FORTYFOURTH ANNUAL REPORT 1992

Northwestern Agricultural Research Center of the
Agricultural Experiment Station
Montana State University

4570 Montana 35 Kalispell, MT 59901

Prepared by

Leon E. Welty
Professor of Agronomy and Superintendent
Robert N. Stougaard
Assistant Professor, Weed Science
Todd K. Keener
Agric. Research Specialist II
Louise S. Prestbye
Agric. Research Specialist I

Contents of this report may not be published or reproduced in any form without consent of the research workers involved.

TABLE OF CONTENTS

Proje	ect No.	bnelviG-lairT bleiY silgitA exteenal 039 Pag	e No.
		DISTRIBUTION	1
	750	ADMINISTRATION	2
	751	GENERAL FARM	3
	752	PHYSICAL PLANT	3
		ACTIVITIES	4
		CLIMATOLOGY	6
	754	WEED CONTROL IN FARM CROPS	
		Economic Threshold for Wild Oat in Small Grains (Kalispell location)	18
		Input Analysis Study	20
		Reduced Wild Oat Herbicide Rate Study	22
		Hoelon Surfactant Study	24
		Broadleaf Surfactant Study	27
		Assert Tank-Mix Antagonism Study	30
		Forage Grass Establishment Study	33
		Wild Oat Management for Baby Peppermint	37
		Reduced Rate Postemergence Study on Peppermint	39
		Pursuit Rate and Application Timing Study on Lentils	42
		Postemergence Herbicide Study on Lentils	44
		Herbicide Tolerance Study on Canola	46
		Poast Rate and Timing Study on Canola	49
		Evaluation of Ally for the Control of Sulfur Cinquefoil	51

Project	No.	Pag TABLE OF CONTENTS	e No.
	755	FORAGE CROP INVESTIGATIONS	
		1980 Intrastate Alfalfa Yield Trial-Dryland	53
		1988 Intrastate Alfalfa Yield Trial-Dryland	55
		1988 Intrastate Alfalfa Yield Trial-Irrigated	57
		1989 Intrastate Alfalfa Yield Trial-Dryland	58
		1989 Intrastate Alfalfa Yield Trial-Irrigated	60
		1990 Intrastate Alfalfa Yield Trial-Dryland	62
		1990 Intrastate Alfalfa Yield Trial-Irrigated	64
		1991 Intrastate Alfalfa Yield Trial-Dryland	66
		1991 Intrastate Alfalfa Yield Trial-Irrigated	68
		1992 Intrastate Alfalfa Yield Trial-Dryland	70
		1992 Intrastate Alfalfa Yield Trial-Irrigated	71
		Alfalfa Fall Management Study Seeded 1989	72
		Simulated Short Duration Grazing Study	74
,	756	SMALL GRAIN PRODUCTION	
		Intrastate Spring Barley Evaluations	76
		Early Yield Spring Barley Evaluations	79
		Uniform Northwestern Oat Nursery	82
		Western Regional Spring Wheat Variety Evaluations	84
		Advanced Yield Spring Wheat Nursery	86
		Western Regional Hard Red Winter Wheat Variety Evaluations	88
		Western Regional Soft White Winter Wheat Evaluations	90
		Intrastate Winter Wheat Evaluations	92
		Seed Treatment Dwarf Bunt Control in Winter Wheat	95

DISTRIBUTION OF THE 1992 NORTHWESTERN AGRICULTURAL RESEARCH CENTER REPORT

COPIES

- Plant & Soil Science Department
- 4 Research Center Staff, N.W. Agricultural Research Center
- 12 County Extension Agents in Northwestern Montana

Program Coordinator - Richard Williams - Barbara Andreozzi Deer Lodge Flathead - Bruce McCallum - J. David Patten Granite Lake - Jack Stivers - Bart Slaugh Lincoln Mineral - Kevin Chamberlain Missoula - Gerald Marks Powell - David Streufert - G. Rob Johnson Total State of the Control of the Ravalli Sanders - John Halpop Flathead Reservation - Don Heaney

- 1 Agricultural Stabilization and Conservation, Kalispell
- 1 Flathead Chapter Future Farmers of America
- 1 Soil Conservation Service, Kalispell
- 5 Feed Mills

Co-op Supply, Inc., Ronan

Equity Supply Co., Kalispell

Farmers Union Ex., Kalispell

Westland Seeds, Inc., Ronan

Lake Glacier View Farm, Ronan

1 MSU Western Agricultural Research Center Advantage and Advantage a

ADMINISTRATION 750

The Administration Project at the Northwestern Agricultural Research Center includes expenses for the overall operation of the center, personnel and office equipment purchased.

Full Time Staff Members	Years in	Service	e
Leon E. Welty - Supt. & Prof. Agronomy (Began January 1973)	Plant.	19	
Robert N. Stougaard - Assistant Professor, Weed Science (Began November 1991)		1	
Todd K. Keener - Ag Research Spec. II (Began March 1978)		14	
Gary R. Haaven - Ag Research Spec. I (Began April 1982)	.1900.	10	
Louise S. Prestbye - Ag Research Spec. I (Began May 1983)		9	
Elaine M. Sprenger - Secretary II (Began August 1990)	Lake	2	
Christopher M. Steele - Farmer (Began February 1991)		1	
Part Time Employees:			
Patrick Gyles (June 15 through August 21)			
Stephen Andree (July 9 through July 17)			
Student Employees:			
Gail Sharp (April 7 through December 31) asnoW .com yluque qo-			
David Alzner (May 11 through August 21)			
Helen Hedstrom (May 18 through August 5) and must work settled to			
Steve Jensen (May 18 through August 21) May 18 through August 21)			
Ann Hedstrom (July 8 through August 5)			

GENERAL FARM 751

The General Farm Project (751) supports all research projects. This includes items purchased and used in the total research program. The following were purchased in 1992:

Wiscons	sin engine for	Almaco - replacement engine	\$2,946.00	
2 Comp	outers		\$4,690.00	
Kubota	Tiller		\$ 575.00 (w/	'trade in)
Laser Je	et Printer	& Equity Supply Meeting search Meeting	\$1.425.00	
Irrigatio	n Wheel Line		\$6,050.00	
Copier			\$1,835.00	
		Suciety Weed Science		
		TOTAL	.\$16,096.00	

PHYSICAL PLANT 752

The Physical Plant Project (752) includes the maintenance of buildings and grounds at the Northwestern Agricultural Research Center.

ACTIVITIES 1992

Date	Activity	<u>Who</u>	Where
1/14	Hay Growers Conference	Welty	Bozeman
1/15	Mint Industry Research Council Meeting	Stougaard	Las Vegas
1/23	Advisory Committee Meeting -	Welty	Missoula
1/23	NWARC & WARC	Stougaard	111000011
1/27-31	Planning Conference	Welty	Bozeman
1/2/-31	Training Conference	Stougaard	Ma hossicating
2/2	Wild Oat Seminar	Stougaard	Power
2/3	Wild Oat Seminar	Stougaard	Ft. Benton
2/4		Stougaard	Great Falls
2/5	Wild Oat Seminar	Stougaard	Cutbank
2/6	Wild Oat Seminar	The state of the s	Conrad
2/7	Wild Oat Seminar	Stougaard	
2/11	Western Montana Mint Growers Meeting	Welty Stougaard	Kalispell
2/12	Producer & Equity Supply Meeting	Stougaard	Kalispell
	Producer & Equity Supply Meeting	Welty	NWARC
2/13	Mint Research Meeting	Stougaard	NWARC
2/27	Hay Producers Meeting	Welty	Kalispell
3/2	Budget Meeting	Welty	Bozeman
312	Budget Weeting	Stougaard	15190
3/11	Western Cogisty Wood Science	Stougaard	Salt Lake
	Western Society Weed Science	Welty	Corvallis
3/11	Sustainable Agriculture	Welty	Kalispell
4/9	Hay Growers	Welty	NWARC
4/15	Cayuse Prairie Students Tour	•	NWARC
4/0.4	F. d. 11. Comme	Stougaard	Craston
4/24	Eastside Grange	Welty	Creston
4/29	Rotary Tour-visiting Frenchmen	Welty	NWARC
~ 10		Stougaard	Casatan
5/8	Flathead Leadership Meeting	Welty	Creston
5/19	WRCC-69 Committee	Stougaard	Portland
6/12	MAES Advisory Council	Welty	NWARC
		Stougaard	
6/16	Flathead High Teachers Tour	Welty	NWARC
6/20	Amish Producers Meeting	Welty	Rexford
7/16	Field Day	Welty	NWARC
		Stougaard	
7/21-22	PNW Forage Workers Meeting	Welty	Sun Valley
7/22	Summer Conference	Stougaard	Miles City
7/29	Mint Producers Tour	Welty	NWARC
		Stougaard	
8/4	Air Stream Tourist Tour	Welty	NWARC

ACTIVITIES 1992 - continued

<u>Date</u>	Activity ATAG JADIDO IOTAMIJO	Who	Where
8/20	Budget Meeting	Welty	Bozeman
8/20	Australian Visitor Tour	Stougaard	NWARC
9/8-9	Superintendents Meeting	Welty	Lewistown
9/29	MAES Budget Recision Meeting	Welty	Kalispell
10/15	Advisory Committee Meeting	Welty	Missoula
10/18	Legislative Meeting	Welty	Creston
10/18	Mint Certification Meeting	Welty	Creston
10/19	Swan River Students - Tour	Welty	NWARC
10/20	Mint Research Meeting	Welty	NWARC
10/29	Western Canola Development Meeting	Stougaard	Missoula
11/2	American Society of Agronomy	Stougaard	St. Paul
12/1-2	Research Center Staff Conference	Welty	Great Falls
12/7-8	MT AgResearch Advisory Board Meeting	Welty	Bozeman
12/11	Advisory Committee Meeting	Welty	Missoula
12/14	Flathead Conservation District Meeting	Welty	Kalispell
	U tendu manuw nol sulitions line with at hot	uniferace noin	w ylavnosuso

fern temperatures for the growing season were higher than the long term average, give temperatures were experienced during the mild winter months of December, coursely, and February which may explain the very low leads of winter fall in wheat ofly spring temperatures were also above average in March, April and May and aided many fields being second during tury, or many fields being second during tury. No extreme temperatures occurred during tury or

the ogt the frost-free period for 1991/92 was 14 days shorted than average the mild cooperative weather thring harvest provided area farmers with an excellent nowing season. There was very little lodging and sprouting in harvested grain this year.

File only Its days of continuous snow cover (Jan 5-37th) there was low undersoon of the dwarf bunt. There was a total of 53 snow cover days throughout the season. The season tensor on the Experiment Station was on March [/ 1].

Served diseases were not a sertion, threat in spring or winter grains. I am levels of leafust were observed late in the season on some spring wheat various. FCK dwarf burn-

CLIMATOLOGICAL DATA NORTHWESTERN AGRICULTURAL RESEARCH CENTER Kalispell, MT

Northwestern Agricultural Research Center climatological data is recorded and sent to the Atmospheric Administration to be published in the <u>Climatological Data</u>. Daily maximum and minimum temperatures, soil temperatures at four and eight inches and precipitation are recorded. This data has been recorded since January 1949.

The 1991/92 growing season differed from previous weather data in monthly precipitation averages, higher average temperatures, a shorter frost-free period, and fewer snow cover days.

Total precipitation for the 1991/92 season was 18.35 inches, 1.3 inches below the long time average. September and October precipitation were 50% and 55% of normal, respectively, which contributed to dry soil profiles for winter wheat. Most wheat was in the 4 leaf stage going into the winter and suffered very little winter kill. Precipitation levels were 150% of normal in November but fell short of the long term average in every month until June. Even though March, April and May precipitation was below average the rainfall was timely so that spring grain development was normal. Abundant precipitation in June and July aided heading and late crop growth. Dry weather in August provided excellent harvest conditions.

Mean temperatures for the growing season were higher than the long term average. Higher temperatures were experienced during the mild winter months of December, January, and February which may explain the very low levels of winter kill in wheat. Early spring temperatures were also above average in March, April and May and aided in many fields being seeded early. No extreme temperatures occurred during July or August that may have effected heading.

Although the frost-free period for 1991/92 was 14 days shorter than average the mild winter and cooperative weather during harvest provided area farmers with an excellent growing season. There was very little lodging and sprouting in harvested grain this year.

With only 23 days of continuous snow cover (Jan 5-27th) there was low incidence of TCK dwarf bunt. There was a total of 53 snow cover days throughout the season. The last snow to accumulate on the Experiment Station was on March 2 (1").

Cereal diseases were not a serious threat in spring or winter grains. Low levels of leaf rust were observed late in the season on some spring wheat varieties. TCK dwarf bunt was observed only in test areas that had been inoculated for that disease.

Following is a list of tables giving a complete description of the weather for the crop year (September 1991 through August 1992) and 1992 (January through December).

- Table 1. Summary of climatic data by months for 1991-92 crop year (September through August) and averages for the period 1949-92 at the Northwestern Agricultural Research Center, Kalispell, MT.
- Table 2. Summary of temperature data at the Northwestern Agricultural Research Center on a crop year basis, September 1, 1949 through August 31, 1992. (Average)
- Table 3. Summary of temperature data at the Northwestern Agricultural Research Center on a crop year basis, September 1, 1949 through August 31, 1992. (Maximum)
- Table 4. Summary of temperature data at the Northwestern Agricultural Research Center on a crop year basis, September 1, 1949 through August 31, 1992. (Minimum)
- Table 5. Summary of precipitation records at the Northwestern Agricultural Research Center on a crop year basis, September 1, 1949 through August 31, 1992.
- Table 6. Precipitation by day for crop year September 1, 1991 through August 31, 1992, Northwestern Agricultural Research Center, Kalispell, MT.
- Table 7. Frost free period at the Northwestern Agricultural Research Center from 1950 through 1992.
- Table 8. Temperature extremes at the Northwestern Agricultural Research Center, Kalispell, MT from 1950-1992.
- Table 9. Summary of temperature records at the Northwestern Agricultural Research Center, January 1950 through December 1992.
- Table 10. Summary of precipitation records at the Northwestern Agricultural Research Center, Kalispell, MT, January 1950 through December 1992.

er thru August) and averages	r, Kalispell, MT.
e 1. Summary of climatic data by months for 1991-92 crop year (September thr	h
Tab1	

LTEM	Sept. 1991	Oct. 1991	Nov. 1991	Dec. 1991	Jan. 1992	Feb. 1992	Mar. 1992	Apr. 1992	May 1992	June 1992	July 1992	Aug. 1992	Total or Average
Precipitation (inches) Current Year	0.80	0.75	2.26	0.58	1.17	0.61	0.83	1.18	1.65	5.34	2.24	0.94	18.35
Avg. 1949 to 1991-92	1.59	1.36	1.50	1.63	1.49	1.16	1.17	1.39	2.31	2.88	1.57	1.60	19.65
Mean Temperature (F) Current Year	54.4	9.04	32.1	29.3	28.7	34.5	39.7	45.1	53.5	55.5	61.2	61.8	44.7
Avg. 1949 to 1991-92	53.5	43.2	32.7	25.5	22.3	27.9	33.8	43.3	51.6	58.4	0.49	63.0	43.3
Last killing frost in spring	ing												
1992 Avg. 1949-92					May 17 May 25	(30	degrees	F)					
First killing frost in fall	11												
1992 Avg. 1949-92					August 24 September	24 (ber 1	32 degrees	ees F)					
Frost Free Period													
1992 Avg. 1949-92				Cente	99 days 113 days	8							ber thr
Maximum summer temperature				93 d	degrees	F on	August	15,	1992				
Minimum winter temperature				-5 de	degrees	F on N	November	2,	1991				
In this summary 32 degrees	s is con	onsidered	a	killing	g frost	t.	Sabil 5.	able 4		E 1.08	Pable 2.		l de

Table 2. Summary of temperature data at the Northwestern Agricultural Research Center on a crop year basis, September 1, 1949 through August 31, 1992.

Average temperature by month and year
Degrees Fahrenheit

				11	Degree	s Fahr	enheit	:					
YEAR	SEPT.	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	MEAN
1949-50	54.1	41.5	38.5	25.0	4.2	25.6	31.2	41.9	49.7	57.0	64.0	62.5	41.3
1950-51	53.8	45.9	31.5	29.5	20.2	27.7	27.0	42.1	50.0	54.2	64.7	60.4	42.3
1951-52	50.6	40.8	30.8	16.9	18.0	26.6	29.3	45.8	52.4	56.7	61.8	62.8	41.0
1952-53	56.0	45.5	30.4	27.6	36.0	32.9	37.2	41.2	49.5	54.6	64.3	63.1	44.9
1953-54	56.1	46.2	37.0	31.3	21.1	31.2	29.6	40.8	52.5	54.9	63.4	60.1	43.7
1954-55	52.9	41.5	38.8	28.8	25.7	22.1	24.5	39.1	47.7	58.8	62.7	62.2	42.1
1955-56	52.5	44.6	23.5	21.8	23.3	20.9	31.5	44.2	54.0	59.0	64.8	62.0	41.8
1956-57	55.2	44.1	30.9	28.5	10.2	23.4	33.3	43.7	55.6	59.7	65.4	62.4	42.7
1957-58	55.8	41.4	32.1	32.4	29.1	30.4	32.2	43.6	59.6	62.3	65.2	67.9	46.0
1958-59	55.5	44.6	32.8	28.2	24.7	23.1	35.3	45.2	48.1	59.9	64.5	61.0	43.6
1959-60	53.0	43.9	25.5	27.6	19.4	25.2	32.3	44.3	50.6	59.6	68.8	60.6	42.6
1960-61	55.0	45.2	34.4	24.9	27.8	37.0	38.3	42.0	52.6	64.7	66.2	67.8	46.3
1961-62	49.6	42.3	28.2	23.6	17.4	25.7	30.9	47.2	51.5	58.6	62.1	62.1	41.6
1962-63	54.7	44.7	38.0	32.5	11.8	33.1	38.7	43.2	51.4	59.4	63.0	64.9	44.6
1963-64	58.7	47.4	35.8	24.0	28.5	28.3	30.6	42.8	51.1	58.7	64.3	58.9	44.1
1964-65	51.2	43.7	33.7	22.1	30.2	28.7	28.6	45.2	50.6	57.6	64.6	63.6	43.3
1965-66	46.4	47.6	35.0	28.8	26.3	27.7	34.5	42.9	54.3	56.0	64.5	61.7	43.8
1966-67	59.3	43.4	33.4	30.2	31.0	33.2	32.9	40.6	52.2	59.4	66.1	67.2	45.7
1967-68	61.0	45.9	33.8	25.2	23.3	32.8	41.2	42.0	49.8	59.0	64.6	61.3	45.0
1968-69	53.8	42.9	33.4	19.9	13.1	24.0	29.6	47.1	53.9	58.8	62.3	63.6	41.9
1969-70	56.0	40.0	35.2	27.7	21.9	29.9	32.8	40.2	53.2	62.0	64.8	62.6	43.9
1970-71	48.7	40.1	31.3	26.2	23.6	29.9	33.2	43.6	52.5	54.9	61.9	68.2	42.8
1971-72	49.5	40.4	34.1	22.2	17.0	27.3	38.5	40.6	51.9	59.3	61.5	65.9	42.4
1972-73	50.2	40.3	33.7	19.9	20.7	27.8	37.7	42.2	51.5	57.5	65.1	64.5	42.6
1973-74	53.3	44.1	29.3	30.8	21.0	32.3	33.6	42.7	48.0	61.5	64.8	61.6	43.6
1974-75	52.8	43.6	34.8	30.1	21.5	21.5	29.9	37.6	48.6	55.9	69.1	59.8	42.1
1975-76	52.1	42.9		27.5	27.7	29.9	31.0	43.4	51.9	54.5	63.4	61.3	43.4
1976-77	55.2	42.4	35.4	28.6	20.0	30.9	34.4	45.0		61.5	62.6	62.8	43.9
1977-78	51.7	42.4	30.4	22.0	21.6	26.1	34.3	43.7	49.7	59.1	63.4	60.3	41.9
1977-78	53.7			18.8								65.4	40.9
		43.7	27.2		4.1	24.9	34.7	42.3	51.5	59.4	65.0		
1979-80	56.9	46.6	30.7	33.0	16.3	29.0	32.6	47.1	54.8	56.9	63.5	58.6	43.8
1980-81	54.1	45.3	35.8	32.2	30.1	31.3	38.5	44.5	52.5	53.8	62.8	66.4	45.6
1981-82	55.3	43.2	36.0	27.0	21.6	24.5	37.5	39.4	49.8	59.8	61.1	63.0	
1982-83	53.4	41.0	29.1	25.9	30.3	33.8		42.4	51.9	57.6	59.6	65.4	44.0
1983-84	50.4	42.9	36.6	11.1	27.6	32.4	38.3	42.2	48.7	56.4	65.3	64.6	43.0
1984-85	49.5	40.0	32.6	20.6	19.2	19.0	30.8	44.8	53.7	57.6	68.3	60.2	41.4
1985-86	47.8	40.8	18.6	18.3	25.4	25.6	40.6	43.8	53.7	63.9	59.9	66.1	42.0
1986-87	50.2	43.0	30.3	24.9	22.2	27.9	35.0	47.8	55.6	61.6	62.9	59.8	43.4
1987-88	56.1	43.3	35.3	25.4	20.5	30.3	37.8	45.7	51.4	60.9	63.7	63.9	44.5
1988-89	53.4	43.4	36.3	23.3	27.5	12.4	28.8	44.2	49.6	59.8	65.4	61.9	42.2
1989-90	52.7	42.7	35.8	25.3	30.5	24.5	34.8	45.2	49.8	57.2	65.2	64.8	44.0
1990-91	59.1	41.9	36.1	16.5	18.3	34.6	32.8	42.4	50.3	55.1	64.0	65.2	43.0
1991-92	54.4	40.6	32.1	29.3	28.7	34.5	39.7	45.1	53.5	55.5	61.2	61.8	44.7
MEAN	53.5	43.2	32.7	25.5	22.3	27.9	33.8	43.3	51.6	58.4	64.0	63.0	43.3

Table 3. Summary of temperature data at the Northwestern Agricultural Research Center on a crop year basis, September 1, 1949 through August 31, 1992.

Average maximum temperature by month and year Degrees Fahrenheit JULY AUG. MAY JUNE APR. OCT. NOV. DEC. JAN. FEB. MAR. SEPT. YEAR 52.7 78.6 79.5 34.6 38.4 52.3 63.1 70.1 45.7 32.1 14.4 52.4 71.4 1949-50 54.2 57.9 63.2 66.6 82.4 77.0 37.3 55.8 36.3 36.6 70.9 38.2 28.7 1950-51 79.2 79.5 52.5 61.8 65.7 70.2 25.9 35.7 39.5 23.6 64.2 47.5 37.2 1951-52 79.5 56.7 83.3 66.8 51.5 62.5 62.6 40.6 33.2 41.3 39.1 46.8 1952-53 73.4 55.2 80.1 74.4 61.0 36.7 29.1 38.4 40.0 51.0 67.2 67.0 45.6 72.3 1953-54 82.4 53.3 76.9 33.9 48.1 60.5 74.7 31.2 34.9 31.8 53.4 45.9 1954-55 66.4 81.2 77.8 53.4 30.7 67.5 73.3 30.1 39.7 57.4 55.5 30.8 29.2 1955-56 67.6 80.0 54.4 72.4 82.1 43.3 55.3 70.2 33.2 71.0 53.7 37.6 35.5 19.0 1956-57 85.5 57.7 80.8 77.5 75.7 40.1 38.5 33.7 37.9 43.5 54.4 74.3 50.5 1957-58 74.3 83.2 76.3 55.2 31.9 43.9 57.9 61.5 39.6 34.1 31.8 69.7 57.9 1958-59 53.9 63.0 74.8 88.7 74.1 34.1 43.4 56.1 33.9 27.5 64.0 53.6 33.3 1959-60 83.7 86.3 58.0 48.2 51.6 65.3 82.0 43.1 29.8 35.0 72.1 57.8 41.1 1960-61 52.9 79.2 77.5 74.2 40.5 60.7 62.7 30.4 26.0 33.4 1961-62 62.3 53.3 35.1 56.3 82.5 79.6 37.9 19.9 41.4 48.9 55.7 67.1 71.8 54.7 43.8 71.7 1962-63 80.3 72.9 55.1 53.3 63.5 71.4 37.7 39.7 74.6 43.4 30.2 35.1 59.4 1963-64 71.4 80.8 77.1 54.4 57.6 64.3 28.9 36.9 41.0 63.9 55.0 41.0 35.1 1964-65 78.4 55.2 69.8 69.1 81.2 35.4 45.4 54.8 31.8 35.3 57.5 61.1 42.6 1965-66 57.5 84.8 87.2 66.0 73.3 41.3 52.6 74.9 55.1 41.1 35.8 36.7 40.9 1966-67 82.7 75.7 56.7 40.8 52.6 54.2 63.4 72.2 30.8 31.5 78.9 55.8 41.3 1967-68 53.6 78.9 83.0 68.7 72.0 32.5 40.9 59.5 27.3 20.8 1968-69 65.9 53.1 40.6 75.5 79.1 80.9 54.7 49.7 67.9 36.2 42.5 43.0 32.8 28.5 1969-70 70.4 49.7 78.0 87.5 54.6 67.3 41.6 56.2 66.4 30.6 38.6 62.5 52.2 40.0 34.1 1970-71 54.1 76.9 83.3 72.4 64.7 64.2 53.1 41.2 30.9 27.1 35.9 47.9 51.7 1971-72 54.9 83.2 53.8 65.8 69.6 83.7 30.6 38.5 47.7 41.4 28.6 1972-73 64.0 51.3 77.6 54.6 80.3 43.5 53.1 59.2 76.2 28.5 39.6 36.8 36.5 1973-74 67.6 56.3 54.3 68.5 85.5 73.0 39.4 48.1 61.2 31.5 43.2 37.4 32.0 1974-75 70.9 61.4 79.0 74.4 54.3 66.3 40.1 54.3 66.2 37.6 1975-76 69.4 52.3 40.4 35.1 36.2 76.6 77.4 56.0 77.0 42.7 60.2 61.9 73.2 57.7 42.1 36.1 28.0 39.1 1976-77 52.9 77.5 74.2 54.3 58.1 72.6 28.8 35.5 45.5 38.5 29.4 64.7 55.4 1977-78 82.8 53.0 73.9 81.5 52.5 64.3 33.2 45.3 65.7 59.2 35.9 28.2 13.7 1978-79 54.9 40.8 60.4 66.9 69.0 77.0 73.2 35.9 39.2 25.2 59.5 37.8 1979-80 74.1 78.1 85.0 56.4 63.3 63.8 49.7 54.8 34.0 38.9 1980-81 66.9 59.0 43.9 39.2 75.0 80.6 54.6 74.3 45.8 50.5 62.5 54.1 44.9 34.2 29.7 33.3 1981-82 70.8 55.6 82.9 70.6 73.1 42.2 47.5 55.2 66.4 36.8 69.2 53.2 36.9 33.0 1982-83 82.8 83.3 54.7 54.2 60.4 69.1 19.9 34.6 40.8 46.8 43.7 65.1 56.0 1983-84 68.7 73.2 88.0 75.0 53.6 56.8 29.1 42.7 40.4 28.2 25.3 1984-85 63.9 52.2 73.0 84.1 53.6 78.5 55.1 66.1 36.6 51.6 1985-86 60.4 51.3 26.7 25.2 34.0 74.9 53.9 61.3 67.9 75.7 76.5 38.0 30.9 29.5 34.2 43.4 59.9 54.3 1986-87 82.6 56.8 74.1 79.5 46.1 58.5 63.8 39.3 73.5 59.9 43.0 32.6 29.0 1987-88 75.0 53.7 56.6 61.1 72.6 81.6 21.8 36.1 35.3 69.0 62.0 42.7 30.3 1988-89 68.9 79.7 79.5 57.3 60.5 44.8 33.9 1989-90 68.5 54.0 42.4 30.5 36.4 54.1 78.2 81.6 65.5 42.5 41.6 54.0 61.7 77.9 53.0 43.8 24.1 25.6 1990-91 56.2 67.8 73.1 78.0 35.1 42.7 52.7 57.7 67.7 38.6 33.7 70.9 56.1 1991-92 80.0 79.5 54.8 36.3 43.6 55.1 64.8 71.8 32.2 29.8 55.4 40.2 MEAN 68.6

Table 4. Summary of temperature data at the Northwestern Agricultural Research Center on a crop year basis, September 1, 1949 through August 31, 1992.

Average minimum temperature by month and year Degrees Fahrenheit

					Degr	ees Fa	hrenhe	10					
YEAR	SEPT.	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	MEAN
1949-50	36.7	35.0	31.2	17.8	-6.0	16.6	23.9	31.5	36.3	43.9	49.4	45.5	30.2
1959-51	36.6	36.0	24.8	22.6	11.7	18.8	16.6	26.2	36.7	41.7	46.9	43.7	30.2
1951-52	37.0	34.0	24.4	10.1	10.0	17.4	19.1	29.8	39.1	43.1	44.3	46.1	29.5
1952-53	38.6	28.3	20.2	21.9	30.6	26.7	27.5	30.9	36.5	42.3	45.3	46.7	33.0
1953-54	39.8	31.4	28.4	25.9	13.1	24.0	19.2	30.6	37.7	42.8	46.7	45.7	32.1
1954-55	39.3	29.5	31.6	22.7	19.5	13.0	15.0	30.0	34.9	42.8	48.5	42.0	30.7
1955-56	37.3	33.6	16.1	14.4	15.9	11.7	23.3	30.9	40.5	44.7	48.2	46.1	30.2
1956-57	39.4	34.4	24.2	21.5	1.4	13.6	23.2	32.0	40.9	47.0	48.7	44.8	30.9
1957-58	37.2	32.3	24.1	26.2	24.5	22.8	20.9	32.8	41.7	48.8	49.5	50.3	34.3
1958-59	41.2	31.2	26.0	22.2	17.5	14.2	26.6	32.4	34.7	45.4	45.8	45.6	31.9
1959-60	42.0	34.1	17.0	21.8	11.2	16.3	21.1	32.4	38.1	44.3	48.8	47.0	31.2
1960-61	37.9	32.5	27.6	19.9	20.6	30.9	28.4	32.3	39.8	47.4	48.7	49.2	34.6
1961-62	36.8	31.2	21.2	16.8	8.7	17.9	21.2	33.7	40.3	43.0	45.0	46.6	30.2
1962-63	37.6	34.6	32.2	27.1	3.7	24.7	28.4	30.6	35.7	47.0	46.4	46.9	32.9
1963-64	42.7	35.3	28.1	17.7	21.8	18.9	21.4	32.2	38.6	46.0	48.3	44.9	33.0
1964-65	38.4	32.3	26.4	15.3	25.3	20.4	16.2	32.7	36.9	43.8	48.4	50.0	32.2
1965-66	35.2	34.0	27.4	22.1	20.8	20.0	23.6	30.9	38.7	42.8	47.7	45.0	32.4
1966-67	43.6	31.7	25.6	24.6	25.3	25.5	24.5	28.6	38.4	45.4	47.4	47.2	34.0
1967-68	43.1	35.9	26.3	19.4	15.0	24.8	29.7	29.8	36.1	45.7	46.4	46.8	33.3
1968-69	41.7	32.6	26.1	12.5	5.4	15.4	18.2	34.6	39.0	45.5	45.7	43.5	30.0
1969-70	41.6	30.3	27.4	22.6	15.3	23.4	23.0	30.7	38.5	48.2	50.5	44.3	33.0
1970-71	34.9	27.9	22.5	18.3	16.5	21.0	24.8	31.0	38.6	42.3	45.7	48.8	31.0
1971-72	34.7	27.6	26.9	13.5	7.7	18.6	29.0	29.0	39.2	46.3	45.8	48.5	30.6
1972-73	36.4	29.2	25.9	11.1	11.0	17.4	27.8	29.6	36.4	44.4	46.5	45.8	30.1
1973-74	38.9	32.0	21.8	25.2	13.5	25.1	23.6	32.4	36.7	46.9	49.5	45.6	32.6
1974-75	34.7	25.7	26.3	22.9	10.9	11.5	20.4	27.1	36.1	43.3	52.7	46.5	29.8
1975-76	34.7	33.4	30.3	20.0	19.1	22.2	22.0	32.4	37.6	42.6	47.8	48.3	32.5
1976-77	37.2	27.2	24.1	21.1	12.0	22.6	26.1	29.9	37.4	46.0	48.5	48.2	31.7
1977-78	38.6	29.5	22.2	14.6	14.5	16.7	23.2	33.1	38.1	45.6	49.2	46.4	31.0
1977-78	41.7	28.3	18.4	9.3	-5.6	16.5	24.0	32.1	38.7	44.9	48.5	48.0	28.7
1979-80	39.7	33.7	23.6	26.8	7.5	22.1	24.5	33.7	42.7	44.7	50.0	44.0	32.8
1980-81	41.3	31.6	27.7	25.1	26.2	23.8	27.2	34.2	41.7	43.7	47.6	47.8	34.8
1981-82	39.7	32.2	27.0	19.8	13.5	15.7	29.2	28.4	37.2	45.3	47.3	45.4	31.7
1982-83	37.6		21.4					29.5	37.5	44.7	46.1	48.0	32.5
	35.6	29.7	29.5	2.4	20.6	24.0	29.9	30.2	37.1	43.6	47.8	46.0	31.4
1983-84		27.7	24.7	13.0	13.2	9.0	18.8	32.7	38.7	42.0	48.5	45.5	29.1
1984-85	35.2 35.2	30.2	10.6	11.4	16.9	14.5	29.6	32.5	41.3	49.3	46.8	48.1	30.5
1985-86				18.8	14.9	21.6	26.6	34.2	43.3	47.4	49.4	44.7	33.0
1986-87	40.5	31.6	22.6		11.5	21.3	29.5	33.0	39.0	47.7	47.9	45.2	32.2
1987-88	38.7	26.5	27.6	18.1	19.7	2.9	21.4	31.8	38.1	46.9	49.3	48.7	31.4
1988-89	38.6	32.9	29.8	16.3	24.7	15.2	24.7	33.2	39.1	45.4	50.6	50.0	33.4
1989-90	36.9	31.3	29.3	20.1			24.7	30.8	39.0	44.7	49.8	48.8	31.9
1990-91	40.4	30.9	28.4	8.8	11.0	26.6	26.8	32.6	39.2	43.2	49.3	45.7	33.3
1991-92	37.9	25.1	25.6	25.0	22.4	26.3	20.0	34.0	39.2	73.2	77.3	73.7	33.3
MEAN	38.5	31.1	25.0	18.8	15.3	19.5	24.0	31.4	38.5	45.0	47.9	46.6	31.8

Table 5. Summary of precipitation records at the Northwestern Agricultural Research Center on a crop year basis, September 1, 1949 through August 31, 1992.

YEAR	SEPT.	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	MEAN
1949-50	1.03	1.05	1.67	0.92	2.62	1.13	2.31	0.84	0.15	3.90	3.12		19.49
1950-51	0.52	2.30	1.16	2.48	0.94	1.29	0.62	2.32	3.77	2.26	1.03		21.55
1951-52	1.49	5.62	1.01	3.31	1.03	0.98	0.97	0.17	1.32	3.95	0.56	0.69	21.10
1952-53	0.13	0.05	0.60	0.98	1.84	1.14	0.98	2.07	2.00	3.31	T	1.62	14.72
1953-54	0.71	0.03	0.87	1.30	2.65	0.79	0.83	0.79	1.52	2.98	2.91	3.79	19.17
1954-55	1.09	0.54	1.00	0.43	1.00	1.31	0.44	0.82	1.18	1.86	3.08	0.00	12.75
1955-56	1.64	1.89	1.97	2.38	1.76	1.53	0.87	1.28	1.06	4.20	2.13	3.21	23.92
1956-57	1.16	1.10	0.53	0.96	1.47	1.14	0.75	1.22	1.75	2.51	0.52	0.78	13.89
1957-58	0.10	1.59	0.96	1.76	1.56	2.67	0.97	1.47	2.20	2.56	0.84	0.58	17.26
1958-59	1.99	1.16	2.90	2.77	1.95	1.33	0.75	1.62	4.10	1.75	T	0.91	21.23
1959-60	4.22	3.36	4.32	0.34	1.67	1.10	1.01	1.23	3.27	0.69	0.13	2.43	23.77
1960-61	0.55	1.44	1.72	1.24	0.65	1.46	1.96	2.26	4.02	1.45	0.76	0.64	18.15
1961-62	3.40	1.22	1.77	2.09	1.33	1.15	1.59	0.96	2.59	1.15	0.11		18.08
1962-63	0.58	1.85	1.31	0.91	1.69	1.21	0.85	1.07	0.57	5.00	1.44		18.58
1963-64	1.46	0.75	0.95	1.70	1.46	0.41	1.57	0.87	3.33	3.86	3.01		21.01
1964-65	2.27	0.85	1.62	3.62	2.25	0.64	0.24	2.55	0.81	2.30	1.15		23.04
1965-66	1.72	0.21	1.31	0.55	1.42	0.67	0.53	0.76	1.18	6.57	2.49		19.05
1966-67	0.79	1.34	3.33	1.68	1.50	0.62	1.27	0.99	1.30	2.53	0.02		15.38
1967-68	0.73	1.88	0.62	1.16	0.79	1.15	0.68	0.57	3.92	2.22	1.00		18.32
1968-69	4.51	2.39	1.59	3.12	3.05	0.75	0.69	1.39	1.19	5.21	0.70		24.68
1969-70	1.54	1.90	0.31	1.14	3.10	0.89	1.49	0.76	1.97	4.37	3.08		20.99
1970-71	1.79	1.38	1.75	0.99	1.84	0.77	0.69	0.58	2.45	4.42	1.31		19.08
1971-72	0.94	0.87	1.70	1.62	1.10	1.65	2.11	0.95	1.48	3.28	1.77		18.45
1971-72	1.38	1.84	0.80	2.19	0.52	0.56	0.70	0.45	1.13	2.14	0.01		12.35
1972-73	1.37	1.41	2.95	1.94	1.35	1.32	1.40	3.36	1.82	1.80	1.01		20.35
	0.80	0.12	1.10	1.31	1.56	1.08	1.50	1.27	1.50	1.40	1.08		16.98
1974-75		2.96	0.85	1.39	0.91	1.12	0.34	1.92	1.90	2.49	1.49		19.97
1975-76	1.18			0.86	0.83	0.71	1.40	0.41	2.90	0.52	3.60		15.04
1976-77	0.96	0.62	0.73	4.10	2.15	0.99	0.72	2.54	3.56	2.63	3.90		28.95
1977-78	2.84	0.56	1.62			1.45	0.72	2.33	2.67	1.23	0.40		16.31
1978-79	1.90	0.15	0.96	0.91	1.70			1.88	5.48	3.89	1.08		23.62
1979-80	1.03	1.75	0.50	1.03	1.53	2.03	0.97		3.86	4.70	1.17		23.66
1980-81	1.20	0.83	0.78	2.58	1.81	1.85	2.17	1.75					18.24
1981-82	0.77	0.56	1.49	1.91	2.38	1.48	1.16	1.60	1.25	2.41	2.06		20.99
1982-83	2.37	0.75	1.39	1.60	0.93	0.85	1.71	2.41	1.20	2.96	3.66		
1983-84	1.70	1.13	1.96	2.57	0.80	2.19	1.81	1.93	2.91	2.07	0.31		19.93
1984-85	2.15	2.25	1.40	1.29	0.31	1.28	0.90	1.31	2.81	1.89	0.35		17.56
1985-86	5.35	1.55	1.61	0.51	2.39	2.33	0.50	1.34	2.92	1.83	2.09		23.23
1986-87	3.63	0.80	1.78	0.63	0.38	0.46	3.47	1.15	1.89	1.95	4.85		21.97
1987-88	0.81	0.12	0.91	1.18	0.98	1.03	0.77	1.36	3.60	1.98	1.07		13.94
1988-89	2.30	0.62	1.39	1.69	1.39	1.48	2.29	1.09	2.70	2.05	2.70		23.39
1989-90	1.50	2.29	3.75	1.92	0.96	1.00	1.76	1.63	3.74	2.68	2.34		26.01
1990-91	T	2.32	1.37	2.60	1.41	0.41	0.72	1.21	2.72	5.36	0.77		20.04
1991-92	0.80	0.75	2.26	0.58	1.17	0.61	0.83	1.18	1.65	5.34	2.24	0.94	18.35
MEAN	1.59	1.35	1.50	1.63	1.49	1.16	1.17	1.39	2.31	2.88	1.57	1.60	19.64

Mean precipitation for all crop years = 19.64

Table 6. Precipitation by day for crop year, September 1, 1991 through August 31 1992. Northwestern Agricultural Research Center, Kalispell, MT.

DATE	SEPT. 1991	OCT. 1991		DEC. 1991	JAN. 1992		MAR. 1992		MAY 1992	JUNE 1992	JULY 1992	AUG. 1992
1			29	0.04	15	idas.		2.9	0.13	7 9	0.09	780
2				0.12				3.2			mul	
3				0.06							0.08	
-5 4			0.06	0.04							0.15	
5			0.37		0.01			0.00			0.02	
6			0.53	0.05	0.01			0.08			0.15	
7 8				0.05	0.17		0.03				0.12	0.26
			0.24	0.03		0.04	0.05	0.01	0.13		0.35	0.20
9 10				0.12		nsa		0.07	0.00		0 10	
11				0.11				0.0	0.08		0.18	
12					0.12			0.06	0.01	0.41	0.05	
13			0.13	0.06	0.07			0.01		0.78	0.01	
14	0.21				0.04	0.12		0.17		0.72		
15					(1.							
16					0.20		0.05	0.00	0.05	0.03		
17	0.04	0.01	0.01				0.35	0.38				
18			0.01	0.01		0.10	0.22	0.12	0.02			
19			0.04	0.01		0.10	0.13		0.02			
20 21		0.03				0.12	0.01		0.50			
22		0.03	0.01	0.04		0.09	0.01	100	0.50			0.62
23		0.01	0.01	0.01	0.15						0.11	0.05
24		0.04	0.05	0.01		0.01					0.79	0.01
25		0.10	0.11									
26		0.28	0.16							0.01		
27		0.20							0.43	0.06		
28		0.08			0.12		0.01		0.04	0.12		
29			0.26		0.05			0.00	0.12	0.12		
30			0.20					0.09	0.14	1.68		
8 31			T									
TOTAL	0.80	0.75	2.26	0.58	1.17	0.61	0.83	1.18	1.65	5.34	2.24	0.94

Table 7. Frost free period at the Northwestern Agricultural Research Center from 1950 thru 1992.

YEAR	DATE LAST FREEZE				DATE IRST FREEZE	TEMPERATURE FROST DEGREES F FREE SEAS				
1950	June 10	1992,	32	1991	Sept. 11	1561	29	TEGT		93
1951	June 1		29		Sept. 15		29			106
1952	June 14		32		Sept. 8	51.0	29			86
1953	May 23		32		Sept. 16		31			116
1954	May 29		31		Sept. 30		26			124
1955	May 25		28		Sept. 13		31			111
1956	May 3		26		Sept. 2		32			122
1957	May 23		30		Sept. 9		30			109
1958	May 14		31		Sept. 27		31			136
1959	June 11		32		Aug. 30		30			80
1960	June 18		32		Sept. 6		32			80
1961	May 6		32		Sept. 12		29			129
1962	May 30		32		Sept. 3		25			96
1963	May 22		28		Sept. 18		32			119
1964	May 25		26		Sept. 11		28			109
1965	June 7		30		Sept. 6		31			91
1966	May 18		26		Sept. 30		28			135
1967	May 26		28		Sept. 23		32			120
1968	May 20		32		Sept. 21		32			124
1969	June 13		28		Sept. 6		32			85
1970	May 11		32		Sept. 10		31			122
1971	July 7		32		Sept. 14		28			69
1972	May 4		32		Sept. 12		32			131
1973	May 22		31		Sept. 2		31			103
1974	May 18		31		Sept. 2		30			107
1975	May 25		32		Sept. 12		32			110
1976	May 21	10 A	30		•		30			110
1977	May 16		29		Sept. 27		28			133
1978	May 23		31		Sept. 17		28			116
1979	May 30		31		Oct. 1		32			123
1980	June 4		32		Sept. 24		31			111
1981	May 5		28		Sept. 24		25			142
1982	May 30		31		Sept. 15		23			108
1983	May 15		31		Sept. 6		31			114
1984	June 2		32		Sept. 13		30			103
1985	May 13		26		Sept. 7		32			117
1986	May 16		31		Sept. 7		31			114
1987	May 22		28		Sept. 17		29			117
1988	May 3		30		Sept. 12		30			131
1989	May 21		32		Sept. 9		29			110
1990	May 10		31		Oct. 6		24			149
1991	May 27		32		Sept. 19		32			115
1992	May 17		30		Aug. 24		32			99
Mean f	or									
years	or May 31		31		Sept. 14		30			113

Table 8. Temperature extremes at the Northwestern Agricultural Research Center, Kalispell, MT from 1950–1992.

-		MINIM	IUM	ay aus		LVB ERU	MAXI	MUM	TE	MPERATU	IRE
1AB	YEAR	DATE	1438		IPERATI GREES		DATE	BAN		EGREES	
14	1050	lan 20			-40		Aug. 31			88	
	1950	lam 00			-25		Aug. 2			92	
	1951	Jan. 28			-14		Aug. 31			90	
	1952	lam C			8		July 12			97	
	1953				-32		July 6			90	
	1954	14			-20		June 22			96	
	1955	Mar. 5			-25		July 22			90	
	1956	Feb. 16			-34		July 13			91	
	1957	Jan. 26					Aug. 11			94	
	1958	11 10			2 -30		July 23			96	
	1959				-32		July 19			98	
	1960				0		Aug. 4			100	
	1961				-32		Aug. 16			92	
	1962						Aug. 9			94	
	1963				-24		July 8			91	
	1964	Dec. 17			-28 -10		July 31			89	
	1965						Aug. 2,25			91	
	1966	Mar. 4			- 7 2		Aug. 19			95	
	1967				-23		July 7			94	
	1968				-13		Aug. 24			97	
	1969				-14		Aug. 21,25			92	
	1970				- 8		Aug. 6, 9			96	
	1971				-24		Aug. 9,10			92	
	1972				-22		July 11			97	2.764
	1973	Jan. 11			-18		June 16,20			93	
	1974	Jan. 5 Jan. 12, Feb. 9			-16		July 12			96	
	1975	Feb. 5			- 4		July 27			90	
	1976				-11		June 7			97	
	1977	Dec. 31			-31		July 16			91	
	1978				-31		July 20			97	
	1979	our. I			-20		July 23			92	
	1980	00.111			-21		Aug. 26,27			97	
	1981				-23		Aug. 8			91	
	1982	1 00. 0,10			-29		Aug. 8			97	
	1983	DCO. LO			-14		July 27			97	
	1984	our. 10			-24		July 9,11,23			94	
	1985	0a11. 00			- 8		May 30			93	
	1986	Nov. 10			- 8 - 4		July 27			95	
	1987	Jan. 16, Dec. 3	5.1.7		- 4 -17		July 22, Aug. 6			92	
	1988	Jan. 6			-17		Aug. 1	8.48		96	
	1989	1 65. 4, 5			-33		Aug. 16			94	
	1990	Dec. 30					Aug. 10			92	
	1991	Jan. 2, 3			-11					93	
	1992	Jan. 20			10		Aug. 15			3.0	

Table 9. Summary of temperature records at the Northwestern Agricultural Research Center January 1950 through December 1992.

AVERAGE TEMPERATURE BY MONTH AND YEAR DEGREES FAHRENHEIT SEPT. OCT. NOV. DEC. MEAN MAR. APR. MAY JUNE JULY AUG. DATE JAN. FEB. 29.5 41.4 31.5 41.9 49.7 57.0 64.0 62.5 53.8 45.9 4.2 25.6 31.2 1950 40.8 30.8 16.9 40.5 60.4 50.6 27.0 42.1 50.0 54.2 64.7 20.2 27.7 1951 30.4 27.6 42.7 45.5 61.8 62.8 56.0 1952 18.0 26.6 29.3 45.8 52.4 56.7 45.8 37.0 31.3 64.3 63.1 56.1 46.2 37.2 41.2 49.5 54.6 1953 36.0 32.9 43.0 41.5 38.8 28.8 52.5 54.9 63.4 60.1 52.9 29.6 40.8 1954 21.1 31.2 23.5 21.8 40.4 44.6 52.5 47.7 58.8 62.7 62.2 25.7 22.1 24.5 39.1 1955 28.5 43.2 44.1 30.9 31.5 44.2 54.0 59.0 64.8 62.0 55.2 1956 23.3 20.9 43.0 62.4 55.8 41.4 32.1 32.4 65.4 55.6 59.7 10.2 23.4 33.3 43.7 1957 46.0 32.8 28.2 55.5 44.6 32.2 43.6 59.6 62.3 65.2 67.9 1958 29.1 30.4 27.6 42.7 25.5 43.9 35.3 45.2 48.1 59.9 64.5 61.0 53.0 24.7 23.1 1959 43.4 55.0 45.2 34.4 24.9 32.3 44.3 50.6 59.6 68.8 60.6 1960 19.4 25.2 28.2 23.6 45.0 49.6 42.3 66.2 67.8 38.2 42.0 52.6 64.7 1961 27.8 37.0 43.8 38.0 32.5 54.7 44.7 25.7 30.9 47.2 51.5 58.6 62.1 62.1 1962 17.4 44.2 35.8 24.0 63.0 64.9 58.7 47.4 38.7 42.3 51.4 59.4 33.1 1963 11.8 43.7 33.7 22.1 42.8 30.6 42.8 51.1 58.7 64.3 58.9 51.2 1964 28.5 28.3 47.6 35.0 28.8 43.9 46.4 64.6 63.6 1965 30.2 28.7 28.6 45.2 50.6 57.6 44.5 33.4 30.2 54.3 64.5 61.7 59.3 43.4 26.3 27.7 34.5 42.9 56.0 1966 45.9 33.8 25.1 45.7 66.1 67.2 61.0 32.9 40.6 52.2 59.4 31.0 33.2 1967 43.7 33.4 19.9 42.9 53.8 1968 23.3 32.8 41.2 42.0 49.8 59.0 64.6 61.3 35.2 27.7 42.6 40.0 53.9 58.8 62.3 63.6 56.0 1969 13.1 24.0 29.6 47.1 42.8 40.1 31.3 26.2 64.8 62.6 48.7 32.8 40.2 53.2 62.0 1970 21.9 29.9 22.0 42.8 34.1 68.2 49.5 40.4 33.2 43.6 52.5 54.9 61.9 1971 23.6 29.9 19.9 42.2 40.3 33.7 1972 17.0 27.3 38.5 40.6 51.9 59.3 61.5 65.9 50.2 64.5 53.3 44.1 29.3 30.8 43.7 65.1 1973 20.7 27.8 37.7 42.2 51.5 57.5 43.9 34.8 30.1 61.6 52.8 43.6 32.3 33.6 42.7 48.0 61.5 64.8 1974 21.0 35.4 27.5 41.8 52.1 42.9 29.9 37.6 48.6 55.9 69.1 59.8 1975 21.5 21.5 43.5 42.4 33.1 28.6 63.4 61.3 55.2 1976 27.7 29.9 31.0 43.4 51.9 54.5 30.4 22.0 42.8 42.5 62.8 51.7 34.4 45.0 49.7 61.5 62.6 1977 20.0 30.9 27.2 18.8 41.7 53.7 43.7 1978 21.6 26.1 34.3 43.7 48.1 59.1 63.4 60.3 33.0 42.9 65.4 56.9 46.6 30.7 42.3 51.5 59.4 65.0 1979 4.1 24.9 34.7 32.2 43.9 35.8 58.6 54.1 45.3 1980 32.6 47.1 54.8 56.9 63.5 16.3 29.0 45.1 36.0 27.0 43.2 31.3 38.5 44.5 52.5 53.8 62.8 66.4 55.3 1981 30.1 42.2 41.0 29.1 25.9 37.5 39.4 49.8 59.8 61.1 63.0 53.4 1982 21.6 24.5 36.6 11.1 43.3 50.4 42.9 65.4 42.4 51.9 57.6 59.6 1983 30.3 33.8 37.9 43.2 20.6 40.0 32.6 1984 27.6 32.4 38.3 42.2 48.7 56.4 65.3 64.6 49.5 18.3 39.9 68.3 60.2 47.8 40.8 18.6 1985 30.8 44.8 53.7 57.6 19.2 19.0 24.9 44.0 30.3 50.2 43.0 1986 25.4 25.6 40.6 43.8 53.7 63.9 59.9 66.1 44.4 35.3 25.4 43.2 1987 22.2 27.9 35.0 47.8 55.6 61.6 62.9 59.8 56.1 53.8 47.5 36.3 23.3 44.6 45.7 51.4 60.9 63.7 63.9 1988 20.5 30.3 37.8 42.2 42.7 35.8 25.3 65.4 61.9 52.7 1989 28.8 44.2 49.6 59.8 27.5 12.4 43.8 36.1 16.5 1990 30.5 24.5 34.8 45.2 49.8 57.2 65.2 64.8 59.2 41.9 32.1 29.3 43.3 55.1 54.4 40.6 42.4 50.3 64.0 65.2 1991 18.3 34.6 32.8 44.0 44.7 33.1 19.4 55.5 61.2 61.8 51.1 1992 28.7 34.5 39.7 45.1 53.5 43.2 32.6 25.3 43.4 MEAN 21.8 27.3 33.8 43.3 51.6 58.4 64.0 63.0 53.5

Table 10. Summary of precipitation records at the Northwestern Agricultural Research Center, Kalispell, MT, January 1950 thru December 1992.

DATE	JAN.	Total FEB.	Precipit	ation (in	ches) by	/ Months	and Yea	ars AUG.	SEPT.	ост.	NOV.	DEC.	TOTAL
1950	2.62	1.13	2.31	0.84	0.15	3.90	3.12	0.75	0.52	2.30	1.16	2.48	21.28
1951	0.94	1.29	0.62	2.32	3.77	2.26	1.03	2.86	1.49	5.62	1.01	3.31	26.52
1952	1.03	0.98	0.97	0.17	1.32	3.95	0.56	0.69	0.13	0.05	0.60	0.98	11.43
1953	1.84	1.14	0.98	2.07	2.00	3.31	T IN WES	1.62	0.71	0.03	0.87	1.30	15.87
1954	2.65	0.79	0.83	0.79	1.52	2.98	2.91	3.79	1.09	0.54	1.00	0.43	19.32
1955	1.00	1.31	0.44	0.82	1.18	1.86	3.08	o bliw	1.64	1.89	1.97	2.38	17.57
1956	1.76	1.53	0.87	1.28	1.06	4.20	2.13	3.21	1.16	1.10	0.53	0.96	19.79
1957	1.47	1.14	0.75	1.22	1.75	2.51	0.52	0.78	0.10	1.59	0.96	1.76	14.55
1958	1.56	2.67	0.97	1.47	2.20	2.56	0.84	0.58	1.99	1.16	2.90	2.77	21.67
1959	1.95	1.33	0.75	1.62	4.10	1.75	T	0.91	4.22	3.36	4.32	0.34	24.65
1960	1.67	1.10	1.01	1.23	3.27	0.69	0.13	2.43	0.55	1.44	1.72	1.24	16.48
1961	0.65	1.46	1.96	2.26	4.02	1.45	0.76	0.64	3.40	1.22	1.77	2.09	21.68
1962	1.33	1.15	1.59	0.96	2.59	1.15	0.11	0.72	0.58	1.85	1.31	0.91	14.25
	1.69	1.13	0.85	1.07	0.57	5.00	1.44	2.10	1.46	0.75	0.95	1.70	18.79
1963	1.46	0.41	1.57	0.87	3.33	3.86	3.01	1.64	2.27	0.85	1.62	3.62	24.51
1964	2.25	0.64	0.24	2.55	0.81	2.30	1.15	4.74	1.72	0.21	1.31	0.55	18.47
1965	1.42	0.67	0.53	0.76	1.18	6.57	2.49	1.64	0.79	1.34	3.33	1.68	22.40
1966			1.27	0.70	1.30	2.53	0.02	0.01	0.91	1.88	0.62	1.16	12.81
1967	1.50	0.62	0.68	0.57	3.92	2.22	1.00	3.42	4.51	2.39	1.59	3.12	25.36
1968	0.79	1.15				5.21	0.70	0.09	1.54	1.90	0.31	1.14	17.96
1969	3.05	0.75	0.69	1.39	1.19			0.03	1.79	1.38	1.75	0.99	22.01
1970	3.10	0.89	1.49	0.76	1.97	4.37	3.08		0.94	0.87	1.70	1.62	18.30
1971	1.84	0.77	0.69	0.58	2.45	4.42	1.31	1.11	1.38	1.84	0.80	2.19	19.53
1972	1.10	1.65	2.11	0.95	1.48	3.28	1.77	0.98	1.37	1.41	2.95	1.94	13.81
1973	0.52	0.56	0.70	0.45	1.13	2.14	0.01	0.63	0.80	0.12	1.10	1.31	16.01
1974	1.35	1.32	1.40	3.36	1.82	1.80	1.01	0.62	1.18	2.96	0.85	1.39	20.03
1975	1.56	1.08	1.50	1.27	1.50	1.40	1.08	4.26		0.62	0.73	0.86	16.76
1976	0.91	1.12	0.34	1.92	1.90	2.49	1.49	3.42	0.96		1.62	4.10	20.99
1977	0.83	0.71	1.40	0.41	2.90	0.52	3.60	1.50	2.84	0.56	0.96	0.91	23.76
1978	2.15	0.99	0.73	2.54	3.56	2.63	3.90	3.34	1.90	0.15		1.03	16.70
1979	1.70	1.45	0.82	2.33	2.67	1.23	0.40	1.79	1.03	1.75	0.50		24.70
1980	1.53	2.03	0.97	1.88	5.48	3.89	1.08	2.45	1.20	0.83	0.78	2.58	23.00
1981	1.81	1.85	2.17	1.75	3.86	4.70	1.17	0.96	0.77	0.56	1.49		19.62
1982	2.38	1.48	1.16	1.60	1.25	2.41	2.06	1.17	2.37	0.75	1.39	1.60	
1983	0.93	0.85	1.71	2.41		2.96	3.66	1.16		1.13	1.96	2.57	22.24
1984	0.80	2.19	1.81	1.93	2.91	2.07	0.31	0.55	2.15	2.25	1.40	1.29	19.66
1985	0.31	1.28	0.90	1.31	2.81	1.89	0.35	1.62	5.35	1.55	1.61	0.51	19.49
1986	2.39	2.33	0.50	1.34	2.92	1.83	2.09	0.81	3.63	0.80	1.78	0.63	21.05
1987	0.38	0.46	3.47	1.15	1.89	1.95	4.85	0.98	0.81	0.12	0.91	1.18	18.15
1988	0.98	1.03	0.77	1.36	3.60	1.98	1.07	0.13	2.30	0.62	1.39	1.69	16.92
1989	1.39	1.48	2.29	1.09	2.70	2.05	2.70	3.69	1.50	2.29	3.75	1.92	26.85
1990	0.96	1.00	1.76	1.63	3.74	2.68	2.34	2.44	Т	2.32	1.37	2.60	22.84
1991	1.41	0.41	0.72	1.21	2.72	5.36	0.77	1.15	0.80	0.75	2.26	0.58	18.14
1992	1.17	0.61	0.83	1.18	1.65	5.34	2.24	0.94	1.21	1.07	2.37	1.53	20.14
MEAN	1.46	1.14	1.17	1.39	2.31	2.88	1.57	1.60	1.60	1.35	1.52	1.65	19.62

PROJECT TITLE: Economic Thresholds for Wild Oat in Small Grains (Kalispell location).

PROJECT LEADER: Bruce Maxwell, P&SS, MSU, Bozeman, MT

PROJECT PERSONNEL: Ed Davis, CARC, Moccasin, MT.

Bob Stougaard, NWARC, Kalispell, MT Todd Keener, NWARC, Kalispell, MT.

OBJECTIVES: Identify the wild oat density (threshold) that can be tolerated without significantly decreasing small grains yields, the effect of wild oat emergence date on small grain yield reductions and to assess the impact of weed escapes on weed pressures in subsequent production years.

MATERIALS AND METHODS:

Barley was planted at O, 1/2X, 1X, and 2X the normal seeding rate (1X = 60 lb/A). Wild oat was then planted within each barley density at 0, 1, 4, 15, and 37 plants per square foot at the barley seeding date or 7 days after barley emergence. Wild oat and barley populations were monitored throughout the season. In addition to barley grain yield, wild oat and barley plant dry weight, and seed production were determined at harvest. The plots will be relocated next season and planted to barley to determine the effect of wild oat escapes on future weed pressures.

SUMMARY (Kalispell location):

Results from this season indicate that wild oat emerging with the crop causes substantially greater yield reductions as compared to the same wild oat densities planted 7 days later. Barley yields remained virtually constant over the wild oat densities established when wild oat was seeded 7 days after barley emergence. As an example, at the 1X barley seeding rate when wild oat was seeded with the barley crop, yield was 105 bu/A when no wild oat were present compared to 50 bu/A when 37 wild oat plants per square foot were established. When wild oat was seeded 7 days after barley planting, yield was 105 bu/A when no wild oat was present compared to 95 bu/A when 37 wild oat plants per square foot were seeded. These results suggest that by controlling the first flush of weeds early, weeds which emerge later will not impact yield or contribute to increased weed pressure the following year.

The effect of barley seeding density was not significant with the 1/2X and 1X seeding rates. Yields declined to the same extent as wild oat density increased with both barley populations. However, at the 2X barley density, wild oat density had only a minor impact on yield regardless of whether wild oat was seeded with the barley crop or 7 days after emergence. This suggests that by increasing barley seeding rates, the impact of wild oat can be dramatically reduced.

BARLEY POPULATION	WILD OAT POPULATION	SEEDED O DABE 1/	SEEDED 7 DABE
(LB/A)	(#/FT)	BARLEY YIEL	D (BU/A)
30 saw eximise	$\cos in$ an att_0 mpt to of	110	110
30	1	90	105
30	4	80	105
30	15	60	100
30	37	55	95
60	0	105	105
60	The grant state of the day	100	100
60	4	85	90
60	15	65	105
60	37	50	95
120	0	95	105
120	i Attributed spirit for	100	100
120	4	100	100
120	15	85	95
120 year year	ey planting significat	artad bm75 nonurage	100

1/ DABE: Days after barley emergence

proven to be the case in this study. With the exception of the Figure as planting was delayed up to the 5/6 planting. There after yi

Further investigation will be required to interpret this complex interaction.

PROJECT TITLE: Input Analysis Study

PROJECT LEADERS: Todd Keener and Bob Stougaard, NWARC, Kalispell, MT

OBJECTIVES: Evaluate the effects of delayed seedbed preparation and spring barley planting on weed population dynamics and herbicide efficacy in an attempt to optimize small grain yield while minimizing herbicide inputs.

MATERIALS AND METHODS:

Seedbeds were prepared just prior to planting spring barley on 4/8, 4/22, 5/6, and 5/21. An additional treatment consisted of planting on 5/21 with 2 prior seedbed cultivations on 4/22 and 5/21. Six herbicide treatments were applied to each planting date procedure. Herbicides consisted of Harmony Extra POST, Fargo PPI with and without Harmony Extra POST, Assert POST with and without Harmony Extra POST, and a nontreated control.

SUMMARY:

Delayed seedbed preparation and planting dates generally result in reduced weed populations. This strategy can potentially reduce or eliminate the need for herbicide inputs. At the same time, crop yield is sacrificed due to the shorter growing season and potentially unfavorable growing conditions.

Delayed seedbed preparation and barley planting significantly reduced wild oat populations and improved weed control. The response to delayed planting was most evident with the last two dates (5/6 and 5/21). Fargo and Assert both provided good wild oat control but were most effective in the later plantings.

In the absence of weed competition, small grain yields tend to decrease as planting is delayed. This has not proven to be the case in this study. With the exception of the Fargo treatments, yields increased as planting was delayed up to the 5/6 planting. There after yields dropped sharply. Barley vigor and yield are being affected by environmental conditions as it relates to delayed planting and the effects of reduced weed competition resulting from lower populations. Further investigation will be required to interpret this complex interaction.

TABLE 1. Input Analysis Study - Yields 1990-1992

P	lantin	g 1/	1990	Slougand, NWARC.	1992
D	ate 1	.134		82.39 11 83.0	60.4
D	ate 2			66.4	61.6
D	ate 3		80.9	78.2	65.9
D	ate 4		81.7		48.7
D	ate 5		2/	80.7	52.3
ns one L	SD	a gliw	NS	7.47	6.05

TABLE 2. Input Analysis Study - Wild Oats / sq. ft.

Planting	1990	w nois	1991	A Apold	1992
Date 1	7.6	englier englier ener c	3.6	tion inter- etgenee. nine met	8.5
Date 2	2.9		8.1		4.4
Date 3	1.8		No2 .61A		1.2
Date 4	2.2		1.0		2.5
Date 5	2/		07 .2		1.9
LSD	NS	22	7.47	18 %	6.05

Table 3. Assert and Fargo % Wild Oat Control - 1992

ll habiyong na	Date 1	Date 2	Date 3	Date 4	Date 5	MEAN
	89	93	96	84	70	87
Assert	69					87
MEAN						
	LSD for	Trtmts	= 13.8	LSD	for Date	es 16.7

^{1/} Dates of planting/cultivation (1992): 1 = 4/8, 2 = 4/22, 3 = 5/6, 4 = 5/21, 5 = 4/22 & 5/21

2/ No Date 5 planting in 1990

PROJECT TITLE: Reduced Wild Oat Herbicide Rate Study

PROJECT LEADERS: Bob Stougaard, NWARC, Kalispell, MT.

PROJECT PERSONNEL: Bruce Maxwell, P&SS, MSU, Bozeman, MT.

Pete Fay, P&SS, MSU, Bozeman, MT. Ed Davis, CARS, Moccasin, MT. Todd Keener, NWARC, Kalispell, MT.

OBJECTIVES: To determine the effectiveness of early postemergence herbicides applications at reduced rates for control of wild oats.

MATERIALS AND METHODS:

The study was established on a Kalispell fine sandy loam soil with a pH of 7.7 and an organic matter content of 4.2 percent. Gallatin spring barley was seeded at 60 lb/A on April 14, 1992. The area was fertilized with 120 lb/A of 27/14/0 on April 20, 1992. The previous crop was spring barley. Plots were 10 by 15 feet, were replicated four times and were arranged in a randomized complete block. Assert and Hoelon were applied at their respective 1X, 1/2X, and 1/4X use rates to wild oat infested spring barley. Treatments were applied at either 1, 2, or 3 weeks after barley emergence. Hoelon was applied alone and Assert was applied with Sunit II (a non-ionic surfactant plus methylated sunflower oil blend). Applications were made with a CO₂ backpack sprayer in 20 GPA at 20 psi with 110022 flat fan nozzles. Environmental conditions were as follows:

Appln 1/	Crop Stage	W.Oat Stage				Soil d.Moisture	
1 WABI	E 1.5 lf	1.5 lf	45	50	37	Fair	
2 WABI	E 3 lf	1-3 lf	66	70	13	Dry	
3 WABI	E 5-7 lf	3 lf	60	64	25	Dry	

1/ Application timing: 1, 2, or 3 WABE (Weeks after barley emergence)

SUMMARY:

Yields were positively correlated with percent wild oat control. Assert provided the best wild oat control and highest barley yield. There was no difference in control or yield between the 1X and 1/2X labeled rates of Assert, regardless of application timing. Control was most complete and yields highest for Assert applied 1 week after barley emergence. As application timing was delayed, wild oat control and barley yield declined. Assert at 1/4 the normal use rate applied 1 week after barley emergence provided wild oat control and barley yields comparable to the 1X use rate applied at the typical application date. This reduced rate-early application would cost about \$5.00/A compared to \$20.00/A for the labeled treatment.

Wild oat control with Hoelon was erratic and less complete. Weed control was most complete with applications made at 2 weeks after barley emergence. Control would be expected to decline at later applications dates due to larger and more numerous wild oat plants. This was the case for the latest application date. However the poor control at the earliest date was unexpected. The poor control from applications made 1 week after barley emergence may be

bovrozda ynu), i gmo

due to environmental factors.

This first years preliminary results indicate that Assert rates could be reduced at least by 1/2 regardless of application timing and that early applications result in the most consistent control and highest yields. Hoelon does not appear to have much flexibility in reducing rates. For Hoelon, environmental conditions may be more important than wild oat growth stage with respect to the level of control achieved.

REDUCED WILD OAT HERBICIDE RATE STUDY

WABE 1/	HERBICIDE	RATE	WILD OAT CONTROL	BARLEY YIELD (BU/A)
		TEXT FUL	SH 45 50	.1-1 11 C.1 218/
ed on 8/22 92	HOELON	1X	55	65
1	HOELON	1/2X	45	45
1	HOELON	1/4X	50	45
1	ASSERT	1X	90	80
1	ASSERT	1/2X	90	75
1	ASSERT	1/4X	90	70
2	HOELON	1X	90	85
2	HOELON	1/2X	50	40
2	HOELON	1/4X	10	35
2	ASSERT	1X	90	75
2	ASSERT	1/2X	90	75
2	ASSERT	1/4X	75	60
3	HOELON	1X	652 2000	70
3	HOELON	1/2X	25 love bas	40
3	HOELON	1/4X	30	40
3	ASSERT	1X	80	65
3	ASSERT	1/2X	60	65
3	ASSERT	1/4X	50	45
This resent on	NONTREATE		160 25 sldslq9	35

^{1/} WABE: Weeks after barley emergence

PROJECT TITLE: Hoelon Surfactant Study

PROJECT LEADERS: Bob Stougaard, NWARC, Kalispell, MT.

PROJECT PERSONNEL: Todd Keener, NWARC, Kalispell, MT.

OBJECTIVES: Evaluate the effect of Hoelon, rates and surfactants on wild oat control, and to determine if surfactants could be used with reduced rates of Hoelon without causing barley injury and maintaining acceptable wild oat control at the same time.

MATERIALS AND METHODS:

The study was established on a Kalispell fine sandy loam, with a pH of 7.7 and organic matter content of 4.2. Gallatin spring barley was seeded at 60 lb/A on April 14, 1992. The area was fertilized with 120 lb/A of 27/14/0 on April 20, 1992. The previous crop was spring barley. Plots were 10 by 15 ft, were replicated 3 times and were arranged in a randomized complete block. Hoelon was applied at the 1X, 1/2X, and 1/4X use rates at 1 and 2 weeks after barley emergence (WABE). These treatments were either applied alone or in combination with a non-ionic surfactant (R-11) or a non-ionic surfactant plus methylated sunflower blend (Sunit II). Applications were made with a CO² sprayer in 20 GPA at 20 psi with 110022 flat fan nozzles. Environmental conditions were as follows:

APPLN	CROP	W.OAT	AIR	SOIL	REL.	SOIL
	STAGE	STAGE	TEMP	TEMP	HUMID	MOISTURE
1 WABE	1.5 lf	1-1.51f	45	50	37	Fair
2 WABE	3 lf	1-3 lf	66	70	13	Good

Evaluations were taken on 6/1/92 and 6/25/92 with plots being harvested on 8/22/92 from a 60 sq ft area.

SUMMARY:

Results were erratic with applications made 1 week after barley emergence. Surfactants did not provide any clear advantage compared to Hoelon alone. The one exception was that it appeared that wild oat control and barley yield did not decline as dramatically at the reduced rates when surfactants were included.

Weed and crop responses were more obvious when the same treatments were made 2 weeks after barley emergence. Wild oat control and barley yield were improved when either R-11 or Sunit-II were applied with Hoelon. This response was again most apparent at the lower rates. Of the two surfactants, Sunit-II increased control and yield the most. The 1/4X rate of Hoelon plus Sunit-II provided control and yields comparable to the 1X rate without surfactants. Sunit-II also resulted in the greatest degree of crop injury. Injury was initially severe at the 1X and 1/2X rates of Hoelon when applied with Sunit-II. Although injury was noticeable, these same treatments produced the highest barley yields.

This first years preliminary results indicate that Hoelon rates can be reduced when applied with Sunit-II and maintain acceptable wild oat control and barley yields. This research should be repeated to determine the consistency of these treatments, especially in light of the crop injury observed.

Table 1. Hoelon Surfactant Study on Spring Barley. Northwestern Agricultural Research Center, Kalispell, MT.

Trtmnt Name 0%	Rate Lb ai		BARLEY YIELD BU/A 8-22-92 94 DAA		% INJURY 6-25-92	
					3	1 01
HOELON 38	1.0	001	101.8	€. ₹20	S 3	0 4 86 100
HOELON	.50	1	77.0	7	13	72
HOELON	.25	1	72.6	3	0	53
HOELON S8 R-11	1.0 1 Qt	\$11	075.1	\$.887	\$ 5 V\V	88.70 KG
HOELON R-11	.5 1 Qt	0 1	81.3	2.043	-0	62
HOELON R-11	.25 1 Qt	1	73.9	15	3	67
HOELON SUN-IT	1.0		775.2	8 #0 .	8	85
HOELON SUN-IT			59.2 <u>60</u>	12 /4) JS02 DL	000 = 384W W = 731VX Talugnos
HOELON SUN-IT	.25 .25%		69.6	10	3	60
HOELON	1.0	2	89.4	27	10	85
HOELON	.50	2	78.4	10	0	72
HOELON	.25	2	63.3	13	2	53
HOELON R-11	1.0 1 Qt	2	89.1	30	13	92
HOELON R-11	.50 1 Qt	2	81.5	12	3	70
IV-TT			Cont'd on pa	age 2		i .

Table 1 (Cont'd). Hoelon Surfactant Study on Spring Barley.

Trtmnt	Rate	Grow	BARLEY	BARLEY	BARLEY	WILD OA	Г
Name Man	Lb ai	Stg	YIELD BU/A	% INJURY	% INJURY	% CONTRO	L
JOR	PMOD	THUTTHE	YRULWI	A\U8	7.5		
				8-22-92	WABE		
HOELON O	.25 1 Qt	AAG 2	AAG 71.8	AAO 23	3	1s d. 70	
HOELON SUN-IT		2 V/V	87.9	8.178	160	0.1 98	
						08.	
HOELON	.50	2	91.2	50	28	98	
SUN-IT	.25%	V/V					
HOELON SUN-IT	.25 .25%	0 2 V/V	83.2	20	112	0.1 82 30 I	
UNTREATED	a	-	49.2	€.182	1 0	8. 33 1 Qt	
UNTREATED			49.3	7	0	50	
\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	3			73.9	Į.	125	MONTHOR
D 173 I I I I			040	000	000	.06	11-2
P VALUE	=		.048	.000	.000		MOJIZON
LSD (.05)	3=		28.2	\$.817	13	200	

^{1/}

WABE = Weeks after barley emergence AVEFA = Wild oat (<u>Avena fatua</u>) Letters are a WSSA-approved 2/ computer code from Composite List of Weeds VV

PROJECT TITLE: Broadleaf Surfactant Study

PROJECT LEADERS: Bob Stougaard, NWARC, Kalispell, MT

PROJECT PERSONNEL: Todd Keener, NWARC, Kalispell, MT.

OBJECTIVES: Evaluate the sulfonylurea herbicides Harmony Extra and Express in combination with 2,4-D, and/or Banvel for possible enhanced broadleaf weed control when applied in tank mix with Cayuse and/or R-11 surfactant.

RESULTS:

This study was established to determine if broadleaf weed control in small grains could be enhanced with the addition of surfactants to standard herbicide treatments. The core treatments consisted of reduced rates of Harmony Extra and Express applied alone or in combination with 2,4-D or 2,4-D plus Banvel. These treatments were applied without a surfactant or tank-mixed with a non-ionic surfactant (R-11) or a non-ionic surfactant plus a UAN liquid fertilizer mixture (R-11 plus Cayuse) at different concentrations. Banvel plus 2,4-D was included as a standard and was tank-mixed with the same surfactant combinations. Treatments were applied late when spring barley was 12 inches tall and fully tillered. Wild buckwheat was the dominant weed species present and was 3-5 inches tall.

The research plots were established in a Bearpaw spring barley field that had been seeded at 60 lbs/A on March 31, 1992. The experiment was a randomized complete block design with three replications. Plots were 10'X 15'. Seed bed preparation included spring discing, cultivation and then packing with a Brillion. Fertilizer applied at seeding was 191 lb/A of 27/14/0. The previous crop grown in this field was Gallatin spring barley that had been planted on April 12, 1991. The yield for that year was 63 bu/A with a test weight of 53 lb/bu. Fertilizer had been applied at seeding (210 lbs 27/14/0). Previous herbicides had been Harmony Extra at .6 oz prod/A. Soil type for test area is a Kalispell fine sandy loam with a pH of 7.7 and OM of 3.3%. Soil texture is 60% sand, 30% silt, and 10% clay.

Application data was as follows:

Date May 27, 1992

Air temp: 60 F Soil temp: 58 F Rel Hum.: 62%

Soil moisture: top - wet, subsoil - wet

Crop stage at appln: 11-13", fully tillered

Weed stages at appln:

Wild buckwheat [POLCO(Poygonum convolvulus)] 3-5", many lvs

Lambsquarter (Chenopodium album) 5-7"

Henbit (Lamium amplexicauli) 3-5"

Russian thistle (Salsola iberica) 3" diameter

Tansey mustard (Descurainia sophia) 3" tall

SUMMARY:

The effect of surfactants on wild buckwheat control varied among herbicides. Wild buckwheat control was improved by additions of surfactants for treatments which included Harmony Extra. Control was 70% for Harmony Extra alone compared to 90% when R-11 plus Cayuse were added at the highest concentration. The same trends were observed for 2,4-D plus Banvel treatments. Weed control with treatments which included Express did not responded to the additions of surfactants. Spring barley yields were erratic, probably due to the late application timing. As such, the effect of these treatments in reducing weed competition or causing crop injury can not be accurately assessed. It appears that surfactant effects vary with the herbicide in question.

Table 1. Agronomic data from the Broadleaf Surfactant Herbicide trial located on the NWARC, Kalispel, MT in 1992.

TREATMEN	T ,TM	RATE AI/A	YIELD BU/A	% CROP INJURY	% STAND REDUCT.	% CONT	
1. Harmon		.23 oz .25 lb	53	of possil	door Blance	68	
2. Harmon	y Extra	.23 oz	73	7	8 8	73	
2,4-D Banve		.25 lb					
3. 2,4-D		.375 lb	62	2	12 V	66	
Banve		.125 lb	airfactants' ti	To soith			
ale bellevision		n oneran	merall de se		n lo possis		
4. Expres		.125 oz		_			
2,4-D	LV4	.25 lb					
5. Expres	s afficiency	.125 oz	37	_	13		
2,4-D		.25 lb					
Banve.		.125 lb	it drive bearing	was tank-	has basbas	e a as b	obul
6. Harmony		.23 oz	44	velver uni	rge nanw si	85	
2,4-D R-11	LV4	.25 lb					
7. Harmon		.23 oz	39	3	15	86	
2,4-D		.25 lb					
Banve.	cation noits:	.125 lb					
R-11		.256 V/V					
8. 2,4-D	LV4	.375 lb	38	0.00	13	83	
Banve		.156 lb					
R-11		.5% v/v					
9. Express	SUBTVETE	.125 oz					
2,4-D		.25 lb	Diportor test	HOZ9(1)XO	70 30 15		
R-11		.25% v/v					
10.Express		.125 oz	54		W AISD HOS		
2,4-D		.25 lb	24	0 0	001 13 C VA	65	
Banvel		.156 lb					
R-11		.25% v/v					
11.Harnomy		.23 oz	49	0 18	5267 QOL	83	
2,4-D		.25 lb					
Cayuse R-11	# (1 - E [(c) #	.25% v/v					
K-11		.236 V/V					
12. Harmony	Extra	.23 oz	51	2 min	al 7 tidres	88	
2,4-D	LV	.25 lb					
Banvel		.125 lb					
Cayuse R-11	2	.25% v/v .25% v/v					
12 0 4 5 -	**	275 11-	40	0	1.2	83	
13.2,4-D I Banvel		.375 lb	49	8	13		
Cayuse		.156 1b					
R-11	histori uud	.25% v/v					
		ixim alone co			Control v		
Cont'd on page 2 P-VALUE = .136 .017 .335						.00	0
		0.05 by t) =	. 100	7.03			797

the herbieide in question.

Table 1. (Cont'd). Broadleaf Surfactant Herbicide Trial, NWARC.

TREATMENT	RATE AI/A	YIELD BU/A	% CROP INJURY	% STAND REDUCT.	% CONTROL W BUCKWHT	
	Kalispell, MT	WARC	Keener, P	D001 175	T PENSUNS	
14.Express 2,4-D LV4	.125 oz	52	2	12	73.	
Cayuse R-11	.25% v/v .25% v/v					
15.Express 2,4-D LV Banvel	.125 oz .25 lb .156 lb	51	5	17 ECONTER	84 1 CMA ZIAI	
Cayuse R-11	.5% v/v .25% v/v					
16.Harmony Extr	a.23 oz	55	0	10	91	
2,4-D LV Cayuse R-11	.25 lb					
17.Harmony Extr 2,4-D LV Banvel	.23 oz .25 lb .125 lb	53	2	13 mg	92	
Cayuse R-11	.5% v/v .25% v/v					
18.2,4-D LV Banvel Cayuse	.375 lb .156 lb .5% v/v	57 57 S	12	18	85	
R-11	.25% V/V					
19.Express 2,4-D LV4	.125 oz .25 lb	52	0	10	53	
Cayuse R-11	.5% v/v .25% v/v					
20.Express 2,4-D LV4 Banvel	.125 oz .25 lb	38 olleane b	10 Ishiyong al	13 namman 16	89	
Cayuse R-11	.5% v/v .25% v/v					
21.Untreated		61	0	5	0	

nort to the discreptions obtained in other research related to reduced ruses of wild out

PROJECT TITLE: Assert Tank-Mix Antagonism Study

PROJECT LEADER: Bob Stougaard, NWARC, Kalispell, MT

PROJECT PERSONNEL: Todd Keener, NWARC, Kalispell, MT

OBJECTIVE: This study was established to compare Assert formulations, rates and combinations for the control of wild oat in spring barley and to determine if wild oat control would be affected by tank-mixed applications of Assert with standard broadleaf herbicides.

MATERIALS AND METHODS:

The study was established on a Kalispell fine sandy loam, with a pH of 7.7 and organic matter content of 4.2. The area was fertilized with 120 lb/A of 27/14/0 on April 20, 1992. The previous crop was spring barley. Plots were 10 by 15 ft, were replicated 3 times and were arranged in a randomized complete block. Gallatin spring barley was seeded at 60 lb/A on April 14, 1992. Assert was applied at different rates alone or in combination with MCPA ester, Bronate, Curtail M, and Harmony Extra plus MCPA ester. Treatments were applied to wild oat infested spring barley approximately 3 weeks after barley emergence. Herbicides were applied on May 13, 1992, when the crop was in the 3 to 5 leaf stage and the majority of wild oat were at the 3 leaf stage (20% 2 lf, 60% 3 lf, 20 at 4 lf). Average wild oat density was 27/sq ft. Applications were made with a CO₂ backpack sprayer in 20 GPA at 20 psi with 11002 flat fan nozzles. Environmental conditions at application were as follows:

Air Temp: 66, Soil Temp: 65, Rel Hum: 7%, Soil Moisture: good

Evaluations were taken on 6/1, 6/25, and 8/11/1992 with plots being harvested on 8/12/1992 from a 60 sq ft area.

SUMMARY:

The majority of treatments provided excellent control of wild oat and all treatments provided yields greater than the nontreated control. Poorest control was observed with the following treatments:

Assert 67SG 0.23 + Avenge 2ASU 0.5

Assert 67SG 0.38 + Bronate 0.5

Assert 67SG 0.23 + Harmony Extra 0.5 oz + MCPA 0.25

Assert 67SG 0.38 + Harmony Extra 0.5 oz + MCPA 0.25

The lowest Assert rates provided the same degree of control as the highest rates, which lends support to the observations obtained in other research related to reduced rates of wild oat herbicides. Some antagonism was observed in this experiment. Wild oat control was reduced 10 to 20% when Assert was tank-mixed with either Bronate or Harmony Extra plus MCPA.

Table 1. Summary of agronomic data from the Assert Herbicide Trial.

Northwestern Agricultural Research Center, Kalispell, MT.

S 2 1 bu/A							
Treatment Rate	Surf	% Crop	Injury	% A	VEFA (Control2	Yield
lb ai/A	1/	6-1	6-25	6-1	6-25	8-1	bu/A
Assert 2.5 .47	NIS	12	8	87	100	92	83
Assert 2.5 .38	NIS	10	5	88	100	93	80
Assert 2.5 .31	NIS	10	8	82	100	86	75
Assert 67SG .47	NIS	12	3	83	100	90	80
Assert 67SG .38	NIS	12	3	82	100	81	83
Assert 67SG .31	NIS	17 81	12	80	100	86	70
Assert 67SG .23 Avenge 2ASU .50	NIS (AIM)	13 A iq S	18 11-3	88 Torrow	90	47	66
Assert 67SG .47	SUN	13	12	88	97	93	72
Assert 67SG .38	SUN	15	12	88	100	82	74
Assert 67SG .31	SUN	7	3	87	100	92	84
Assert 67SG .23 Avenge 2ASU .50	SUN	10	3	83	100	82	83
Assert 67SG .38 MCPA ester .50	NIS	10	3	85	100	95	83
Assert 67SG .38 Bronate .50	NIS	13	12	82	100	51	72
Assert 67SG .38 Curtail M 2 pt	NIS	10	13	80	100	81	70
Assert 67SG .38 Harm Extra .5 oz MCPA ester .25	NIS	13	7	83	100	80	78

Table 1. (Cont'd) Assert Herbicide Study - 1992

Treatment Rate	Surf	% Crop	Injury % AVEFA C	ontrol2/ Yield
lb ai/A	1/	6-1	6-25 6-1 6-25	8-1 bu/A
Alm 1-8	CL-D	-1 22-0	3-0 \1	AMS CI
Assert 67SG .23 Harm Extra .5 oz MCPA ester .25	NIS	18	10 77 100	40 66
VICIA Ester .25				
Assert 67SG .38 Harm Extra .5 oz	NIS	20	20 87 100	71 72 18. 2.3 mar A
MCPA ester .25				
UNTREATED CHI	ECK	S 82	0 NIS 12 0	0 36 88. 0810 mazz A
LSD (.0	05)=	08 12.1	18.8 9.92 7.00	
P VAL	JE	.375	.610 .000 .000	.000 .088

^{1/} Surf: Surfactants used were R-11 at 2 pt A (NIS) and Sun-IT II at 2 pt/A (SUN)

^{2/ %} Wild Oat Control. AVEFA is WSSA-approved computer code from Composite List of Weeds for wild oat (Avena fatua).

PROJECT TITLE: Forage Grass Establishment Study

PROJECT LEADER: Bob Stougaard, NWARC, Kalispell, MT.

PROJECT PERSONNEL: Todd Kenner, NWARC, Kalsipell, MT.

OBJECTIVE: To evaluate the potential of Pursuit for forage grass establishment.

MATERIALS AND METHODS:

Three forage grass species (Orchardgrass, Regar meadow bromegrass, and Garrison creeping foxtail) were dormant seeded October 21, 1992. Pursuit was applied at 4 rates, at 3 different application timings, to these forage grass species to determine the optimum rate and growth stage that would maximize forage grass safety for specific grass species and afford acceptable weed control at the same time. Pursuit treatments were applied postemergence at 2 week intervals on 4/20/92, 5/7/92, and 5/21/92. Applications were made with a CO₂ backpack sprayer in 20 GPA at 20 psi with 11002 flat fan nozzles. Pennycress was the dominant weed species present, with lesser amounts of common bedstraw and common lambsquarters. Application data was as follows:

Ap	pln.	Date	,	Stage of	f Growt	th	Air	Soil	Rel	Soil	
	_		GRASS	THLAR	GALAP	CHEAL	Temp	Temp	Hum.	Moisture	
Pos	st 1	4/20	3 lf	1"	1/2"	1/2"	60	58	22	Fair	
Pos	st 2	5/7	1-3 t	1-3"	1-3"	2-3"	75	72	13	Dry	
Pos	st 3	5/21	3-5 t	12"	5-7"	3-5"	55	52	33	Wet	

THLAR = Field Pennycress (Thlaspi arvense), GALAP = Common bedstraw (Galium aparine), CHEAL = Common lambsquarters (Chenopodiun album)

SUMMARY:

The three grass species responded similarly to the Pursuit treatments. Forage grass tolerance to Pursuit increased as applications were delayed as reflected in forage grass yields and percent stand establishment values. Grass yields increased as Pursuit rates increased up to a point. The highest rate generally reduced grass stands and yields. Of the grasses evaluated, Orchardgrass produced the greatest amount of hay, followed by Regar meadow bromegrass, and Garrison creeping foxtail respectively.

Pennycress control was excellent, with all treatments providing greater than 90% control regardless of rate or application date. Bedstraw control tended to be more complete with the later applications. Early applications controlled those plants present at application, but bedstraw continued to emerge throughout the season, resulting in poorer overall control. In contrast, lambsquarters control was better with the earlier applications, due to the smaller weed size.

Table 1. Forage Grass Establishment Study - ORCHARDGRASS DATA

Treatment	Rate	Timing	Grs Wt	Brdlf Wt	8	Perce	nt Cont	rol 2/
	lb ai/A	1/Marile	gm/ft	gm/ft	Stand	THLAR	GALAP	CHEAL
Untreated	114	Post1	89	17 X 550	81	50	37	52
Pursuit	.02	Post1	108	28	90	95	66	75
Pursuit	.03	Post1	125	33	89	95	67	69
Pursuit	.06	Post1	69	19 200	82	97	A71	86
Untreated	mo <u>rd</u> wab	Post2	88	14	90	30	41	37
Pursuit	.02	Post2	92	12	86	96	64	67
Pursuit	.03	Post2	108	ximize goraș	92	97	60	66
Pursuit	.06	Post2	94	18	84	100	77	76
Untreated	ov sve bylu	Post3	94	49	92	42	35	25
Pursuit	.02	Post3	106	18	90	100	81	75
Pursuit	.03	Post3	115	14	95	84	76	62
Pursuit	.06	Post3	127	56	79	100	92	79
Pry	L	s D	38.7	99.6	12.7	177	25.9	20.3

^{1/} Timing: Post1 = 1-3 leaf (4/20/92), Post2 = 1-3 tiller (5/7/92), Post3 = 3-5 tiller (5/21/92)

^{2/} Percent Control: WSSA-approved weed codes for Field pennycress THLAR (Thlaspi arvense), Common bedstraw - GALPA (Galium aparine)
 and Common Lambsquarters - CHEAL (Chenopodium album).

Table 1 (Cont'd) . Forage Grass Establishment Study - REGAR BROMEGRASS DATA

Treatment	Rate lb ai/A	Timing 1/	Grs W gm/ft					rol 2/ CHEAL
Untreated	5.8	Post1	20 59	40	67	25	17	52
Pursuit	.02	Post1	57	52	E 62	97	50	66
Pursuit	.03	Post1	⁰⁸ 78	6617	⁸⁶ 69	95	66	75
Pursuit	.06	Post1	0 42	18	62	*99	80	85
Untreated	21_	Post2	31	65	65	35	0	35
Pursuit	.02	Post2	40	66	65	92	50	62
Pursuit	.03	Post2	69	§ E51	€∂ 70	97	45	62
Pursuit	.06	Post2	50	3 71	64	100	54	64
Untreated		Post3	46	45	² 5 67	40	21	47
Pursuit	.02	Post3	61	32	^{8 6} 69	100	71	57
Pursuit	.03	Post3	⁶⁰ 39	51	€ 72	100	76	57
Pursuit	.06	Post3	70	43	€€ 64	100	92	76
20.3	6-32 P	S D	38.7	99.6	12.7	17.7	25.9	20.3

^{1/} Timing: Post1 = 1-3 leaf (4/20/92), Post2 = 1-3 tiller (5/7/92), Post3 = 3-5 tiller (5/21/92)

^{2/} Percent Control: WSSA-approved weed codes for Field pennycress THLAR (Thlaspi arvense), Common bedstraw - GALPA (Galium aparine)
and Common Lambsquarters - CHEAL (Chenopodium album).

Table 1 (Cont'd). Grass Establishment Study - GARRISON FOXTAIL DATA

Treatment	Rate lb ai/A	Timing 1/	Grs W gm/ft			Perce THLAR	nt Cont GALAP	rol 2/ CHEAL
Untreated	77	Post1	49	58	69	35	34	20
Pursuit	.02	Post1	37	82	62 13	90	56	67
Pursuit	.03	Post1	26	20	87 60 IS	99	67	82
Pursuit	.06	Post1	24	31	s 50 (s	94	77	80
Untreated		Post2	24	239	61	70	16	37
Pursuit	.02	Post2	43	56	⊕ 70 ga	96	35	50
Pursuit	.03	Post2	OV 63	32	ea 67 sa	100	67	77
Pursuit	.06	Post2	36	16	0 64 se	9,7	66	72
Untreated		Post3	- 3 25	47	62	29	19	40
Pursuit	.02	Post3	43	36	[8 67 ES	100	46	46
Pursuit	.03	Post3	53	29	₽8 65 _{€ 9}	100	84	69
Pursuit	.06	Post3	33	115	66	100	95	80
£ 05	g.gg L	S D	38.7	99.6	0.8812.7	17.7	25.9	20.3

^{1/} Timing: Post1 = 1-3 leaf (4/20/92), Post2 = 1-3 tiller (5/7/92), Post3 = 3-5 tiller (5/21/92)

^{2/} Percent Control: WSSA-approved weed codes for Field pennycress THLAR (Thlaspi arvense), Common bedstraw - GALPA (Galium aparine)
 and Common Lambsquarters - CHEAL (Chenopodium album).

PROJECT TITLE: Wild Oat Management for Baby Peppermint

PROJECT LEADER: Bob Stougaard, NWARC, Kalispell, MT.

PROJECT PERSONNEL: Todd Keener, NWARC, Kalispell, MT

OBJECTIVE: To evaluate herbicides, rates and application timings for the control of wild oat during mint establishment. Specifically, to determine if the addition of a PRE grass herbicide to a POST grass herbicide would provide extended wild oat control.

MATERIALS AND METHODS:

The study was established on a Kalispell fine sandy loam soil with a pH of 7.7 and an organic matter content of 4.2 percent that had previously been in barley and had a history of intense wild out pressure. The area was fertilized and Black Mitcham peppermint roots were planted in 22 inch rows, 2 inches deep, at 1000 lb/A on April 7, 1992. The area was then irrigated and fertilized throughout the season.

Herbicides were applied with a CO² backpack sprayer calibrated to deliver 20 GPA at 20 psi. Treatments were replicated 3 times in a randomized complete block design. Plot dimensions were 10 by 15 ft. Application data was as follows:

Application type	PRE	POST
Date	4/17	5/4
Air Temp	47 F	77 F
Soil Temp	47 F	80 F
Wind	2-4 MPH	3-5 MPH
Rel Hum.	58	80 f 15
Soil Moisture	Good	Good
Weed Stage	NA	W. Oat: 2-3 lf

Treatments were evaluated on June 3, 1992 for percent wild oat control and crop injury. Mint and wild oat yields were determined on August 18, 1992 by harvesting two, 1 sq ft quadrates in each plot.

SUMMARY:

Wild oat control was poor with all of the PRE treatments at the June rating. As a result, there was no benefit in adding a PRE grass herbicide to the POST treatments. Of the POST treatments evaluated, control was poorest with Poast. All other POST treatments provided excellent control initially. Control declined with all treatments as the season progressed. This was due to additional flushes of wild oat resulting from the high wild oat seed bank populations, lack of activity from the PRE treatments and abundant moisture. Beacon alone or in combination did demonstrate residual control of wild oat as reflected in the wild oat biomass measurements. However, Beacon caused unacceptable injury to the baby mint, resulting in the highest crop injury ratings and the lowest mint yields. Accent also caused significant crop injury. The results of this study indicate that there is no effective PRE herbicide for wild oat control. Wild oat management in baby mint will require at least two applications of a POST grass material with Assure II being a better candidate then Poast for wild oat control.

Table 1. Agronomic data from the peppermint wild oat study on the Northwestern Agricultural Research Center.

	tment /	Rate Lb ai/A	Appln.	MINT LBS/A	WILD OAT LBS/A	AVEFA %CONTRL	CROP INJURY
Sinb	ar	. 4	Pre	4118	15060	48	14
Sinb	ar 00 of 00	.8	Pre	3245	13810	50	11
Prow	of a PRE gr	.75	Pre	1404	12290	13	0
Prow	1	1.5	Pre	611	12870	30	4
Mon	13211	.25	Pre	5575	14370	54	ERIO
Mon	13211	.50	Pre	3966	10710	60	0
Assu	re II + NIS	.021	Post	5688	12020	92	6 1 4 3
Assu	re II + NIS	.043	Post	5142	15520	96	14
Poas	t + coc	.093	Post	3875	14090	58	9
Poas	t + coc	.187	Post	4839	10720	79	10
Acces	nt + NIS	.015	Post	2935	8204	88	40
Acce	nt + NIS	.030	Post	5510	9397	93	33
Beaco	on + NIS	.015	Post	779	16110	94	85
Beaco	on + NIS	.030	Post	796	9507	99	98 (111)
Prow! Assu	l ure II+ NIS	.75 .021	Post	4108	8599	78	11
	13211 ure II+ NIS	.25	Post	4046	8601	89	14
Prowl Poas	l st + COC	.75	Post	4630	23590	90	21
	13211 st + COC	.25	Post	5714	12290	82	1300
Prowl	ent + NIS	.75	Post	2834 19 541 to HA	12010 Hiw 700q zaw	94 at control	38 AM
	13211 ent + NIS	.25	Post	3736	19940	95 ened	53
Prowl	con + NIS	.75	Post	91 91	8712	99	97
	3211 con + NIS	.25	Post	373	4284	99	98 odsne
Untre	eated	de Traco.	ATT Tables	3279	16170	21	0 000 12
oir a sol		P-VALUE LSD(0.0			.1229		00

^{1/} COC = Crop oil concentrate l QT/A, Surf = Non-ionic Surfactant .25% v/v 2/ AVEFA = WSSA-approved weed code for wild oat (Avena fatua)

PROJECT TITLE: Reduced Rate Postemergence Study on Peppermint.

PROJECT LEADER: Bob Stougaard, NWARC, Kalispell, MT.

PROJECT PERSONNEL: Todd Keener, NWARC, Kalispell, MT.

Jim Beuchle - cooperator

OBJECTIVE: To evaluate reduced rate postemergence herbicides for weed control and crop injury in established and baby Black Mitcham peppermint.

MATERIALS AND METHODS:

The established stand was in the third year of production and was located on a Creston silt loam soil with a pH of 7.5 and an organic matter content of 3.7 percent. The new planting was located on a Kalispell fine sandy loam soil with a pH of 7.7 and an organic matter content of 4.2 percent and had previously been in barley. The area was fertilized and Black Mitcham roots were planted in 22 inch rows, 2 inches deep on April 7, 1992 at a rate of 1000 lb/A. The area was then packed with a Brillon packer. The area was treated with 0.38 lb ai/A Sinbar May 8, 1992.

Herbicide applications at both sites were made with a CO² backpack sprayer at 20 psi and a carrier volume of 20 GPA. Treatments were replicated 3 times. Plot dimensions were 10 by 10 and 10 by 15 ft at the established and baby mint sites respectively. Application data was as follows:

	Established Mint	Baby Mint
Application Date	5/22/92	6/10/92
Air Temp	64 F	77 F
Soil Temp	62 F	80 F
Wind	0 0	3-5 MPH
Soil Moisture	V Good	Good
Weed Stage	Bedstraw 6-12"	R. Thistle 3"
84	Prickly Lettuce 8-12"	

SUMMARY:

Herbicide applications at the established mint site were delayed until a uniform weed stand developed. This resulted in excessive growth, with the majority of the weeds being 10 inches tall. Few treatments were effective in controlling the heavy weed population present. Bedstraw was the dominant weed species at this site. The best bedstraw control was obtained with a 3-way combination of Sinbar + Basagran + Tough at the highest rate. Although the infestation of prickly lettuce was erratic, several treatments provided good control. Treatments which provided better than 90% prickly lettuce control included the high rates of Sinbar + Basagran, and Sinbar + Basagran + Gramoxone. None of the treatments caused significant crop injury to the established mint. In contrast, several treatments resulted in noticeable injury at the baby mint site. Injury was most noticeable with treatments that included Gramoxone. In comparison, similar treatments which included Tough, had no significant crop injury. Greatest injury occurred with the Sinbar + Gramoxone combinations. Basagran + Gramoxone and Sinbar + Basagran + Gramoxone also cause injury, but to a lesser degree. It appears that the addition of Basagran reduces the injury potential of Gramoxone to baby mint.

Agronomic data from the Sinbar Reduced Rate Study on established and baby mint in 1992.

Treatment	Rate lb ai/A	Surf 1/	Baby % Crop Injury	Yield Lbs/A	% Crop Injury	tabished M % Weed LACSE	Control 2 GALAP
Sinbar	.2	s	15100000 - 1	6275	0	60	17
Sinbar	.4	S	7 00	6275	eval Olie r	17	45
Basagran	.25	C	ideo 1 mayor	5443	(ded of one be	30	40
Basagran	.50	С	2	5368	оном о	43	52
Sinbar + Basagran	.20	С	thing year yearic mate	5443	baro bala 7 lo Hg s	78	23
Sinbar + Basagran	.20	C	o with	5670	alispol in o had previo	68	58
Sinbar + Basagran	.40	С	0	4082	nn 22 men ed with a B	93	28
Sinbar + Basagran	.40	C	em ¹ now a	4536	epologons course A	92	57
Sinbar + Tough	.20	S	3 (ded h	6199	0 11 11	63	47
Sinbar + Tough	.40	S	yde o Omo	5443	0	90	35
Basagran + Tough	.25	С	77. ₂	5594	0	70 💯	40
Basagran + Tough	.50	c H	0	5292	0 0	87 27unzio	32
Sinbar + Basagran + Tough	.20 .25 .45	C	2	4612	edsi Prickly Let	78	58
Sinbar + Basagran + Tough	.20 .50 .45	C site Ini	a bertzilan	5141	2 applications	60	68
Sinbar + Basagran + Tough	.40 .25 .45					w was the day only	
	P-Value LSD (.05)	.000 9.6 Cont'd on	.192 1966	.574 3.8	.540 57	.161

(Cont'd on next page)

Table 1. (Cont'd) [180] as your grim I salsong A bas such nurse fill to a such

Treatment	Rate lb ai/A	Surf 1/	% Crop Injury	Yield Lbs/A	% Crop Injury	% Weed LACSE	Control 2 GALAP
Sinbar + Basagran + Tough	.40 .50 .45	С	3 to preci	4007 Colerance		77	52 6T :HVI
Sinbar + Gramoxone	.20	S	47	4460	3	37 COOHTEM	13 ALS AND
Sinbar + Gramoxone	.40	S	67	4007	ralum3 u	63	58
Basagran + Gramoxone	.25	C	38	5141	SEM TIMES	83	17
Basagran + Gramoxone	.50	С		4763	utont 23	77	53
Sinbar + Basagran +	.20	С		4990	O Teno	60	30
Gramoxone Sinbar + Basagran + Gramoxone	.09 .20 .50	c		3402	08 ₀	60	27
Sinbar + Basagran + Gramoxone	.40 .25 .09	С	25	3629	NO DEL	82	
Sinbar + Basagran + Gramoxone	.40	С	20	4460	0	92 0	
Non-treated		-	0	4536	0	60	50

^{1/} S = non-ionic surfactant at .25% v/v (1 qt/ 100 gals) C = crop oil concentrate at 2 pts/A

^{2/ %} Weed control: WSSA-approved weed codes for Prickly lettuce - LACSE (Lactuca serriola), Common bedstraw - GALAP (Galium aparine).

PROJECT TITLE: Pursuit Rate and Application Timing Study on Lentils

PROJECT LEADER: Bob Stougaard, NWARC, Kalispell, MT.

PROJECT PERSONNEL: Todd Keener, NWARC, Kalispell, MT.

OBJECTIVE: To evaluate lentil crop tolerance to preemergence, and postemergence applications of Pursuit.

MATERIALS AND METHODS:

On April 20, 1992 Chilean lentils were planted at 60 lb/A in a Kalispell fine sandy loam (pH 7.7 and OM 4.2%). No fertilizer was applied to the test area. The previous crop in 1991 was spring barley. Plots were 10' by 15', were replicated four times and were arranged in a randomized complete block. Pursuit was applied at three rates preemergence, as well as early and late postemergence. Sencor was included as a standard treatment. Application data was as follows:

Appln	Date	Air	Soil	Rel.	Soil	Crop
	uc	Temp	Temp	Humid	Moist.	Stage
Pre	4/27	62	60	18	Good	N/A
PostA	5/14	90	80	5	Dry	2 node
PostB	5/21	50	48	20	V.Good	d 3-5 node

Weed stages:	Appln	Wild oat	Vol Canola	
	-	(AVEFA)	(BRSNA)	
	Pre	1 lf		
	PostA	1 1/2 lf	(
	PostB	4-5 lf	1-2 "	

SUMMARY:

No injury was observed with preemergence treatments, regardless of the rate used. Crop injury, as reflected in crop height, increased as applications were delayed and as rates increased. Although visual injury was noted, there were no differences in yield among any of the treatments.

Table 2. Agronomic data from the Pursuit Lentil Herbicide Study grown on the Northwestern Agricultural Research Center, Kalispell, MT.

Treatment	Appln Type 1/		% Crop Injury	Percent AVEFA	Control 2/ BRSNA	Yield Lbs/A
There I lyris are	aslet gap a	ni vehinidir	d become	on Haur on		The I am I am
Pursuit	Pre	.046	3	51	98	2290
Pursuit	Pre	.031	5	65	20095 EM CIA	2090
Pursuit	Pre	.015	nt of 3 alons	25 / 51	85 85	2147
Pursuit	Post A	.046	20	61	100	2548
Pursuit	Post A	.031	19	64	95	2390
Pursuit	Post A	.015	Rel. 6 Soil	78	100	2442
Pursuit	Post B	.046	41 (88	99	2178
Pursuit	Post B	.031	31	66	100 daga	2189
Pursuit	Post B	.015	19 110	81	98	2162
Sencor	Pre	.38	3	55	99	2390
Sencor	Post	. 25	Basagi ⁸ a cau	71 olle	100	2333
Untreated	tion of 28%). The add	ough (₅ 10%	70	60	2077
P VALUE LSD (.05)	on g bat the		.0000	.6291		.4401

AVEFA = Wild oat (<u>Avena fatua</u>)

BRSNA = Volunteer canola (Brassica napus)

^{2/ %} Weed control: Letters are a WSSA-approved computer code from <u>Composite List of Weeds.</u>

PROJECT TITLE: Postemergence Herbicide Study on Lentils.

PROJECT LEADER: Bob Stougaard, NWARC, Kalispell, MT.

PROJECT PERSONNEL: Todd Keener, NWARC, Kalispell, MT.

OBJECTIVE: To evaluate new as well as registered herbicides for crop tolerance and weed control in lentils.

MATERIALS AND METHODS:

On April 20, 1992 Chilean lentils were planted at 60 lb/A in a Kalispell fine sandy loam (pH 7.7 and OM 4.2%). No fertilizer was applied to the test area. The previous crop in 1991 was spring barley. Plots were 10' by 15', were replicated four times and were arranged in a randomized complete block. Basagran, Sencor, and Tough were applied with and without 28% UAN, alone or as 2-way tank mix combinations. Applications were made with a CO₂ backpack sprayer in 20 GPA at 20 psi with 11002 flat fan nozzles. Application data was as follows:

Appln	Date	Air	Soil	Rel.	Soil	Crop
		Temp	Temp	Humid	Moist.	Stage
Post		69	65	37	Fair	7 "

SUMMARY:

Of the single herbicide applications, Basagran caused the greatest degree of crop injury (60%), followed by Sencor (20%) and Tough (10%). The addition of 28% UAN did not increase the amount of injury. Of the tank-mixed treatments, Basagran combinations caused the most injury (75%). Tough plus Sencor caused significant injury (35%), but it was the safest tank mix combination. Common lambsquarters was the dominant weed species present. Lambsquarters control was most complete with tank mix combinations of Sencor.

Table 1. Agronomic data from the Basagran Lentil Herbicide Study conducted on the NWARC, Kalispell, MT.

Treatment	Rate Lb ai/A	% Crop Injury	Percent CHEAL	Control /1 AVEFA	Yield Lb/A
Basagran	. 25	50	47	96	1127
Basagran + UAN 28 %	.25 2/	70	53	47	1004
Sencor	.15	18	75	87	1154
Sencor + UAN 28%	.15	19	was 85 dlia (0 by 15 ft, 1		1021
Tough	.23	10	40	90	798
Tough + UAN 28%	.23	vere appropriation		77 01 le	977
Basagran + Sencor	.25	75 km s		86	1163
Basagran + Sencor +	.25	75	90	AFEVA 83	1313
UAN 28%	.15				
Basagran + Tough	.25	75	83	63	1399
Basagran + Tough + UAN 28%	.25	82 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	95	84	1534
Cough + Sencor	.23	38	90	86	1314
Cough + Sencor +	.23			T not no law a simulation of control of cont	
UAN 28% Nontreated		3	33	80	1019
P VAL	UE .05 by t)=	.000	.019	.004	.595 751

^{1/ %} Weed Control: Weed codes are WSSA-approved
 computer code from <u>Composite List of Weeds.</u>
 CHEAL = Lambsquarter (<u>Chenopodium album</u>)
 AVEFA = Wild oat (<u>Avena fatua</u>)

^{2/} UAN 28% liquid nitrogen added at 1 gallon/A rate

PROJECT TITLE: Herbicide Tolerance Study on Canola

PROJECT PERSONNEL: Pete Fay, P&SS, MSU, Bozeman, MT.

Ed Davis, CARC, Moccasin, MT.

Bob Stougaard, NWARC, Kalispell, MT. Todd Keener, NWARC, Kalispell, MT.

OBJECTIVE: To evaluate various herbicides for potential use in canola.

MATERIALS AND METHODS:

The canola variety IMC-01 was seeded on April 20, 1992 to the test area at 7 lb/A (PLS). Included with the seed was a mixture of spring barley and wheat to contribute to the volunteer weed spectrum. The area was fertilized on 4/23/92 to achieve 70 lb/A N, 30 lb/A P₂0₅, and 30 lb/A sulfur. Plots were 10 by 15 ft, were replicated three times and were arranged in a randomized complete block. Soil type for the test area was a Kalispell fine sandy loam, with a pH of 7.7 and organic content of 4.2%. Twelve treatment were applied preplant incorporated on April 16 and twenty treatments were applied postemergence on May 12 when canola was in the 4 - 5 leaf stage. The weed population consisted mainly of wild oat, with few broadleaf weeds present. Applications were made with a CO₂ backpack sprayer in 20 GPA at 20 psi with 11002 flat fan nozzles. Application data was as follows:

Appln Date Stage of Growth Air Soil Rel Soil
Canola AVEFA Temp Temp Humid Moisture

PPI	4/16	NA	NA	60	57	20	Dry
Post	5/12	cot-21f	2.51f	60	60	10	Dry

Harvest was taken from a 60 sq ft area using a Hege 125B plot combine on 8/14.

SUMMARY:

Of the preplant incorporated treatments, injury was greatest for Eptam and Sonolan. Treflan, Prowl, BAS-514 and Fargo did not cause noticeable crop damage. None of these treatments provided acceptable wild oat control. Of the postemergence herbicides, injury was most severe with Banvel, Tordon, Tough, and Stinger. Broadleaf pressure was minor, so the effect of these treatments on broadleaf weed control can not be determined. Fusilade provided the most complete wild oat control of all the herbicides evaluated.

Table 1. Agronomic data from the Canola Herbicide Study conducted at NWARC in Kalispell, MT.

23 7 534	NATIO III	warn -			40 / 40	V: -1.4			
Treatment	Rate Lb ai/A	Appn	% Crop Injury		ontrol FA 1/	Yield Lb/A	SJEUM		
Treflan @81	0.75	PPI	0.0	37		1009			
Treflan	1.00	PPI	0 28	40		1344			
Sonalan SSE	0.75	PPI	5	53		1355			
Sonalan per	1.00	PPI	γ ₁ 3	68		1681			
Prowl	0.75	PPI	0 0	42		1361			
Prowl	1.00	PPI	0	38		1388			
Eptam	3.00	PPI	47	67		898			
Eptam	4.00	PPI	18	80		1533			
Fargo	1.00	PPI	0 20	20		1307			
Fargo	1.50	PPI	0	23		976			
Bas 514	0.25	PPI	0	10		827			
Bas 514	0.375	PPI	0	0		580			
Poast + COC	0.187 1 qt/A	Post	12	74		1011			
Poast + COC	0.370 1 qt/A	Post	8	92		1425			
Fusilade 200 COC	0 + 0.125 1 qt/A	Post	3	99		1705			
Fusilade 200 COC	0 + 0.187 1 qt/A	Post	10	96		1309			
Assure +	0.100	Post	0	99		1653			
COC	1:100								
Assure + COC	0.150 1:100	Post	3	100		1359			
Thip + COC	0.10 1 qt/A	Post	7	82		1158			
Thip + COC	0.15 1 qt/A	Post	8	73		1155			
Poast + Fusilade 20 COC	0.14 000 0.093 1 qt/A	Post	7	94		1371			
ustar + NIS	0.013 0.25 %	Post	8	47		905			
NIS	0.25 %		(Cont'd)					

Table 1 (Cont'd). Canola Herbicide Study

Treatment	Rate Lb ai/A	Appn	% Crop Injury		ntrol FA 1/	Yield Lb/A	8 11101
Mustar +	0.026 0.25 %	Post	Yuer7	67	A\is di	1207	
Pyridate On I	0.93	Post	18	15	0.75	159	
Pyridate	1.3	Post	28	15		465	
Stinger	0.187	Post	5	0		323	
Stinger	0.25	Post	17	0		291	
Banvel	0.06	Post	20	7		537	
Tordon	0.03	Post	30	0		264	
Nontreated			0	10		657	
P-Value LSD (0.05 by	t)=	15	.002	.000	1 00	.000	opas5

 [%] Weed Control: Weed codes are WSSA-approved computer code from Composite List of Weeds. AVEFA = Wild Oat (<u>Avena fatua</u>)

1 qt/A e 1000 + 0.187 Fest 10 1 qt/A

> * 0.150 Post 1:100

0,10 1 qt/A

0.15 P

ade 2000 0.093

0.013

PROJECT TITLE: Poast Rate and Timing Study on Canola

PROJECT PERSONNEL: Pete Fay, P&SS, MSU, Bozeman, MT.

Ed Davis, CARC, Moccasin, MT.

Bob Stougaard, NWARC, Kalispell, MT. Todd Keener, NWARC, Kalispell, MT.

OBJECTIVE: To establish the optimum Poast rate and application timing for wild oat control in canola.

MATERIALS AND METHODS:

The canola variety IMC-01 was seeded on April 20, 1992 to the test area at 7 lb/A (PLS). Included with the seed was a mixture of spring barley and wheat to contribute to the volunteer weed spectrum. The area was fertilized on 4/23/92 to achieve 70 lb/A N, 30 lb/A P_2O_5 , and 30 lb/A sulfur. Plots were 10 by 15 ft, were replicated three times and were arranged in a randomized complete block. Soil type for the test area was a Kalispell fine sandy loam, with a pH of 7.7 and organic content of 4.2%. Poast was applied at two rates and three wild oat growth stages (3, 5, and 7 leaf stage of growth). Applications were made with a CO_2 backpack sprayer in 20 GPA at 20 psi with 11002 flat fan nozzles. All treatments included the surfactant Dash. Application data was as follows:

Appln	Date	Stage of						
		Canola A	VEFA	Temp	Temp	Hullild	Moisture	daes A
Post1	5/12	cot-21f	2.5	60	60	10	Dry	D 1 115
Post2	5/21	4 1f	4-51f	50	48	40	Wet	
Post3	5/27	4-61f	7 lf	68	65	58	Wet	

Harvest was taken from a 60 sq ft area using a Hege 125B plot combine.

SUMMARY:

Control was most complete with the earliest applications. Control increased as rates increased regardless of application timing. All herbicide treatments produced canola yields greater than the nontreated check.

Table 1. Agronomic data from the Poast Rate and Timing Study on Canola conducted at the NWARC in Kalispell, MT.

Treatment	Rate lb ai/A	Appln 1/	% Crop Injury	% AVEFA Control 2/	Yield / lb/A
	77/	Uspaile I, Ogay	As brang-12	400	
Poast	.187	Post1	Keeno NW	78'	1675
Poast	.375	Post1	peim or Peasi	97 0	1778
Poast	.187	Post2	0	40	1452
Poast	.375	Post2	sabessa e visa 10	88	1898
Poast	.187	Post3	erutxing a law	143 mw bo	1155
Poast	.375	Post3	17)	47	1392
Check	as a Kalispell heat at two ra	t the test area w. Poast was app	many said the ways and a	i ourrplete block. 7 and organic co	687
nerts included the	entions were es. All treatm	P-Value LSD(.05)	.2345	.000 16.6	.008 579

PROJECT TITLE: Evaluation of Ally for the Control of Sulfur Cinquefoil

PROJECT LEADER: Bob Stougaard, NWARC, Kalispell, MT.

PROJECT PERSONNEL: Todd Keener, NWARC, Kalispell, MT.

OBJECTIVE: This study was established near Hot Springs, MT to evaluate Ally alone or in combination with 2,4-D and/or Tordon for the control of sulfur cinquefoil.

MATERIAL AND METHODS:

The test site was established in native rangeland with 90 % of the vegetation consisting of sulfur cinquefoil and the remainder comprised of downy brome, crested wheatgrass and western salsify. Treatments were applied on June 5, 1992 when the majority of plants were 12-14 inches in height and at the 25 % bloom stage. Treatments were applied with a backpack sprayer equipped to deliver 20 GPA at 20 psi with 11002 flat fan nozzles. Plots were 10 by 15 ft and treatments were replicated 3 times. Environmental conditions were as follows:

Wind: 3-5 MPH, Air Temp: 70 F, Soil Temp: 68 F, Soil Moisture: Dry, Rel Hum. 2%

SUMMARY:

At the July rating, all herbicide treatments afforded some degree of control relative to the nontreated check. However there were no significant differences between any of the herbicide treatments. The greatest degree of control was obtained with Tordon + 2,4-D. Treatment differences were more apparent at the September evaluation. The September control evaluations represent the degree of regrowth observed for the various treatments.

There appeared to be antagonism between Ally and 2,4-D. This was especially evident at the 0.03 lb/A rate of Ally alone compared to similar rates mixed with 2,4-D. Ally at 0.03 lb/A provided 90% control. When mixed with 2,4-D control was reduced to approximately 53%. A similar response was observed with Ally at 0.015 lb/A. When combined with 2,4-D control was reduced or remained the same. This was also the case when Tordon was included. Ally at 0.015 lb/A + Tordon at 0.25 lb/A afforded 80% control. When 2,4-D was added to the combination, control was reduced to 40%. When the Tordon rate was doubled to 0.5 lb/A, the effects of antagonism were over come. At the very least it appears that the addition of 2,4-D does not improve control and evidence suggests that control can actually be reduced.

Additional studies should be conducted to verify the apparent antagonism between Ally and 2,4-D on sulfur cinquefoil. Additional application timings should also be investigated. Spring or especially fall applications during the rosette stage might provide better control and allow for more economical use rates.

Table 1. Agronomic data from the Sulfur Cinquefoil Study located in Sanders County, Montana. 1992

Treatment 1/	Rate Lb ai/A	% PTLRC 7/2/92	9/21/92
Ally + NIS .25%	.015	31.7	COLECT PERSONNEL 8.850 KG
Ally + NIS .25%	.030	38.3	90.0
Ally + NIS .25%	.060	36.7	noT 91.7 II CI-4 I driw northeridate
Ally + Tordon + NIS.25%	.015	43.3	0.08 LATERIAL AND METHODA
Ally + Tordon + NIS .25%	.015	41.7	The test sile was estable shed in sulfur cinquefoil and the remain
Ally + 2,4-D + NIS.125%	.015	53.3	26.7 bas lighted in section is
Ally + 2,4-D + NIS.125%	.015 .50	66.7	and treatments were rep. 1613
Ally + 2,4-D + NIS.125%	.030	63.3	And: 3-5 MPH, Air Te.E. 8770 P
Ally + 2,4-D + NIS.125%	.030 .50	51.7	UMMARY: 8.84 At the July mang, all herbicide t
Ally + Tordon + 2,4-D + NIS.125%	.015 .25 .25	61.7	1
Ally + Tordon + 2,4-D + NIS.125%	.015 of Suomay St .50 a Chas y LA . .25		present the degree of re £0.60 ob There appeared to be antagon the 0.03 lotA rate of Ally alone of
Tordon	.25 / formon (1-) (45.0	The second of th
Tordon	7.50 Aldi 210.0 36 V	48.3	83.3 W SERIOGEST TOTALE
2,4-D	1.0	63.3	56.7
Tordon + 2,4-D	.25 107 add man with 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	70.0	e combination, control v 0.00 luces a offects of antagonism were over t
Nontreated	that control can act	0	16.7
Nontreated	ary one apparem are on timings sho ure a	nat apolitorin	Additional stitutes should be conducted. 4-D on sulfur cinquetoil. 8.81 june.
with the following allow	P-Value LSD .05	.0000	25.57 2000

^{1/} NIS = non-ionic surfactant R-11 (90% active) .25% and .125% indicate added at % spray volume

^{2/ %} Weed Control, PTLRA is the WSSA-approved weed code for Sulfur Cinquefoil (Potentilla recta)

YEAR/PROJECT: 1992/755 1980 INTRASTATE ALFALFA YIELD TRIAL - DRYLAND

PERSONNEL: Leader - Leon Welty

Research Specialist - Louise Prestbye

In cooperation with Dr.Ray Ditterline, MSU Bozeman

This was the 13th season of production for this nursery. Plots were harvested 6/2, 7/6 and 8/4/92. Total forage yields for 1992 ranged from 1.40 tons/acre for 'Raidor' to 4.02 tons/acre for 'Ladak-65'. Mean yield for 1992 was 3.03 tons/acre. Total yields over the 13 years since establishment ranged from 40.92 tons/acre for 'Marathon' to 55.06 tons/acre for Ladak-65 which had yields above the mean for 11 of the 13 years.

VARIETY	STAND %	233	7 6 6	6/2/92	7/6/92	8/4/92 YIELD (t/a)——	<u>a</u>	TOTAL
Ladak-65	97			2.22	1.00	0.79		4.02
Spredor II	95			2.19	0.93	0.72		3.83
Perry	90			1.87	0.94	0.74		3.55
Armor	87			1.67	0.90	0.83		3.39
Baker	93			1.75	0.84	0.72		3.31
Ranger	83			1.53	0.85	0.87		3.25
WL 220	90			1.50	0.89	0.85		3.24
Vancor	83			1.41	1.15	0.67		3.23
Cascade	77			1.43	0.86	0.91		3.20
Vernal	80			1.63	0.88	0.66		3.17
Classic	82			1.56	0.79	0.62		2.97
Super 721	85			1.46	0.73	0.73		2.92
Anchor	75			1.40	0.76	0.70		2.85
Spectrum	70			1.28	0.72	0.75		2.76
Thor	62			1.09	0.59	0.63		2.31
Marathon	37			1.09	0.53	0.52		2.14
Raidor	28			0.67	0.37	0.37		1.40
Means	77			1.51	0.81	0.71		3.03
LSD(0.05)	16			0.31	0.30	0.27		0.66
P-VALUE	0.00			0.00	0.00	0.04		0.00
CV(s/mean)	12.2			12.5	22.4	22.5		13.2

1980 INTRASTATE ALFALFA YIELD TRIAL - DRYLAND

TOTAL	55.06	52.28	52.71	49.24	51.22	50.50	51.32	49.44	47.69	48.52	49.03	48.55	47.93	42.77	44.75	40.95	49.11					TERSONNEL: Leader - Les Research Spe
1992	4.02	3.23	3.31	2.85	3.55	3.20	3.83	2.92	2.31	2.76	3.25	2.97	3.17	1.40	3.25	2.14	3.03	0.66	0.00	13.2	18.4	In cooperation This was the 13th season of p
1991	6.44	6.79	5.87	4.40	5.75	5.42	5.64	4.82	3.92	4.64	5.01	5.15	4.93	2.79	5.35	3.22	4.91	1.10	0.00	13.5	20.0	Total forage yields for 1992 ran Mean yield for 1992 was 3.03 to from 40.92 tons/acre for 'Marat
1990	4.28	61.4	4.61	3.42	4.54	3,98	3.37	3.79	3.33	3.57	3.96	4.03	3.36	2.55	3.86	2.60	3.74	0.87	0.00	10.0	26.5	
1989	5.40	4.73	4.96	4.34	4.98	4.44	4.37	4.56	3.83	3.95	4.44	4.37	4.38	3.50	4.06	3.39	4.38	0.85	0.00	11.6	23.4	
1988	5.08	4.04	4.66	4.39	4.79	4.15	3.85	4.70	3.85	4.28	4.26	4.60	4.17	3.35	4.05	3.27	4.28	0.86	0.01	12.1	13.9	
1987	5.74	5.82	6.20	5.63	5.24	5.61	5.28	5.36	5.36	5.47	5.48	5.29	5.28	4.99	4.69	4.83	5.43	0.83	90.0	10.8	22.0	Parry 90 Aumor 87 Eaker 93
1986	4.26	4.44	4.26	4.56	3.86	4.24	4.28	4.21	4.42	3.93	4.06	4.09	4.03	3.93	3.50	3.53	4.12	0.86	0.49	14.7	23.2	
1985	4.76	5.36	5.04	5.04	4.79	5.52	5.22	5.35	5.17	4.93	4.99	4.84	4.82	5.43	4.20	4.52	5.03	1.26	0.78	17.5	17.6	
1984	3.19	3.12	3.01	3.05	3.18	3.09	3.55	3.00	3.32	3.07	3.40	2.81	2.97	3.33	2.41	2.86	3.10	0.92	0.78	20.9	19.9	
1983	3.31	2.90	2.61	2.65	2.43	2.67	3.19	2.85	2.71	2.80	2.46	2.83	2.32	2.86	2.34	2.44	2.73	0.61	0.08	15.8	21.0	31 8/a 1/a 31 8/a 1/a 1/a 1/a 1/a 1/a 1/a 1/a 1/a 1/a 1
1982	2.81	2.34	2.30	2.68	2.38	2.45	2.48	2.44	2.75	5.69	2.01	2.05	2.62	2.40	2.32	2.39	2.45	0.72	0.73	20.8	18.2	- 132 lbs/a 52 lbs/a - 90 lbs/a K2O - 50 lbs/a S - 40 lbs/a 88 lbs/a 120 lbs/a 120 lbs/a 120 lbs/a 1-DB 1-DB 1-DB 1-DB 1-DB 1-DB 1-DB 1-DB
1981	4.29	4.14	4.07	4.53	4.06	3.90	4.74	3.99	4.73	4.63	4.02	3.78	4.09	4.40	3.38	4.07	4.19	0.49	00.00	8.3	23.7	- P2O5 - 132 lbs/a - P2O5 - 52 lbs/a - P2O5 - 90 lbs/ K2O - 50 lbs/a S - 40 lb P2O5 - 88 lbs/a K2O - 120 lbs/a S - 50 lbs/a P2O5 - 132 lbs/a K2O - 120 lbs/a R2O - 120 lbs/a R2O - 120 lbs/a R2O - 120 lbs/a S - 50 lbs/a
1980	1.48	1.79	1.81	1.70	1.67	1.86	1.52	1.45	1.99	1.80	1.69	1.74	1.79	1.84	1.34	1.66	1.70				23.6	Spring 1980 – P2O5 – 132 lbs/a Fall 1981 – P2O5 – 52 lbs/a Spring 1984 – P2O5 – 90 lbs/a K2O – 50 lbs/a S – 40 lbs/a Fall 1986 – P2O5 – 88 lbs/a K2O – 120 lbs/a S – 50 lbs/a Fall 1989 – P2O5 – 132 lbs/a K2O – 120 lbs/a S – 50 lbs/a S – 50 lbs/a Fall 1980 – Eptam + 2,4 – DB Fall 1984,1986,1987 – Sencor – 1 lb Al/a Fall 1988 – Lexone – 0.75 lb Al/a
VARIETY	LADAK-65	ARMOR	BAKER	ANCHOR	PERRY	CASCADE	SPREDORII	SUPER 721	THOR	SPECTRUM	WL 220	CLASSIC	VERNAL	RAIDOR	RANGER	MARATHON	Mean	LSD(0.05)	P-VALUE	CV(s/mean)	Precip(in)	FERTILIZER: Spring 1980 – P2O5 – 132 Fall 1981 – P2O5 – 52 lbs, Spring 1984 – P2O5 – 90, K2O – 120 lb S – 50 lbs/a Fall 1989 – P2O5 – 88 lbs, K2O – 120 lb S – 50 lbs/a Fall 1989 – P2O5 – 132 lb Fall 1988 – Lexone – 0.75 10/26/89 – Sencor – 1 lb /

YEAR/PROJECT: 1992/755 1988 INTRASTATE ALFALFA YIELD TRIAL - DRYLAND

PERSONNEL: Leader - Leon Welty

Research Specialist - Louise Prestbye

In cooperation with Dr.Ray Ditterline, MSU Bozeman

Twenty alfalfa cultivars, with fall dormancy ratings from 1-4 and Verticillium wilt resistance ratings from S-R, were seeded 5/4/88. The plots were harvested 6/1, 7/4 and 8/3/92. The top yielding variety was 'Premier', with 5.38 tons/acre. Thirteen other varieties had yields statistically similar to Premier's. The check varieties 'Vernal', 'Thor' and 'Ladak-65' had significantly lower yields than all the other varieties. These varieties have fall dormancy ratings of 1-4, but they are the only varieties with no vert wilt resistance.

Total yields for 1988–1992 averaged 25.45 tons/acre. 'DK-125' was the highest yielder, with a total production of 28.13 tons/acre, and Ladak-65 was the lowest, with 22.04 tons/acre. Vernal and Ladak-65 had significantly lower yields than all the other cultivars. Although these varieties are very winter-hardy, they do not have the disease resistance of the others.

VARIETY	MTNO	$FD^{1/}$	$VW^{2/}$	6/1/92	7/4/92	8/3/92	TOTAL
<u> </u>	0.90	01.0	15.3	\$67]	-Total Dry	Matter Yield	d(t/a)
Premier	201	4	R	1.86	1.26	2.27	5.38
Pioneer 5432	193	4	R	1.98	1.23	2.14	5.34
DK-125	203	3	R	1.93	1.28	2.13	5.34
Sure	195	3	R	1.91	1.29	2.02	5.21
Garst-636	202	2	R	1.93	1.20	2.07	5.20
Legend	199	20.4	R	1.91	1.21	2.03	5.15
WL-316	144	4	R	1.91	1.23	1.98	5.13
AgriBoss	194	10.03	MR	1.95	1.19	1.97	5.11
ICB-34	191	4	LR	1.86	1.21	1.96	5.02
Vista-661	198	3	MR	1.86	1.18	1.97	5.00
Vista-663	197	3	MR	1.91	1.13	1.96	5.00
Arrow	192	3	R	1.85	1.14	2.01	4.99
WL-225	184	2	R	1.91	1.11	1.94	4.96
Kingstar	200	3	R	1.70	1.14	2.08	4.92
Edge	196	4	R	1.86	1.14	1.88	4.87
Sparta	174	3	R	1.86	1.09	1.89	4.84
Wrangler	146	2	LR	1.95	1.09	1.78	4.83
Vernal	8	2		1.73	1.06	one8 - 61.75	4.53
Thor	1	4		1.82	1.11	1.59	4.51
Ladak-65	2	1-2	S	1.88	0.90	1.49	4.26
Mean				1.88	1.16	1.94	4.98
LSD(0.05)				0.15	0.14	0.29	0.51
P-VALÚE				0.05	0.00	0.00	0.00
CV(s/mean)				5.6	8.3	10.4	7.2

^{1/} Fall dormancy rating

^{2/}Verticillium wilt resistance

1988 INTRASTATE ALFALFA YIELD TRIAL - DRYLAND

VARIETY	MTNO FI	$O^{1/}$	$VW^{2/}$	1988	1989	1990	1991	1992	TOTAL
						t/			
DK-125	203	3	R	2.18	5.86	7.28	7.47	5.34	28.13
Vista – 663	197	3	MR	2.16	5.94	7.03	7.80	5.00	27.92
Legend	199	4	R	2.10	5.73	6.73	7.43	5.15	27.14
Edge	196	4	R	2.28	5.58	6.57	7.47	4.87	26.76
Sure	195	3	R	2.07	5.67	6.34	7.28	5.21	26.57
Arrow	192	3	R	2.01	5.18	6.52	7.41	4.99	26.11
Sparta	174	3	R	1.90	5.59	6.35	7.31	4.84	25.99
Garst-636	202	2	R	1.96	5.37	6.13	7.24	5.20	25.90
Pioneer 5432	193	4	R	1.82	5.20	5.98	7.30	5.34	25.64
Vista-661	198	3	MR	1.98	5.61	6.02	6.91	5.00	25.52
Premier	201	4	R	1.87	4.81	6.03	7.30	5.39	25.39
AgriBoss	194	3	MR	1.90	5.37	5.69	7.20	5.12	25.28
ICB-34	191	4	LR	1.90	5.15	5.97	7.09	5.01	25.12
Thor	1	4		1.94	5.51	6.10	6.90	4.52	24.97
Wrangler	146	2	LR	2.06	5.54	5.58	6.88	4.83	24.88
WL-316	144	4	R	2.03	4.89	5.71	7.01	5.12	24.76
WL-225	184	2	R	1.88	4.99	5.68	6.83	4.96	24.34
Kingstar	200	3	R	2.03	4.86	5.11	6.82	4.92	23.73
Vernal	8	2		1.88	5.30	4.74	6.29	4.54	22.74
Ladak-65	2 1-			2.10	5.00	4.68	6.00	4.27	22.04
Ladak 03	2 1	2		2.10	5.00	4.00	0.00	7.27	22.04
Mean				2.00	5.36	6.01	7.10	4.98	25.45
Mean				2.00	5.30	0.01	7.10	4.70	25.45
LSD(0.05)				0.34	0.51	0.52	0.60	0.51	1.64
					0.51				
P-VALUE				0.45	0.00	0.00	0.00	0.00	0.00
CV(s/mean)				11.9	6.8	6.2	5.9	7.2	4.6

1/ Fall dormancy rating '2/Vert wilt resistance

Seeding date: 5/4/88

Fertilizer: Spring 1988 – P₂O₅ – 176 lbs/a Pesticides: 10/26/89 – Sencor – 1 lb Al/a

YEAR/PROJECT: 1992/755 1988 INTRASTATE ALFALFA YIELD TRIAL - IRRIGATED

PERSONNEL:

Leader - Leon Welty

Research Specialist - Louise Prestbye

In cooperation with Dr.Ray Ditterline, MSU Bozeman

The plots were harvested once, on 6/8/92. The study was then terminated and the nursery plowed down. There was considerable overlap in significant differences among the varieties. 'Vista-661', 'Premier', 'WL-225' and 'Vista-663' (with fall dormancy ratings of 2-4 and vert wilt resistance of MR-R) yielded significantly more forage than 'ICB-34', 'Vernal', 'Legend' and 'AgriBoss' (FD 2-4, VW none to MR). Correlation analysis among FD and VW ratings, %vert wilt (visual estimate) and yield revealed no correlations significant at the P<0.05 level. FD rating was actually more closely correlated with yield (r=-0.30, P=0.19) than was VW resistance rating (r=0.25, P=0.30).

VARIETY	MTNO	<u>FD^{1/}</u>	<u>VW^{2/}</u>	VERT WILT %	STAND %	6/8/92 <u>YIELD</u> t/a
Vista-661	198	3	MR	35	93	2.85
Premier	201	4	R	25	96	2.71
WL-225	184	2	R	31	93	2.70
Vista-663	197	3	MR	43	84	2.70
Sparta	174	3	R	34	94	2.67
DK-125	203	3	R	34	95	2.66
Garst-636	202	2	R	33	94	2.59
Ladak-65	£11 2	1-2	S	28	89	2.58
Kingstar	200	3	R	00.5 30	86	2.53
Wrangler	146	2	LR	⁸⁴ _ 21	86	2.53
Arrow	192	3	R	36	94	2.48
Sure	195	3	R	34	89	2.45
Edge	196	4	R	41	89	2.41
Pioneer 5432	193	4	R	28	96	2.39
Thor	00.1 1	4 80.		78.5 31	76	2.32
WL-316	144	4	R	E.S. 45	93	2.28
ICB-34	191	4	LR	56	86	2.24
Vernal	10.18	2		28	86	2.18
Legend	199	4	R	01-23	94	2.15
AgriBoss	194	3	MR	36	85	1.99
4 450						
LSD(0.05)				20	8	0.45
P-VALUE				0.18	0.00	0.02
CV(s/mean)				41.9	6.4	12.9

Seeding date: 5/3/88

Fertilizer: $P_2O_5 - 176$ lbs/a in 1988 Pesticide: Sencor - 1 lb AI/a - 10/26/89

^{1/} Fall dormancy rating

²/ Verticillium wilt resistance rating

YEAR/PROJECT: 1992/755 1989 INTRASTATE ALFALFA YIELD TRIAL - DRYLAND

PERSONNEL:

Leader – Leon Welty

Research Specialist – Louise Prestbye

In cooperation with Dr.Ray Ditterline, MSU Bozeman

Twenty-three alfalfa cultivars were seeded in an RCB design with four replications on 24 April, 1989. The nursery was harvested 4 times in 1992. Total yields for 1992 ranged from 4.38 tons/acre ('VS-775') to 5.54 tons/acre ('Fortress'). Total yields for 1989-1992 averaged 19.46 tons/acre. Pioneer '5364', Fortress and 'Arrow' yielded over 21 tons/acre over the 4-year period. These varieties have fall dormancy ratings of 3-4 and are MR-R for vert wilt resistance. 'AP-8735', VS-775 and 'Ladak-65' produced less than 18 tons/acre over this period. The relationship between higher yields and more vert wilt resistance is not as apparant under dryland as it is under irrigation.

VARIETY	M	ΓNO	6/2/92	7/6/92		3/4/92		0/2/92		DTAL
				 -Tot	al Dry l	Matte	r Yiel	ld (t/	a)	
FORTRESS		218	2.40	1.19	1 1	1.21		0.74		5.54
5364		213	2.66	1.23		1.24		0.75		5.88
ARROW		151	2.42	1.11		1.15		0.65	10 - E321	5.33
XAL-72		215	2.46	1.31		1.39		0.75		5.91
CIMARRON VR		211	2.19	1.08		1.06		0.69		5.02
GARST-630		205	2.57	1.25		1.26		0.76		5.84
THOR		1	2.35	1.11		1.03		0.55		5.04
WL-317		204	2.60	1.21		1.25		0.66		5.71
VS-872		210	2.48	1.12		1.06		0.56		5.21
VERNEEMA		220	2.37	1.16		1.12		0.57		5.23
GARST-636		202	2.45	1.11		1.08		0.59		5.23
MILKMAKER		208	2.36	1.17		1.16		0.58		5.26
5262	96	214	2.56	1.19		1.12		0.55		5.42
SABRE		216	2.37	1.03		1.00		0.49		4.88
86I-08		217	2.39	1.08		1.01		0.50		4.98
MULTIKING		219	2.31	1.11		1.06		0.50		4.98
EAGLE		212	2.18	1.04		1.01		0.50		4.73
WRANGLER		146	2.40	0.95		0.87		0.45		4.67
VERNAL		8	2.15	0.96		0.85		0.46		4.41
LADAK-65		2	2.48	0.86		0.78		0.24		4.36
APOLLO SUPREME		206	2.25	1.06		0.99		0.54		4.84
AP-8735		207	2.23	1.00		0.97		0.51		4.71
VS-775		209	2.12	0.96		0.95		0.35		4.38
16										
Mean			2.38	1.10		1.07		0.56		5.11
I CD(0.05)			0.20	0.14		0.00		0.00	o gariuss	0.76
LSD(0.05)			0.28	0.14		0.22		0.20		0.76
P-VALUE			0.01	0.00		0.00		0.00		0.00
CV(s/mean)			8.3	9.0		14.7		25.2		10.5

1989 INTRASTATE ALFALFA YIELD TRIAL - DRYLAND

VARIETY	M	TNO	<u>FD^{1/}</u>	VW ^{2/}	1989		<u>1990</u>		1991	rested (Garr	1992	T	OTAL
5364		213	4	MR	1.82	1-76	6.77		7.20	ese.cu	5.88		21.67
FORTRESS		218	4	R	2.21		6.65	CO MI	7.24		5.54		21.63
ARROW		151	3	R	2.10		6.68	albyli me	6.99	s. Lm	5.34		21.10
GARST-630		205	4	MR	1.88		6.37		6.58	OTE ST	5.84		20.67
VS-872		210	_		1.99		6.71		6.54	a ubit	5.21		20.44
XAL-72		215			1.61		6.18		6.68		5.90		20.37
VERNEEMA		220	4	MR	1.86		6.56		6.44		5.23		20.08
CIMARRON VR		211	- 5	LR	2.02		6.29		6.65		5.02		19.97
WL-317		204	3	R	1.75		5.85		6.54		5.71		19.85
THOR		1	4		1.76		6.42		6.55		5.04		19.77
MILKMAKER		208	3		1.72		6.44		6.33	,	5.27		19.75
5262		214	2	LR	1.61		6.20		6.33		5.42		19.56
GARST-636		202	2	R	1.64		6.30		6.36		5.23		19.52
SABRE		216	4	HR	1.91		6.34		6.26		4.88		19.40
86I-08		217	00	HR	1.75		6.24		6.24	4	4.98		19.21
EAGLE		212	4	MR	1.66		6.30		6.10		4.73		18.78
APOLLO SUPREME	Ξ	206	4	R	1.62		6.37		5.72		4.84		18.55
MULTIKING		219	3	HR	1.54		5.51		6.18		4.98		18.21
WRANGLER		146	2	LR	1.61		5.97		5.91		4.68		18.16
VERNAL		8	2		1.78		5.94		5.87		4.41		18.00
AP-8735		207	97		1.60		5.76		5.67		4.70		17.73
VS-775		209	08.1		1.54		6.20		5.57		4.38		17.68
LADAK-65		2	1-2	S	1.51		5.83		5.79	4	4.36		17.49
LSD(0.05)					0.24		0.70		0.91		0.76		2.24
P-VALUE					0.00		0.05		0.01		0.00		0.00
CV(s/mean)					9.8		8.0		10.2		10.5		8.2

^{1/}Fall dormancy rating

²/Vert wilt resistance

YEAR/PROJECT: 1992/755 1989 INTRASTATE ALFALFA YIELD TRIAL – IRRIGATED

PERSONNEL:

Leader – Leon Welty

Research Specialist – Louise Prestbye

In cooperation with Dr.Ray Ditterline, MSU Bozeman

Twenty-eight alfalfa cultivars were seeded in an RCB design with 4 replications on 20 May,1989. Plots were harvested 4 times. Total 1992 season yields were highest for 'XAL-72', 'Garst-636', Pioneer '5262', 'Garst-630', Pioneer '5364', 'Multiking', 'Sabre' and 'AP-8735'. Except for 'AP-8765', these cultivars are rated LR-HR for vert wilt and 2-4 for fall dormancy. The check varieties 'Vernal' and 'Ladak 65' and the cultivar designated 'Glean-Cycle 1' were the lowest yielding entries. These cultivars are rated 1-2 for fall dormancy, but have no vert wilt resistance. Over the 4 years from 1989-1992 'XAL-72' has had the highest total yield (23.08 t/a) and Ladak-65 has had significantly lower yield than any other variety (16.92 t/a).

			12				
VARIETY	MTN	$FD^{/1}VW^{/2}$	8/8	7/7	8/6	9/29	Total
			200	- 81-3-	-t/a	- 78V-11001F	TUMA
							WL-3
XAL-72	215	709	2.59	-1.78	1.41	0.45	6.22
Garst-636	202	2 R	2.61	1.62	80 1.27	0.44	5.93
5262	214	2 LR	2.69	1.66	1.21	0.35	5.91
Garst-630	205	4 MR	2.52	1.65	1.26	0.39	5.82
5364	213	4 MR	2.57	1.62	1.25	0.38	5.81
Multiking	219	3 1 R	2.48	1.66	1.26	0.38	5.78
Sabre	216	4 HR	2.51	1.53	1.26	0.41	5.71
AP-8735	207	6.37-	2.47	1.60	1.25	0.39	5.70
Arrow	151	3 R	2.48	1.53	1.17	0.40	5.58
Milkmaker	208	3 S	2.46	1.53	1.20	0.39	5.57
WL - 87 - 21	224		2.41	1.54	1.23	0.39	5.57
WL-317	204	3 R	2.51	1.50	1.20	0.35	5.55
86I - 08	217	HR	2.40	1.58	1.21	0.34	5.53
Fortress	218	4 R	2.37	1.50	1.23	0.43	5.53
Cimarron VR	211	5 LR	2.32	1.49	1.22	0.43	5.45
Eagle	212	4 MR	2.28	1.51	1.22	0.41	5.41
Apollo Supreme	206	4 R	2.33	1.51	1.17	0.35	5.36
VS-775	209		2.29	1.48	1.11	0.33	5.20
MTV4-V1	222		2.36	1.41	1.08	0.35	5.19
NC831XMTV1-V2	223		2.23	1.47	1.15	0.34	5.19
VS-872	210		2.26	1.40	1.12	0.37	5.15
Wrangler	146	2 LR	2.41	1.37	1.05	0.31	5.13
Vernema	220	4 MR	2.13	1.46	1.15	0.36	5.09
Thor	1	4	2.20	1.40	1.08	0.31	4.98
WL-88-9	225		2.00	1.43	1.15	0.38	4.96
Vernal	8	2	2.12	1.27	1.02	0.26	4.67
Glean-Cycle 1	221		1.98	1.21	0.95	0.25	4.38
Ladak-65	2	1-2 S	2.20	1.07	0.94	0.14	4.34
LSD(0.05)			0.23	0.17	0.12	0.08	0.55
P-VALÚE			0.00	0.00	0.00	0.00	0.00
CV(s/mean)			6.9	8.0	7.6	15.5	7.3

^{1/} Fall dormancy rating

^{2/} Vert wilt resistance rating

					YIELD		
VARIETY	MTN F	$5D^{1/}VW^{2/}$	1989	1990	1991	1992	TOTAL
	40.000	NECT 193.4	aretisted ort		/a		
XAL-72	215 -		2.80	6.99	7.06	6.22	23.08
5262	214 2	2 LR	2.94	7.04	6.95	5.91	22.84
Fortress	218	4 R	3.47	6.76	6.61	5.53	22.37
VS-775	209 -	13RHUZI M	3.26	7.11	6.72	5.20	22.29
5364	213	4 MR	2.89	6.61	6.80	5.82	22.11
Garst-636	202 2	2 R	2.85	6.67	6.61	5.93	22.06
Vernema	220	4 MR	3.38	6.72	6.78	5.10	21.98
86I - 08	217 -	- HR	3.06	6.62	6.59	5.53	21.79
VS-872	210 -		3.27	6.82	6.45	5.15	21.69
Multiking	219	B R	2.72	6.49	6.67	5.78	21.65
Cimarron VR		5 LR	3.20	6.58	6.36	5.46	21.59
Arrow	151 3	BAHR	3.08	6.50	6.38	5.58	21.53
Milkmaker	208	S S	2.92	6.53	6.49	5.58	21.51
Garst-630	205	MR	3.00	6.15	6.53	5.82	21.50
Eagle 23.0	212	MR	2.98	6.63	6.48	5.42	21.50
WL-87-21	224 -		3.26	6.46	6.19	5.57	21.47
Sabre	216	HR	2.93	6.36	6.45	5.71	21.44
AP-8735	207 -		2.86	6.39	6.48	5.70	21.42
WL-317	204	R	2.96	6.35	6.16	5.55	21.02
Apollo Supreme	206 4	R	2.78	6.52	6.31	5.36	20.97
Thor	1 4		2.95	6.34	6.51	4.98	20.78
MTV4-V1	222 -		2.61	6.48	5.95	5.19	20.24
WL-88-9	225 –	75	2.65	6.15	6.36	4.96	20.12
NC831XMTV1-V	2 223 –		2.33	6.32	6.25	5.19	20.08
Wrangler	146 2	LR LR	2.63	5.83	5.76	5.13	19.34
Glean-Cycle 1	221 –	TC	2.66	6.24	5.95	4.38	19.22
Vernal	8 2		2.64	5.72	5.45	4.67	18.48
Ladak-65	2 1-	-2 S	2.45	5.18	4.94	4.35	16.92
LSD(0.05)			0.32	0.52	0.41	0.55	1.31
P-VALUE			0.00	0.00	0.00	0.00	0.00
CV(s/mean)			7.9	5.8	4.5	7.3	4.4

Seeding date: 4/20/89

Fertilizer: $P_2O_5 - 176$ lbs/a in 1989

Pesticide: Sencor - 1 lb Al/a - 10/26/89 Poast - 1/2 pt/a - 5/4 & 5/22/89

^{1/} Fall Dormancy rating

²/Vert wilt resistance

YEAR/PROJECT: 1992/755 1990 INTRASTATE ALFALFA YIELD TRIAL - DRYLAND

PERSONNEL: Leader - Leon Welty

Research Specialist - Louise Prestbye

In cooperation with Dr. Ray Ditterline, MSU Bozeman

Twenty alfalfa cultivars were seeded in an RCB design with 4 replications on 18 April,1990. Forage was harvested 4 times in 1992. Differences among varieties were not significant at P<0.05. 'DK 135' had the highest yield, with 6.81 tons/acre, while 'Runner' had the lowest yield, with 5.05 tons/acre. Differences among yields for the whole period from 1990–1992 were significant P=0.04. DK 135 remains the top producer, with 16.88 tons/acre. Five varieties had significantly lower yields than DK 135: 'Aggresor', 'Ladak 65', 'Wrangler', 'Wilson' and Runner.

		4.0		IARV-1 HAI	RV-2	HARV-3 H	ARV-4	
VARIETY	MTNO	FD^{1}	$VW^{\prime 2}$	6/2/92	7/4/92	8/4/92	10/2/92	TOTAL
			6.15		1 h	Yield (t/a) -		
Mngrn-14	226	81-0-	(6.6)	2.86	1.47	1.73	0.88	6.93
DK 135	152	4	MR	2.89	1.38	-1.60	0.93	6.81
5472	221	4	MR	2.69	1.41	1.66	0.96	6.72
Arrow	151	3	R	2.89	1.29	-1.4700	1.02	6.67
Allegiance	223	3	R	2.81	1.37	1.56	0.88	6.61
VS 655	230	180	6.52	2.89	1.33	1.35	1.00	6.57
5364	213	164	MR	2.88	1.26	1.50	0.78	6.41
WL 317	204	3	R	2.70	1.29	1.49	0.84	6.31
DK 122	224	2	R	2.76	1.26	1.41	0.84	6.28
WL 225	184	2	R 55.0	2.71	1.21	1.47	0.85	6.22
5262	214	2	LR	2.84	1.25	1.42	0.68	6.19
Ultra	229	3	R	2.83	1.21	1.31	0.78	6.12
Ladak 65	2	1 - 2	S	2.95	1.12	1.35	0.61	6.03
Wilson	231	6	81.0	2.16	1.25	1.49	1.12	6.02
Aggresor	222	4	R	2.55	1.20	1.36	0.79	5.89
Spredor II	128	1	2.0.0	2.84	1.11	1.31	0.63	5.88
Wrangler	146	2	LR	2.75	1.11	1.34	0.68	5.88
Multi-plier	227	3	R	2.65	1.22	1.24	0.70	5.82
Husky	225	3		2.37	1.20	1.34	0.76	5.66
Runner	228			2.49	0.91	1.32	0.33	5.05
LSD(0.05)				0.48	0.16	0.36	0.26	1.15
P-VALÚE				0.15	0.00	0.46	0.00	0.26
CV(s/mean)				12.4	9.2	17.9	23.1	13.1

^{/1} Fall dormancy rating /2 Vert wilt resistance

1990 INTRASTATE ALFALFA YIELD TRIAL - DRYLAND

VARIETY M	TNO	$FD^{/1}$	<u>VW</u> /2	1990	1991 Yin 116		OTAL
			Welty_	поыд	Yield (
DK 135	152	4	MR	3.08	6.99	6.81	16.88
5472	221	4	MR	3.07	6.68	6.72	16.46
Mngrn-14	226			2.88	6.59	6.93	16.40
VS 655	230	<u> 98</u> 9	928 9194	3.27	6.52	6.56	16.35
5364	213	4	MR	3.00	6.75	6.41	16.16
Arrow	151	3	R	3.10	6.35	6.67	16.12
Ultra	229	3	Rea Mal	3.18	6.65	6.13	15.96
Allegiance	223	3	Record	3.06	6.24	6.61	15.91
DK 122	224	2	R	3.07	6.54	6.28	15.90
WL 225	184	2	R	3.10	6.16	6.23	15.48
WL 317	204	3	R	2.87	6.26	6.31	15.43
5262	214	2	LR	3.01	6.23	6.19	15.43
Multiplier	227	3	R	3.28	6.30	5.82	15.40
Husky	225	3	-0/3	3.31	6.00	5.66	14.98
Spredor II	128	1	CT S	3.09	5.95	5.89	14.92
Aggresor	222	4	R	2.97	5.74	5.89	14.61
Ladak 65	2	1-2	S	2.88	5.66	6.03	14.57
Wrangler	146	2	LR	2.52	5.92	5.88	14.32
Wilson	231	6	3.26	2.33	5.47	6.02	13.81
Runner	228	1.76	3 - 27_	2.74	5.16	5.05	12.94
						A Leaner period	
LSD(0.05)				0.40	0.94	1.15	2.05
P-VALUE				0.00	0.03	0.26	0.04
CV(s/mean)			2.94	9.5	10.7	13.1	9.4
50 (53			3.07	2 LR 1-2 S	-2447	badak 65	
/1 Fall dormancy	rating						
/2 Vert wilt resista	nce						
00.1 88.							
Seeded 4/18/90							

Fertilizer: Fall, 1989 – 176 lbs/a P₂O₅

YEAR/PROJECT: 1992/755 1990 INTRASTATE ALFALFA YIELD TRIAL - IRRIGATED

PERSONNEL: Leader - Leon Welty

Research Specialist - Louise Prestbye

In cooperation with Dr.Ray Ditterline, MSU Bozeman

Twenty alfalfa varieties were seeded in an RCB design with 4 replications on 18 April, 1990. In 1992, 'Allegiance', '5472', 'DK 135' and 'VS 655' produced over 7.9 tons/acre, significantly more than the check varieties 'Ladak 65' and 'Spredor II'. 'Husky', 'Aggresor', 'Wrangler', Ladak 65, 'WL 225', 'Runner' and 'Wilson' produced less than 7.5 tons/acre. Spredor II yielded less than 7 tons/acre. Total yields from 1990 to 1992 ranged from 17.28 tons/acre (Runner) to 20.74 tons/acre ('Ultra'). Except for 'Wrangler', which is rated LR, the 5 lowest yielding varieties have no vert wilt resistance.

VARIETY	MTNO	FD V	7W 6/4	7/8	8/6	9/28	TOTAL
				Dry	Matter Yi	eld (t/a) -	
Allegiance	223	3 R	3.1			1.05	8.03
5472	221	4 M	IR 2.9	1 1.91	2.04	1.12	7.99
DK 135	152	4 M	MR 3.1	3 1.82	1.91	1.11	7.97
VS 655	230	-00	3.0			1.16	7.97
WL 317	204	3 R	2.9			1.18	7.81
Ultra	229	3 R	3.2	6 1.69	1.78	1.02	7.75
Multiplier	227	3 R	3.1	7 1.76	2001.74	1.07	7.74
5364	213	4 M	IR 3.1	1 1.79	1.84	1.00	7.74
Mngrn-14	226		- 2.9	3 1.92	1.91	0.97	7.73
5262	214		R 3.1	1 1.80	1.77	1.02	7.70
DK 122	224	2 R	3.1	2 1.75	1.76	1.00	7.63
Arrow	151	3 R	2.9	3 1.71	1.75	1.14	7.52
Husky	225	3 -	3.0	2 1.74	1.68	0.98	7.41
Aggresor	222	4 R	2.9	4 1.69	1.64	1.03	7.30
Wrangler	146	2 L	R 3.1	0 1.54	1.58	1.07	7.30
Ladak 65	2	1-2 S	3.0	7 1.54	1.63	1.02	7.26
WL 225	184	2 R	2.8	2 1.57	1.66	1.06	7.10
Runner	228		- 3.1	0 1.60	1.54	0.85	7.09
Wilson	231	6 -	- 2.3	4 1.64	1.96	1.09	7.04
Spredor II	128	1 -	3.00	0 1.50	1.45	0.84	6.78
LSD(0.05)			0.2	0.14	0.19	0.23	0.69
P-VALUE			0.00	0.00	0.00	0.26	0.01
CV(s/mean)			5.		6.3	13.2	5.5

1990 INTRASTATE ALFALFA YIELD TRIAL KALISPELL - IRRIGATED

				eydr aci – i c o	YI	ELD	
VARIETY	MTNO	$FD^{1/}$	$VW^{2/}$	1990	1991	1992	TOTAL
						/a – – – –	
Ultra	229	3	R	4.88	8.12	7.75	20.74
Multi-plier	227	3	R	4.68	8.20	7.74	20.62
DK 135	152	4	MR	4.42	8.11	7.97	20.50
VS 655	230		bord e	4.45	7.99	7.97	20.40
5472	221	04	MR	4.22	8.09	7.99	20.29
DK 122	224), R <u>ose</u> t	1 880 De	4.41	7.98	7.63	20.02
5364	213	4	MR	4.21	7.89	7.74	19.84
Allegiance	223	3	R	3.85	7.89	8.03	19.77
WL 317	204	3	R	4.12	7.54	7.81	19.47
Husky	225	3		4.30	7.73	7.41	19.44
5262	214	2	LR	3.98	7.67	7.70	19.35
Arrow	151	3	R	4.16	7.54	7.52	19.22
Mngrn-14	226	1.69	88,	3.54	7.92	7.73	19.19
WL 225	184	2	R	4.43	7.23	7.10	18.76
Aggresor	222	4	R	3.91	7.31	7.30	18.52
Wrangler	146	2	LR	3.54	6.80	7.30	17.64
Spredor II	128	143		3.86	6.95	6.78	17.59
Ladak 65	04.0	1 - 2	S	3.55	6.60	7.26	17.41
Wilson	231	6	- 52	3.21	7.05	7.04	17.31
Runner	228	06.7	- 85	3.67	6.52	7.09	17.28
LSD(0.05)				0.02	0.40	0.69	1.11
P-VALUE				0.00	0.00	0.01	0.00
CV(s/mean)				4.0	3.2	5.5	3.5
V1.0							
Seeding date:	4/18/90						

Seeding date: 4/18/90Fertilizer: $P_2O_5 - 176$ lbs/a on 5/31/90

^{1/}Fall dormancy rating

^{2/}Vert wilt resistance

YEAR/PROJECT: 1992/755

1991 INTRASTATE ALFALFA YIELD TRIAL KALISPELL - DRYLAND - 1992

PERSONNEL: Leader - Leon Welty

Research Specialist - Louise Prestbye

In cooperation with Dr. Ray Ditterline, MSU Bozeman

Twenty-three alfalfa cultivars were seeded in an RCB design with 4 replications on 26 April, 1991. In 1992 differences among total season yields were not highly significant. 'Ultra', 'Magnum III', 'Ladak-65', '5364' and 'Colombo' yielded over 7.40 tons/acre. Except for Ladak 65 these varieties had vert wilt ratings of MR-HR. Ladak 65 performed much better in this dryland environment than the irrigated trial. 'Barrier', 'VS 9096', '5262' and 'Alfagraze' produced less than 6.5 tons/acre. Ultra and Magnum III had the highest 2-year yields, with 10.92 and 10.63 tons/acre, respectively. In contrast, Barrier, 'VS 9096', '5262' and 'Alfagraze' produced less than 9.00 tons/acre over the 2 years.

			HARV-1	HARV-2	HARV-3	HARV-4	TOTAL
VARIETY	MTNO	FD ¹ / VW ² /	6/1	7/3	8/3	9/29	YIELD
			0_4_			-t/a	
Ultra	229	3 R	4.02	1.59	1.62	0.58	7.81
Magnum III	238	4 MR	3.60	1.65	1.79	0.70	7.73
Ladak-65	2	1-2 S	3.94	1.53	1.69	0.42	7.57
5364	213	4 MR	3.68	1.62	1.62	0.55	7.47
Columbo	235	3 HR	3.79	1.56	1.57	0.52	7.44
Eclipse	236	3 R	3.75	1.56	1.50	0.46	7.27
PGI-9048N	239	_08 2 _	3.92	1.44	1.45	0.44	7.25
Perry	133	3	3.90	1.46	1.43	891 0.45	7.23
NK-90792	232	-0	3.73	1.53	1.47	0.46	7.19
W90-VSX	242	-10	3.71	1.52	1.49	0.47	7.18
Riley	122	4 LR	3.84	1.29	1.47	0.55	7.14
Multiking	219	3 R	3.74	1.46	1.49	0.43	7.11
XAE-92	244		3.84	1.39	1.41	0.42	7.05
2841	246	3 R	3.56	1.47	1.45	0.47	6.94
Legacy	237	4 R	3.68	1.43	1.39	0.44	6.94
UN-72	240	-10	3.72	1.47	1.31	0.41	6.91
2833	245	3 R	3.40	1.42	1.39	0.53	6.73
Webfoot	243	3	3.59	1.38	1.35	0.39	6.70
Vernal	8	2	3.58	1.44	1.32	0.33	6.67
5262	214	2 LR	3.29	1.37	1.26	0.29	6.21
Barrier	234		3.51	1.25	1.14	0.27	6.16
VS 9096	241		3.29	1.37	1.13	0.23	6.02
Alfagraze	233	2	3.28	1.20	1.12	0.28	5.86
							Fell dormancy i
LSD(0.05)			0.48	0.30	0.36	0.21	1.19
P-VALUE			0.09	0.33	0.04	0.01	0.09
CV(s/mean)			9.3	14.7	17.9	34.8	12.1

^{1/} Fall dormancy rating

^{2/} Vert wilt resistance

1991 INTRASTATE ALFALFA YIELD TRIAL KALISPELL – DRYLAND – 1992

VARIETY	MTNO	FD ^{1/}	$VW^{2/}$	thye	<u>1991</u>	1992 -t/a	TOTAL
Ultra	229	3	R	IE, MSL	3.11	7.81	10.92
Magnum III	238	gs 4	MR		2.90	7.73	10.63
Columbo	235	3	HR		.2.63	7.44	10.07
NK-90792	232	<u>∮ h</u> ad su	and 536		2.84	7.19	10.03
5364	213	4	MR		2.53	7.47	10.00
Multiking	219	3	R		2.87	7.11	9.98
Ladak-65	2	1-2	S		2.36	7.57	9.94
PGI-9048N	239	0	VENT		2.65	7.25	9.90
Eclipse	236	3	R		2.49	7.27	9.75
W90-VSX	242				2.56	7.18	9.74
XAE-92	244	56	2		2.67	7.05	9.73
2841	246	3	R		2.64	6.94	9.58
Legacy	237	4	R		2.62	6.94	9.56
Perry	133	3	2		2.32	-7.23	9.55
UN-72	240	28	. S		2.62	6.91	9.53
2833	245	3	R		2.76	6.73	9.49
Webfoot	243	3	<u> </u>		2.64	6.70	9.35
Riley	122	4	LR		2.19	7.14	9.33
Vernal	8	2			2.33	6.67	9.00
Barrier	234	-08	2		2.44	6.16	8.59
VS 9096	241	34_	S		2.55	6.02	8.58
5262	214	2	LR		2.34	6.21	8.55
Alfagraze	233	2	.3		2.40	5.86	8.26
I (ID (0.05)					0.00	8 8	249
LSD(0.05)					0.30	1.19	0.79
P-VALUE		1.4			0.00	0.09	0.00
CV(s/mean)					8.2	12.1	4.6

1/ Fall dormancy rating 2/ Vert wilt resistance

Seeded 4/26/91

Fertilizer: 5/9/91 - 176 lbs/a P₂O₅

YEAR/PROJECT: 1992/755

1991 INTRASTATE ALFALFA YIELD TRIAL KALISPELL - IRRIGATED - 1992

PERSONNElLeader - Leon Welty

Research Specialist – Louise Prestbye
In cooperation with Dr. Ray Ditterline, MSU Bozeman

Twenty-three alfalfa cultivars were seeded in an RCB design with 4 replications on 17 May, 1991. In 1992 'Legacy', Pioneer '5364' and 'Magnum III' produced over 9.4 tons/acre. These 3 varieties had Fall Dormancy ratings of "4" and vert wilt ratings of MR-R. Magnum III and 5364 had superior regrowth compared to most other varieties resulting in higher total season production. 'Riley', 'Webfoot' and 'Barrier'had the lowest yields, and were not significantly better than the check varieties 'Vernal' and 'Ladak 65'. Legacy, 5364 and Magnun III had the highest 2-year total yields, with 13.23, 12.91 and 12.80 tons/acre, respectively.

						∂H	AF	RV-1	HA	RV-	-2	HARV-3	HA	RV-4		TOTAL
VARIETY	M	TNO	FD ¹	1	VW ^{2/}			6/4		7	7/8	8/6		9/28		YIELD
						-82						t/a		- V-	777	
Legacy		237	4		R			4.09			56	1.99		0.81		9.45
5364		213	4	Ψ.	MR			4.02		2.5	56	2.13		0.73		9.44
Magnum III		238	4		MR			3.82		2.5	55	2.21		0.87		9.44
W90-VSX		242	-	₽.	<u> </u>			4.00		2.4	41	1.82		0.79		9.02
VS 9096		241	-	10.				4.07		2.3	38	1.80		0.71		8.95
5262		214	2	9	LR			3.93		2.4	45	1.85		0.72		8.95
Columbo		235	3	3	HR			3.85		2.4	44	1.91		0.75		8.95
2841		246	3	3	R			3.90		2.3	35	1.83		0.81		8.88
NK-90792		232	-	η.	<u></u>			3.89		2.3	38	1.82		0.79		8.88
PGI-9048N		239	_					3.98		2.3	38	1.77		0.71		8.83
UN-72		240	_	0	O			3.87		2.3	32	1.75		0.82		8.76
XAE-92		244	-	iT.	ð			3.79		2.3	36	1.88		0.71		8.73
Perry		133	3	0	ð			3.89		2.3	34	1.77		0.72		8.71
Ultra		229	3	-	R			3.50		2.4	45	1.88		0.79		8.62
Alfagraze		233	2	. 0				3.76		2.3	31	1.84		0.72		8.61
Multiking		219	3	10.	R			3.63		2.3	38	1.86		0.74		8.61
2833		245	3		R			3.48		2.3	32	1.87		0.86		8.52
Eclipse		236	3		R			3.72		2.2	21	1.76		0.74		8.43
Riley		122	4	20	LR			3.82		2.1	14	1.75		0.67		8.38
Webfoot		243	3	1				3.35		2.3	30	1.83		0.79		8.27
Barrier		234	_					3.82		2.1	15	1.60		0.69		8.24
Vernal		8	2					3.51		2.2	25	1.77		0.67		8.19
Ladak-65		2	1-2		S			3.70		1.9	94	1.63		0.53		7.79
LSD(0.05)								0.45		0.1	18	0.15		0.07		0.60
P-VALUE								0.08		0.0	00	0.00		0.00		0.00
CV(s/mean)								8.3		5	.3	5.7		7.0		4.8

^{1/} Fall dormancy rating

^{2/} Vert wilt resistance

1991 INTRASTATE ALFALFA YIELD TRIAL KALISPELL - IRRIGATED - 1992

VARIETY	MTNO	FD ^{1/}	<u>VW^{2/}</u>	1991	1992 t/a	TOTAL
Legacy	237	4	В	3.78	9.45	13.23
5364	213	4	MR	3.47	9.44	12.91
Magnum III	238	4	MR	3.36	9.44	12.80
PGI-9048N	239	DF. R	UNIB	3.89	8.83	12.72
W90-VSX	242	_		3.70	9.02	12.71
VS 9096	241	979	v asis	3.66	8.95	12.62
NK-90792	232	JOW 2	3/a P.C	3.69	8.88	12.56
Columbo	235	3	HR	3.61	8.95	12.56
UN-72	240	dsgas	cand e	3.77	8.76	12.52
Ultra	229	3	R	3.87	8.62	12.49
2841	246	3	R	3.51	8.88	12.49
2833	245	3	R	3.80	8.52	12.33
5262	214	2	LR	3.25	8.95	12.33
XAE-92	244	also	and	3.44	8.73	12.18
Perry	133	3		3.35	8.71	12.16
Alfagraze	233	2		3.44	8.61	12.05
Eclipse	236	3	D	3.42		
Multiking	219	3	R		8.43	11.85
Riley			R	3.14	8.61	11.75
Webfoot	122	4	LR	3.33	8.38	11.71
Barrier	243	3	- R	3.33	8.27	11.60
	234	_		3.32	8.24	11.56
Vernal	8	2		3.01	8.19	11.20
Ladak-65	2	1-2	S	2.80	7.79 WOR	10.60
LSD(0.05)				0.36	0.60	0.79
P-VALUE				0.00	0.00	0.00
CV(s/mean)				7.4	4.8	4.6
o v (o) mean)				260	7.0	7.0
1/ Fall dorma	ncy rating					
2/ Vert wilt res	sistance					
Seeded 4/26/						
Fertilizer: 176	bs/a P2C) ₅				
	0814					

YEAR/PROJECT: 1992/755 1992 INTRASTATE ALFALFA YIELD TRIAL

KALISPELL - DRYLAND - 1992

PERSONNEL: Leader - Leon Welty

Research Specialist - Louise Prestbye

In cooperation with Dr.Ray Ditterline, MSU Bozeman

Twenty-five alfalfa varieties were seeded at 10 lbs/acre on 4/23/92. On 5/7/92, 200 lbs/a P_2O_5 were applied. Because of wind damage to the nursery, sections of plots were reseeded by hand where necessary on 6/4/92. Stand establishment was very good after reseeding, except for 'WI 9125' which contained alot of hard seed. Even after rescarification, emergence averaged only 50%.

Even after rescarification, emergence averaged only 50%.
'Benchmark', 'VS 907' and 'VS 904' had the highest total
yields. 'Wisfall' and WI 9125 had the poorest stand establishment

(81% and 43%, respectively) and also the lowest yields.

					HARV-1	SI	HARV-2	TOTAL
VARIETY	1	ONTM	$FD^{/1}$	$VW^{\prime 2}$	7/30/92	10	0/2/92	YIELD
						-tons	/acre	
BENCHMARK		254	3	R	2.08		1.93	4.01
VS 907		253	3	R	2.08		1.40	3.48
VS 904		261			1.84		1.57	3.41
MS 91		257			1.88		1.41	3.29
ARROW		192	3	R	1.77		1.44	3.20
4J19		248			1.90		1.23	3.13
89-31F		251			1.93		1.11	3.03
MBS 2131		259			1.86		1.15	3.02
PGI 3212		260			1.94		1.08	3.01
GUARDSMAN		252			1.83		1.17	2.99
WL 322HQ		250			1.86		1.08	2.94
PROFIT		258	2-3	R	1.82		1.09	2.91
ABI 9143		264			1.87		1.04	2.91
MILKMAKER	II	266	2-3		1.88		1.03	2.91
AP 8950		265			1.80		1.11	2.90
5454		263	4	MR	1.74		1.15	2.89
5246		262	3	R	1.72		1.06	2.78
CROWN II		247	3	R	1.82		0.93	2.74
CLASS		249	3	R	1.66		1.03	2.68
RILEY		122	3		1.51		1.06	2.57
5364		213	4	MR	1.44		1.05	2.49
PERRY		133	3		1.39		1.09	2.48
LADAK 65		2	1		1.53		0.76	2.29
WI 9125		256			0.98		0.95	1.93
WISFALL		255			1.37		0.49	1.86
LSD(0.05)					0.27		0.52	0.70
P-VALUE					0.00		0.01	0.00
CV(s/mean)					11.0		32.6	17.2

^{1/} Fall Dormancy

^{2/} Vert Wilt resistance

YEAR/PROJECT: 1992/755 1992 INTRASTATE ALFALFA YIELD TRIAL KALISPELL - 1992 - IRRIGATED

PERSONNEL: Leader - Leon Welty nosi Tabasi Market

Research Specialist - Louise Prestbye

In cooperation with Dr. Ray Ditterline, MSU Bozeman

Twenty-five alfalfa varieties were seeded at 10 lbs/acre on 4/24/92. The nursery was irrigated with 2.4 inches of water on 5/8, 8/12 and 8/19/92. Stand establishment was excellent except for 'WI 9125' and 'Wisfall' (70% and 81% average stands). As in the dryland trial, Wisfall had among the lowest yields, but WI 9125 yielded 0.21 t/a more than the average of all varieties for the season.

		20,	10/	HARV-1	HARV-2	TOTAL
VARIETY	MTNO	FD ^{1/}	$VW^{/2}$		9/29	
					tons/acre	
VS 907	253	3	R	3.24	1.75	4.99
CROWN II	247	3	R	3.01	1.89	4.90
CLASS	249	3	R	3.06	1.80	4.86
VS 904	261			2.98	1.86	4.84
BENCHMARK	254	3	R	3.06	1.76	4.81
MS 91	257			3.00	1.80	4.79
4J19	248			3.05	1.67	4.71
PGI 3212	260			2.91	1.78	4.69
WI 9125	256			3.03	1.64	4.67
89-31F	251			2.96	1.70	4.65
PERRY	133	3	-C\8	2.89	1.70	4.59
ARROW	192	31	R	2.76	1.71	4.46
5364	213	4	MR	2.68	1.77	4.45
MBS 2131	259			2.74	1.67	4.41
GUARDSMAN	252			2.77	1.62	4.40
AP 8950	265			2.56	1.75	4.31
5454	263	4	MR	2.69	1.55	4.24
ABI 9143	264			2.52	1.69	4.21
RILEY	122	3	TE SC	2.60	1.57	4.17
MILKMAKER I	I 266	2-3		2.58	1.59	4.16
PROFIT	258	2-3	R	2.55	1.60	4.15
5246	262					4.06
WISFALL	255			3.13	0.91	4.04
LADAK 65	2	1		2.68	1.33	4.01
WL 322HQ	250			2.49	1.51	4.00
T GD (0 05)				0.04	0.15	0.20
LSD(0.05)				0.24	0.15	0.28
P-VALUE				0.00	0.00	0.00
CV(s/mean)				6.0	6.6	4.4

^{1/} Fall Dormancy rating

^{2/} Verticillium wilt resistance

YEAR/PROJECT: 1992/755 ALFALFA FALL MANAGEMENT STUDY, SEEDED 1989 - DRYLAND

PERSONNEL: Leader - Leon Welty nosd - 19689J 4178408889

Research Specialist - Louise Prestbye

In cooperation with Dr. Ray Ditterline, MSU Bozeman, Dr. Joyce Eckhoff, EARC, Sidney and Dr. Kevin Kephart,

Brookings, SD

On 4/26/89 a nursery was established to study the effects of harvest timing and variety on alfalfa yield and stand. The study was designed as a split block with 4 replications. Main plots were: SC-2 (cut twice before 8/10) and SC-3 (cut 3 times before 8/10). Subplots were 10 fall harvest (FH) dates: 8/10, 8/20, 8/30, 9/10, 9/20, 9/30, 10/10, 10/20, 10/30 and an uncut plot (UC). Sub-subplots were the varieties 'NY 8142' (FD=2) and 'Pioneer 5432' (FD=4). Effects of 1990 and 1991 treatments on 1992 yields appear on the following table. In summary: SC-2 resulted in higher total 1992 yield than SC-3. Delaying the FH until 10/1 or later resulted in higher total yields the following year than harvesting earlier. Variety had no apparent effect on 1992 yields. There were no significant differences due to interaction among SC, FH and variety.

On 5/14/92, a 2'x 2'area from each plot was excavated and all plants removed. Factors affecting 1992 spring stand were: SC-2 had a higher vigor rating and root + crown dry weight than SC-3; FH between 8/20 and 10/1 had a depressing effect on vigor and shoot length; FH between 8/20 & 8/30 and 10/1 - 11/1 reduced plant number; FH of 8/30 & 10/10 - 11/1 reduced shoot dry weight; FH between 8/20 & 9/10 reduced root + crown dry weight; FH between 8/10 & 10/1 reduced root dry weight. Pioneer 5432 had higher density (plants/ sqft), shoot length and shoot dry weight than NY 8142.

Based on the yield data and the factors related to the health of the stand, it appears that harvesting after mid-August and before early October should be avoided in order to maximize stand production and persistence in alfalfa. This will allow the crop to store carbohydrates during its late summer to early fall regrowth period and enter dormancy with a healthy supply for the following season.

222HQ 250 . 2.49

LSD(0.05) 0.15 P-VALUE 0.00 0.00

1/ Fall Dormancy mating

ALFALFA FALL MANAGEMENT STUDY - KALISPELL - 1992

Effect of number of seasonal (June-July) harvests in 1990 and 1991 on total yield in 1992:

t/a	
4.38	Difference significant
3.87	by F-test.
4.13	
	4.38 3.87

Effect of 1990 and 1991 fall harvest date on total yield in 1992:

Fall Harvest Date	t/a
8/10	4.32
8/20	3.61
vib = 8/30 olg missos	3.34
9/10	3.61
9/20	3.94
10/1	4.26
10/10	4.43
10/17	4.66
apong 11/1 see as wo	4.62
Uncut of La	4.47
Mean	4.13
LSD(0.05)	0.21
P-VALUE	0.00

Effect of variety on total yield in 1992 – not significant. Interactions – not significant.

Effect of harvest management in 1990 & 1991 on stand indicators in spring of 1992 (significant at P<0.05):

	Seasonal Cuttings	Fall harvest (highest scoring)	Variety
VIGOR	2 > 3	8/10,10/10 - 11/1	NS
PLANTS/SQFT	NS	8/10,9/10-9/20	'Pioneer 5432'
SHOOTS/PLANT	NS	NS	NS
SHOOT LENGTH	NS	8/10,10/10-11/1, UC	'Pioneer 5432'
SHOOT DWT	NS	8/20,9/10-10/1	'Pioneer 5432'
ROOT+CROWN (DWT)	2>3	8/10,9/20 - 11/1,UC	NS
ROOT DWT	NS	10/10-11/1	NS

YEAR/PROJECT: 1992/755: SIMULATED SHORT DURATION GRAZING STUDY

PERSONNEL: Leader - Leon Welty

Research Specialist - Louise Prestbye

In cooperation with Dr. Ray Ditterline, MSU, Bozeman

and Mr. Dave Wichman, CARC, Moccasin

Five grass species were seeded in 1989 in an RCB design with 4 replications. The species were:

'Reed' canarygrass (RCG)

- 2) 'Garrison' creeping foxtail (GCF)
- 3) 'Regar' meadow bromegrass (RMB)
- 4) 'Potomic' orchardgrass (PO)
- 5) 'Linn' perennial ryegrass

In 1990 each species main plot was divided into 6 subplots with the following clipping treatments:

- 1) Remove 33% every 7 days (7/33)
- 2) Remove 50% every 7 days (7/50)
- 3) Remove 33% every 14 days (14/33)
- 4) Remove 50% every 14 days (14/50)
- 5) Vary intensity and frequency of clipping from high to low as season progresses (GRAD)

6) Remove all topgrowth every 28 days (CHECK)

These same treatments were imposed in 1991 and 1992. The 1992 results are as follows: The 14/33 treatment (means across species) again had the highest total dry matter yield (4.38 t/a), significantly higher than all other treatments including the CHECK. RMB and PO again had the highest yields among species averaged over treatments. The interaction of species X treatment was significant. The highest yielding individual treatments were RMB 14/33 and PO 14/33. The sum of 1990 - 1992 yields was highest for the CHECK and lowest for the two 7-day treatments. RCG and LPR mean yields were significantly lower than the other 3 species' mean yields. The species x harvest treatment interaction was significant for the 3-year total yields. The highest yielding individual treatments were the RMB and PO 14/33, 14/50, GRAD and check and the GCF check.

SHORT DURATION GRAZING STUDY - KALISPELL, MT - 1992

1992 TOTAL YIELDS SPECIES

Harvest Treatment	RCG	GCF	<u>RMB</u> t/a	<u>PO</u>	LPR
7/33	2.48 (16) ^{1/}	2.89 (15)	3.51 (17)	3.69 (16)	2.24 (10)
7/50	2.64 (12)	3.03 (14)	3.70 (13)	3.50 (12)	2.89 (7)
14/33	3.46 (9)	4.46 (9)	5.93 (9)	5.60 (9)	2.48 (8)
14/50	3.02 (9)	4.03 (9)	5.01 (9)	4.63 (9)	2.71 (6)
Grad	2.94 (10)	3.75 (10)	4.65 (10)	4.74 (10)	2.14 (8)
Check	3.76 (5)	4.42 (5)	4.77 (5)	4.53 (5)	2.90 (5)
means	3.05	3.76	4.59	4.45	2.56

LSD(0.05) – species means = 0.61 **

- harvest management means = 0.18 **

- interaction = 0.80 **

1/ Total number of cuttings

TOTAL YIELDS 1990-1992 SPECIES

Harvest	RCG	<u>GCF</u>	RMB	<u>PO</u>	LPR
Treatment			t/a	10.20	7.47
7/33	7.68	8.95	10.19	10.38	
7/50	7.18	9.21	9.89	9.51	8.40
14/33	10.71	12.33	14.66	14.58	10.55
14/50	9.78	12.34	13.87	12.95	10.01
Grad	10.06	11.50	13.17	12.93	10.32
Check	12.03	14.31	14.42	14.98	12.57
		44.44	10.70	10.55	0.90
means	9.57	11.44	12.70	12.55	9.89

LSD(0.05) – species means = 1.45 **

– harvest management means = 0.43 **

- interaction = 2.39 **

Seeding date: 4/18/89

Fertilizer: Spring 1989 - 68 lbs N/a

10/24/89 - 132 lbs P₂ O₅ 10/25/89 - 136 lbs N/a Summer 1990 - 68 lbs N/a

 $4/12/91 - 90 \text{ lbs N} + 110 \text{ lbs P}_2 \text{ O}_5$

4/16/91 - 65 lbs N/a

Pesticides: 5/22/89 - Bromoxynil - 3/8 lb Al/a

Crop year precipitation:	1989-90	1990-91	1991-92
	26.01"	20.04"	18.35"
Irrigation:	4.8"	4.8"	4.8"
Frost free period:	149 days	114 days	99 days
Initial cutting:	5/1/90	5/14/91	5/12/92
Last cutting:	10/18/90	10/7/91	9/1/92

PROJECT TITLE: Intrastate Spring Barley Evaluations

PROJECT PERSONNEL: Bob Stougaard and Todd Keener, NWARC, Kalispell Tom Blake and Pat Hensleigh, MSU, P&SS, Bozeman

OBJECTIVE: To evaluate spring barley varieties for yield, quality and improved resistance to foliar diseases in consideration for future release to Montana grain growers.

RESULTS:

Yields averaged 104 bu/A. Baronesse again had the highest yield this year (124 bu/A) Various experimental crosses with Lewis, Menuet, Harrington, Hector, and Clark were in the top yielding entries that had 112 bu/A or greater. Bearpaw, Gallatin, and Morex yielded 112, 108, and 86 bu/A respectively. Test weights were good with the average of the sixty-four entries being 51.1 lb/bu. The test weights for Baronesse, Bearpaw, Gallatin and Morex were 51.6, 50.1, 52.2, and 49.1 lb/bu. Percent plumps, height notes, and heading dates are listed in Table 1.

FUTURE PLANS: Variety evaluations will continued to be conducted at the Northwestern Agricultural Research Center in 1993.

ata 4/15:69 Spring 1989 – 68 lbs N/a 10/24/89 – 132 lbs P₂ O₃ 10/25/89 – 136 lbs N/a

4/12/91 - 90 lbs N + 110 los P, O_s - 4/16/91 - 05 lbs N/s

op year precipitation: 1969-90 1990-91 199
26.01" 20.04" 18.3
gauton 4.8" 4.8" 4.8"

tial culting: 5/1/90 5/14/91 5/12/9 st curing: 10/18/90 10/7/91 9/1/92

Table 1. Agronomic data from the Intrastate Spring Barley Nursery grown on the Northwestern Agricultural Research Center in 1992.

CI or	PLORE INCHES DATE	78/43	YIE	LD TEST V	VT %	HEIGHT	HEAD
STATE No.	VARIETY		BU/			INCHES	DATE
	Baronesse		123	.8 51.6	98	24.9	160.3
THE RESERVE TO SERVE THE PARTY.	Daronebbo				95		156.8
	H141510/11450						158.3
	Lewis/MT 41549		116				161.5
	Menuet/MT4126		116				
	Harrington/Clark(M	1851032	28115			26.7	
C12	Coors C12		€ - ₹8114			29.0	163.0
	MT 81143/Lewis		8 8 1 1 4		96	27.0	159.4
CI 15229			114			27.5	
MT900176	Steptoe/Robust		113			26.9	156.3
	MT41918/TR450 (MT8	51195 H	113		98	26.9	157.0
	Hector/Klages		1113			25.7	158.5
	020211/211111		0.0112			25.9	159.9
MT890069	MT4126/Piroline		112			24.8	157.3
PI531228			111			27.1	163.0
ND 9866			111			27.6	156.9
	Gallatin/Apex		111		93	23.5	159.1
MT900132	MT4126/Moravian II:	I	111			25.8	157.4
BA 1215	2B82-8529 (BA 8529	9)	110			26.1	162.9
CI 15856	Lewis		110			27.2	159.4
MT890008	Fleet/Bowman		110			25.8	163.0
MT851161	MT 41918/MT 41279		109			25.3	157.1
H5851161	MT 41918/MT 41279()	MT85116	109			25.1	158.1
PI491534	Gallatin		108	.3 52.2	93	26.7	158.0
H6860756	Gallatin/Bellona (1	MT86075	107	.2 52.8	98	26.4	160.9
	Hector/Bowman		107	.0 52.3	97	29.4	158.3
CI 15857	The same of the sa		106	.7 50.9	95	27.1	160.3
MT887103	MT 81535/Lewis		106	.6 50.1	97	23.8	159.5
CI 15478			106	.2 50.9	87	27.0	162.9
H5860219	Lewis/Apex (MT8602)	19 HR #	106	.1 51.8	97	23.2	160.9
CI 15514			106	.0 51.2	93	29.6	159.1
	Steptoe/Robust		105	.1 47.4	96	24.6	158.2
	MT81161/Bowman		104	.5 52.4	96	26.7	156.6
	Clark/WA877178		104	.3 51.0	95	27.5	160.6
	Harrington/Clark		104		96	26.5	160.5
	Harrington/Clark(M.	r851032	103		94	25.6	161.0
	Lewis/ID91019		102		97	26.2	155.2
	Bowman/Bellona		102		96	25.0	158.0
	Lewis//Kgs/Smt		101		97	25.7	157.5
WPB92 1	Medallion		100		88	22.8	161.3
	Coors C10		100		97	25.8	162.6
	Menuet/Bowman		100		99	24.6	157.5
	Gallatin/Bellona		100		100	25.8	160.9
			99		94	24.6	156.1
M1900125	MT4126/Bowman ID810264/MT 41918()	um05122	99		100	25.1	162.3
		1103122	99		98	26.4	155.6
	Excel		98		98	21.3	164.1
C13	Coors C13		98		97	26.7	157.4
	Bowman/ID810099				96	32.1	160.1
	Westford		98			19.8	156.7
	Hector/Fleet	7051000	98		78		
	Harrington/Clark(M	1851032	97		96	26.4	161.9
	Ack 3212/14		97		99	23.3	162.8
PI483127			96		93	26.9	154.0
C14	Coors C14		95		95	22.7	155.7
SK 76333	Harrington		94	.7 50.5	94	26.0	160.4
	MT47219/Bowman		93	.8 51.6	99	26.1	157.2

Table 1 (Cont'd). Intrastate Spring Barley Nursery, Kalispell, MT. 1992.

MT890021 BA 1614	2B88-51	33								
BZ489-29 CI 15773 MTSU 247	Gallatin BA 1614 WPB BZ A Morex	e n/Pirol	ine		93.6 93.5 91.8 90.8 90.4 89.6 85.9 85.8 82.7	51.1 51.0 51.2 51.9 52.0 49.5 55.5 49.1 55.1	98 98 94 96 94 96 73 99	19.0	156.2 155.4 155.9 156.7 154.8 156.5 163.8 154.6 160.9	TO THE PERSON OF
	0.031	6.00	BR	\$.78	8.811	195 H	(MISSI	B/TRABO	MTAIS	
L.S.D.					1.11112.8	0	0	2.29	1.84	
MEAN					104.0	51.1	94.9	25.9	158.9	

PROJECT TITLE: Early Yield Spring Barley Evaluations - Screening of early generation spring barley selections in cooperation with Dr. Tom Blake.

PROJECT LEADERS: Bob Stougaard and Todd Keener, NWARC, Kalispell Tom Blake and Pat Hensleigh, MSU, P&SS, Bozeman

OBJECTIVE: Evaluation of spring barley varieties for yield, quality and improved resistance to foliar diseases in consideration for future release to Montana grain growers.

RESULTS:

Yields averaged 100 bu/a. The same varieties (Steptoe, Morex, Klages, and Hector) grown in both 1991 and 1992 had yields that were 15 to 20 bu/A greater in 1991. Test weights were normal and averaged 50.2 lb/bu. Percent plump was higher than previous years. Heading dates were slightly earlier as a result of favorable spring temperatures and moisture. Lodging was moderate in approximately one-third of the entries. No diseases were observed in the 1992 Early Yield spring barley nursery.

SUMMARY:

Yields ranged from 76 to 126 bu/A in the Early Yield spring barley nursery where two and six row varieties averaged 100 bu/A. Lodging was recorded in two-thirds of the entries in this trial.

FUTURE PLANS: Disease resistant varieties will continue to be evaluated at Kalispell through cooperative regional variety trials.

Table 1. Agronomic data from the Early Yield Spring Barley Nursery grown on the Northwestern Agricultural Research Center in Kalispell, MT.
Planted: April 7, 1992 Harvested: August 17, 1992

er NWARC Kalispell		TEST WT	ક		HEADING		
CI Number VARIETY	BU/A	LB/BU	PLUMP	INCHES	DATE	INDEX	1/
CI 15229 Steptoe	126.0	46.3	97.0	31.5	163.7	.0	
H5870120 Lindy/Martin (MT870120HR5	124.7	45.6	95.5	31.5		1.1	
CI 15478 Klages Making M of persist stulk	- E	50.7		34.1	171.0	3.0	
MT910150 MT 81143/MT 83444	114.1	51.2	95.0	31.4	166.7	.0	
MT910153 MT 81143/Norbert	113.9	52.1	95.5	35.6	169.3	.0	
16860326 Lewis/TR533(MT860326 HR#6	112.4	51.7	97.0	32.1	165.7	5.6	
MT910079 Columbia/MT 81616	109.0	51.0		27.6	169.0	.0	
MT910032 Bowman/MT 81619	108.8	50.0	85.0	28.5	163.3	6.7	
MT910183 MT138575/Lewis	108.2	51.4	94.5	33.5		.0	
12860224 Lewis/Apex (MT860224 HR#2	107.9		96.5			3.7	
MT910096 Fleet/MT 81616	107.7	50.7	90.0	25.3	170.7	.0	
TT910024 Bowman/MT 81143	107.7	50.3	99.0	34.4	170.0	7.3	
T910187 MT140523/Menuet		50.8	95.0	32.9		.0	
T91001 Bellona/Harrington	107.7	51.7	96.0	32.4	170.0	.0	
	107.3	50.8	95.5	35.4	170.0	7.4	
T910197 Norbert/MT138575 T910001 Bedford/ID 910719	106.9	49.0	93.0	32.7	165.3	.0	
T1910001 Bed101d/1D 910/19	106.8		93.0	33.6	167.0	.0	
		50.8					
T910101 Fleet/MT 83424	105.5	51.6	92.5	26.0		.0	
3860224 Lewis/Apex (MT860224 HR#3	105.3	51.0	93.5	31.6	168.3	5.9	
T910171 MT 83424/MT 83444	104.6	50.5	95.0	33.7			
TT910173 MT 83424/MT 81616	104.5	49.5	96.5	33.6	169.7	3.9	
11860224 Lewis/Apex (MT860224 HR#1	104.3	51.3	96.5	33.7	169.0	6.5	
T910013 Bellona/Lewis	103.4	50.9	96.5	33.9	171.0	11.1	
T910176 MT 83491/Bowman	103.0	70.00	95.5	32.8	167.3	18.3	
T910170 MT 83424/MT138575	102.1	50.3	92.0	31.9	167.3	26.1	
T910167 MT 83424/Fleet	102.0	50.7	84.5	26.3	170.0	.0	
T910009 Bellona/Bowman	101.9	50.9	94.0	31.0	171.0	17.4	
T910117 Gallatin/Piston	101.7	50.8	93.0	34.0	166.3	26.3	
T910046 Bowman/MT 83592	101.4	50.5	94.5	29.9	164.0	26.6	
T910034 Bowman/MT 83422	101.1	50.9	95.5	34.9	166.7	3.7	
T910160 MT 811619/Bowman	100.1	52.3	96.5	34.8	170.0	.0	
AND THE RESERVE AND ADDRESS OF THE PROPERTY OF	99.6	50.2	94.0	34.5	167.0	22.2	
T910050 Bowman/MT140523	99.2	50.4	95.0	34.0	166.3	13.9	
T910177 MT 83491/Bowman	98.5	51.6	96.5	33.6	167.0	25.7	
T910175 MT 83491/Bowman	98.1	51.4	96.0	33.9	168.3	33.1	
5860224 Lewis/Apex (MT860224 HR#5	98.0	51.0	96.5	33.2	169.3	.0	
T910020 Bowman/Bedford	97.8	44.6	65.0	31.1	164.7	10.0	
T910016 Bellona/Lewis	97.8	50.6	96.0	32.6	170.0	.0	
T910189 ND 7293/MT 81616	97.5	50.9	97.0	31.9	167.0	.0	
T910033 Bowman/MT 81619	97.5	51.1	96.5	31.1	164.0	16.7	
T910154 MT 81502/MT 81143	97.0	49.8	92.5	30.7	166.3	30.3	
T910071 Columbia/Bellona	96.6	45.5	86.5	33.9	169.0	.0	
T910029 Bowman/MT 81502	96.5	50.7	95.0	31.6	165.7	11.0	
T910099 Fleet/MT 83424	96.4	50.8	92.5	34.9	168.3	34.1	
Continue							

Table 1 (Cont'd). Early Yield Spring Barley Nursery 1992.

CI Number VARIETY	YIELD BU/A	TEST WT LB/BU	% PLUMP	HEIGHT INCHES	HEADING DATE	LODGING INDEX 1
MT910114 Gallatin/Menuet	96.2	50.6	92.5	32.8	166.3	.0
MT910174 MT 83424/MT 81616	96.1	50.5	96.5	32.8	169.3	5.2
MT910048 Bowman/MT140523	95.7	51.2	90.5	31.2	165.7	35.7
SK 76333 Harrington	95.4	50.4	95.0	33.2	169.0	12.2
MT910035 Bowman/MT 83422	95.2	50.5	89.5	34.0	167.0	16.6
MT910111 Gallatin/Fleet	94.2	50.3	87.0	28.5	167.0	.0
MT910072 Columbia/Bowman	93.4	45.4	95.0	32.4	165.0	.0
H1870105 Hazen/UT1423 (MT870105HR1	93.2	47.5	98.5	33.5	166.0	.0
MT910113 Gallatin/Heavyweight	92.8	50.6	90.0	31.0	164.7	8.3
MT910157 MT 81616/MT 81502	92.1	48.6	96.0	32.2	167.3	15.6
MT910107 Gallatin/Bowman	91.3	50.9	96.5	35.0	163.7	8.5
MT910112 Gallatin/Heavyweight	90.9	50.7	91.0	33.2	165.3	9.3
MT910118 Hazen/Karla	89.5	47.2	97.0	37.8	167.3	.0
MT910108 Gallatin/Bowman	88.7	50.1	92.0	32.3	167.0	14.8
MT910022 Bowman/Gallatin	87.5	50.7	94.0	36.5	166.7	1.5
MT910180 MT138575/Bowman	87.5	49.6	93.0	35.3	167.3	52.7
CI 15514 Hector	85.6	50.3	92.0	35.3	167.3	29.6
MT910168 MT 83424/Fleet	82.2	49.5	95.0	34.1	170.0	8.2
CI 15773 Morex	80.8	47.6	93.5	35.8	163.0	5.7
MT910084 Elrose/Gallatin	76.3	51.4	94.5	31.4	166.3	16.7
Mean L.S.D.	100.1					9.7 18.1

^{1/} Lodging Index = Lodging Severity X Lodging Prevalence / 9

PROJECT TITLE: Uniform Northwestern Oat Nursery

YEAR/PROJECT: 1992/756

INVESTIGATORS: Bob Stougaard and Todd Keener, Northwestern Agricultural

Research Center, Kalispell, MT.

Tom Blake, Plant and Soil Science, Bozeman, MT.

OBJECTIVE: Evaluation of new and introduced oat varieties for yield and

disease resistence in Montana.

RESULTS: Sixteen varieties were evaluated this year with one variety yielding above 200 bu/A (Derby at 208 bu/A). All varieties had good yield potential with the average yield for the trial being 176 bu/A. Test weights were typical for this environment with the mean being 34.8 lb/bu. Trucker again had the highest test weight this year (38.6 lb/bu) while Otana had the highest weight among recommended varieties (36.9 lb/bu). Lodging was moderate to severe in the majority of plots with only one variety having no lodging (Agay). No disease occurances were noted in this trial.

Table 1. Agronomic data from the Uniform Northwestern Oat Nursery grown on the Northwestern Agricultural Research Center, Kalispell, MT.

Planted: April 7, 1992 Harvested: August 27, 1992

CI OR STATE #	VARIETY	YIELD BU/A	TEST WT LB/BU	HEAD		LODGING INDEX 1/
SIAIL #	conditions in Montana.	moisium	under high	ties grown	wheat varie	
DERBY	Derby	208.37	35.30	168.67	50.00	23.70
CI467882	Border	198.83	33.90	169.00	41.34	46.10
81Ab5792	Rio Grande	196.20	34.23	167.00	36.22	16.87
82Ab1142	Agay	193.20	34.67	170.67	34.78	.00
CI 9252	Otana	190.63	36.93	169.00	46.85	47.40
OT 308	Calibre	185.80	36.63	170.67	47.64	21.67
CI 9401	Ogle	179.60	32.63	162.67	36.88	2.23
W 82056	Robert	176.73	34.17	171.00	48.43	30.37
CI 9297	Appaloosa	175.70	32.37	170.00	41.47	61.13
CI483126		175.00	35.93	171.33	45.01	43.70
CI 8263	Cayuse	170.27	34.23	168.00	38.32	23.33
W 80474	Riel	163.10	35.07	168.33	48.95	47.47
NEWDAK	Newdak	159.43	33.20	163.00	42.52	56.67
CI 6611	Park	159.10	34.63	168.67	47.51	40.73
ND820603	Valley	147.93	35.00	168.33	40.42	59.67
SD810109	Trucker	135.90	38.57	164.33	44.75	26.67
L.S.D.	mundaded lives of spe	45.37	2.07	1.97	3.48	40.73

^{1/} Lodging index = prevalence X lodging severity divided by 9.

PROJECT TITLE: Western Regional Spring Wheat Variety Evaluations

PROJECT LEADERS: Bob Stougaard and Todd Keener, NWARC, Kalispell, MT.

Luther Talbot, Plant and Soil Science, Bozeman, MT.

OBJECTIVE: To determine the adaptability of new and introduced spring

wheat varieties grown under high moisture conditions in Montana.

RESULTS:

Yields from the 1992 Western Regional Spring Wheat Nursery were noticeably reduced from yields in previous years. None of the thirty-six entries yielded above 100 bu/A. Several varieties grown both this year and in 1991 were 10 to 40 bu/A less in this nursery. Test weights were relatively the same in comparison to other seasonal data and averaged 59.4 lb/bu. The heading date average was ten days earlier than last year, and was early compared to the long term average.

SUMMARY:

Cool, wet weather in June and July were factors that contributed to lower than normal yields this year in spring wheat. No variety yielded above 100 bu/A. Heading dates were one week to 10 days earlier than previous years.

FUTURE PLANS:

There are plans for continued evaluation of new and introduced lines of spring wheat in Montana by growing the Western Regional Spring Wheat Nursery.

Table 1. Agronomic data from the Western Regional Spring Wheat Nursery grown on the Northwestern Agricultural Research Center.

Planted: April 7, 1992 Harvested: August 28, 1992

27-5-	VARIETY	YIELD BU/A	TEST WT LB/BU	HEADING DATE	HEIGHT INCHES
	.arcano	M. ni agou	osture condu	m ngiri satm	3
CI 17904		96.0	59.5	167.3	32.4
WA 7176	K78504/K74129-33//K7	94.5	59.2	170.0	32.9
UT 1597	WYNNE/UT78S166-2746	92.4	59.7	169.7	34.9
	K80184/K7905769	91.8	60.7	167.3	30.8
WA 7183	WAKANZ	91.5	58.7	171.0	30.3
ID 377S	GALLO-YR'S'/AU X KAL	91.0	60.5		31.9
	OWENS/ID159	89.9	60.5	169.0	31.6
	PENAWAWA	89.2	59.9	168.3	30.8
UC 638	SERRA	88.5	59.6	164.3	28.5
	SPHWE 11	87.1	59.9	170.0	28.2
	A81515S-A/STERLING	86.8	60.1	169.3	30.6
	NDM00011/NK751,S83-1	86.8	59.3	165.0	29.7
	SEL. ML 42	86.0	60.1	169.7	32.4
	KAUZ 'S'	84.7	60.3	165.0	24.7
	OWENS/4/FDR/MENG//81	84.0	59.2	163.3	32.0
	TAN.S/3/TI/TOB//ALD.	83.4	60.4	165.7	28.5
	ID182/FIELDWIN	83.2	60.6	163.0	32.4
CI 17903		83.2	58.7	168.3	31.8
	RPV/WW15/3/BJ.S/ON*2	82.3	59.6	165.7	28.7
	ID130/MAYA74-PVN'S'/	81.8	59.3	163.7	31.8
	ID232/A75120S-2214-1	80.8	57.3	169.0	29.7
	VS73.600/MRL.S/3/BOW	80.3	58.9	166.7	26.0
	UT77W1054-1777/906R	79.9	58.0	168.0	28.2
	BJY.S/4/TZPP//IRN46/	79.6	59.5	167.0	26.1
	TAN.S/PEW.S	79.5	61.5	163.7	29.7
	UT77W1054-1777/MCKAY	79.2	59.3	170.0	35.2
OR489025		78.3	60.6	166.7	30.3
	A7612S-2/A75141S-2-1	78.2	59.1	169.7	29.9
	SPHRE 16	77.7	59.8	165.6	29.7
	UT77W1054-1777/MCKAY	77.3	58.9	169.7	38.7
	UT77W1054-1777/MCKAY	76.9	60.3	169.0	44.1
	UT77W1054-1815/MCKAY	76.2	59.3	170.0	36.6
	ID203/ID166//906R	76.0	58.7	167.3	27.8
	YOLO'S'/YRR,CA810041	74.9	58.5	168.3	23.8
	FEDERATION	69.3	56.8	171.0	40.0
OR487279		69.2	59.0	163.7	26.3
	SUNSTAR 2	66.3	59.5	164.0	29.4
	STA/YRR, CA770284-0D-	64.7	58.4	164.7	21.5
		61.8	58.5	162.7	20.5
NKF 8022 UC 784	STA/YRR,CA770284-OD-	60.0	58.6	162.7	20.6
	Mean	81.0	59.4	167.0	30.2
	L.S.D.	9.75	.58	1.51	1.73

PROJECT TITLE: Advanced Yield Spring Wheat Nursery

PROJECT PERSONNEL: Bob Stougaard and Todd Keener, NWARC, Kalispell

Luther Talbot and Susan Lanning, MSU, P&SS, Bozeman

OBJECTIVE: To determine the adaptability of new and introduced spring wheat varieties grown

under high moisture conditions in Montana.

RESULTS:

Yields were reduced slightly in comparison to harvests taken from the same varieties last year. Only four varieties had yields in excess of 100 bu/A (MT 9002, Owens, Stoa, and Penawawa). Test weights were normal for the location and averaged 59.4 lb/bu. Height and heading date information are given in Table 1.

FUTURE PLANS:

There are plans for continued evaluation of new and introduced lines of spring wheat in Montana by growing the Advanced Yield Spring Wheat Nursery.

Table 1. Agronomic data from the Advanced Yield Spring Wheat Nursery grown on the Northwestern Agricultural Reseach Center.

Date planted: April 7, 1992 Harvested: August 28, 1992

	VARIETY	YIELD BU/A	TEST WT LB/BU	HEAD DATE	HEIGHT
MT 9002	EP-VOC-512/12/BUTTE	109.7		168	37.9
CI 17904	OWENS	106.7	58.8	168	34.0
ND 582	STOA	104.0	59.2	169	39.9
	PENAWAWA	100.3	60.0	168	33.5
	BZ684-23	99.5	59.3	170	31.2
	FA 982-220	98.8	59.9	168	33.7
	RS6880/MT7819	97.8	60.0	169	34.8
	ALEX/MT7881	97.5		169	34.9
	AMIDON	97.1	58.9	170	42.4
	BW574//NEWANA/FORTUNA	97.1	57.8	165	31.6
MT 9150	MT7810/3/BW559//TOB66/CNO	96.4	58.9	169	31.6
		95.7	59.1	169	34.1
	ALEX/MT7881	95.1	60.0	164	32.0
SWP-9521		94.3	58.3	169	31.4
	LEN/MT7819				
	MT7926//PI428419/BW559	94.2	58.2	163	34.3
MT 9109	GUARD//KRONSTAD'S-GALLO/M	93.5	59.7	163	33.6
CI 13596		92.5	61.1	170	40.2
PI483235		92.4	58.7	169	34.0
MT 9126	ALEX/MT7881	91.8	57.6	170	33.7
CI 17828	PONDERA	91.8	60.1	169	34.4
MT 9158	MEXSEL2315/LEADER	91.7	58.7	169	33.1
	PH 986-61	91.2	58.6	164	29.3
	PEWEE'SCM-31630/MT8065	90.6	58.8	170	31.1
	MT8043//SELC/74-130-7	90.3	59.2	163	33.9
	LEN/MT7819	89.6	57.9	169	34.3
C982-324		89.4	60.0	168	33.2
	MT8190/4/CNO17C//KAL/BB/3	88.6	59.4	166	33.9
		88.3	57.8	170	35.8
	LEN/MT7819	88.0	60.0	171	44.9
	BW574//NEWANA/FORTUNA			172	33.1
CI 17430		87.6	59.7		
	WESTBRED 926	87.4	59.2	163	30.3
	TR 983-239	87.0		163	30.8
CI 17790	LENA STRONGW 1891 Jamon av	86.6		169	35.4
CI 10003	THATCHER	86.3	59.1	171	45.0
MT 9030	PONDERA/BUTTE	86.0	60.1	170	33.7
	MT8043//SELC/74-130-7	85.5	59.2	163	31.9
CI 17429		84.8	61.4	171	40.9
PI486139		84.4	59.1	163	21.5
	BW574//NEWANA/FORTUNA	84.1	61.2	171	41.9
CT 15030	OLAF 21 28/11 DEOUDONNI DNS V		59.1	168	35.4
		82.5	60.3	166	30.5
	HI-LINE	82.1	59.0	169	32.9
	MT8190/4/CN017C//KAL/BB/3		60.0	166	33.1
	CNO7C/4/KAL/BB/2/PCIS/3/M	81.2			
	NK715/BW559	80.9	58.7	169	39.8
	CUTLESS	78.5	59.2	167	35.2
	MT7836/LEADER	78.4	58.0	163	30.8
MT 9160	FORTUNA/MN70170	78.2	60.0	166	41.5
MT 9161	FORTUNA/MN70170	75.9		170	43.2
BZ984326	WPB BZ 984-326	74.3	60.1	163	32.4
	NTAL MEANS	89.99	59 36	167.66	34.7

PROJECT TITLE: Western Regional Hard Red Winter Wheat Evaluations

PROJECT LEADERS: Bob Stougaard and Todd Keener, NWARC, Kalispell, MT.
Phil Bruckner, Plant and Soil Science, Bozeman, MT.

OBJECTIVE:

To evaluate hard red winter wheat varieties for adaptability,

yield, quality and disease resistance.

RESULTS:

Even though fall precipitation was less than normal, winter wheat seedlings were in good shape prior to over-wintering in the Flathead Valley. Most plants were at, or past the 4 leaf stage so very little winter-kill was experienced. Spring rain was also less than normal, yet timely so that spring grain development was stimulated. Abundant precipitation in June and July aided in late crop development while the dry weather of August provided excellent harvest conditions. Mild winter temperatures were again experienced this year from December through February which explains the low levels of winter kill. With only 23 days of continuous snow cover (Jan. 5-27th) there was low incidence of TCK dwarf bunt. Cereal diseases were not a serious factor in winter wheat. Low levels of leaf rust were observed late in the season but were not detrimental to grain yields.

Yields were slightly above average with the mean yield being 98.5 bu/A. Most varieties that were tested last year had higher yields in 1992 of 5 to 10 bu/A. Test weights were low with only four entries having weights in excess of 60 lbs/bu. Heading dates averaged approximately five days earlier. Height in this nursery did not vary from past averages. Lodging was severe in more than half of the entries and contributed to yield loss in several cultivars. No disease were observed.

SUMMARY:

Moderate temperatures and timely moisture contributed to hard red winter wheat yields that were slightly above normal. Test weights were below normal and heading dates were 5 days earlier than the long term average. The moderate winter with limited snow cover may account for the absense of TCK dwarf bunt.

FUTURE PLANS:

Continual evaluation of new and introduced lines is planned in the future through cooperative state-wide testing.

Table 1. Agronomic data from the Western Regional Hard Red Winter Wheat
Nursery grown on the Northwestern Agricultural Research Center
Planted: September 25, 1991 Harvested: August 11, 1992

	VARIETY	YIELD BU/A	TEST WT LB/BU	HEAD DATE	HEIGHT INCHES	LODGING INDEX 1/
TM.	Ceener, NWARC, Kalisogi	bboT bas	branougr	2.008	ADERS	BL TOBLO
	VS74-709/NAC	134.1	56.9	155.5	35.9	0
	ID 77281 Hard Red	126.0	59.0	153.5	35.9	21.5
	R37/GHL121/VEE.S	124.8	59.3	152.0	36.4	0
	VS 74-709/BUC	122.5	57.5	155.5	37.4	0
	ID51022/MANNING	119.9	57.3	155.3	41.3	2.8
OR860247	GNS/LP/3/5*ATR/AGA//	119.3	59.9			0
	GOV//PCI/VEE	116.6	55.8	155.8	35.9	5.0
	CER//YMH/HYS	115.5	57.2	156.8	36.4	14.5
	HYBRITECH	115.2	59.0	150.5	35.4	1.7
OR860126	ORF1158/FDL//SNB,F1/	113.6	58.1		34.5	0
	RBS/ANZA/3/KVZ/HYS//	112.6	60.3	151.0	32.8	0
OR830282	ND/P101//BUHO	111.0	59.2	150.8	34.9	0
UT 303	1257-6/MNG	108.3	56.3	151.8	39.4	40.2
OR831134	CNO/INIA/HN7/3/CC//C	107.7	60.8	154.5	34.5	0
UT 134	WESTON/SAMSON	107.4	60.3	149.8	39.4	19.9
	CI12385/UK//CLM/3/CI	105.9	55.5			38.6
	WTN/BEZ/CI13438/BURT	105.4	58.8	154.5	45.8	38.9
	D887-74/PEW	105.0	60.7	152.3	37.9	.8
	VORO/MNIM, 85B-839	103.8	57.2	155.0	34.9	20.0
	ID0076/3 11-60-157/W	103.2	55.5	153.0		0
	NE 77663/WA 6815	101.8	58.3	156.3	44.3	55.6
	HYBRITECH	97.9	58.6	151.5	44.8	54.5
	N823105/N8106201	95.6	58.2	156.0	44.3	54.3
	ID 77294 Hard White	95.6	58.6	154.5	44.8	71.5
	UT122275/N7800501	89.6	57.6	155.8	45.8	63.3
CI 13844		86.9	58.0			
			58.1	155.3	43.3	
	CI 14484//BNK/GNS/3/	86.4			43.3	
	AG POD/WHEAT	85.2	55.7	154.3	41.8	67.6
	2*MC/NP824/3/LMH66/5	83.6	56.4	154.8	41.3	74.8
	BLIZZARD S	82.2	57.2	154.5	41.8	
	ID 77190 Hard Red	81.3	57.6	155.3	35.0	78.0
	A74125W-16-3-1/A7470	80.9	58.9	155.3	45.3	79.8
ID 355	MC*2/NP824/3/LMH66/5	76.1	56.2	153.5	44.3	82.6
	ATL50/4/R/R//2*CNN/3	69.3	55.6	155.5		
ID 433	II-60-156/CI 14106//	67.5	55.2	153.5		95.4
	KHARKOF	66.4	57.4	154.3	47.7	96.3
	BPR 689-71/TI	65.8	54.5	153.3	43.3	86.3
ID 443	ID 77089 Hard Red	55.2	53.6	156.0	41.3	93.5
	Mean	98.5	57.6	153.8	39.9	41.0
		19.6	2.38	1.47	5.39	27.3

^{1/} Lodging Index = Lodging Severity X Lodging Prevalence / 9

PROJECT TITLE: Western Regional Soft White Winter Wheat Evaluations

PROJECT LEADERS: Bob Stougaard and Todd Keener, NWARC, Kalispell, MT.
Phil Bruckner, Plant and Soil Science, Bozeman, MT.

OBJECTIVE:

To evaluate soft white winter wheat varieties for adaptability,

yield, quality and disease resistance.

RESULTS:

Yields were above average for soft white winter wheats. All but three entries (the long time standards of Kharkof, Elgin, and Moro) yielded above 110 bu/acre. Yields from entries grown in both 1991 and 1992 were 5-10 bushel/A higher this year. Test weights were noticeably lower. Only one entry had a weight in excess of 60 lb/bu (PB185WW1). The mean test weight was 57.1 lbs/bu. Height notes were equal to long time averages. Lodging was minimal throughout the study. The heading date average was one week earlier than last year even though the planting date was only different by two days. Vigor notes were taken on November 12, 1991 in an attempt to monitor over-wintering and plant competitiveness abilities.

SUMMARY:

Adequate moisture in the fall and spring combined with mild winter temperatures contributed to higher than normal yields for soft white winter wheat. Although yields were 5 to 10 bushel per acre the test weight for most varieties was below 60 lb/bu. Higher yields and low levels of lodging were observed in the soft white wheats whereas test weights better in the hard red winter wheat varieties.

FUTURE PLANS: Continued evaluation of new and introduced lines is planned in the future through cooperative state-wide testing.

Table 1. Agronomic data from the Western Regional Soft White Winter Wheat Nursery grown on the Northwestern Agricultural Research Center in Kalispell, MT. Planted: September 20, 1991 Harvested: August 10, 1992

CI NO.	Variety	YIELD	Test WT	HT	HEAD	LODG. 1	
	Keener, NWARC, Kalispell, MT.	BU/A	LB/BU	(IN)	DATE	INDEX	2/
GT 1442	Kharkof	82.4	58.6	47.7	152	60.5	6.8
CI 1442,	inter wheat lines for solds. In a light	83.6	55.7	41.8	155	51.7	7.8
CI 11755,	Moro Java Saras bas land tuswb		52.9	39.4	154	42.6	7.8
CI 13740,	Nugaines	116.4	58.2	30.0	154	0	6.5
CI 13968,	Stephens	116.0	58.2	32.0	152	0	5.8
CI 17596,		127.4	57.1	36.6	155	9.2	7.8
CI 17917,	Tres YMH/MCD/2/T.spelta/3/SU92/RDL/	140.3	58.0	33.3	152	0	6.3
ORF75336,	Kmor	125.9		31.7	155	0	6.8
WA 7529,	Paha//Sel.72-330/Daws	126.9		34.2	153	4.2	8.0
OR 855,	VPM/MS421//WA6241//Tres	125.0	53.7	33.7	155	0	7.5
WA 7621,		127.7	57.7	31.7	152	0	5.8
ORF83115,	SPN2*/Thul III	126.1	57.4	30.5	156	0	6.8
WA 7662,	Luke/Daws//Hill 81, VH086206	126.7	54.7	32.7	157	4.2	6.5
WA 7663,	Marksman/Daws, VH085208	141.9	57.4	39.4	153	0	7.3
OR833725,	TJB842-12919/SPN		56.3	33.5	149	0	6.8
DR833765,	6720-11/MDA38/WRM	114.5	58.2	35.4	152	Ø	6.8
OR840815,	SMB/HN4//SPN/3/WTS//YMH/HYS	116.7	56.9	33.5	151	0	7.0
ID081277,	SPN/Nacozari 76 year usiwal bas	129.3	56.7	34.9	155	0	7.0
WA 7686,	VH082254/ORCW8313,VH089270	125.6		33.2	153	itoma Ø	7.5
WA 7687,	WA 6580/Hill 81, VH086032	124.6	56.3		157	0	7.0
WA 7622,	Tyee/Roason/Tres, 9022	126.6	56.4	34.5		0	7.0
WA 7690,	VPM/MS951/YMH/HYS/Hill 81//WA6	122.6	57.8	35.6	155		6.8
WA 7691,	<pre>VPM/MS951//YMH/HYS///ID3518, 9</pre>	114.3	57.7	32.0	154	0	6.8
OR850933,	YMH/HYS/4/MRS/3/YMH//RBS/NCO	119.0	56.6	30.5	148	0	
OR850594,	STEPHENS/CROW	118.5	57.1	30.5	148	0	7.0
OR851048,	STEPHENS/QUILAMAPU 8-74	117.9	55.9	34.5	155	0	6.8
OR860303,	AFG2/BUC, F1/KVF	111.1	57.1	29.2	150	0	7.0
OR087636,	Pendleton Sel, 87636	123.9	59.0	33.0	154	0	7.0
ID085153,	Sprague/Stephens	132.4	58.2	35.6	152	0	6.5
WA 7729,	WA6814/Tres, VA087002	120.1	53.4	31.5	155	0	8.0
WA 7730,	VH090077	118.5	56.2	32.0	156	Ø	8.3
WA 7717,	WA7690 Sib	123.1	57.2	36.9	155	1.3	8.8
WA 7695,	Daws//SU92/3*Omar-279	128.9	56.4	31.2	154	Ø	8.5
WA 7697,	SPN//SU92/3*Omar-279	117.6	56.6	31.0	155	0	7.3
XWH 1004,	X WH1004 Hybritech	132.2	58.6	34.0	152	0	6.3
WA 7431,	ELTAN	127.2	58.1	36.4	157	22.8	7.0
XWH 1005,	X WH1005 Hybritech	135.2	58.1	36.7	154	0	7.0
PB185WW1,	Daws/CIMMYT/PNW Bulk	122.1	60.1	35.1	153	0	7.3
OR851139,	YMH/HYS/3/EG/178383//2*YMH,F1/	129.1	59.3	38.9	155	0	7.8
OR857847,	AFG2/MAYA/MON	119.1	57.4	32.0	152	0	7.0
OR860302,	AFG2/BUC, FZ//KVZ	114.7	58.0	28.1	149	0	7.0
OR856537,		117.0	56.8	38.9	155	13.3	7.5
OR855350,		122.0		34.0	153	10.4	7.3
		110.1	57.9	29.5	161	0	7.0
CI017909,	newlatti	110.1					
	Mean	20.7	57.1	34.1	153.	5 5.1	7.1
		2.69	1.16	2.04		1 16.2	.767
	LSD .05	2.00	1.10				

^{1/} Lodging index is lodging SEVERITY X PREVALENCE / 9

^{2/} Vigor notes (0 = dead plants, 9 = healthy plants) on 11/12/91

PROJECT TITLE: Intrastate Winter Wheat Evaluations - Screening of early generation winter wheat lines for TCK smut and stripe rust.

PROJECT LEADERS: Bob Stougaard and Todd Keener, NWARC, Kalispell, MT.

Phil Bruckner, Plant and Soil Science, Bozeman, MT.

OBJECTIVE: Evaluation of early generation winter wheat lines for yield,

quality and disease resistance to dwarf bunt and stripe rust.

RESULTS:

Yields varied from 66 to 129 bu/A and were equal to yields taken from this nursery last year. Stephens yielded the highest while the low yielding entry was Roughrider. Test weights averaged 60.2 lb/bu for the nursery. This nursery was planted on the same date last year but was harvested 18 days earlier in 1992 due to the dry August weather. Height notes were normal for the location. Lodging was moderate in greater than 50% of the entries and presumably caused some yield loss. No cereal diseases were observed in the trial. The absence of snow cover could indicate why TCK smut was not prevalent in the trial.

SUMMARY:

The recommended varieties of Winridge and Lewjain were included in the top four yielding varieties of the Intrastate Winter Wheat Nursery with yields of 119 and 116 bu/A, respectively. The test weight for Winridge was 61.7 lb/bu while Lewjain was 58.3 lb/bu. One third of the entries yielded above 100 bu/A.

FUTURE PLANS:

Disease resistant varieties will continued to be evaluated at Kalispell through cooperative variety testing.

Table 1. Agronomic data from the Intrastate Winter Wheat Nursery grown on the Northwestern Agricultural Research Center. Planted: September 18, 1991 Harvested: August 4, 1992

CI Numbe	er Variety			YIELD	TEST WI	HEAD DATE		LODGING INDEX 1
		\$.60	95.6	BU/A	<u>гв/во</u>	DATE	INCHED	1-888
CI 17860	NEELEY	61.3	0.001	111.7	61.1	155.3	45.3	40.9
CI 17879				96.5	61.1	151.3	47.2	21.4
CI 1784				100.9	61.9	154.0	48.6	11.1
2151719				116.1	61.5	154.0	48.6	16.9
CI 1773				86.0	59.9	156.0	51.8	43.0
CI 13670				66.9	59.4	153.7	53.2	52.7
CI 1743		CO 0 05		65.7	59.3	154.0	50.5	51.3
I 1743		80.2		84.3	59.4	The state of the s	49.2	48.3
				74.2	58.4	154.0	51.8	82.3
2149153		TDD		92.3	61.6		40.7	.7
NA 000		IKD		90.2	61.7	151.0	50.5	27.9
CI 1772				75.5	58.2	154.3	52.5	65.6
CI 888				95.1	60.2	155.0	29.5	0
149153				71.5	56.9	153.3	51.8	60.0
I 1727				80.7	56.8	151.3	51.2	62.3
ZI 1319				74.8	58.4	154.3	55.1	58.7
PI47877				105.1	62.5	150.7	34.1	0
I 1795				100 100 100	60.4	151.3	44.6	1.5
MT 803				104.8	60.4	150.7	46.6	7.8
OT 54				103.5	60.1	151.0	45.3	3.7
2T542-F				97.7		151.0	40.0	5.6
KNH 148		H		115.2	60.3		46.6	3.3
CI 1790				115.7	61.7	155.7		32.2
1D 800				,,,,	60.4	156.7	48.6	8.5
ID 27	9 BLIZZARD			97.1	60.8	156.0	34.1	0
RH78W29	5 BIGHORN			110.4	60.5	154.3		0
PI47728	7 RAM			108.0	59.3	151.7	40.0	0
CI 1784	6 MANNING			111.5	59.8	152.3	39.0	0
CI 1794	ARCHER			99.1	59.3	152.0	35.4	
PI51859	1 ARAPAHO			96.8	59.4	151.0	38.7	0
MT 871	MSC/CTK	A+//IUL		88.2	61.6	153.7	34.1	0
MT 871		6928		104.8	61.7	153.7	38.7	0
MT 8801	3 PMN5/WN/	/HP 344/E	RD	73.2	59.8	149.7	47.2	24.6
AT 8801	7 PMN5/WN/	/HP 344/E	FRD	80.5	59.9	151.3	41.3	27.4
MT 8801	B PMN5/WN/	/HP 344/E	FRD	75.2	60.1	151.3	48.6	27.8
AT 8802	1 PMN5/WN/	/HP 344/F	FRD	74.5	60.8	150.3	48.5	16.7
MT 8802			FRD	84.4	60.4	151.0	44.6	0
MT 8802	6 PMN5/WN/	/HP 344/F		87.2	61.0	150.7	46.6	10.0
MT 8802	7 PMN5/WN/	/HP 344/H	FRD	81.0	60.2	151.0	44.6	26.0
MT 8802	8 HP340/NR	S//MT7216	5(18	84.1	58.0	152.3	45.9	50.1
MT 8803	0 HP340/NR	S//MT7216	5(18	83.4	60.6	151.7	41.3	10.4
MT 8804	6 PMN5/MT	77003//HI	344	83.6	61.2	151.0	42.0	8.9
MT 9000	and the second agency of the contract of	-166/WRG		93.7	61.4	154.3	47.2	5.6
MT 9002		T7673//M		90.0	59.6	152.7	48.6	41.4
MT 9002	6 TD103/WR	G//MT7840)/MT	93.7	61.0	152.7	48.6	1.1
MT 9002	7 TD103/WR	G//MT7840)/MT	102.1	60.9	152.3	48.6	0
MI 3002	, IDIOS/WK	0//111/04	- /		on next			

Table 1 (Cont'd). Intrastate Winter Wheat Nursery - Kalispell

CI Number	Variety			YIELD BU/A	TEST WT LB/BU	HEAD DATE	HEIGHT	LODGING INDEX 1
OTOL INOT	TH DATH TO	1237	MIXIY			V10170	12	
SOFT SEED	MI BYAG UE			05 6	60.0	155 2	44.0	32.2
586-15	KESTREL			95.6	60.2	155.3		
s86 - 736	S86-736			100.6	60.1	155.3	44.6	26.7
MTSF1258	LEW/TBR//RDW			97.0	61.3	152.7	47.9	11.1
MTSF1260	LEW/TBR//RDW			85.1	60.6	152.3	46.6	8.3
MTSF1569	LEW/TBR//RDW			88.5	60.3	155.0	41.3	18.3
MTSF1570	LEW/TBR//RDW			95.0	60.3	155.0	47.9	56.7
CI17909	LEWJAIN			118.7	58.3	158.0	33.5	0
MTSF2238	LEW/TBR//RDW			96.6	60.7	153.7	44.0	3.7
ID 355	MC*2/NP824/3		/5	96.9	60.0	155.3	47.9	27.5
IDHW0355	2*MC/NP824/3			90.7	60.2	155.0	49.9	26.7
ID 360	ID 360	R.T.		109.8	59.3	156.7	36.1	25.7
RDW(SEL)	AC READYMADE			97.3	61.1	154.3	47.9	0
21499375	KS73164/PI94			99.0	60.2	151.7	47.2	17.6
PI499376	LENORE/KS731			89.2	58.3	153.0	38.7	0
1499377	MANNING/MT75			111.4	59.6	152.3	41.3	2.2
HILL-81	HILL-81	3.3		106.0	59.8	154.3	38.7	0
CI 17596				128.8	60.2	156.7		0
CI 17419				93.5	61.4	147.3		0
LAMAR				90.7	61.3	150.7	47.9	26.3
PI495594	TAM 107			101.5	60.1	146.0	37.4	0
1433334	Inn 107			101.3	00.1	2.5.0	Dr GENE	
		MEAN		94.03	60.2	152.9	44.5	19.1
		L.S.D.		18.87	1.23	1.760	2.60	33.7

^{1/} Lodging Index = Lodging severity X Lodging prevalence / 9.

PROJECT TITLE: Seed Treatment Dwarf Bunt Control in Winter Wheat

PROJECT LEADERS: Bob Stougaard and Todd Keener, NWARC, Kalispell, MT.

OBJECTIVE: Evaluate Dividend seed treatment for control of TCK dwarf bunt

in eight winter wheat varities.

RESULTS:

Four soft white and hard red winter wheat varieties of varying susceptibility to TCK dwarf bunt were selected for the 1991-92 trial. These eight varieties were seeded non-treated as well as treated with 1 oz Dividend per hundred weight. A research plot seeder was used to seed varieties (10/3/91) in four row plots, ten feet in length, at a rate of 60 lb / acre. Seeding depth was 3/4 - 1 inch and row spacing was 12 inches. On October 15, 1991 an inoculum solution was applied to the test area using a research plot sprayer when winter wheat was in the three leaf stage. The TCK inoculum was prepared using screenings and smut balls from infected wheat samples. One bushel of screenings was soaked in 10 gallons water for 15 minutes and then filtered twice through fine mesh cheese cloth to make the inoculum solution. The final application rate of the inoculum solution was approximately 100 gallons per acre. TCK ocular estimations were taken July 10, 1992.

There were 23 days continuous snow cover from Jan 5th - 27th. Total snow cover days were 55 for the 1991-92 winter. Previous total days of snow cover for 1990 and 1991 were 65 and 69, respectively. The environmental conditions were not favorable for TCK infection but the inoculation of the trial proved successful in introducing sufficient infection levels.

SUMMARY:

All varieties were free of dwarf bunt when treated with 1 oz Dividend per hundred weight. The highest infection levels were noted in the untreated hard red entries. Rocky and Judith had 18 and 20% infection, respectively. Yields, test weights, and heading dates did not vary between non-treated and treated entries of the same variety. Height reductions were observed in the treated entries of Luke and Judith. It appears from this trial that Dividend seed treatment may provide effective control of Dwarf Bunt in winter wheat at high infection levels.

FUTURE PLANS:

This study was re-established this fall to evaluate the consistency of these treatments.

Table 1. Agronomic data from the Seed Treatment Dwarf Bunt Study.

NWARC - Kalispell, MT.

Variety	Trtmt 1/	Yield Bu/A	Test Wt Lb/Bu	Height Inches	Heading Date		7/9 * Visual
Luke	Divid. 1 oz	121.3	58.9	34.5	, 160	0	.1
Nugaines	Divid. 1 oz	112.2	57.4	34.5	158	0	0
Stephens	Divid. 1 oz	114.1	57.4	37.4	159	0	0
Lewjain	Divid. 1 oz	119.7	57.3	33.0	161	0	0
Judith	Divid. 1 oz	123.3	59.2	42.8	155	0	.1
Tiber	Divid. 1 oz	102.4	60.8	46.8	157	0	E at 1 h
Rocky	Divid. 1 oz	96.3	57.8	46.3	154	0	.0
Winridge	Divid. 1 oz	98.4	59.2	47.3	159	0	.0
Luke	Untreated	109.9	58.7	30.0	159	1.0	.3
Nugaines	Untreated	115.6	57.9	34.5	158	.7	1.0
Stephens	Untreated	119.0	58.8	36.0	158	.9	.4
Lewjain	Untreated	120.9	57.0	33.0	161	0	0
Judith	Untreated	118.7	58.7	40.4	156	20.0	15.0
Tiber	Untreated	111.6	61.2	45.8	158	6.9	5.8
Rocky	Untreated	91.8	58.3	45.3	154	18.4	19.8
Winridge	Untreated	109.6	60.2	46.3	160	0	0
P-VAL	LL MEAN = UE TRTS = .05 by t)=	111.5 .0012 15.52	58.66 .0000 1.541	39.8 .000 2.58	.00	.039 .000 .059	2.76 .000 5.07

^{1/} Seed treatment for treated varieties was Dividend at 1 oz/cwt
* Percent TCK = % TCK Dwarf bunt per plot. COUNT is determined by
average number of infected heads per foot of row.

YEAR/PROJECT: 1992/758 LEGUME ROTATION STUDY

PERSONNEL: Leader - Leon Welty

Research Specialist - Louise Prestbye

Cooperator - Dr.Mal Westcott, WARC, Corvallis

This was the third year of the 4-year rotation treatments:

- 1) Perennial alfalfa, yrs 1&3; barley-yr 4.
- 2) Continuous barley, no N added 4 yrs.
- 3) Continuous barley, 45 lbs N/a 4 yrs. 4) Continuous barley, 90 lbs/a 4 yrs.
- 5) Berseem clover, 1 hay+GM yrs 1&3; barley-yrs 2&4.
 6) Berseem clover, 2 hay+GM yrs 1&3; barley-yrs 2&4.
- 7) Berseem clover, 3 hay yrs 1&3; barley yrs 2&4. 8) Berseem + oats, 1 hay + GM yrs 1&3; barley yrs 2&4.

 - 9) Spring pea, GM yrs 1&3; barley yrs 2&4.
 - 10) Spring pea, 1 hay + GM yrs 1&3; barley yrs 2&4.

Herbage samples were taken from each plot at time of harvest or incorporation to be analyzed for TKN, P,K and S. Total dry matter yields were determined for each plot for each harvest and either removed or returned to the plot for incorporation.

1992 BIOMASS YIELDS (means of 4 replications)

ROTATION CROP					
Perennial Alfalfa		1.85			
		Test Wt lbs/bu		Straw t/a	
Barley - 0-N	98.8	50.6	87.8		
Barley - 45-N	123.6	50.3	82.5	1.12	
Barley - 90-N	110.9	49.8	76.3	1.11	
	Hav-1	Hay-2	Hav-3	Green Manure	
Berseem - 1H+GM	1.73				3.68
Berseem - 2H+GM	0.46	1.04		1.59	3.09
Berseem - 3H	0.62	1.09	1.66		3.37
Berseem+Oats	2.88			1.43	4.31
Spring Pea - GM				1.50	1.50
Spring Pea - Hay	1 45				1.45

YEAR/PROJECT: 1992/758 STATEWIDE LEGUME ADAPTATION TRIAL -

IRRIGATED

PERSONNEL: Leader - Leon E. Welty

Research Specialist - Louise Prestbye In cooperation with Dr. Jim Sims, MSU

Eighteen small-seeded and 19 large-seeded annual legumes were planted Apr.14, 1992. One small-seeded cultivar, an experimental black medic, was eliminated because of very poor stand establishment. Four large-seeded cultivars, 3 cowpeas and a mung bean, were also eliminated. Plots were harvested for forage one to three times, depending on regrowth. Total forage yields ranged from 0.95 to 3.60 t/a for the small-seeded cultivars and from 1.10 to 3.57 t/a for the large-seeded. Small-seeded varieties yielding at least 3.00 t/a included 'Maral Schaftal' clover, 'Multicut' berseem clover, 'Bigbee' berseem clover and a selection berseem. Large-seeded varieties yielding at least 3.00 t/a included 'Tinga' tangier flatpea, 'Chickling' vetch and Austrian winter pea.

1992 BIOMASS VIELDS (means of 4 replications)

ROTATION CROP Harv-1 Harv-2 Marv-1 derv-4 TOTAL
Percennial Alfalfa 2.75 1.85 1.85 0.80 8.81

Grain Test wt tFlump Straw

Du/a 1Ds/bu t/a Barley - 0-N 98.8 50.6 87.8 0.94

Green Total

Berseem - 1H+GM 1.73 1.68

Berseem - 2H+GM 0.46 1.04 1.59 1.09

Berseam+Oats 2.88

Spring Pea - GM

Spring Pea - Hay 1.45

STATEWIDE			 5/21/92	TOT LLL		JL					
			STAND	7/1	0/92		8/12/92	9	/2/92	1000	TOTAL
LARGE-SEE	DED		%				YIE	LD (t/a)			
Tinga tangier	flatpea		92		2.68		0.81		0.08		3.57
Chickling vet	ch		93		2.68		0.38				3.06
Austrian wint	er pea		93		3.00						3.00
Hairy vetch	with ful		80		1.41		1.14		0.33		2.88
Trapper pea			88		2.81						2.81
Sirius field pe	ea		90		2.42						2.42
Herz Freya fa	ba bean		95		2.29						2.29
Timeless Alac	din faba be	an	90		2.21						2.21
Miranda yello	w field pea	a	95		2.09						2.09
Dianna faba l	bean		95		2.02						2.02
Cahaba white	e vetch		85		1.48		0.42				1.90
Ackerperle fa	ba bean		90		1.84						1.84
Timeless gree	en lentil		100		1.59		0.22				1.81
UI 114 pinto I	bean		45		1.08		0.54				1.63
Sacramento r	red kidney	bean	45		0.85		0.25				1.10
LSD(0.05)			16		0.38		0.69		0.16		0.58
P-VALUE			0.00		0.00		0.11		0.02		0.00
CV(s/mean)			11.2		11.3		71.7		22.8		14.8

NB: MS Pinkpea Cowpea and MS Cream Cowpea did not emerge. VCP and Green Mung Bean had very poor stands.

	F 104 100				
	5/21/92 STAND	7/10/92	8/12/92	9/2/92	TOTAL
SMALL-SEEDED	% -	7710702		LD (t/a)	
Multiput bassassas alauras		1.00			3.60
Multicut berseem clover	90	1.28	1.69	0.64	
Maral shaftal clover	85	1.44	1.50	0.34	3.28
Bigbee berseem clover	90	1.53	1.45	0.23	3.21
Selection 1 berseem clover	0 0 88	1.50	1.43	0.18	3.11
Nitro alfalfa	90	1.11	1.35	0.51	2.97
Siwa alfalfa	92	0.92	1.18	0.46	2.56
Mt.Barker sub.clover	93	0.90	1.36		2.26
Paraggio barrel medic	95	1.65	0.54		2.19
George black medic	62	1.20	0.73		1.93
Indianhead lentil	93	1.42	0.50		1.92
Ascot barrel medic	85	1.45	0.34		1.79
Borung barrel medic	92	1.27	0.28		1.55
Youchi arrowleaf clover	38	0.68	0.84		1.52
Jemalong barrel medic	90	1.09	0.37		1.46
Sava snail medic	97	1.23			1.23
Parabinga barrel medic	88	1.02			1.02
Santiago polymorpha medic	92	0.83	0.13		0.95
LSD(0.05)	9	0.24	0.29	0.16	0.36
P-VALUE	0.00	0.00	0.00	0.00	0.00
CV(s/mean)	6.2	11.9	18.7	21.9	10.1

NB: BM5 had very poor stands.

Seeding date: 4/14/92

Fertilizer: 5/7/92 - 40 lbs P2O5/a; 8 lbs N/a

Irrigation: 6/11 - 1" 7/22 - 1.2" YEAR/PROJECT: 1992/758 WESTERN REGIONAL DRY PEA YIELD TRIAL

PERSONNEL: Leader - Leon Welty

Research Specialist - Louise Prestbye

Twelve varieties of peas from the regional trial were seeded on April 10, 1992 at 160 lbs/acre. Seed had been pretreated with fungicide. Plots consisted of four 8 ft. rows with 1 ft. row spacing and 2 ft. between plots (harvest area = 40 ft²). The experimental design was a randomized complete block with 4 replications. On May 7, 40 lbs of $P_2O_5/acre$ and 8 lbs N/acre were applied. The peas matured and were pulled between 7/13 and 7/20. Yields ranged from 2461 lbs/acre ('Umatilla') to 3146 lbs/acre ('Trapper').

VARIETY	EMERG days ^{1/}	STD %		1st FLW days ^{2/}	1st FLW NODES	MAT days ^{3/}	HT in	SEED SIZE no/lb	YIELD lbs/a
Trapper	16	86		63	13	101	49	3707	3146
PS710202	16	90		56	11	97	38	2326	3042
PS810102	16	94		52	10	95	39	2036	2957
PS810434	15	94		58	13	96	41	1817	2855
Columbian	16	91		51	7	96	38	2372	2841
Latah	16	90		55	11	97	42	2317	2804
IMPCS	16	93		51	8	97	43	2294	2784
Alaska 81	16	88		54	8	98	38	2312	2782
PS810098	16	94		52	9	96	42	2244	2773
PS910045	15	94		56	13	95	34	1706	2670
PS710173	16	90		51	11	94	30	2509	2492
Umatilla	16	93		58	12	95	37	2183	2461
LSD(0.05)	0.61	4.6		0.8	1.5	1.5	5	182	449
P-VALUE	0.00	0.02	(0.00	0.00	0.00	0.00	0.00	0.13
CV(S/MEAN)	2.7	3.5		1.0	10.0	1.1	8.2	5.5	11.1

^{1/} Day 16 = 4/26

^{2/} Day 63 = 6/12

^{3/} Day 101 = 7/20

YEAR/PROJECT: 1992/758 WESTERN REGIONAL LENTIL YIELD TRIAL

PERSONNEL: Leader - Leon Welty | ON | DOLL - 190501 1138404814

Research Specialist - Louise Prestbye

On April 10, 1992, 12 varieties of lentils were seeded at 60 lbs/acre in a randomized complete block with 4 replications. On May 7, 40 lbs of P_2O_5/a cre and 8 lbs N/acre were applied. Plants matured between 98 and 118 days after seeding. At maturity (stems, leaves and seed pods mostly yellow to brown), the plants were pulled, then thrashed when dry. Average yield for 1992 was 1814 lbs/a, slightly less than for 1991 (1936 lbs/a).

			1st	seed y	highest	SEED	VIELD
VARIETY	EMER		BLM	HT	MAT	SIZE	YIELD
	day	y ^{1/} %	day^{2}	in	day ^{3/}	no/lb	lbs/a
LC660952	15	91	58	17	106	6524	2243
Brewer	14	90	58	21	114	7126	2240
Redchief	14	90	58	20	110	8432	2210
LC660980	14	93	58	16	103	6476	1981
Palouse	15	95	59	23	114	7843	1931
LC660999	14	91	58	17	104	6346	1919
Crimson	15	89	62	17	105	13580	1917
Emerald	14	88	57	16	101	6508	1720
L6601165	15	93	57	15	98	7654	1704
Laird	14	90	66	24	115	6845	1495
Chilean 78	15	89	60	20	113	7950	1393
LC760235	15	90	68	26	118	7254	1010
LSD(0.05)	1	5	1	2	4 00 L	812	443
P-VALUE	0.69	0.12	0.00	0.00	0.00	0.00	0.00
CV(s/mean)	6.5	3.5	1.5	8.5	2.6	7.3	17.0
SE							

^{1/} Day 14 = 4/24

^{2/} Day 58 = 6/7

^{3/} Day 114 = 8/3

YEAR/PROJECT: 1992/758 NATIONAL WINTER CANOLA VARIETY TRIAL

PERSONNEL: Leader - Leon Welty 184 mond

Research Specialist - Louise Prestbye

In cooperation with Dr. Paul Raymer, Univ. of Georgia

Eighteen varieties of winter canola were seeded Aug.30, 1991 on fallow ground at 7 lbs/acre. No fertilizer was applied. Fall stand establishment was excellent, as was winter survival. The plants bloomed between May 2 and May 8,1992 and matured between July 10 and July 14. At maturity, all plants in each plot were cut and bundled and, when dry, thrashed with a plot combine.

'Cascade' produced significantly less seed than any other variety. Of the named varieties, 'Capricorn', 'Apache' and

'Glacier' had the highest seed yields.

acier' had the	e nignest	seed	yrerus.			
10	/3/91 3/	25/92				
	STAND	SURV	BLOOM	MATURITY	HEIGHT	YIELD
	%	%	May	July	inches	lbs/a
			88 0	14 9		
KWC 4212	100	98	88 5	13	0800 48	5630
EN 90-9	100	94	0 6	14	50	5438
Capricorn	100	96	88 5	14	46	5315
CC349	91	93	6	14	48	5308
Apache	100	98	6	14	48	5238
ES 89-7	100	98	5	13	51	5091
17/88	100	95	8 6	12	50	5061
Glacier	100	100	8	13	50	5041
Ceres	100	96	5	12	49	4945
EN 90-6	100	85	7	13	49	4796
ES 89-8	100	93	7	13	49	4743
SV0506	98	98	7	0 00 12	49	4696
Bridger	100	99	4	11	52	4685
CPB 89606	100	96	6	13	52	4661
ED 91-5	98	99	6	15 14	51	4506
SV0525	99	96	7	12	49	4458
Humus	99	98	2	10	45	4453
Cascade	100	100	3	10	46	3785
Cascade	100	100	3	10		
Means	99	96	5	13	49	4881
neans	,,,		_			
LSD(0.05)	2.8	4.6	1.2	1.8	3.7	601.6
P-VALUE	0.00	0.00	0.00	0.00	0.01	0.00
CV(s/mean)	2.0	3.4	15.0		5.3	8.7
(- / /		E 100 E				

YEAR/PROJECT: 1992/758 INTRASTATE SPRING CANOLA YIELD TRIAL

PERSONNEL: Leader - Leon Welty

Research Specialist - Louise Prestbye

In cooperation with Dr. Jim Sims, MSU Bozeman

Seven varieties of spring canola were planted on April 12, 1992 at 6 lbs/acre. On 5/7/92, 40 lbs P_2O_5/a cre, 60 lbs N/a and 25 lbs S/acre were applied. All plants from each plot were cut and bundled when mature and thrashed with a plot combine when dry. The check variety, 'Westar', was the earliest to mature at 107 days after seeding. It was also the lowest yielding variety. 'ST-213', 'Helios', 'Legend' and 'Cyclone' had significantly higher yields than Westar.

VARIETY	EMERG day	<u>VIGOR</u> (0-5)	FIRST 2. FLOWER day	HEIGHT inches	MATUR day	YIELD lbs/a
ST-213 Helios	12 12	4 3	56 61	46 53	114 117	2304 2200
Legend Cyclone	13 13	2	62 58	56 49	117 114	2073
Iris	13	3	62	55	117	1914
S-1450 Westar	13 14	3 4	62 56	54 46	117 107	1821 1778
Mean	13 13 13 11 11 11 11 11 11 11 11 11 11 1	Seek 3	60	sviejni	115	2021
LSD(0.05) P-VALUE CV(s/mean)	0.9 0.01 4.9	0.01 19.8	0.00 1.8	5 0.00 6.8	1.1 0.00 0.7	246 0.00 8.2

^{1/} Day 12 = 4/24/92

^{2/} Day 56 = 6/7/92

^{3/} Day 114 = 8/4/92

YEAR/PROJECT: 1992/755 WINTER-SPRING FORAGE BRASSICA TRIAL

PERSONNEL: Leader - Leon Welty

Research Specialist - Louise Prestbye

Cooperator - Dr. Mal Westcott, WARC, Corvallis

Two varieties of winter brassica, 'Emerald'and Forage Star', and 2 varieties of spring brassica, 'Global' and 'Westar', were seeded at 10 lbs/a on August 22, 1991 in alternating blocks with 3 replications, with variety and harvest schedule randomized within each block. The same varieties were seeded in the remaining blocks on April 1, 1992, with variety and harvest schedule also randomized within each block. On April 3, 1992, 70 lbs N/a and 35 lbs P_2O_5/a were applied to the nursery.

Treatments in the August-seeded blocks included: Emerald and Forage Star - a fall harvest + spring/summer harvests at 4-week intervals; no fall harvest with spring/summer harvests at 4-, 6- and 8-week intervals; Global and Westar - spring/summer harvests at 6- and 8-week intervals. Treatments in the April-seeded blocks included all 4 varieties harvested at 4-, 6- and 8-week intervals.

August-seeded Emerald with a single summer harvest produced the most topgrowth, followed by the other Emerald treatments. Forage Star was the second highest producer, with no significant differences among harvest schedules. A fall harvest did not significantly affect total 1992 yields for either Emerald or Forage Star. The spring canola varieties, Global and Westar, yielded less than the winter varieties. Of the April-seeded treatments, Emerald harvested once or twice had the highest yields. Global, Emerald and Forage Star harvested at 4-week intervals and Westar harvested at 6-week intervals were next highest. Although it is designated a "winter" brassica, Emerald had the highest average yields whether it was seeded late summer or spring.

WINTER & SPRING FORAGE BRASSICA TRIAL KALISPELL, MT 1991-92

SEEDED 8/22/91 TETHAN ADIBBAAN SDAMON SITHEN SEET LEGIL

	HARVEST			YIE	LD	Daul		TOTAL
CULTIVAR	SCHEDULE	11/15	5/13	6/10	7/8	7/24	8/6	YIELD
				t/	/a			t/a
Emerald	F + 4-wk	0.17	1.19	2.19	1.90		0.42	5.88
Emerald	4-wk		1.48	1.99	1.89		0.50	5.87
Emerald	6-wk			4.46		2.03		6.48
Emerald	8-wk				7.77			7.77
Forage Star	F + 4-wk	0.25	2.23	1.00	0.34			3.82
Forage Star	4-wk		2.56	1.10	0.40			4.07
Forage Star	6-wk			3.98				3.98
Forage Star	8-wk				3.52			3.52
Global	6-wk			0.73		0.65		1.38
Global	8-wk				2.90			2.90
Westar	6-wk			0.25		0.80		1.05
Westar	8-wk				1.26			1.26
Mean		0.21	1.87	1.96	2.50	1.16	0.46	4.00
LSD(0.05)		0.20	0.62	0.50	0.63	1.18	0.68	0.66
P-VALUE		0.25	0.00	0.00	0.00	0.05	0.81	0.00
CV(s/m)		27.0	16.5	14.5	14.4	44.9	42.2	9.8
£\2		8.5	88	8.0				
SEEDED 4/1/92								
0								
	HARVEST		_28	YIE	LD			TOTAL
CULTIVAR	SCHEDULE		6/18	7/13	7/30	8/12		YIELD
				t/		- L'- Divir bit		t/a
Emerald	4-wk		1.86	1.43		0.85		4.14
Emerald	6-wk		1.64		3.59			5.23
Emerald	8-wk			5.00				5.00
Forage Star	4-wk		1.56	1.93		0.46		3.95
Forage Star	6-wk		1.46		2.00			3.46
Forage Star	8-wk		/10/92	3.17				3.17
Global	4-wk		2.04	0.57		1.23		3.84
Global	6-wk		1.90	.58	2.19	age Star		4.09
Global	8-wk		58.8	4.15	[4.15
Westar	4-wk		1.87	0.58		1.10		3.55
Westar	6-wk		1.93	85.	1.79	dol ela		3.72
Westar	8-wk		06.0	3.34				3.34
7700141	• ***							
Mean			1.78	2.52	2.39	0.91		3.97
1.00/0.0=1			0.00	0.04	0.50	0.44		0.40
LSD(0.05)			0.26	0.34	0.58			0.49
P-VALUE			0.00	0.00	0.00			0.00
CV(s/m)			8.3	7.6	12.1	22.6		7.3

YEAR/PROJECT: 1992/755 WINTER FORAGE BRASSICA VARIETY TRIAL

PERSONNEL: Leader - Leon Welty

Research Specialist - Louise Prestbye

Five varieties of winter forage brassica - 'Premier' kale, 'Sparta' rape, 'Purple Top' turnip, 'Rondo' turnip and 'Forage Star' hybrid turnip were seeded at 12 lbs/acre on September 4, 1991. On April 3, 1992, 70 lbs N/a and 35 lbs P2O5/acre were applied. The brassicas were harvested 3 times in 1992, and Premier and Sparta had sufficient regrowth for a 4th harvest. Premier and Sparta bolted and flowered later than the other varieties. Purple Top and Rondo turnips produced the most forage for the first harvest, but Premier and Sparta produced the most regrowth for the rest of the summer and had the highest total season yields.

	2/26/92	3/20	4/3		FIRST
CULTIVAR	GREENUP	STAND	STAND	BOLTING	BLOOM
0,44,9 === 1,444,1	(0-5)	%	%	date	date
Forage Star	4.3	78	00 081	4/20	4/26
Premier	000 2.300	95	20 99	5/2	5/8
Sparta	1.0	75	83	5/1	5/8
Purple Top	3.8	93	95	4/21	5/3
Rondo	4.8	84	85	4/18	4/27
Mean	3.2	85	89	4/24	5/2
LSD(0.05)	0.7	5.4	6.9	4d	3d
P-VALUE	0.00	0.00	0.00	0.00	0.00
CV(s/mean)	13.4	4.1	5.0	9.9	6.1
		1.56			moma t
		YIELD		0.46.400	TOTAL
CULTIVAR	5/13/92		7/10/92	8/6/92	YIELD
E. 1		t/a		0.00	t/a
Forage Star	3.58	1.53	0.43	0.00	5.53
Premier	3.02	2.27	2.70	0.56	8.54
Sparta	1.71	2.94	2.88	0.69	8.21
Purple Top	4.29	1.45	0.86	0.00	6.60
Rondo	3.82	0.90	0.25	0.00	4.96
Mean men	3.28	1.82	1.42	0.25	6.77
LSD(0.05)	0.50	0.46	0.49	0.14	1.00
P-VALUE	0.00	0.00	0.00	0.00	0.00
CV(s/mean)	9.9	16.3	22.6	37.0	9.6

YEAR/PROJECT: 1992/758 ROTATIONAL CROPS IN PEPPERMINT

Personnel: Project Leader - Leon Welty

Research Specialist - Louise Prestbye
Cooperators: Dr.Don Mathre, MSU, Bozeman
Dr. Dennis Johnson, WSU, Prosser, WA
Dr. Gerald Santo, WSU, Prosser, WA
Dr. Fred Crowe, OSU, Redmond, OR

On 21 May, 1992, microsclerotia of a local strain of Verticillium dahliae were incorporated into two fields, one with a fine sandy loam soil and one with a silty clay loam soil type. Eight rotational treatments were established on 28 May:

- 1. barley, grain harvested residue, green manure
- 2. fallow
- 3. Vapam fumigant, 50 GPA
- 4. sorghum (high HCN), cut once green manure
- 5. sorghum (high HCN), cut twice green manure
 - 6. marigold green manure
 - spring rapeseed (high glucosinolate), cut once green manure
 - 8. spring rapeseed (high glucosinolate), cut twice on heavier soil and once on lighter soil green manure

On September, 1992, the green manure crops were rototilled by treatment so that soil and plant debris were not moved from plot to plot.

1992 ROTATION CROP YIELDS:

Treatment	Heavy Soil	Light Soil
10.0	5 00 1/-	ordam 01\
Sorghum - 1 cut	5.08 t/a	4.77 t/a
Sorghum - 2 cut	3.18	2.10
Rapeseed - 1 cut	5.63	2.26
Rapeseed - 2 cut	4.80	AV=9
Marigold	4.19	3.05
Barley grain	56.1 bu/a	12.4 bu/a

YEAR/PROJECT: 1992/758 MINT HARVEST MANAGEMENT STUDY

PERSONNEL: Leader - Leon Welty

Research Specialist - Louise Prestbye

Cooperator - Dr. Mal Westcott, WARC, Corvallis

'Black Mitcham' peppermint was planted 4/7/92 and irrigated at 0.73 inches/week. A total of 180 lbs/acre N fertilizer was applied over the season. Sinbar and Poast and hand weeding were used for weed control. Orthene and Dipel were used for painted lady butterfly and army cutworm control, respectively. Herbage was harvested at one-week intervals between 8/5 and 9/29/92, dried, distilled, and the oil collected for yield and quality analysis. An uncut check plot was also included to determine the effect of no topgrowth removal on root vigor in 1993.

Average dry matter yield was 3.30 t/a, with no significant differences among harvest dates. Oil content averaged 9.9 ml/kg and was highest at the 8/12 (early bloom), 9/2 (late bloom) and 9/10 (petal drop) harvests. Oil yield averaged 55.8 lbs/a and was

spring rapeseed (high glucosi

highest on 8/12, 9/2, 9/10 and 9/16.

Date Tar		Dry Ma	atter /acre	Oil	Content ml/kg		Yield s/acre
Date	<u>Stage</u>	CONS	acre		eel aso	uerdeg u	STACLE
8/5	bud		3.01		9.3		47.9
8/12	early bloom		3.44		10.3		61.0
8/19	30% bloom		3.40		9.8		57.3
8/26	70% bloom		3.41		9.1		53.4
9/2	late bloom		2.89		11.7		58.2
9/10	petal drop		3.35		10.4		59.7
9/16	mature		3.35		10.0		57.6
9/29	mature		3.57		8.3		51.2
	LSD(0.05)		NS		1.6		7.5
	P-VALUE		0.58		0.01		0.02

YEAR/PROJECT: 1992/758 CROP MANAGEMENT STUDY

PERSONNEL: Leader - Leon Welty

Research Specialist - Louise Prestbye

In cooperation with Dr.Mal Westcott, WARC, Corvallis

This was the first year of a 3-year study to evaluate canola, rapeseed and spring pea as enhancers of soil nutrient availability and crop productivity in cereal rotations. Spring soil samples were collected at 0-6", 6-12", 1-2', 2-3' and 3-4' to evaluate N,P,K and S levels and nitrate-N distribution in the soil profile. First-year cropping treatments included:

- 1. 'R-500' (high-glucosinolate) rapeseed as seed crop
- 2. 'Westar' (low-glucosinolate) canola as seed crop
- 3. 'Latah' spring pea as hay crop (SP)
- 4. 'Humus' (high-glucosinolate) rapeseed as green manure (HGR)
- 5. 'Westar' (low-glucosinolate) canola as green manure (LCG)
 - 6. 'Latah' spring pea as green manure
 - 7. 25% Humus + 75% Latah as green manure
 - 8. 50% Humus + 50% Latah as green manure
 - 9. 75% Humus + 25% Latah as green manure
 - 10. 25% Westar + 75% Latah as green manure
 - 11. 50% Westar + 50% Latah as green manure
 - 12. 75% Westar + 25% Latah as green manure
 - 13. 'Haybet' barley as hay crop (low residue)
 - 14. 'Gallatin' barley as grain crop (high residue)

The crops were seeded April 23,1992. Seeding rates were 6 lbs/a rapeseed and canola (pure stand), 150 lbs/a spring pea (pure stand) and 70 lbs/a barley. Each green manure treatment was cut, weighed and returned to the plot on July 2 and August 31. Species composition was determined for the first cutting brassica/pea mixtures. Haybet and Latah were harvested for hay on July 8. On August 28, grain was harvested from treatments 1, 2 and 14, and the straw was weighed and returned to the plots. Green manure and residue were incorporated in the fall.

CROP MANAGEMENT STUDY KALISPELL, 1992

MEAN YIELDS

			st year of		sew sini	
			GRAIN-	T DIL 108	STRAW	
ROTATION			TWT	YIELD	YIELD	
TREATMENT	CROP	DATE	lbs/bu	lbs/a	lbs/a	
o l i 3 o tri	Line art of mola		d nitrata-b	ns sieve	2 F and S 1	
1	R-500	8/28	45.1	796	577	
2	Westar	8/28	45.1	2217	1769	
14	Gallatin	8/28	44.6	2072	1176	
4,4,30	Second Second Second	James Louis	opprinted l			
ROTATION			HERBAGE		HERBAGE	
TREATMENT	CROP	DATE	YIELD	DATE	YIELD	
IKEATHENI	CROI		lbs/a	mates No.	lbs/a	
			100/4		,	
3	Latah hay	7/8	4663			
4	Humus GM	7/2	1014	8/31	9723	
5	Westar GM	7/2	3847	8/31	6845	
6	Latah GM	7/2	3127	me 10 / 3 1	0010	
7		7/2		8/31	7359	
	HGR+SP(25:75)			8/31	7701	
8	HGR+SP(50:50)	The state of the s		8/31	9070	
9		7/2	2244		3824	
10	LCG+SP(25:75)	7/2	4495	8/31	5010	
11 (900	LCG+SP(50:50)	7/2	4854	8/31		
12	LCG+SP(75:25)	7/2	4719	8/31	6553	
13	Haybet hay	7/8	3370 as			