter Wheat Nursery

Snow cover on winter wheat has been associated with the high incidence of dwarf smut. Although continuous snow cover was not considerable through out the winter (28 days continuous, 66 total days) there was moderate to high levels of TCK smut in the 1970 Intrastate Winter Wheat nursery. Levels were as high as 9.5% and only two varieties were found to have no smut (Blizzard and MT 8726). Sixteen varieties had levels below the 2% level. Winridge had a very slight evidence of TCK smut (.12%). Yields were good, ranging from 63 to 107 bu/A. Lodging was moderate in one third of the entries. Table 3. 100

-

Table 1. Agronomic data from the Western Regional Hard Red Winter Wheat Nursery grown on the Northwestern Agricultural Research Center, Kalispell, MT Planted: September 21, 1989 Harvested: August 14, 1990 Field E-4

CI/STATE NUMBER	VARIETY	YIELD BU/A	TEST WT LB/BU	HEAD DATE	HEIGHT INCHES			GING -
DR841708	CER//YMH/HYS	127.45	60.25	168.75	41.04	.63	.00	.00
DR840157	D887-74/PEW	125.90	62.82		42.32	.25		11.25
	TJB788-1089/ALDAN		61.65		33.37		.00	.00
DRCR8608	TAST/TORIM	110.23	63.28		37.89	.75	3.50	
DRCR8603	M1223-3D-1D(MI76-7		60.65		40.35	2.37	.00	.00
	VORO/MNIM,85B-839		60.73	167.25	37.89	1.50	.00	.00
	BEZ1/MNG/3/HNL//IT		61.53	168.00	40.16	.00	6.25	65.00
JT165093	ID51022/MNG	101.95	60.10	167.75	40.75	.00	2.25	15.00
DR832306	TJB368-251/BUC	101.26	60.85	165.50	38.09	6.00	.00	.00
DR830282	ND/P101//BUHO	98.70	61.95	159.75	38.19	.63	.00	.00
JT167187	ND/P101//BUHO WTN/MNG	98.68	61.00	163.25	36.91	.12	1.00	5.00
	HNL/USSR 2109-36		61.08	168.25	47.54	.00	9.00	67.25
ID 360	CNN/LEE*7/TF/5/SM4	94.61	60.98	168.75	39.47	1.25	1.50	7.50
DR831134	CNO/INIA/HN7/3/CC/	92.66	63.08	167.00	39.17	2.00	.00	.00
	JUDITH	92.40	59.18	163.75	45.57	7.00	8.75	84.75
NA 7647	286011/ANDREWS	90.44	61.98	169.25	47.83	2.87	8.00	61.25
JT160719	MNG/SMS	89.80	59.93	166.75	44.59	.00	6.75	74.25
D 355	MC#2/NP824/3/LMH66	86.85	61.18	167.00	47.41	1.25	6.75	80.00
D 381	ABERDEEN SELN	86.39	60.03	168.00	45.57	.00	9.00	95.50
T 542	HYBRITECH	84.84	60.90	162.50	47.15	14.00	8.50	93.25
1T 79125	UT755079/CST56//TX	84.30	59.57	167.75	45.18	4.25	7.25	77.25
D 361	CNN//7*LEE/TF/5/SM	81.06	59.78	169.75	38.78	3.00	5.00	27.50
ID 421	A74125W-16-3-1/A74	79.95	61.48	168.50	50.30	.00	8.50	93.00
JRCR8601	PMF//CNO S/GLL	79.39	61.13	166.00	48.13	5.50	4.25	27.50
IA 7626	HARD WHITE 1987 ML	78.03	61.43	167.00	46.46	1.50	4.50	49.75
	N7701501//V72044/C	77.74	60.60	169.25	44.59	8.75	8.50	97.00
D 422	CNN/LEE*7/TF/5/SM4	77.26	59.10	170.00	40.65	.63	3.50	55.00
D 364	ABERDEEN SELN	75.88	61.55	166.75	39.86	.50	.00	.00
	BPR 689-71/TI	73.11	60.18	167.75	48.92	.12	9.00	99.00
IA 7670	N7000063/K71056//N	71.75	61.25	170.50	46.95	.63	7.75	91.00
1517194	TIBER WANSER	70.70	60.60	167.25	50.20	7.50	9.00	96.75
I 13884	WANSER	67.75	60.87	167.50	52.46	13.00	6.75	85.00
IT 549	HYBRITECH	64.75	58.60	161.75	42.42	22.50	8.75	96.75
	N7000063/K71056//U	62.30	60.25	167.50	51.87	.75	9.00	94.75
VA 7523	BUCHANAN	61.74	56.55	170.25	49.51	6.00	9.00	99.00
I 1442	KARKHOF	46.23	58.85	167.75	39.57	15.75	9.00	99.00
YPERIMEN	ITAL MEANS	87.96	60.69	166.75	43.59	3.68	5.13	51.93
TEST FO			6.63*1					
	S OF X/X) \$100	6.39	.83	.34		43.03		
	5)	15.76		1.61			3.00	

**/ Indicates statistical significance at the .01 level of probability

Table 2.	Agronomic data from the Western Regional Soft White Winter Wheat
	nursery grown on the Northwestern Agricultural Research Center in
	Kalispell, MT. Field E-4
	Planted: September 20, 1989 Harvested: August 13, 1990

CI/STATE NUMBER	VARIETY	YIELD BU/A	TEST WT LB/BU	HEAD DATE	HEIGHT IN	% TCK SMUT		GING -
ID081277	SPN/Nacozari 76	140.63	60.43	165.75	36.81	.63	.00	.00
	MARKSMAN/DAWS, V					.25		6.25
	69-148/YMH/HYS						.00	.00
WA 7163	MADSEN	134.26	60.92	169.50	37.60		.00	.00
NA 7671	VPM/MS421//WA62	133.86	61.25	169.50	44.39	.37		
WA 7662	LUKE/DAWS//HILL	133.30	61.28	168.75	34.45	.00	.00	.00
DRF75336	YMH/MCD/2/T.SPE	133.18	60.68	167.25	36.61	.88	.00	.00
WA 7529	LUKE/VH67375//V	132.01	59.70	170.50	35.14	.00	.00	.00
ORFW8311	SPN2*/Thul III	129.40	61.40	165.00	37.11	.50	.00	.00
ORCW8632	CORVALLIS .SELEC	128.45	61.23	165.00	35.83			.00
CI 17596	STEPHENS	128.33	61.52	164.00	37.11			
DR840815	SMB/HN4//SPN/3/	127.99	62.03	164.75				
DRFW 301	DAWS/SM4//MDM/S	124.70	60.87	163.50	35.93	.50		
NA 7621	VPM/MS421//VH66	124.15	61.10	169.75		.25		
A 7527	TRES MULTILIE 8	124.00	60.83	170.25		.37	2.75	18.75
CI 17917	TRES (WA 6698				44.19		3.50	40.00
IA 7526	TRES COMPOSITE	123.65	61.38	170.00	43.01	.50		20.00
DRFW205B	FW73830-002/3/M						.00	.00
DRCW8635	CORVALLIS SELEC					1.37		.00
NA 7166	НҮАК	121.53	59.95	169.25		.63		
VA 7664	LEWJAIN/WA6813,	121.25	61.45	168.25				.00
	89-5 Comp. Mult				39.76		.00	.00
	PAHA//SEL 72-33					.50		.00
DR830801	CORVALLIS SELEC		59.57					.00
VA 7661	WA6581//BBE/AM7			171.25		.00		.00
NA 7665	TYEE//CAPPELLE/			169.00	39.96		.00	.00
R833725	CORVALLIS SEL	116.44		164.50	42.32			.00
	CORVALLIS SEL		60.50	161.50	37.20			.00
	CEBECO 148//CNO			158.75		.63		.00
IA 7627	WA096910, MARIS		60.45		37.50			
I 17419		111.69		167.75		.37		
	NUGAINES		62.33	167.75	34.94	3.25	.00	.00
	Luke/BR7404434				39.27			83.50
	VH088385		61.43					.00
IA 7666	VPM/MOS 951//CI				44.59			
	CORVALLIS SEL			159.25	33.96	.75	.00	.00
	1/DT/820/OM/183				24.80			
CI 13740		83.69			46.85			62.00
			61.40					68.25
	KHARKOF	67.88	60.13	168.00	51 18	21.25	9 00	96.00

EXPERIMENTAL MEANS 118.71 60.63 167.63 38.86 1.59 .98 9.87

Statistics on following page

Table 2. (Cont'd)

CI/STATE NUMBER	VARIETY	YIELD BU/A	TEST WT LB/BU		HEIGHT IN			
EXPERIMENT		118.71			38.86			9.87 *12.89**
	G OF MEAN/MEAN)				2.34			
LSD (0.05)		17.95	.89	1.74	2.55	2.08	1.77	19.02
**/ Indic	ates statistical	signific	ance at	the .01	level o	of proba	ability	

St. Washington and

4

102

の意思意

103

Table 3. Agronomic data from the Intrastate Winter Wheat nursery grown on the Northwestern Agricultural Research Center in Kalispell, MT. Planted: September 20, 1989 Harvested: August 12, 1990 Field X-3

CI/STATE NUMBER		YIELD BU/A	TEST WT LB/BU				- LODG SEVER.	
MT 8039	JUDITH	107.49	62.40	162.75	44.78	3.25	.00	.00
MT 8599	JUDITH CST//FRD1650/OLE	107.41	62.58	163.25			2.00	22.50
MT 88064	CST/VT 1230//ID7	105.93	61.30	168.25			5.50	46.25
MT 88065	CST/VT 1230//ID7	105.21	62.98	168.75	44.49	.50	2.00	6.25
CI 17860	CST/VT 1230//ID7 NEELEY HYBRITECH 549	104.05	63.13	168.50		5.50	2.50	35.00
QT 549	HYBRITECH 549	102.05	62.60	161.25	44.49	4.75	.00	.00
MT 88050	PMN5/MT 77003//H	101.56	62.05	168.25	42.62	3.75	.00	.00
	FRD/WNK//MT 692	101.21		167.75		3.25	.00	.00
RH78W296	BIGHORN			167.75	40.16	1.88	.00	.00
CI 17902	BIGHORN WINRIDGE	98.61	62.80	168.50		.12		12.50
	MSC/CTK A+//IUL			161.50		.37	.00	.00
	RRI/MT 6928			167.25			.00	.00
	HP 340/NRS//MT 7	95.95		167.00			.00	.00
	BLIZZARD	95.76	63.25	166.75			.50	20.00
MT 8726	CST/VT1230//ID74	95.16	61.08	168.25				7.50
QT 542	HYBRITECH 542	94.79	63.28	162.25	46.75	1.50	.00	.00
XNH 1401	HYBRITECH 1401	94.73	63.60	164.00	48.23	3.50	.00	.00
MT 8502	ID745101/LCO	94.51	62.28	166.75	43.01	4.25		
CI 15075	CENTURK	94.43	63.50	163.25	48.33	4.63	1.25	18.75
MT 8508	CST//FRD1268/OLE	94.15	63.60	164.00	50.79	1.88	.00	.00
PI517194		93.51	63.25	167.50	52.17	7.25	.00	.00
MT 85200	FRD/WNK//MT 692	92.95	62.10	163.25	39.47	4.88	.00	.00
MT 88038	PMNS/WN//MT 7216	92.60	62.28	166.75	50.59	9.50	2.25	21.25
MT 8713	MSC/CTK A+//IUL	92.13	62.80	165.50	38.58	2.00	.00	.00
	PMN5/WN//HP 344/			163.50	45.96	6.00	.00	.00
MT 8709	MSC/CTK A+//IUL	90.96	62.17	167.50	38.98	3.38	.00	.00
CI 17879	ROCKY	89.61	63.25	165.75	48.82	5.25	5.25	72.50
MT 85202	FRD/WNK//MT 692	87.75	62.10	167.50	50.89	2.62	2.25	47.25
MT 88025	PMN5/WN//HP 344/	86.50		163.25	45.87	6.00	.00	.00
		86.49		164.75				.00
	PMN5/WN//HP 344/			165.00				18.75
PI491533	NORWIN	85.85	62.30	168.25	33.66	6.75	.00	.00
CI 17844		85.75	62.40	166.75	50.10	8.50	2.25	7.50
	HP 340/NRS//MT 7	85.61	62.38	166.00		3.38	.75	24.75
	CTK 78/MT 77003/	85.55	63.30	162.75		3.00	.00	.00
	CTK 78/MT 77003/	84.86	63.40	164.75		1.62	.00	.00
	PMN5/WN//HP 344/	84.84	62.38	163.75		6.00	.00	.00
	PMN5/WN//HP 344/	84.05	62.78	164.00		3.25	.00	.00
	PMN5/WN//HP 344/	82.70	61.85	161.75		3.00	.00	.00
Contraction of the second s	RRI//YOGO/TPR	81.80	62.35	167.50	51.67	4.50	.75	15.00
	CST/VT 1230//ID7	81.19	62.50	169.25		.88	6.50	40.00
	PMN5/WN//HP 344/	81.16	61.98	163.75		8.75	.00	.00
	PMN5/WN//HP 344/	80.45		161.50		5.00	.00	.00
MT 88014	PMN5/WN//HP 344/	80.40	62.40	167.00		6.25	1.50	43.50
		Cont'o	d on next	page _				

Table 3 (Cont'd). Agronomic data from the Intrastate Winter Wheat nursery

CI/STATE NUMBER VARIETY	YIELD BU/A		T HEAD DATE				
ND 8002 SEWARD	80.31	62.73	167.75	51.87	5.75	3.00	41.25
T 88030 HP 340/NRS//MT 7			166.50		9.50	.00	.00
1T 88046 PMN5/MT 77003//H	79.29	62.80	161.50	43.80	5.50	.00	.00
T 88001 SMT/TD//YGSS	79.08	62.93	168.50	32.09	3.63	.00	.00
MT 88023 PMN5/WN//HP 344/	78.91	61.35	163.25	46.46	5.00	.00	.00
PI491532 CREE	78.25	62.43	168.25	53.25	1.75	5.50	79.75
CI 13670 WINALTA		62.58	167.75	54.23	5.00	3.50	87.50
T 88035 MT 7216(LR117)/F	76.54	62.70	166.75	53.05	1.25	1.50	12.50
CI 17735 NORSTAR	76.46	62.28	169.75	56.89	9.75	7.25	85.00
1T 88057 MSB 20/CN SR303/	76.20	63.33	166.75	47.74	2.37	.00	.00
1T 88022 PMN5/WN//HP 344/	74.80	61.63	162.75	46.06	3.75	.00	.00
I 8885 CHEYENNE	74.00	62.30	168.00	51.48	4.75	6.50	91.00
CI 17439 ROUGHRIDER	73.69	62.68	167.50	54.43	3.50	1.25	35.00
D 8407 CTK/3/FRD#2//ND			167.75	53.15	8.25	7.75	73.75
1T 7863 FRD/WNK//CTK	70.23	62.10	163.25	57.38	2.50	.00	.00
1T 88005 WSC/YOGO//RSC/3/	69.56	61.40	167.75	54.33	.88	1.75	71.00
PI478771 AGASSIZ			168.75	55.41	2.00	.75	12.50
1T 88006 WSC/YOGO//RSC/3/	63.05	60.20	167.25	53.35	1.00	.00	.00
XPERIMENTAL MEANS	87.25	62.47	165.85	47,79	3.87	1.27	16.91
TEST FOR VAR.	8.67	*10.47*	* 18.64	**64.36*	*2.05*	4.37*	* 5.62
.V. 2: (S OF MEAN/MEAN) *							
SD (0.05)						2.75	31.26

****** Indicates statistical significance at the .01 level

6

and the set of the set

YEAR/PROJECT: 1990/758 DRYLAND PEA VARIETY YIELD TRIAL

PERSONNEL: Leader - Leon Welty Research Specialist - Louise Prestbye In cooperation with Dr.Fred Muehlbauer, USDA

Twelve varieties of peas were seeded on 4/13/90 at 160 lbs/a. Seed had been pre-treated with fungicide. Plots consisted of four 12 foot rows with one foot row spacing and two feet between Plots were later trimmed back to 8 feet, resulting in a plots. harvest area of 40 square feet. The experimental design was a randomized complete block with 4 replications. PS610124 and Umatilla emerged 12 days after seeding, Trapper emerged 14 days after seedeing, and all the other varieties emerged 13 days after Stands ranged from 13 to 16 plants per square foot. seeding. IMPCS was the earliest to begin flowering, and Trapper was the latest. The number of nodes to first flower ranged from 13 on Umatilla to 8 on Columbian, PS610008, and IMPCS. Latah matured earliest and Columbian, PS610008, Alaska 81, and PS610415 matured latest. Height varied from 44 inches (IMPCS and PS310126) to 54 inches (Latah and Alaska 81). Trapper's seeds were significantly smaller than any other's, with 6258 seeds per pound. There was a 40% difference in yield between IMPCS, the highest yielding variety, and Trapper, the lowest yielding.

			1st				SEED	
VARIETY	EMERG	STAND	BLOOM	NODES	HEIGHT	MATURITY	SIZE	YIELD
	days	pl/ft	days	to 1st	inches	days	no/lb	lbs/a
	1/		2/	bloom		3/		
IMPCS	13	14	62	8	44	96	3137	1726
Latah	13	14	67	10	54	94	3881	1666
PS610124	12	16	66	11	49	95	2975	1552
PS310126	13	15	70	12	44	96	3873	1400
PS610585	13	14	66	12	46	95	3620	1398
Columbian	13	16	63	8	47	97	3270	1346
PS610008	13	15	64	8	50	97	3991	1306
Alaska 81	13	15	64	9	54	97	3924	1218
PS610683	13	14	67	11	47	96	3383	1139
PS610415	13	15	65	9	49	97	3378	1123
Umatilla	12	14	69	13	48	96	3020	1117
Trapper	14	13	75	12	49	96	6258	1031
LSD(0.05)	1	2	1	1	4	2	681	487
P-VALUE	0.00	0.33	0.00	0.00	0.00	0.19	0.00	0.10
CV (S/MEAN)	4.1	9.5	1.0	8,3	5,6	1.5	12.7	25.3
1/ Day 13 =	= 4/26							

WESTERN REGIONAL DRY PEA YIELD TRIAL - 1990 KALISPELL, MT

1/ Day 13 = 4/262/ Day 62 = 6/143/ Day 96 = 7/17

Seeding date: 4/13/90 Fertilizer: 44 lbs/a P205 - 5/23

YEAR/PROJECT: 1990/758 DRYLAND LENTIL VARIETY YIELD TRIAL

PERSONNEL: Leader - Leon Welty Research Specialist - Louise Prestbye In cooperation with Dr. Fred Muehlbauer, USDA

On 4/13/90, ten lentil varieties were seeded in a randomized complete block design with 4 replications. Plots consisted of four 12 foot rows spaced 1 foot apart with 2 feet between plots. After emergence, rows were trimmed back to 8 feet.

Plants emerged 11 to 13 days after planting. LC760273 and LC660819 had the best stand (19-20 plants /sq.ft.). Crimson took longer to flower than any other variety, while Redchief was the earliest. There was a 14 day range in time to maturity. LC460007 was earliest, with 102 days after seeding. Emerald was slowest to mature - 116 days. Height varied from 15 inches (LC460007) to 23 inches (Laird). All plants from each plot were pulled when they reached maturity (leaves, stems and seed pods mostly yellow to brown), and thrashed when dry. There was a great deal of overlap in yields, which ranged from 1747 lbs/a for LC760273 to 1317 lbs/a for LC660819. Laird, which was the top yielding variety in 1989 (1747 lbs/a) did not perform as well in 1990 (1322 lbs/a). LC460007 had the smallest seeds (16780/lb) and Laird, Benewah, and Palouse had the largest (6816, 7017, and 6722 seeds/lb, respectively).

			lst				
VARIETY	EMERG	STAND	Bloom	HEIGHT	MATURITY	SEED SIZE	YIELD
	days	pl/ft2	days	inches	days	no/lb	lbs/a
	1/		2/		3/		
LC760273	12	19	72	17	110	11680	1747
Crimson	13	15	75	18	110	14175	1627
LC460007	13	15	71	15	102	16780	1608
Benewah	11	16	70	18	111	7017	1561
Emerald	11	15	73	22	116	8299	1462
Palouse	12	14	70	19	107	6722	1428
Rose	12	15	71	16	106	12030	1407
Redchief	11	15	69	19	107	9267	1398
Chilean 78	12	16	73	20	112	9230	1366
Brewer	12	15	70	17	107	8298	1348
Laird	12	15	74	23	112	6816	1322
LC660819	11	20	71	20	108	14120	1317
LSD(0.05)	1	2	1	3	5	1228	343
P-VALUE	0.00	0.00	0,00	0.00	0.00	0.00	0.24
CV (S/MEAN)	5.5	9,2	1.4	11.1	3.4	8,2	16.3
1 / Day 10 -	4 /05						

WESTERN REGIONAL LENTIL YIELD TRIAL - 1990 KALISPELL, MT

1/ Day 12 = 4/25 2/ Day 72 = 6/24 3/ Day 110 = 8/1

Seeding date: 4/13/90 Fertilizer: 44 lbs/a P205 - 5/23

,

YEAR/PROJECT: 1990/758

SPRING RAPESEED VARIETY TRIAL

PERSONNEL: Leader - Leon Welty Research Specialist - Louise Prestbye In cooperation with Dr. Jim Sims, MSU

Nine varieties of spring rapeseed were planted on 4/26/89 at 7 lbs/acre. Tobin (a <u>B. campestris</u> variety) was first to flower on 6/18, and MLCP035 was latest on 6/30. Tobin matured on 7/20, while DSVSR126 and MCLP035 matured on 8/10. Mature heights varied from 50 inches (MLCP035) to 41 inches (Legend). All plants from each plot were cut and bundled and thrashed when dry. A harvest area of 50 sq.ft. was used to determine yields. MLCP008 produced significantly more seed than Hyola 41 and Tobin.

1990 SPRING CANOLA INTRASTATE YIELD TRIAL Kalispell,MT

VARIETY	EMERG days 1/	5/31 VIGOR (0-5)	FIRST BLOOM days 2/	MATUR days 3/	HT in	YIELD lbs/a		
MLCP008	11	2	62	105	48	2172		
Westar	10	3	62	101	49	2155		
DSVSR126	10	3	63	106	47	2026		
Delta*	10	5	63	104	48	2005		
Pactol*	11	3	63	105	46	2000		
Pactol	11	2	63	105	44	1972		
MLCP035	10	4	65	106	50	1944		
Hyola 40	10	4	59	100	46	1890		
Legend	10	3	59	103	41	1737		
Hyola 41	10	4	59	98	44	1697		
Tobin	10	4	53	88	42	1253		
LSD(0.05)	0	1	1	2	4	475		
P-VALUE	0.00	0.00	0.00	0.00	0.00	0.03		
CV(s/mean)	2.1	20.4	0.9	1.5	5.4	17.3		
Cr (s/mean)	4,1	20.1	0.5	1,5	0.1	17.5		
Seeding date: 4/26/90 at 7 lbs/a								

Fertilizer: 5/23/90 - 64 lbs N/a, 44 lbs P205/a, 20 lbs S/a

1/ Day 11 = 5/7 2/ Day 62 = 6/27 3/ Day 105 = 8/9

* used for comprehensive testing

YEAR/PROJECT: 1989-90/758 WINTER RAPESEED (CANOLA) VARIETY TRIAL - DRYLAND

PERSONNEL: Leader - Leon Welty Research Specialist - Louise Prestbye In cooperation with Dr. Dick Auld, Univ. of Idaho

Twenty-four varieties of <u>Brassica napus</u> (Argentine rape) and six varieties of <u>B. campestris</u> (Polish rape) were seeded 8/29/89. On the average, <u>B. campestris</u> flowered and matured about one week before <u>B. napus</u>. Yields of <u>B. napus</u> ranged from 5688 lbs/a (KWC386) to 2841 lbs/a (LEI-III). Yields of <u>B. campestris</u> ranged from 3430 lbs/a (SV01532) to 2536 lbs/a (SV01552). <u>B. napus</u> varieties yielding more than 4000 lbs/a included KWC386, Diadem, Glacier, Ceres, KWC158, ES-8917, ES-8918, SV0216 and KWC4. <u>B. campestris</u> varieties yielded from 3430 lbs/a (SV01532) to 2536 lbs/a (SV01552). Precipitation during the 1989-1990 crop year was over 6 inches higher than average, and the frost-free period was 37 days longer than average. In the absence of summer drought stress and with longer fall and earlier spring growth periods, <u>B. napus</u> varieties produced more seed than <u>B. campestris</u> varieties. Under dryer and colder conditions, however, the earlier flowering and maturation periods and better shatter resistance of <u>B. campestris</u> may be advantageous.

YIELD

lbs/a

5688

4727

4558

4396

4277

4096

4094

4076

4044

3850

3847

3801

3705

3646

3642

3547

3307

3279

3197

3087

3028

3012

2876

110

「「「」」

Brassica	napus					
		ST	AND	FIRST		
	EMERGENCE	Fall	Spring	FLOWER	MATURITY	HEIGHT
VARIETY	date	ж	%	date	date	in
KWC386	9/7	76	63	5/17	7/23	60
Diadem	9/6	88	69	5/18	7/22	58
Glacier	9/7	67	76	5/18	7/23	61
Ceres	9/6	65	58	5/15	7/21	62
KWC158	9/5	79	70	5/13	7/19	- 61
ES-8917	9/5	93	62	5/15	7/22	60
ES-8918	9/5	90	66	5/16	7/23	56
SV0216	9/6	72	76	5/12	7/20	60
KWC4	9/5	91	68	5/15	7/20	57
Samourai	9/5	89	49	5/11	7/24	50
Crystal	9/7	76	77	5/18	7/22	56
SV0255	9/6	79	70	5/16	7/22	56
ES-8916	9/6	81	74	5/15	7/21	55
SV0506	9/5	87	86	5/16	7/22	56
Bienvenu	9/5	97	75	5/9	7/21	49
Cobra	9/4	93	58	5/16	7/22	60
SV0508	9/5	94	63	5/13	7/21	60
Bridger	9/6	78	77	5/11	7/20	60
Tapidor	9/5	91	62	5/12	7/20	51
Cascade	9/6	81	81	5/10	7/19	50
Humus	9/5	84	74	5/9	7/18	55
Aspen	9/5	89	75	5/11	7/21	52
Olein	9/6	94	79	5/12	7/18	51
LEI-III	9/6	67	81	5/12	7/20	57

LE 7 2841 9/6 83 81 5/13 7/21 Average 143 3776 3 LSD(0.05) 1 12 14 2 772 6 0.00 P-VALUE 0.00 0.00 0.00 0.00 0.00 0.00 CV(s/mean) 13.4 10.2 14.6 9.5 9.0 6.9 14.5

Seeding date: 8/29/89 Fertilizer: Fall, 1989 - P205 - 44 lbs/a Spring, 1990 - N - 85 lbs/a Pesticides: 8/29/89 - Treflan - 0.5 lb AI/a NATIONAL WINTER RAPESEED VARIETY TRIAL - KALISPELL,MT - 1989-90 Brassica campestris

		ST	AND	FIRST			
EM	ERGENCE	Fall	Spring	FLOWER	MATURITY	HEIGHT	YIELD
VARIETY	date	%	%	date	date	in	lbs/a
	/89			/90	/90		
Ceres *	9/7	54	63	5/17	7/22	60	5763
Bienvenu *	9/7	62	68	5/11	7/22	48	4712
Tapidor *	9/7	67	66	5/12	7/21	51	4282
Cascade *	9/7	66	72	5/11	7/19	54	4105
SV01532	9/6	56	87	5/5	7/14	63	3430
SV PER	9/5	82	95	5/4	7/11	64	3420
SV01551	9/7	43	72	5/5	7/10	66	3089
SV01531	9/5	74	96	5/5	7/9	62	2716
SV01533	9/6	54	82	5/5	7/10	67	2682
SV01552	9/6	55	82	5/5	7/10	63	2536
LSD(0.05)	1	13	11	3	3	7	761
P-VALUE	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CV(s/mean)	7.2	14.3	9.9	25.3	12.5	8.5	16.0

* B. napus checks

YEAR/PROJECT: 1990/758 STATEWIDE LEGUME ADAPTATION TRIAL -IRRIGATED

PERSONNEL: Leader - Leon E. Welty Research Specialist - Louise Prestbye In cooperation with Dr. Jim Sims, MSU

Twelve small-seeded and six large-seeded annual legume varieties were planted May 10, 1990. Plots were harvested for forage one to three times, depending on regrowth. Total forage yields ranged from 1.01 to 5.12 t/a. Varieties yielding over 3.00 t/a were Multicut and Bigbee berseem clovers, Maral Schaftal clover, Nitro alfalfa, Jemalong barrel medic and Tinga Tangier flatpea.

STATEWIDE LEGUME ADAPTATION TRIAL - KALISPELL - 1990

SPECIES	IDNO	1st Harv	2nd Harv	3rd Harv	TOTAL
			-YIELD (t/	a)	
Multicut Berseem Clover	33	1.79	2.06	1.27	5.12
Maral Schaftal Clover	38	2.12	1.94	0.57	4.64
Nitro Alfalfa	43	1.25	1.53	1.42	4.21
Bigbee Berseem Clover	32	1.85	1.31	0.94	4.09
Jemalong Barrel Medic	42	1.78	0.90	0.63	3.31
Tinga Tangier Flatpea	45	1.67	0.76	0.87	3.30
Comman Yellow Sweetclover	34	0.76	1.36	0.38	2.50
Mt.Barker Subterranean Clover	36	0.75	1.58	0.15	2.48
Cahaba White Vetch	51	1.54	0.49	0.26	2.30
George Black Medic	41	1.28	0.43	0.42	2.14
UI114 Pinto Bean	48	0.83	0.99	0.29	2.11
Semu-SI Feed Pea	46	2.05			2.05
Robinson Snail Medic	37	1.87			1.87
Indianhead Lentil	31	1.84			1.84
Austrian Winter Pea	40	1.74			1.74
Red Chief Lentil	47	1.18	0.22		1.40
Youchi Arrowleaf Clover	39	0.42	0.64		1.05
Paraponto Gamma Medic	35	1.01			1.01

LSD(0.05) 0.63 P-VALUE 0.00 CV(s/mean) 14.5

Seeding date: 5/10/90 Fertilizer: 5/23/90 - P205 - 44 lbs/a Irrigation: 2 x 2" = 4"

YEAR/PROJECT: 1988-90/758: ANNUAL FORAGE LEGUME MANAGEMENT FOR SUSTAINING NITROGEN

PERSONNEL: Leader - Leon Welty Research Specialist - Louise Prestbye In cooperation with Dr. Mal Westcott, WARC

'Nitro' annual alfalfa and 'Bigbee' berseem clover were managed for hay only, hay and green manure, and green manure only in 1988. The nursery was cropped to barley in 1989 to measure N contribution through crop response. When two hay harvests were taken in 1988 and the regrowth was green manured, barley yields in 1989 were maximized for each species without additional fertilizer nitrogen. In 1990 the nursery was again cropped to barley to determine residual N effects for the second year. There were no significant differences in 1990 grain yields among main effects or among the interactions between species and management in 1988.

IRRIGATED NITROGEN ECONOMY STUDY - 'NITRO' ALFALFA vs 'BIGBEE' BERSEEM CLOVER

BARLEY GRAIN YIELDS - 1990

1988 CROP

TDEATMENT

IREAIMENI	Nitro	Bigbee	Barley	Mean
GM 1 Hay + GM 2 Hay +GM 3 Hay 3 Hay + GM	97.7 98.8 95.7 94.9 93.4	91.6 92.1 94.5 91.9 98.8		94.7 95.5 95.1 93.4 96.1
0-N 30-N 60-N 90-N 120-N			92.7 98.6 103.9 99.5 96.9	
Mean	96.1	93.8	98.3	

No significant differences (P<0.05) between main effects or interaction means

Fertilized 4/23/90: 44 lbs P/a 5/17/90: N applied to reference plots (30, 60, 90, & 120 lbs/a)

YEAR/PROJECT: 1990/758: LEGUME ROTATION STUDY

PERSONNEL: Leader - Leon Welty Research Specialist - Louise Prestbye In cooperation with Dr. Mal Westcott, WARC

The first of the four-year rotation treatments were initiated in 1990. Treatments are as follows:

- 1) Perennial alfalfa yrs 1-3; barley yr 4.
 - 2) Continous barley, no added N 4 yrs.
 - 3) Continous barley, 45 lbs N/a 4 yrs.
 - 4) Continous barley, 90 lbs N/a 4 yrs.
 - 5) Berseem clover, 1 forage harvest + green manure yrs 1 & 3; barley - yrs 2 & 4.
 - 6) Berseem clover, 2 forage harvests + gm yrs 1 & 3; barley - yrs 2 & 4.
 - 7) Berseem clover, 3 forage harvests, plow stubble yrs 1 & 3; barley - yrs 2 & 4.
 - Berseem clover, intercropped with oats, 1 forage harvest + gm - yrs 1 & 3; barley - yrs 2 & 4.
 - 9) Spring pea, gm yrs 1 & 3; barley yrs 2 & 4.
- 10) Spring pea, forage harvest, plow regrowth yrs 1&3 barley yrs 2 & 4.

Prior to planting, soil samples were taken to 4 ft in one foot increments. Samples will be analyzed for NO3-N, NH4-N, TKN, OM, pH, P, K and S in the top foot, and NO3-N and NH4-N at the other depths.

Herbage samples were taken from each plot at harvest or incorporation to be analyzed for TKN, P, K and S. Total dry matter yields were determined for each plot at each harvest and either removed or returned to the plot for green manure plowdown. Treatment 8 yielded 4.25 t/a over the season, with 2.29 t/a removed as forage and 1.96 t/a returned to the plot and plowed under. Spring pea produced the least, with only 1.29 t/a. The barley reference plots produced 83 bu/a (3984 lbs/a) grain and 780 lbs/a straw.

NITROGEN ECONOMY STUDY, FARMER COOPERATOR, 1990

TREATMENT			PLOWDOWN
Perennial Alfalfa Berseem Clover - 1 hay + gm Berseem Clover - 2 hay + gm Berseem Clover - 3 hay Berseem + Oats Spring Pea - gm Spring Pea - forage	2.92 3.52	2.92 1.20 2.33	2.32 0.90 1.96 1.29
Mean LSD(0.05) P-Value CV(s/mean)	2.85 0.61 0.00 14.4		
Barley Reference Plot Means: STR	AW YIELD	= 0.39 t	/a

GRAIN YIELD = 83 bu/a

Seeding date: 5/10/90 Fertilizer: N on reference plots - 68 lbs/a 5/23/90 - P205 - 66 lbs/a Irrigation: 4.20"