#### FORTY-NINTH ANNUAL REPORT 1997

Northwestern Agricultural Research Center of the
Agricultural Experiment Station
Montana State University

4570 Montana 35 Kalispell, MT 59901

Prepared by

Leon E. Welty
Professor of Agronomy & Superintendent
Robert N. Stougaard
Associate Professor, Weed Science
Doug Holen Jr.
Research Associate
Louise M. Strang
Agric. Research Specialist

Compiled by Elaine M. Scott, Administrative Support

Contents of this report may not be published or reproduced in any form without consent of the research workers involved.

## TABLE OF CONTENTS

| Project No. |                                                         | Page No. |
|-------------|---------------------------------------------------------|----------|
|             | DISTRIBUTION                                            | 1        |
| 750         | ADMINISTRATION                                          | 2        |
| 751         | GENERAL FARM glassic risalists general.                 | 3        |
| 752         | PHYSICAL PLANT                                          | 3        |
|             | PROFESSIONAL & CLIENTELE PRESENTATIONS                  | 4        |
|             | CLIMATOLOGY                                             | 6        |
| 754         | WEED AND SMALL GRAIN MANAGEMENT FOR MONTANA             | WESTERN  |
|             | Achieve Tankmix Study                                   | . 20     |
|             | Achieve/Surfactant Study                                | . 23     |
|             | Achieve Reduced Rate Study                              | . 25     |
|             | Wild Oat Population Dynamics with Reduced Achieve Rates | . 27     |
|             | Assert Reduced Rate Study                               | . 30     |
|             | Wild Oat Population Dynamics with Reduced Assert Rates  | . 32     |
|             | Integrated Wild Oat Management in Barley                | . 35     |
|             | Spring Wheat Seeding Pattern and Density Study          | . 38     |
|             | Spring Wheat and Barley Seed Size Study                 | . 41     |
|             | Spring Wheat Variety Blends                             | . 44     |
|             | Barley Variety Blends                                   | . 46     |
|             | Fidel/Raptor Tolerance Study                            | . 47     |
|             | Wild Oat Control in Lentils with Assure II              | 52       |

| Project No. | Page No.                                                                   |
|-------------|----------------------------------------------------------------------------|
|             | Quackgrass Control in Pappermint with Assure II 54                         |
|             | Long Term. Quackgrass in Peppermint with Assure II 56                      |
|             | 1996 Mint Carryover Study                                                  |
|             | Living Mulch Study                                                         |
|             | Toadflax Screen                                                            |
|             | Toadflax Control with Goal in Peppermint                                   |
|             | Intrastate Spring Barley Evaluation                                        |
|             | Early Yield Spring Barley Evaluation                                       |
|             | State Oat Evaluation                                                       |
|             | Advanced Spring Wheat Evaluation                                           |
|             | Preliminary Hard White Spring Wheat Evaluation 78                          |
|             | Intrastate Winter Wheat Evaluation:  Lodging and Disease Resistance        |
|             | Advanced Yield Winter Wheat Evaluation:  Lodging and Disease Resistance 82 |
|             | Soft White Winter Wheat Evaluation 84                                      |
|             | Western Regional Hard Red Winter Wheat Evaluation 85                       |
| 755         | FORAGE CROP INVESTIGATIONS                                                 |
|             | Intrastate Alfalfa Yield Trials - Dryland & Irrigated 87                   |
|             | 1997 Montana Uniform Spring Cereal Forage Trial-Dryland 100                |
|             | Perennial Forage Grass Trial-Irrigated                                     |
|             | Chicory/Orchardgrass Harvest Timing Trial-Irrigated 102                    |

Effect of Fall Fertilization on Winter Survival of Peppermint 137

136

Effect of Freezing on Survival of Peppermint and Spearmint

758

## DISTRIBUTION OF THE 1997 NORTHWESTERN AGRICULTURAL RESEARCH CENTER REPORT

#### COPIES

- 1 Plant, Soil & Environmental Sciences Department
- 4 Research Center Staff, N.W. Agricultural Research Center
- 11 County Extension Agents in Northwestern Montana

- Barbara Andreozzi Deer Lodge - Cheryl Weatherell Flathead - Dan Lucas Granite - Jack Stivers Lake - Mike McCurry Lincoln - Kevin Chamberlain Mineral - Gerald Marks Missoula - David Streufert Powell - G. Rob Johnson Ravalli - John Halpop Sanders - Joel Clairmont Flathead Reservation

- 1 Agriculture Department of Farm Service Agency, Kalispell
- 1 Flathead Chapter Future Farmers of America
- 1 Soil Conservation Service, Kalispell
- 4 Feed/Seed/Fertilizer Dealers

Equity Supply Co., Kalispell
Cenex, Kalispell
Westland Seeds, Inc., Ronan
Lake Glacier View Farm, Ronan

1 MSU Western Agricultural Research Center

#### **ADMINISTRATION 750**

The Administration Project at the Northwestern Agricultural Research Center includes expenses for the overall operation of the center, personnel and office equipment purchased.

Purchase of copier Purchase of desk for Admin. Support \$ 4,725.00 (Grant & State Funds)

\$ 1,119.00 (Grant Funds)

| Full Time Staff Members  Years in Service                                       |
|---------------------------------------------------------------------------------|
| Leon E. Welty - Supt. & Prof. Agronomy (Began January 1973) 24                  |
| Robert N. Stougaard - Associate Professor, Weed Science 6 (Began November 1991) |
| Doug L. Holen Jr Research Associate (Began April 1996)                          |
| Gary R. Haaven - Ag Research Spec. I (Began April 1982)                         |
| Louise M. Strang - Ag Research Spec. III (Began May 1983) 14                    |
| Elaine M. Scott - Administrative Support (Began August 1990)                    |
| Paul P. Koch - Farm/Ranch Hand III (Began May 1995) 2                           |
| Vern R. Stewart - Professor Emeritus                                            |

#### Part Time Employees:

Jan Haaven (May 1 through November 14)
Sarah Gunderson (March 3 through December 19)
Mary Arnold (April 7 through October 24)
Don Burtch (June 16 through August 22)

### **Student Employees:**

Gail Sharp (May 13 through December 31)
Jami Henry (April 22 through October 3)
Lesile Stremel (April 22 through August 22)
Jenny Bocksnick (April 22 through August 26)

#### **GENERAL FARM 751**

The General Farm Project (751) supports all research projects. This includes items purchased and used in the total research program. The following were leased in 1997:

John Deere 6400 tractor \$ 2,460.00 John Deere 870 tractor \$ 1,374.00

Purchased Suburban \$30,262.00 (Grant Funds)

#### PHYSICAL PLANT 752

The Physical Plant Project (752) includes the maintenance of buildings and grounds at the Northwestern Agricultural Research Center.

## WEED AND SMALL GRAIN MANAGEMENT FOR WESTERN MONTANA 754

The Weed and Small Grain Management Project (754) includes research related to all types of weeds and small grain from seeding to data collection to publications.

Purchase of computer for Weed Scientist \$ 3,023.00 (Grant Funds)
Purchase of desk for Research Associate \$ 1,099.00 (Grant Funds)
Purchase of Tissue Culture Chamber \$ \$13,285.00 (Grant Funds)

#### FORAGE INVESTIGATION 755

The Forage Investigation Project (755) includes research related to all types of forage for feed from seeding to data collection to publications.

#### MISCELLANEOUS AND PULSE CROP INVESTIGATIONS 758

The Miscellaneous Crops Project (758) includes research related to miscellaneous and pulse crops to include peas, lentils, canola, mint, etc., from seeding to data collection to publications.

## PROFESSIONAL & CLIENTELE PRESENTATIONS 1997

| DATE | ACTIVITY                                  | WHO                     | WHERE        |
|------|-------------------------------------------|-------------------------|--------------|
| 1/9  | Advisory Committee                        | Welty, Stougaard, Holen | Missoula     |
| 1/22 | Mint Industry Research<br>Council Meeting | Welty                   | LasVegas, NV |
| 2/13 | Montana Mint Committee                    | Welty, Stougaard, Holen | NWARC        |
| 2/14 | Lake's Seed, Inc.                         | Welty, Stougaard, Holen | Ronan        |
| 2/16 | Mint Growers Association                  | Welty, Stougaard, Holen | Kalispell    |
| 3/11 | Western Society Weed<br>Science           | Stougaard               | Portland, OR |
| 3/20 | Pea & Lentil - Producers                  | Stougaard               | Kalispell    |
| 3/24 | WRCC-69 Meeting                           | Stougaard               | Portland, OR |
| 3/26 | Producer Meeting                          | Welty, Stougaard        | NWARC        |
| 4/8  | MSU for a Day Pres. Malone                | Welty, Stougaard        | NWARC        |
| 5/9  | Area Business People                      | Welty                   | NWARC        |
| 6/9  | Central Field Day                         | Welty                   | CARC         |
| 6/17 | Mint Producers & Tasmanian Farmer-Tour    | Welty, Stougaard        | NWARC        |
| 6/30 | Japanese Farmers-Tour                     | Welty                   | NWARC        |
| 7/3  | Mint Growers - Tour                       | Welty                   | NWARC        |
| 7/9  | Mint Growers - Tour                       | Welty, Stougaard        | NWARC        |
| 7/15 | Field Day                                 | Welty, Stougaard, Holen | NWARC        |
| 7/17 | Mint Twilight Tour                        | Welty, Stougaard, Holen | NWARC        |
| 7/22 | Pea Growers - Tour                        | Welty                   | NWARC        |
| 7/29 | Australian Mint<br>Researcher-Tour        | Welty, Stougaard        | NWARC        |
| 8/4  | Japanese Students - Tour                  | Welty                   | NWARC        |
| 8/5  | Japanese Students - Tour                  | Welty                   | NWARC        |

### PROFESSIONAL & CLIENTELE PRESENTATIONS 1997-cont.

| 8/8   | Japanese Students - Tour                     | Welty          | NWARC       |
|-------|----------------------------------------------|----------------|-------------|
| 8/12  | Japanese Students - Tour                     | Welty was good | NWARC       |
| 8/15  | Japanese Students - Tour                     | Welty          | NWARC       |
| 8/20  | Japanese Students - Tour                     | Welty          | NWARC       |
| 8/21  | Japanese Students - Tour                     | Welty          | NWARC       |
| 8/28  | English Flavorists/Buyers-<br>Tour           | Welty          | NWARC       |
| 9/11  | Cayuse Prairie Students-<br>Tour             | Welty          | NWARC       |
| 9/18  | Cayuse Prairie Students-<br>Tour             | Stougaard      | NWARC       |
| 10/22 | Cayuse Prairie Students-<br>Tour             | Welty          | NWARC       |
| 10/22 | Montana Mint Committee-<br>Research Meeting  | Welty          | NWARC       |
| 10/27 | American Society of<br>Agronomy-Poster Paper | Welty          | Anaheim, CA |

# CLIMATOLOGICAL DATA NORTHWESTERN AGRICULTURAL RESEARCH CENTER Kalispell, MT

The 1996/1997 crop year presented wetter and cooler than average conditions. Precipitation from September 1996 through August 1997 was 34% above average and accumulated growing degree days were 5% below average. Most of the excess precipitation and cold temperatures occurred in the fall of 1996 (11.6 inches of moisture from September through December). The 1997 growing season (April - August) received 10.65 inches, only 7% above average, and the mean temperature for this period was only 1° below average. The first fall frost did not occur until October 8, 24 days later than normal, resulting in a 23% longer than average frost-free period. Abundant snow cover protected the crops from mid November through late March. Sub-zero air temperatures in January did not affect winter crop survival.

Because of the cool wet spring, small grain planting was 2 to 3 weeks behind schedule, as in 1996. Generally, the small grains are seeded by April 20. Barley seeded on heavier wet soils was stunted and yellow. *Pythium* was prevalent under these wet conditions and contributed to yield losses. Wet conditions persisted until July when warmer temperatures and below average precipitation resulted in moisture stress and lower than normal yields on lighter soils. Evidently, the cereals had not developed normal roots under the high moisture conditions after spring seeding. Rain kicked in again in August, delaying harvest. As in the previous year, small grain production was challenging.

Alfalfa did not experience the winterkill or 'icing over' problems of the precious year. Water logged soils at some sites caused yellowing and stunted growth. Because of the cool, wet spring first harvest was delayed and yields were below normal. Second and third harvests were near normal.

The 1996/1997 winter was much easier on peppermint than last winter. Soil temperature at the peppermint root level never dropped much below the freezing point, and stress on stolons and rhizomes was minimal. There was no mid winter thaw, and the insulation of the snow cover prevented large temperature fluctuations. Throughout the Flathead Valley, mint winter damage was minimal compared to 1996. There were 229 growing degree days in May, which got the mint off to a good start. Peppermint oil yields were about normal for this area. Unfortunately for producers, the market was not as healthy.

This crop year is beginning very differently from the previous two. The first frost occurred 24 days later than normal. Precipitation from September through February was 42% below normal for the period and average temperature was 7% above normal. Snowfall was 62% below normal as of the end of February. Winter finally arrived in March. As of this writing (March 9) we received 1.25 inches of precipitation with 8 inches of snowfall. This is one third of the total snowfall for the 1997-98 winter thus far. We have received 64% of normal precipitation for this period (Sept.-March), and our total snow accumulation is 50% of normal and 17% of last year's (over 120 inches).

Following is a list of tables giving a complete description of the weather for the crop year (September 1996 through August 1997) and 1997 (January through December).

- Table 1. Summary of climatic data by months for 1996-97 crop year (September through August) and averages for the period 1949-97 at the Northwestern Agricultural Research Center, Kalispell, MT.
- Table 2. Summary of temperature data at the Northwestern Agricultural Research Center on a crop year basis, September 1, 1949 through August 31, 1997. (Average)
- Table 3. Summary of temperature data at the Northwestern Agricultural Research Center on a crop year basis, September 1, 1949 through August 31, 1997. (Maximum)
- Table 4. Summary of temperature data at the Northwestern Agricultural Research Center on a crop year basis, September 1, 1949 through August 31, 1997. (Minimum)
- Table 5. Summary of precipitation records at the Northwestern Agricultural Research Center on a crop year basis, September 1, 1949 through August 31, 1997.
- Table 6. Precipitation by day for crop year September 1, 1992 through August 31, 1997, Northwestern Agricultural Research Center, Kalispell, MT.
- Table 7. Frost free period at the Northwestern Agricultural Research Center from 1950 through 1997.
- Table 8. Temperature extremes at the Northwestern Agricultural Research Center, Kalispell, MT from 1950-1997.
- Table 9. Summary of temperature records at the Northwestern Agricultural Research Center, January 1950 through December 1997.
- Table 10. Summary of precipitation records at the Northwestern Agricultural Research Center, Kalispell, MT, January 1950 through December 1997.
- Table 11. Summary of growing degree day (GDD) data at the Northwestern Agricultural Research Center, Kalispell, MT, May 1, 1949 through October 31, 1997.
- Table 12. Summary of snow data at the Northwestern Agricultural Research Center on a crop year basis, September 1, 1949 thru August 31, 1997.

Table 1. Summary of climatic data by months for 1996-97 crop year (September thru August) and averages for the period 1949-97 at the Northwestern Agricultural Research Center, Kalispell, MT.

| ITEM                                   | Sept.<br>1996                                 | Oct.<br>1996 | Nov.<br>1996 | Dec.<br>1996   | Jan.<br>1997                  | Feb.<br>1997                             | Mar.<br>1997   | Apr.<br>1997 | May<br>1997 | June<br>1997 | July<br>1997         | Aug.<br>1997           | Total or<br>Average |
|----------------------------------------|-----------------------------------------------|--------------|--------------|----------------|-------------------------------|------------------------------------------|----------------|--------------|-------------|--------------|----------------------|------------------------|---------------------|
| Precipitation (inches)<br>Current Year | 2.67                                          | 1.58         | 3.99         | 3.52           | 1.50                          | 1.62                                     | 1.18           | 1.69         | 2.62        | 3.41         | 0.99                 | 1.94                   | 26.71               |
| Avg. 1949 to 1996-97                   | 1.58                                          | 1.39         | 1.53         | 1.66           | 1.50                          | 1.16                                     | 1.16           | 1.51         | 2.33        | 2.94         | 1.63                 | 1.55                   | 19.94               |
| Mean Temperature (F)<br>Current Year   | 52.3                                          | 42.1         | 27.3         | 19.8           | 19.8                          | 28.0                                     | 32.3           | 38.3         | 52.3        | 57.8         | 62.8                 | 63.8                   | 41.4                |
| Avg. 1949 to 1996-97                   | 53.5                                          | 43.2         | 32.4         | 25.3           | 22.2                          | 27.6                                     | 33.7           | 43.2         | 51.7        | 58.3         | 63.9                 | 62.9                   | 43.2                |
| Last killing frost in spring           |                                               |              |              |                |                               |                                          |                |              |             |              |                      |                        |                     |
| 1997<br>Avg. 1949-97                   |                                               |              |              |                | May 21<br>May 24              | - Table                                  | (32 degrees F) |              |             |              |                      |                        |                     |
| First killing frost in fall            |                                               |              |              |                |                               |                                          |                |              |             |              |                      |                        |                     |
| 1997<br>Avg. 1949-97                   |                                               |              |              |                | October 8 (30<br>September 15 | October 8 (30 degrees F)<br>September 15 | egrees         | <u>-</u>     |             |              |                      |                        |                     |
| Frost Free Period                      |                                               |              |              |                |                               |                                          |                |              |             |              |                      | 20 10<br>14324<br>9 14 |                     |
| 1997<br>Avg. 1949-97                   |                                               |              |              |                | 140 days<br>114 days          | /s                                       |                |              |             |              |                      |                        |                     |
| Growing Degree Days (base 50):<br>N    | 50):<br>May 1 - Oct. 31, 1997<br>Avg. 1949-97 | Oct. 31,     | 1997         | 1763<br>1876.5 | days                          |                                          |                |              |             |              |                      |                        |                     |
| Maximum summer temperature             | <u>e</u>                                      |              |              | 92 de          | grees F                       | 92 degrees F on August 4, 1997           | ust 4, 19      | 197          |             |              |                      |                        |                     |
| Minimum winter temperature             |                                               |              |              | -14 de         | grees F                       | -14 degrees F on January 13, 1997        | lary 13,       | 1997         |             | REVISE       | REVISED PAGE 2/16/99 | 2/16/9                 | 6                   |

In this summary 32 degrees is considered a killing frost.

Table 2. Summary of temperature data at the Northwestern Agricultural Research Center on a crop year basis, September 1, 1949 thru August 31, 1997.

#### Average temperature by month and year Degrees Fahrenheit

|                    |       |      |      |      | Degree | s Fahren | heit |      |      |              |      |      |      |
|--------------------|-------|------|------|------|--------|----------|------|------|------|--------------|------|------|------|
| YEAR               | SEPT. | ост. | NOV. | DEC. | JAN.   | FEB.     | MAR. | APR. | MAY  | JUNE         | JULY | AUG. | MEAN |
| 1949-50            | 54.1  | 41.5 | 38.5 | 25.0 | 4.2    | 25.6     | 31.2 | 41.9 | 49.7 | 57.0         | 64.0 | 62.5 | 41.3 |
| 1950-51            | 53.8  | 45.9 | 31.5 | 29.5 | 20.2   | 27.7     | 27.0 | 42.1 | 50.0 | 54.2         |      | 60.4 | 42.3 |
| 1951-52            | 50.6  | 40.8 | 30.8 | 16.9 | 18.0   | 26.6     | 29.3 | 45.8 | 52.4 | 56.7         |      | 62.8 | 41.0 |
| 1952-53            | 56.0  | 45.5 | 30.4 | 27.6 | 36.0   | 32.9     | 37.2 | 41.2 | 49.5 | 54.6         | 64.3 | 63.1 | 44.9 |
| 1953-54            | 56.1  | 46.2 | 37.0 | 31.3 | 21.1   | 31.2     | 29.6 | 40.8 | 52.5 | 54.9         | 63.4 | 60.1 | 43.7 |
| 1954-55            | 52.9  | 41.5 | 38.8 | 28.8 | 25.7   | 22.1     | 24.5 | 39.1 | 47.7 | 58.8         | 62.7 | 62.2 | 42.1 |
| 1955-56            | 52.5  | 44.6 | 23.5 | 21.8 | 23.3   | 20.9     | 31.5 | 44.2 | 54.0 | 59.0         | 64.8 | 62.0 | 41.8 |
| 1956-57            | 55.2  | 44.1 | 30.9 | 28.5 | 10.2   | 23.4     | 33.3 | 43.7 | 55.6 | 59.7         | 65.4 | 62.4 | 42.7 |
| 1957-58            | 55.8  | 41.4 | 32.1 | 32.4 | 29.1   | 30.4     | 32.2 | 43.6 | 59.6 | 62.3         | 65.2 | 67.9 | 46.0 |
| 1958-59            | 55.5  | 44.6 | 32.8 | 28.2 | 24.7   | 23.1     | 35.3 | 45.2 | 48.1 | 59.9         | 64.5 | 61.0 | 43.6 |
| 1959-60            | 53.0  | 43.9 | 25.5 | 27.6 | 19.4   | 25.2     | 32.3 | 44.3 | 50.6 | 59.6         | 68.8 | 60.6 | 42.6 |
|                    | 55.0  | 45.2 | 34.4 | 24.9 | 27.8   | 37.0     | 38.3 | 42.0 | 52.6 | 64.7         | 66.2 | 67.8 | 46.3 |
| 1960-61            | 49.6  | 42.3 | 28.2 | 23.6 | 17.4   | 25.7     | 30.9 | 47.2 | 51.5 | 58.6         |      | 62.1 | 41.6 |
| 1961-62            | 54.7  | 44.7 | 38.0 | 32.5 | 11.8   | 33.1     | 38.7 | 43.2 | 51.4 | 59.4         |      | 64.9 | 44.6 |
| 1962-63            |       | 47.4 | 35.8 | 24.0 | 28.5   | 28.3     | 30.6 | 42.8 | 51.1 | 58.7         |      | 58.9 | 44.1 |
| 1963-64            | 58.7  |      | 33.7 | 22.1 | 30.2   | 28.7     | 28.6 | 45.2 | 50.6 | 57.6         |      | 63.6 | 43.3 |
| 1964-65            | 51.2  | 43.7 |      |      | 26.3   | 27.7     | 34.5 | 42.9 | 54.3 | 56.0         |      | 61.7 | 43.8 |
| 1965-66            | 46.4  | 47.6 | 35.0 | 28.8 | 31.0   | 33.2     | 32.9 | 40.6 | 52.2 | 59.4         |      | 67.2 | 45.7 |
| 1966-67            | 59.3  | 43.4 | 33.4 | 30.2 |        |          | 41.2 | 42.0 | 49.8 | 59.0         |      | 61.3 | 45.0 |
| 1967-68            | 61.0  | 45.9 | 33.8 | 25.2 | 23.3   | 32.8     |      | 47.1 | 53.9 | 58.8         |      | 63.6 | 41.9 |
| 1968-69            | 53.8  | 42.9 | 33.4 | 19.9 | 13.1   | 24.0     | 29.6 | 40.2 | 53.2 | 62.0         |      | 62.6 | 43.9 |
| 1969-70            | 56.0  | 40.0 | 35.2 | 27.7 | 21.9   | 29.9     | 32.8 |      | 52.5 | 54.9         |      | 68.2 | 42.8 |
| 1970-71            | 48.7  | 40.1 | 31.3 | 26.2 | 23.6   | 29.9     | 33.2 | 43.6 | 51.9 | 59.3         |      | 65.9 | 42.4 |
| 1971-72            | 49.5  | 40.4 | 34.1 | 22.2 | 17.0   | 27.3     | 38.5 | 40.6 | 51.5 | 57.5         |      | 64.5 | 42.6 |
| 1972-73            | 50.2  | 40.3 | 33.7 | 19.9 | 20.7   | 27.8     | 37.7 | 42.2 |      | 61.5         |      | 61.6 | 43.6 |
| 1973-74            | 53.3  | 44.1 | 29.3 | 30.8 | 21.0   | 32.3     | 33.6 | 42.7 | 48.0 | 55.9         |      | 59.8 | 42.1 |
| 1974-75            | 52.8  | 43.6 | 34.8 | 30.1 | 21.5   | 21.5     | 29.9 | 37.6 | 48.6 |              |      | 61.3 | 43.4 |
| 1975-76            | 52.1  | 42.9 | 35.4 | 27.5 | 27.7   |          | 31.0 | 43.4 | 51.9 | 54.5<br>61.5 |      | 62.8 | 43.9 |
| 1976-77            | 55.2  | 42.4 | 33.1 | 28.6 | 20.0   | 30.9     | 34.4 | 45.0 | 49.7 |              |      | 60.3 | 41.9 |
| 1977-78            | 51.7  | 42.5 | 30.4 | 22.0 | 21.6   | 26.1     | 34.3 | 43.7 | 48.1 | 59.1         |      | 65.4 | 40.9 |
| 1978-79            | 53.7  | 43.7 | 27.2 | 18.8 | 4.1    | 24.9     | 34.7 | 42.3 | 51.5 | 59.4         |      | 58.6 | 43.8 |
| 1979-80            | 56.9  | 46.6 | 30.7 | 33.0 | 16.3   | 29.0     | 32.6 | 47.1 | 54.8 | 56.9         |      | 66.4 | 45.6 |
| 1980-81            | 54.1  | 45.3 | 35.8 | 32.2 | 30.1   |          | 38.5 | 44.5 | 52.5 | 53.8         |      | 63.0 | 43.2 |
| 1981-82            | 55.3  | 43.2 | 36.0 | 27.0 | 21.6   | 24.5     | 37.5 | 39.4 | 49.8 | 59.8         |      |      | 44.0 |
| 1982-83            | 53.4  | 41.0 | 29.1 | 25.9 | 30.3   | 33.8     | 37.9 | 42.4 | 51.9 | 57.6         |      | 65.4 |      |
| 1983-84            | 50.4  | 42.9 | 36.6 | 11.1 | 27.6   | 32.4     | 38.3 | 42.2 | 48.7 |              |      | 64.6 | 43.0 |
| 1984-85            | 49.5  | 40.0 | 32.6 | 20.6 | 19.2   | 19.0     | 30.8 | 44.8 | 53.7 | 57.6         |      | 60.2 | 41.4 |
| 1985-86            | 47.8  | 40.8 | 18.6 | 18.3 | 25.4   | 25.6     | 40.6 | 43.8 | 53.7 | 63.9         |      | 66.1 | 42.0 |
| 1986-87            | 50.2  | 43.0 | 30.3 | 24.9 | 22.2   | 27.9     |      |      | 55.6 |              |      | 59.8 | 43.4 |
| 1987-88            | 56.1  | 43.3 | 35.3 | 25.4 | 20.5   | 30.3     | 37.8 |      |      |              |      |      | 44.5 |
| 1988-89            | 53.4  | 43.4 |      | 23.3 | 27.5   | 12.4     | 28.8 |      |      |              |      |      | 42.2 |
| 1989-90            | 52.7  | 42.7 |      | 25.3 | 30.5   | 24.5     | 34.8 | 45.2 | 49.8 |              |      | 64.8 | 44.0 |
| 1990-91            | 59.1  | 41.9 |      | 16.5 | 18.3   | 34.6     | 32.8 | 42.4 | 50.3 |              |      | 65.2 | 43.0 |
| 1991-92            | 54.4  | 40.6 | 32.1 | 29.3 | 28.7   |          |      | 45.1 | 53.5 | 55.5         |      | 61.8 | 44.7 |
| 1992-93            | 51.1  | 44.7 |      | 19.4 | 14.7   |          |      |      | 56.0 | 56.5         |      | 59.7 | 40.6 |
| 1993-94            | 51.4  | 44.4 |      | 27.4 | 32.9   |          |      |      | 54.0 |              | 66.4 | 63.0 | 43.8 |
| 1994-95            | 56.3  | 42.8 | 29.7 |      | 23.6   |          |      |      | 51.6 |              | 63.1 | 59.5 | 43.3 |
|                    | 54.9  | 41.1 | 34.9 | 26.7 | 17.4   |          |      |      |      |              |      |      | 42.0 |
| 1995-96<br>1996-97 | 52.3  | 42.1 | 27.3 |      | 19.8   |          | 32.3 |      | 52.3 |              |      | 63.8 | 41.4 |
| MEAN               | 53.5  | 43.2 | 32.4 | 25.3 | 22.2   | 27.6     | 33.7 | 43.2 | 51.7 | 58.3         | 63.9 | 62.9 | 43.2 |

Table 3. Summary of temperature data at the Northwestern Agricultural Research Center on a crop year basis, September 1, 1949 thru August 31, 1997.

|         |       |      | Averag | e maxim | um tem<br>Degre | perature<br>es Fahr | by mon<br>enheit | th and y | ear  | ÇÂ.  |      |      |      |
|---------|-------|------|--------|---------|-----------------|---------------------|------------------|----------|------|------|------|------|------|
| YEAR    | SEPT. | ост. | NOV.   | DEC.    | JAN.            | FEB.                | MAR.             | APR.     | MAY  | JUNE | JULY | AUG. | MEAN |
| 1949-50 | 71.4  | 52.4 | 45.7   | 32.1    | 14.4            | 34.6                | 38.4             | 52.3     | 63.1 | 70.1 | 78.6 | 79.5 | 52.7 |
| 1950-51 | 70.9  | 55.8 | 38.2   | 36.3    | 28.7            | 36.6                | 37.3             | 57.9     | 63.2 | 66.6 | 82.4 | 77.0 | 54.2 |
| 1951-52 | 64.2  | 47.5 | 37.2   | 23.6    | 25.9            | 35.7                | 39.5             | 61.8     | 65.7 | 70.2 | 79.2 | 79.5 | 52.5 |
|         | 73.4  | 62.6 | 40.6   | 33.2    | 41.3            | 39.1                | 46.8             | 51.5     | 62.5 | 66.8 | 83.3 | 79.5 | 56.7 |
| 1952-53 |       | 61.0 | 45.6   | 36.7    | 29.1            | 38.4                | 40.0             | 51.0     | 67.2 | 67.0 | 80.1 | 74.4 | 55.2 |
| 1953-54 | 72.3  |      | 45.9   | 34.9    | 31.8            | 31.2                | 33.9             | 48.1     | 60.5 | 74.7 | 76.9 | 82.4 | 53.3 |
| 1954-55 | 66.4  | 53.4 |        | 29.2    | 30.7            | 30.1                | 39.7             | 57.4     | 67.5 | 73.3 | 81.2 | 77.8 | 53.4 |
| 1955-56 | 67.6  | 55.5 | 30.8   |         |                 | 33.2                | 43.3             | 55.3     | 70.2 | 72.4 | 82.1 | 80.0 | 54.4 |
| 1956-57 | 71.0  | 53.7 | 37.6   | 35.5    | 19.0            |                     |                  | 54.4     | 77.5 | 75.7 | 80.8 | 85.5 | 57.7 |
| 1957-58 | 74.3  | 50.5 | 40.1   | 38.5    | 33.7            | 37.9                | 43.5             |          | 61.5 | 74.3 | 83.2 | 76.3 | 55.2 |
| 1958-59 | 69.7  | 57.9 | 39.6   | 34.1    | 31.8            | 31.9                | 43.9             | 57.9     |      | 74.8 | 88.7 | 74.1 | 53.9 |
| 1959-60 | 64.0  | 53.6 | 33.9   | 33.3    | 27.5            | 34.1                | 43.4             | 56.1     | 63.0 |      | 83.7 | 86.3 | 58.0 |
| 1960-61 | 72.1  | 57.8 | 41.1   | 29.8    | 35.0            | 43.1                | 48.2             | 51.6     | 65.3 | 82.0 |      | 77.5 | 52.9 |
| 1961-62 | 62.3  | 53.3 | 35.1   | 30.4    | 26.0            | 33.4                | 40.5             | 60.7     | 62.7 | 74.2 | 79.2 |      |      |
| 1962-63 | 71.7  | 54.7 | 43.8   | 37.9    | 19.9            | 41.4                | 48.9             | 55.7     | 67.1 | 71.8 | 79.6 | 82.5 | 56.3 |
| 1963-64 | 74.6  | 59.4 | 43.4   | 30.2    | 35.1            | 37.7                | 39.7             | 53.3     | 63.5 | 71.4 | 80.3 | 72.9 | 55.1 |
| 1964-65 | 63.9  | 55.0 | 41.0   | 28.9    | 35.1            | 36.9                | 41.0             | 57.6     | 64.3 | 71.4 | 80.8 | 77.1 | 54.4 |
| 1965-66 | 57.5  | 61.1 | 42.6   | 35.4    | 31.8            | 35.3                | 45.4             | 54.8     | 69.8 | 69.1 | 81.2 | 78.4 | 55.2 |
| 1966-67 | 74.9  | 55.1 | 41.1   | 35.8    | 36.7            | 40.9                | 41.3             | 52.6     | 66.0 | 73.3 | 84.8 | 87.2 | 57.5 |
| 1967-68 | 78.9  | 55.8 | 41.3   | 30.8    | 31.5            | 40.8                | 52.6             | 54.2     | 63.4 | 72.2 | 82.7 | 75.7 | 56.7 |
|         | 65.9  | 53.1 | 40.6   | 27.3    | 20.8            | 32.5                | 40.9             | 59.5     | 68.7 | 72.0 | 78.9 | 83.0 | 53.6 |
| 1968-69 |       | 49.7 | 43.0   | 32.8    | 28.5            | 36.2                | 42.5             | 49.7     | 67.9 | 75.5 | 79.1 | 80.9 | 54.7 |
| 1969-70 | 70.4  |      | 40.0   | 34.1    | 30.6            | 38.6                | 41.6             | 56.2     | 66.4 | 67.3 | 78.0 | 87.5 | 54.6 |
| 1970-71 | 62.5  | 52.2 | 41.2   | 30.9    | 27.1            | 35.9                | 47.9             | 51.7     | 64.7 | 72.4 | 76.9 | 83.3 | 54.1 |
| 1971-72 | 64.2  | 53.1 |        |         | 30.6            | 38.5                | 47.7             | 53.8     | 65.8 | 69.6 | 83.7 | 83.2 | 54.9 |
| 1972-73 | 64.0  | 51.3 | 41.4   | 28.6    |                 | 39.6                | 43.5             | 53.1     | 59.2 | 76.2 | 80.3 | 77.6 | 54.6 |
| 1973-74 | 67.6  | 56.3 | 36.8   | 36.5    | 28.5            |                     | 39.4             | 48.1     | 61.2 | 68.5 | 85.5 | 73.0 | 54.3 |
| 1974-75 | 70.9  | 61.4 | 43.2   | 37.4    | 32.0            | 31.5                |                  | 54.3     | 66.2 | 66.3 | 79.0 | 74.4 | 54.3 |
| 1975-76 | 69.4  | 52.3 | 40.4   | 35.1    | 36.2            | 37.6                | 40.1             |          |      | 77.0 | 76.6 | 77.4 | 56.0 |
| 1976-77 | 73.2  | 57.7 | 42.1   | 36.1    | 28.0            | 39.1                | 42.7             | 60.2     | 61.9 |      | 77.5 | 74.2 | 52.9 |
| 1977-78 | 64.7  | 55.4 | 38.5   | 29.4    | 28.8            | 35.5                | 45.5             | 54.3     | 58.1 | 72.6 |      | 82.8 | 53.0 |
| 1978-79 | 65.7  | 59.2 | 35.9   | 28.2    | 13.7            | 33.2                | 45.3             | 52.5     | 64.3 | 73.9 | 81.5 |      | 54.9 |
| 1979-80 | 74.1  | 59.5 | 37.8   | 39.2    | 25.2            | 35.9                | 40.8             | 60.4     | 66.9 | 69.0 | 77.0 | 73.2 |      |
| 1980-81 | 66.9  | 59.0 | 43.9   | 39.2    | 34.0            | 38.9                | 49.7             | 54.8     | 63.3 | 63.8 | 78.1 | 85.0 | 56.4 |
| 1981-82 | 70.8  | 54.1 | 44.9   | 34.2    | 29.7            | 33.3                | 45.8             | 50.5     | 62.5 | 74.3 | 75.0 | 80.6 | 54.6 |
| 1982-83 | 69.2  | 53.2 | 36.9   | 33.0    | 36.8            | 42.2                | 47.5             | 55.2     | 66.4 | 70.6 | 73.1 | 82.9 | 55.6 |
| 1983-84 | 65.1  | 56.0 | 43.7   | 19.9    | 34.6            | 40.8                | 46.8             | 54.2     | 60.4 | 69.1 | 82.8 | 83.3 | 54.7 |
| 1984-85 | 63.9  | 52.2 | 40.4   | 28.2    | 25.3            | 29.1                | 42.7             | 56.8     | 68.7 | 73.2 | 88.0 | 75.0 | 53.6 |
| 1985-86 | 60.4  | 51.3 | 26.7   | 25.2    | 34.0            | 36.6                | 51.6             | 55.1     | 66.1 | 78.5 | 73.0 | 84.1 | 53.6 |
| 1986-87 | 59.9  | 54.3 | 38.0   | 30.9    | 29.5            | 34.2                | 43.4             | 61.3     | 67.9 | 75.7 | 76.5 | 74.9 | 53.9 |
|         | 73.5  | 59.9 | 43.0   | 32.6    | 29.0            | 39.3                | 46.1             | 58.5     | 63.8 | 74.1 | 79.5 | 82.6 | 56.8 |
| 1987-88 |       | 62.0 | 42.7   | 30.3    | 35.3            | 21.8                | 36.1             | 56.6     | 61.1 | 72.6 | 81.6 | 75.0 | 53.7 |
| 1988-89 | 69.0  |      |        |         | 36.4            | 33.9                | 44.8             | 57.3     | 60.5 | 68.9 | 79.7 | 79.5 | 54.7 |
| 1989-90 | 68.5  | 54.0 | 42.4   | 30.5    | 25.6            | 42.5                | 41.6             | 54.0     | 61.7 | 65.5 | 78.2 | 81.6 | 54.1 |
| 1990-91 | 77.9  | 53.0 | 43.8   | 24.1    |                 |                     | 52.7             | 57.7     | 67.7 | 67.8 | 73.1 | 78.0 | 56.2 |
| 1991-92 | 70.9  | 56.1 | 38.6   | 33.7    | 35.1            | 42.7                |                  |          | 69.7 | 67.8 | 66.2 | 73.8 | 50.9 |
| 1992-93 | 64.9  | 57.4 | 38.0   | 27.2    | 22.4            | 27.0                | 43.7             | 52.8     |      | 70.5 | 83.0 | 85.0 | 55.9 |
| 1993-94 | 66.6  | 56.8 | 33.5   | 33.3    | 38.9            | 30.2                | 48.9             | 57.4     | 66.7 |      |      | 74.1 | 53.9 |
| 1994-95 | 74.0  | 54.1 | 36.4   | 33.1    | 29.3            | 43.3                | 42.9             | 52.7     | 63.9 | 67.6 | 75.5 | 78.1 | 52.6 |
| 1995-96 | 70.0  | 50.4 | 43.0   | 32.2    | 25.3            | 33.1                | 38.7             | 54.1     | 55.1 | 70.5 | 81.0 |      |      |
| 1996-97 | 64.3  | 53.2 | 33.9   | 25.7    | 26.9            | 34.2                | 40.9             | 48.4     | 64.3 | 68.6 | 75.6 | 78.5 | 51.2 |
| MEAN    | 68.5  | 55.3 | 39.9   | 32.0    | 29.6            | 36.0                | 43.5             | 54.9     | 64.7 | 71.5 | 79.6 | 79.3 | 54.6 |

Mean temperature for all years =

54.6

Table 4. Summary of temperature data at the Northwestern Agricultural Research Center on crop year basis September 1, 1949 through August 31, 1997.

Average minimum temperature by month and year Degrees Fahrenheit AUG. MEAN JULY MAY JUNE MAR. APR. FEB. OCT. NOV. DEC JAN. SEPT. YEAR 30.2 45.5 49.4 23.9 31.5 36.3 43.9 16.6 17.8 -6.035.0 31.2 1949-50 36.7 30.2 43.7 46.9 41.7 26.2 36.7 16.6 11.7 18.8 22.6 36.6 36.0 24.8 1959-51 29.5 46.1 44.3 43.1 29.8 39.1 19.1 17.4 10.1 10.0 37.0 34.0 24.4 1951-52 46.7 33.0 42.3 45.3 30.9 36.5 26.7 27.5 30.6 21.9 28.3 20.2 38.6 1952-53 32.1 45.7 46.7 42.8 19.2 30.6 37.7 25.9 13.1 24.0 28.4 31.4 1953-54 39.8 30.7 42.0 42.8 48.5 30.0 34.9 13.0 15.0 22.7 19.5 39.3 29.5 31.6 1954-55 46.1 30.2 44.7 48.2 23.3 30.9 40.5 11.7 15.9 16.1 14.4 37.3 33.6 1955-56 30.9 48.7 44.8 47.0 23.2 32.0 40.9 13.6 21.5 1.4 34.4 24.2 39.4 1956-57 34.3 50.3 49.5 48.8 22.8 20.9 32.8 41.7 24.5 26.2 24.1 37.2 32.3 1957-58 31.9 45.8 45.6 34.7 45.4 14.2 26.6 32.4 17.5 22.2 26.0 41.2 31.2 1958-59 31.2 44.3 48.8 47.0 21.1 32.4 38.1 11.2 16.3 34.1 17.0 21.8 42.0 1959-60 34.6 49.2 47.4 48.7 28.4 32.3 39.8 20.6 30.9 27.6 19.9 32.5 37.9 1960-61 30.2 45.0 46.6 43.0 17.9 21.2 33.7 40.3 8.7 21.2 16.8 36.8 31.2 1961-62 32.9 46.9 46.4 47.0 24.7 28.4 30.6 35.7 3.7 32.2 27.1 37.6 34.6 1962-63 33.0 48.3 44.9 46.0 21.4 32.2 38.6 18.9 28.1 17.7 21.8 35.3 42.7 1963-64 50.0 32.2 43.8 48.4 36.9 32.7 25.3 20.4 16.2 26.4 15.3 38.4 32.3 1964-65 45.0 32.4 47.7 42.8 20.0 23.6 30.9 38.7 20.8 22.1 34.0 27.4 35.2 1965-66 47.2 34.0 47.4 45.4 28.6 38.4 25.5 24.5 25.3 25.6 24.6 31.7 1966-67 43.6 46.8 33.3 45.7 46.4 29.8 36.1 29.7 15.0 24.8 26.3 19.4 35.9 1967-68 43.1 43.5 30.0 45.5 45.7 39.0 18.2 34.6 12.5 5.4 15.4 26.1 32.6 1968-69 41.7 44.3 33.0 48.2 50.5 23.4 38.5 23.0 30.7 22.6 15.3 27.4 30.3 1969-70 41.6 48.8 31.0 45.7 38.6 42.3 31.0 21.0 24.8 18.3 16.5 22.5 27.9 1970-71 34.9 48.5 30.6 46.3 45.8 39.2 29.0 18.6 29.0 7.7 26.9 13.5 34.7 27.6 1971-72 45.8 30.1 44.4 46.5 36.4 11.0 17.4 27.8 29.6 29.2 25.9 11.1 36.4 1972-73 49.5 45.6 32.6 46.9 36.7 13.5 25.1 23.6 32.4 25.2 32.0 21.8 1973-74 38.9 46.5 29.8 52.7 36.1 43.3 27.1 10.9 11.5 20.4 22.9 26.3 25.7 1974-75 34.7 47.8 48.3 32.5 42.6 37.6 22.2 22.0 32.4 20.0 19.1 33.4 30.3 34.7 1975-76 48.5 48.2 31.7 46.0 29.9 37.4 12.0 22.6 26.1 21.1 27.2 24.1 1976-77 37.2 46.4 31.0 49.2 45.6 33.1 38.1 14.5 16.7 23.2 22.2 14.6 29.5 1977-78 38.6 28.7 48.0 48.5 38.7 44.9 -5.6 16.5 24.0 32.1 9.3 18.4 41.7 28.3 1978-79 50.0 44.0 32.8 44.7 42.7 33.7 7.5 22.1 24.5 39.7 33.7 23.6 26.8 1979-80 34.8 47.6 47.8 41.7 43.7 26.2 23.8 27.2 34.2 27.7 25.1 31.6 41.3 1980-81 45.4 31.7 47.3 45.3 28.4 37.2 13.5 15.7 29.2 27.0 19.8 32.2 1981-82 39.7 48.0 32.5 44.7 46.1 37.5 29.5 23.7 25.3 28.4 21.4 18.7 37.6 28.8 1982-83 46.0 31.4 47.8 43.6 37.1 24.0 29.9 30.2 29.5 2.4 20.6 29.7 35.6 1983-84 29.1 45.5 48.5 42.0 38.7 13.2 9.0 18.8 32.7 13.0 24.7 27.7 1984-85 35.2 30.5 48.1 49.3 46.8 32.5 41.3 16.9 14.5 29.6 30.2 10.6 11.4 35.2 1985-86 44.7 33.0 47.4 49.4 43.3 34.2 21.6 26.6 18.8 14.9 22.6 40.5 31.6 1986-87 47.9 45.2 32.2 47.7 39.0 21.3 29.5 33.0 27.6 18.1 11.5 38.7 26.5 1987-88 48.7 31.4 49.3 46.9 38.1 2.9 21.4 31.8 19.7 29.8 16.3 32.9 1988-89 38.6 50.0 33.4 50.6 33.2 39.1 45.4 24.7 24.7 15.2 29.3 20.1 31.3 1989-90 36.9 31.9 49.8 48.8 44.7 39.0 26.6 24.0 30.8 11.0 8.8 40.4 30.9 28.4 1990-91 45.7 33.3 49.3 43.2 39.2 26.3 26.8 32.6 22.4 25.6 25.0 25.1 37.9 1991-92 45.6 30.4 47.0 45.2 42.3 9.8 23.8 34.5 11.6 7.0 32.0 28.1 1992-93 37.4 48.3 32.3 41.3 49.8 33.4 44.1 26.2 27.0 11.0 21.5 32.0 16.6 1993-94 36.3 32.7 50.8 45.0 45.1 39.3 24.2 23.4 32.5 17.9 31.6 23.0 21.1 38.6 1994-95 49.8 46.9 31.5 38.1 46.6 14.9 19.3 32.4 26.9 21.3 9.5 31.9 39.9 1995-96 49.2 31.6 50.1 47.0 40.3 12.7 21.8 23.7 28.3 13.9 20.7 31.0 1996-97 40.3 46.6 31.8 45.0 48.1 31.5 38.7 19.2 23.9 18.7 15.3 38.5 31.2 24.8 MEAN

Table 5. Summary of precipitation records at the Northwestern Agricultural Research Center on a crop year basis, September 1, 1949 through August 31, 1997.

|         |       | Total p | recipitat | ion in in | ches by | month a | nd year |      |      | vA.  |      |      |       |
|---------|-------|---------|-----------|-----------|---------|---------|---------|------|------|------|------|------|-------|
| YEAR    | SEPT. | OCT.    | NOV.      | DEC.      | JAN.    | FEB.    | MAR.    | APR. | MAY  | JUNE | JULY | AUG. | TOTAL |
| 1949-50 | 1.03  | 1.05    | 1.67      | 0.92      | 2.62    | 1.13    | 2.31    | 0.84 | 0.15 | 3.90 | 3.12 | 0.75 | 19.49 |
| 1950-51 | 0.52  | 2.30    | 1.16      | 2.48      | 0.94    | 1.29    | 0.62    | 2.32 | 3.77 | 2.26 | 1.03 | 2.86 | 21.55 |
|         | 1.49  | 5.62    | 1.01      | 3.31      | 1.03    | 0.98    | 0.97    | 0.17 | 1.32 | 3.95 | 0.56 | 0.69 | 21.10 |
| 1951-52 | 0.13  | 0.05    | 0.60      | 0.98      | 1.84    | 1.14    | 0.98    | 2.07 | 2.00 | 3.31 | T    | 1.62 | 14.72 |
| 1952-53 |       | 0.03    | 0.87      | 1.30      | 2.65    | 0.79    | 0.83    | 0.79 | 1.52 | 2.98 | 2.91 | 3.79 | 19.17 |
| 1953-54 | 0.71  | 0.54    | 1.00      | 0.43      | 1.00    | 1.31    | 0.44    | 0.82 | 1.18 | 1.86 | 3.08 | 0.00 | 12.75 |
| 1954-55 | 1.09  |         | 1.97      | 2.38      | 1.76    | 1.53    | 0.87    | 1.28 | 1.06 | 4.20 | 2.13 | 3.21 | 23.92 |
| 1955-56 | 1.64  | 1.89    |           | 0.96      | 1.47    | 1.14    | 0.75    | 1.22 | 1.75 | 2.51 | 0.52 | 0.78 | 13.89 |
| 1956-57 | 1.16  | 1.10    | 0.53      |           | 1.56    | 2.67    | 0.97    | 1.47 | 2.20 | 2.56 | 0.84 | 0.58 | 17.26 |
| 1957-58 | 0.10  | 1.59    | 0.96      | 1.76      |         | 1.33    | 0.75    | 1.62 | 4.10 | 1.75 | T    | 0.91 | 21.23 |
| 1958-59 | 1.99  | 1.16    | 2.90      | 2.77      | 1.95    |         |         | 1.23 | 3.27 | 0.69 | 0.13 | 2.43 | 23.77 |
| 1959-60 | 4.22  | 3.36    | 4.32      | 0.34      | 1.67    | 1.10    | 1.01    |      | 4.02 | 1.45 | 0.76 | 0.64 | 18.15 |
| 1960-61 | 0.55  | 1.44    | 1.72      | 1.24      | 0.65    | 1.46    | 1.96    | 2.26 |      | 1.15 | 0.11 | 0.72 | 18.08 |
| 1961-62 | 3.40  | 1.22    | 1.77      | 2.09      | 1.33    | 1.15    | 1.59    | 0.96 | 2.59 |      | 1.44 | 2.10 | 18.58 |
| 1962-63 | 0.58  | 1.85    | 1.31      | 0.91      | 1.69    | 1.21    | 0.85    | 1.07 | 0.57 | 5.00 | 3.01 | 1.64 | 21.01 |
| 1963-64 | 1.46  | 0.75    | 0.95      | 1.70      | 1.46    | 0.41    | 1.57    | 0.87 | 3.33 | 3.86 |      | 4.74 | 23.04 |
| 1964-65 | 2.27  | 0.85    | 1.62      | 3.62      | 2.25    | 0.64    | 0.24    | 2.55 | 0.81 | 2.30 | 1.15 |      | 19.05 |
| 1965-66 | 1.72  | 0.21    | 1.31      | 0.55      | 1.42    | 0.67    | 0.53    | 0.76 | 1.18 | 6.57 | 2.49 | 1.64 |       |
| 1966-67 | 0.79  | 1.34    | 3.33      | 1.68      | 1.50    | 0.62    | 1.27    | 0.99 | 1.30 | 2.53 | 0.02 | 0.01 | 15.38 |
| 1967-68 | 0.91  | 1.88    | 0.62      | 1.16      | 0.79    | 1.15    | 0.68    | 0.57 | 3.92 | 2.22 | 1.00 | 3.42 | 18.32 |
| 1968-69 | 4.51  | 2.39    | 1.59      | 3.12      | 3.05    | 0.75    | 0.69    | 1.39 | 1.19 | 5.21 | 0.70 | 0.09 | 24.68 |
| 1969-70 | 1.54  | 1.90    | 0.31      | 1.14      | 3.10    | 0.89    | 1.49    | 0.76 | 1.97 | 4.37 | 3.08 | 0.44 | 20.99 |
| 1970-71 | 1.79  | 1.38    | 1.75      | 0.99      | 1.84    | 0.77    | 0.69    | 0.58 | 2.45 | 4.42 | 1.31 | 1.11 | 19.08 |
| 1971-72 | 0.94  | 0.87    | 1.70      | 1.62      | 1.10    | 1.65    | 2.11    | 0.95 | 1.48 | 3.28 | 1.77 | 0.98 | 18.45 |
| 1972-73 | 1.38  | 1.84    | 0.80      | 2.19      | 0.52    | 0.56    | 0.70    | 0.45 | 1.13 | 2.14 | 0.01 | 0.63 | 12.35 |
| 1972-73 | 1.37  | 1.41    | 2.95      | 1.94      | 1.35    | 1.32    | 1.40    | 3.36 | 1.82 | 1.80 | 1.01 | 0.62 | 20.35 |
| 1974-75 | 0.80  | 0.12    | 1.10      | 1.31      | 1.56    | 1.08    | 1.50    | 1.27 | 1.50 | 1.40 | 1.08 | 4.26 | 16.98 |
| 1974-75 | 1.18  | 2.96    | 0.85      | 1.39      | 0.91    | 1.12    | 0.34    | 1.92 | 1.90 | 2.49 | 1.49 | 3.42 | 19.97 |
|         | 0.96  | 0.62    | 0.73      | 0.86      | 0.83    | 0.71    | 1.40    | 0.41 | 2.90 | 0.52 | 3.60 | 1.50 | 15.04 |
| 1976-77 |       | 0.56    | 1.62      | 4.10      | 2.15    | 0.99    | 0.72    | 2.54 | 3.56 | 2.63 | 3.90 | 3.34 | 28.95 |
| 1977-78 | 2.84  |         | 0.96      | 0.91      | 1.70    | 1.45    | 0.82    | 2.33 | 2.67 | 1.23 | 0.40 | 1.79 | 16.31 |
| 1978-79 | 1.90  | 0.15    |           | 1.03      | 1.53    | 2.03    | 0.97    | 1.88 | 5.48 | 3.89 | 1.08 | 2.45 | 23.62 |
| 1979-80 | 1.03  | 1.75    | 0.50      |           | 1.81    | 1.85    | 2.17    | 1.75 | 3.86 | 4.70 | 1.17 | 0.96 | 23.66 |
| 1980-81 | 1.20  | 0.83    | 0.78      | 2.58      |         |         | 1.16    | 1.60 | 1.25 | 2.41 | 2.06 | 1.17 | 18.24 |
| 1981-82 | 0.77  | 0.56    | 1.49      | 1.91      | 2.38    | 1.48    |         |      | 1.20 | 2.96 | 3.66 | 1.16 | 20.99 |
| 1982-83 | 2.37  | 0.75    | 1.39      | 1.60      | 0.93    | 0.85    | 1.71    | 2.41 | 2.91 | 2.07 | 0.31 | 0.55 | 19.93 |
| 1983-84 | 1.70  | 1.13    | 1.96      | 2.57      | 0.80    | 2.19    | 1.81    | 1.93 | 2.81 | 1.89 | 0.35 | 1.62 | 17.56 |
| 1984-85 | 2.15  | 2.25    | 1.40      | 1.29      | 0.31    | 1.28    | 0.90    | 1.31 |      |      | 2.09 | 0.81 | 23.23 |
| 1985-86 | 5.35  | 1.55    | 1.61      | 0.51      | 2.39    | 2.33    | 0.50    | 1.34 | 2.92 | 1.83 | 4.85 | 0.98 | 21.97 |
| 1986-87 | 3.63  | 0.80    | 1.78      | 0.63      | 0.38    | 0.46    | 3.47    | 1.15 | 1.89 | 1.95 |      | 0.13 | 13.94 |
| 1987-88 | 0.81  | 0.12    | 0.91      | 1.18      | 0.98    | 1.03    | 0.77    | 1.36 | 3.60 | 1.98 | 1.07 |      | 23.39 |
| 1988-89 | 2.30  | 0.62    | 1.39      | 1.69      | 1.39    | 1.48    | 2.29    | 1.09 | 2.70 | 2.05 | 2.70 | 3.69 |       |
| 1989-90 | 1.50  | 2.29    | 3.75      | 1.92      | 0.96    | 1.00    | 1.76    | 1.63 | 3.74 | 2.68 | 2.34 | 2.44 | 26.01 |
| 1990-91 | Т     | 2.32    | 1.37      | 2.60      | 1.41    | 0.41    | 0.72    | 1.21 | 2.72 | 5.36 | 0.77 | 1.15 | 20.04 |
| 1991-92 | 0.80  | 0.75    | 2.26      | 0.58      | 1.17    | 0.61    | 0.83    | 1.18 | 1.65 | 5.34 | 2.24 | 0.94 | 18.35 |
| 1992-93 | 1.21  | 1.07    | 2.37      | 1.53      | 1.68    | 0.60    | 0.73    | 3.77 | 2.22 | 4.00 | 7.00 | 1.19 | 27.37 |
| 1993-94 | 1.54  | 0.83    | 1.23      | 1.27      | 1.43    | 1.49    | 0.11    | 2.01 | 1.79 | 2.59 | 0.10 | 0.23 | 14.62 |
| 1994-95 | 0.46  | 2.12    | 1.89      | 1.07      | 1.17    | 0.90    | 2.33    | 2.25 | 1.44 | 5.63 | 1.91 | 1.47 | 22.64 |
| 1995-96 | 1.21  | 2.75    | 2.33      | 1.91      | 2.22    | 1.18    | 1.19    | 3.32 | 4.58 | 2.05 | 0.95 | 0.80 | 24.49 |
| 1996-97 | 2.67  | 1.58    | 3.99      | 3.52      | 1.50    | 1.62    | 1.18    | 1.69 | 2.62 | 3.41 | 0.99 | 1.94 | 26.71 |
| MEAN    | 1.58  | 1.39    | 1.59      | 1.66      | 1.50    | 1.16    | 1.16    | 1.51 | 2.33 | 2.94 | 1.63 | 1.55 | 20.01 |

Table 6. Precipitation by day for crop year, September 1, 1996 through August 31, 1997.

Northwestern Agricultural Research Center, Kalispell, MT.

| DATE  | SEPT.<br>1996 | OCT.<br>1996 | NOV.<br>1996 | DEC.<br>1996 | JAN.<br>1997 | FEB.<br>1997 | MAR.<br>1997 | APR.<br>1997 | MAY<br>1997 | JUNE<br>1997 | JULY<br>1997 | AUG.<br>1997 |     |
|-------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------|-----|
| 1     | 0.16          |              |              | 0.06         | 0.10         | 0.01         | 0.06         | 0.07         | 0.04        | 0.11         | TIUL         | 0.05         |     |
| 2     | 0.10          |              |              | T            | 0.04         | 0.24         | 0.09         | 0.03         |             |              | 0.21         | 0.10         |     |
| 3     | 0.05          |              |              | 0.01         | 0.02         |              | 0.11         | 32           |             |              |              |              |     |
| 4     | 0.08          |              |              | T            | 0.03         |              | 0.03         | 0.24         | 0.47        | 0.06         |              |              |     |
| 5     | 0.23          | 0.07         | 0.08         | 0.04         |              |              | 0.02         |              | 0.02        | 0.21         |              | 0.39         |     |
| 6     | 0.21          | 0.07         | 0.02         | 0.01         |              |              | 0.01         |              |             |              | 0.03         |              |     |
| 7     | 0.21          |              | 0.25         | T            | 0.12         |              |              |              | 0.02        |              |              |              |     |
| 8     |               |              | 0.10         | 0.02         | 0.12         |              |              | 0.02         | 0.03        |              |              | 0.37         |     |
| 9     |               |              | 0.10         | 0.17         | 0.03         |              | 0.01         | 0.01         |             |              | 0.11         | 0.17         |     |
| 10    |               |              |              | 0.16         | 0.30         |              | 0.05         | 232          |             |              | 0.24         |              |     |
| 11    |               |              |              | 0.10         | 0.20         | 0.04         |              |              |             | 0.22         |              |              |     |
|       |               |              |              | 0.11         | 0.20         |              | 0.25         |              |             | 0.55         |              |              |     |
| 12    | T             | 0.15         |              | 0.11         |              |              | 0.11         |              |             | 0.10         |              |              |     |
| 13    | 0.20          | 0.15         | Т            | 0.30         |              | 0.01         | 0.11         | Т            | 0.04        | 0.           |              | 0.04         |     |
| 14    | 0.24          | 0.13         | 0.11         | 0.50         |              | 0.12         |              | 2 A.         | 0.0         |              |              |              |     |
| 15    | 0.24          | 0.12         | 0.02         |              | Т            |              | 0.19         |              |             |              |              | 0.18         |     |
| 16    | 0.10          | 0.05         | 0.02         |              | Ť            | CE toas      |              | 0.01         |             |              | T            |              |     |
| 17    |               | 0.00         | 0.03         |              | 0.36         |              | 0.04         | 33           |             | 0.25         | 0.10         |              |     |
| 18    | 0.80          | 0.00         | 1.50         | 0.15         | 0.08         | 0.02         |              | 0.05         |             | 0.02         | T            | 0.01         |     |
| 19    | 0.03          | 0.08         |              |              | 0.00         | 0.02         | т            | 0.32         |             | 0.02         | 0.05         |              |     |
| 20    | T             | 0.16         | 0.30         | 0.15         | 0.10         |              | ١,           | 0.18         |             |              | B18/1.       | 0.04         |     |
| 21    | 0.47          | 0.03         | T            | 0.37         | 0.10         | 0.04         |              |              |             | 0.19         | 0.04         |              |     |
| 22    | 0.02          | T            | 0.36         | 0.13         |              | 0.04         |              |              |             | 0.10         | 0.0          |              |     |
| 23    |               | 0.01         | 0.01         | 0.04         |              |              |              |              | 0.31        | 0.36         |              | 0.10         |     |
| 24    |               | 0.30         | 0.12         | 0.11         | 0.02         | 0.02         |              |              | 0.59        | 0.55         |              | 0.47         |     |
| 25    |               | 0.04         | 0.34         | 0.23         | 0.03         | 0.02         |              |              | 0.73        | 0.00         |              |              |     |
| 26    | . Oft         |              | 0.14         | 0.33         | 0.01         |              | 0.10         | 0.23         | 0.12        |              |              |              |     |
| 27    |               |              | 0.01         | 0.33         | 0.01         |              | 0.10         | 0.23         | 0.12        |              |              |              |     |
| 28    |               |              | 0.37         | 0.27         | 0.01         | 0.05         | 0.01         | 0.03         |             | 0.14         |              | 0.02         |     |
| 29    |               | 0.36         | 0.04         | 0.30         | 0.07         |              |              | 0.03         | 0.16        | 0.65         | 0.03         | 0.02         |     |
| 30    |               | T            | 0.03         | 0.51         | 0.07         |              | 0.40         | 0.20         | 0.10        | 0.03         | 0.18         |              |     |
| 31    | . 211         |              |              | 0.05         | Т            |              | 0.10         |              | 0.09        |              | 0.10         |              | YTE |
|       |               |              | 210          |              |              | NC Jone      | 4.40         | 4 00         | 0.00        | 2 41         | 0.99         | 1.94         |     |
| TOTAL | 2.67          | 1.58         | 3.99         | 3.52         | 1.50         | 1.62         | 1.18         | 1.69         | 2.62        | 3.41         | 0.99         | 1.54         | 20  |
|       |               |              |              |              |              |              |              |              |             |              |              |              |     |

Table 7. Frost free period at the Northwestern Agricultural Research Center from 1950 thru 1997.

| YEAR         |     | ATE<br>ST FREEZE | TEMPER.<br>DEGREE |          | DATE<br>FIRST FREEZE |      | IPERAT<br>GREES |    | FROST<br>FREE SE |            |
|--------------|-----|------------------|-------------------|----------|----------------------|------|-----------------|----|------------------|------------|
| 1950         | 0.0 | June 10          | 1 200             | 32       | Sept. 11             | 0::0 | 80.0            | 29 |                  | 93         |
| 1951         |     | June 1           |                   | 29       | Sept. 15             |      |                 | 29 |                  | 106<br>86  |
| 1952         |     | June 14          |                   | 32       | Sept. 8              |      |                 | 29 |                  |            |
| 1953         |     | May 23           |                   | 32       | Sept. 16             |      |                 | 31 |                  | 116<br>124 |
| 1954         |     | May 29           |                   | 31       | Sept. 30             |      |                 | 26 |                  | 111        |
| 1955         |     | May 25           |                   | 28       | Sept. 13             |      |                 | 31 |                  | 122        |
| 1956         |     | May 3            |                   | 26       | Sept. 2              |      |                 | 30 |                  | 109        |
| 1957         |     | May 23           |                   | 30       | Sept. 9              |      |                 | 31 |                  | 136        |
| 1958         |     | May 14           |                   | 31       | Sept. 27             |      |                 | 30 |                  | 80         |
| 1959         |     | June 11          |                   | 32       | Aug. 30              |      |                 | 32 |                  | 80         |
| 1960         |     | June 18          |                   | 32       | Sept. 6              |      |                 | 29 |                  | 129        |
| 1961         |     | May 6            |                   | 32       | Sept. 12             |      |                 | 25 |                  | 96         |
| 1962         |     | May 30           |                   | 32       | Sept. 3              |      |                 | 32 |                  | 119        |
| 1963         |     | May 22           |                   | 28       | Sept. 18             |      |                 | 28 |                  | 109        |
| 1964         |     | May 25           |                   | 26       | Sept. 11             |      |                 | 31 |                  | 91         |
| 1965         |     | June 7           |                   | 30       | Sept. 6              |      |                 | 28 |                  | 135        |
| 1966         |     | May 18           |                   | 26       | Sept. 30             |      |                 | 32 |                  | 120        |
| 1967         |     | May 26           |                   | 28       | Sept. 23             |      |                 | 32 |                  | 124        |
| 1968         |     | May 20           |                   | 32       | Sept. 21             |      |                 | 32 |                  | 85         |
| 1969         |     | June 13          |                   | 28<br>32 | Sept. 6<br>Sept. 10  |      |                 | 31 |                  | 122        |
| 1970         |     | May 11           |                   | 32       | Sept. 10             |      |                 | 28 |                  | 69         |
| 1971         |     | July 7           |                   | 32       | Sept. 14             |      |                 | 32 |                  | 131        |
| 1972         |     | May 4            |                   | 31       | Sept. 12             |      |                 | 31 |                  | 103        |
| 1973<br>1974 |     | May 22           |                   | 31       | Sept. 2              |      |                 | 30 |                  | 107        |
| 1974         |     | May 18           |                   | 32       | Sept. 12             |      |                 | 32 |                  | 110        |
| 1975         |     | May 25<br>May 21 |                   | 30       | Sept. 8              |      |                 | 30 |                  | 110        |
| 1977         |     | May 16           |                   | 29       | Sept. 27             |      |                 | 28 |                  | 133        |
| 1978         |     | May 23           |                   | 31       | Sept. 17             |      |                 | 28 |                  | 116        |
| 1979         |     | May 30           |                   | 31       | Oct. 1               |      |                 | 32 |                  | 123        |
| 1980         |     | June 4           |                   | 32       | Sept. 24             |      |                 | 31 |                  | 111        |
| 1981         |     | May 5            |                   | 28       | Sept. 24             |      |                 | 25 |                  | 142        |
| 1982         |     | May 30           |                   | 31       | Sept. 15             |      |                 | 23 |                  | 108        |
| 1983         |     | May 15           |                   | 31       | Sept. 6              |      |                 | 31 |                  | 114        |
| 1984         |     | June 2           |                   | 32       | Sept. 13             |      |                 | 30 |                  | 103        |
| 1985         |     | May 13           |                   | 26       | Sept. 7              |      |                 | 32 |                  | 117        |
| 1986         |     | May 16           |                   | 31       | Sept. 7              |      |                 | 31 |                  | 114        |
| 1987         |     | May 22           |                   | 28       | Sept. 17             |      |                 | 29 |                  | 117        |
| 1988         |     | May 3            |                   | 30       | Sept. 12             |      |                 | 30 |                  | 131        |
| 1989         |     | May 21           |                   | 32       | Sept. 9              |      |                 | 29 |                  | 110        |
| 1990         |     | May 10           |                   | 31       | Oct. 6               |      |                 | 24 |                  | 149        |
| 1991         |     | May 27           |                   | 32       | Sept. 19             |      |                 | 32 |                  | 115        |
| 1992         |     | May 17           |                   | 30       | Aug. 24              |      |                 | 32 |                  | 99         |
| 1993         |     | May 4            |                   | 32       | Sept. 13             |      |                 | 29 |                  | 132        |
| 1994         |     | April 30         |                   | 31       | Sept. 12             |      |                 | 32 |                  | 135        |
| 1995         |     | May 27           |                   | 32       | Sept. 21             |      |                 | 22 |                  | 117        |
| 1996         |     | May 21           |                   | 31       | Sept. 23             |      |                 | 27 |                  | 125        |
| 1997         |     | May 8            |                   | 30       | Oct. 8               |      |                 | 30 |                  | 152        |
| Mean f       | or  |                  |                   |          |                      |      |                 |    |                  |            |
| years        |     | May 24           |                   | 30       | Sept. 14             |      |                 | 30 |                  | 114        |
|              |     | 10000            |                   |          |                      |      |                 |    |                  |            |

Table 8. Temperature extremes at the Northwestern Agricultural Research Center, Kalispell, MT from 1950-97.

|      | MINIMUI           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MAXIMUN         | 1<br>SOME TEMPERATURE                   |
|------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------|
| YEAR | DATE              | TEMPERATURE<br>DEGREES F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DATE            | DEGREES F                               |
| 1950 | Jan. 30           | -40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Aug. 31         | 88                                      |
| 1951 | Jan. 28           | -25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Aug. 2          | 92                                      |
| 1952 | Jan. 1            | -14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Aug. 31         | 90                                      |
| 1953 | Jan. 6            | 0.67 8 02.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | 97                                      |
| 1954 | Jan. 20           | -32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | oury o          | 90                                      |
| 1955 | Mar. 5            | -20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | 0.98 96                                 |
| 1956 | Feb 16            | -25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | 90                                      |
| 1957 | lan 26            | -34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | July 13         | 8 18 9 91 6                             |
| 1958 | Jan. 1            | 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Aug. 11         | 94                                      |
| 1959 | Nov. 16           | -30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | July 23         | 96                                      |
| 1960 | Mar. 3            | -32 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | July 19         | 98                                      |
| 1961 | Jan. 2            | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Aug. 4          | 100                                     |
| 1962 | Jan. 21           | -32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Aug 16          | 92                                      |
| 1963 | Jan. 30           | -24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Aug. 9          | 94                                      |
|      | Dec. 17           | -28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | July 8          | 91                                      |
| 1964 | Mar. 24           | -10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | July 21         | 89                                      |
| 1965 |                   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Aug. 2.25       | 91                                      |
| 1966 | Mar. 4<br>Jan. 24 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A 10            | 95                                      |
| 1967 |                   | -23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Luky 7          | 94                                      |
| 1968 | Jan. 21           | -13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A 24            | 97                                      |
| 1969 | Jan. 25           | And the second s | 4 04 05         | 0.5                                     |
| 1970 | Jan. 15           | 7.84 8.55-14 8.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | 06                                      |
| 1971 | Jan. 12           | A.9. 9 8 9 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.40            | 02                                      |
| 1972 | Jan. 28           | 200 0.8-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | 07                                      |
| 1973 | Jan. 11           | -22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | 00                                      |
| 1974 | Jan. 5            | 3.58 a.F18 8.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 00                                      |
| 1975 | Jan. 12, Feb. 9   | -16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | 00                                      |
| 1976 | Feb. 5            | 2.69 0 0 16-4 6.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 | 07                                      |
| 1977 | Dec. 31           | T (a 0.0911 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                                         |
| 1978 | Dec. 31           | -31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •               | 91                                      |
| 1979 | Jan. 1            | -31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | 97                                      |
| 1980 | Jan. 29           | -20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •               | 92                                      |
| 1981 | Feb. 21           | -21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Aug. 26,27      | 97                                      |
| 1982 | Feb. 9,10         | -23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | 91                                      |
| 1983 | Dec. 25           | -29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , , , , ,       | 97                                      |
| 1984 | Jan. 18           | -14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | 97                                      |
| 1985 | Jan. 30           | -24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | July 9,11,23    | 94                                      |
| 1986 | Nov. 10           | 59.8 8 60 1 50 2<br>62 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 | 93                                      |
| 1987 | Jan. 16, Dec. 31  | - 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | 95                                      |
| 1988 | Jan. 6            | -17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | duly 22, rag. o | 92                                      |
| 1989 | Feb. 4, 5         | -20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | 96<br>94                                |
| 1990 | Dec. 30           | -33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Aug 16          |                                         |
| 1991 | Jan. 2, 3         | -11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Aug. 10         | 32                                      |
| 1992 | Jan. 20           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Aug. 15         | 30_                                     |
| 1993 | Feb. 18           | -19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | May 13          | 91                                      |
| 1994 | Feb. 8            | -25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A 4 E           | 7 7 7 7 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 |
| 1995 | Jan. 4            | 5.58 8.5 <mark>-11</mark> 4.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A C             | 88                                      |
| 1996 | Jan. 31           | -32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 1 40          | 91                                      |
| 1000 | Jan. 13           | -14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Aug. 4          | 92                                      |

Table 9. Summary of temperature records at the Northwestern Agricultural Research Center
January 1950 through December 1997.

|      |              |      | AVER | AGE TE |      |                 |      | TH AND | YEAR  |      |      |      |      |
|------|--------------|------|------|--------|------|-----------------|------|--------|-------|------|------|------|------|
| DATE | JAN.         | FEB. | MAR. | APR.   |      | EES FAI<br>JUNE |      |        | SEPT. | OCT. | NOV. | DEC. | MEAN |
| DAIL |              |      |      |        |      |                 |      |        |       |      | 04.5 | 00.5 | 44.4 |
| 1950 | 4.2          | 25.6 | 31.2 | 41.9   | 49.7 | 57.0            | 64.0 |        | 53.8  | 45.9 | 31.5 | 29.5 |      |
| 1951 | 20.2         | 27.7 | 27.0 | 42.1   | 50.0 | 54.2            | 64.7 |        | 50.6  | 40.8 | 30.8 | 16.9 |      |
| 1952 | 18.0         | 26.6 | 29.3 | 45.8   | 52.4 | 56.7            | 61.8 |        | 56.0  | 45.5 | 30.4 | 27.6 |      |
| 1953 | 36.0         | 32.9 | 37.2 | 41.2   | 49.5 | 54.6            | 64.3 |        | 56.1  | 46.2 | 37.0 |      |      |
| 1954 | 21.1         | 31.2 | 29.6 | 40.8   | 52.5 | 54.9            | 63.4 | 60.1   | 52.9  | 41.5 | 38.8 | 28.8 |      |
| 1955 | 25.7         |      | 24.5 | 39.1   | 47.7 | 58.8            | 62.7 | 62.2   | 52.5  | 44.6 | 23.5 | 21.8 |      |
| 1956 | 23.3         |      | 31.5 | 44.2   | 54.0 | 59.0            | 64.8 | 62.0   | 55.2  | 44.1 | 30.9 | 28.5 |      |
| 1957 | 10.2         |      |      | 43.7   | 55.6 | 59.7            | 65.4 | 62.4   | 55.8  | 41.4 | 32.1 | 32.4 |      |
| 1958 | 29.1         |      |      | 43.6   | 59.6 | 62.3            | 65.2 |        | 55.5  | 44.6 | 32.8 | 28.2 |      |
| 1959 | 24.7         |      | 35.3 | 45.2   | 48.1 | 59.9            | 64.5 |        | 53.0  | 43.9 | 25.5 | 27.6 | 42.7 |
| 1960 | 19.4         |      |      | 44.3   | 50.6 | 59.6            | 68.8 |        | 55.0  | 45.2 | 34.4 | 24.9 | 43.4 |
| 1961 | 27.8         |      |      | 42.0   | 52.6 | 64.7            | 66.2 |        | 49.6  | 42.3 | 28.2 | 23.6 | 45.0 |
| 1962 | 17.4         |      |      | 47.2   | 51.5 | 58.6            | 62.1 |        | 54.7  | 44.7 | 38.0 | 32.5 | 43.8 |
|      | 11.8         |      | 38.7 | 42.3   | 51.4 | 59.4            | 63.0 |        | 58.7  | 47.4 | 35.8 | 24.0 | 44.2 |
| 1963 |              |      |      | 42.8   | 51.1 | 58.7            | 64.3 |        | 51.2  | 43.7 |      | 22.1 | 42.8 |
| 1964 | 28.5         |      |      | 45.2   | 50.6 | 57.6            | 64.6 |        | 46.4  | 47.6 | 35.0 |      |      |
| 1965 | 30.2         |      |      |        | 54.3 | 56.0            | 64.5 |        | 59.3  | 43.4 | 33.4 | 30.2 |      |
| 1966 | 26.3         |      |      | 42.9   |      | 59.4            | 66.1 |        | 61.0  | 45.9 | 33.8 | 25.1 | 45.7 |
| 1967 | 31.0         |      |      | 40.6   | 52.2 | 59.0            | 64.6 |        | 53.8  | 42.9 | 33.4 |      |      |
| 1968 | 23.3         |      |      | 42.0   | 49.8 |                 |      |        | 56.0  | 40.0 | 35.2 |      |      |
| 1969 | 13.1         | 24.0 |      | 47.1   | 53.9 | 58.8            | 62.3 |        | 48.7  | 40.1 | 31.3 | 26.2 |      |
| 1970 | 21.9         | 29.9 |      | 40.2   | 53.2 | 62.0            | 64.8 |        |       | 40.1 | 34.1 | 22.0 |      |
| 1971 | 23.6         | 29.9 |      | 43.6   | 52.5 | 54.9            | 61.9 |        | 49.5  | 40.4 | 33.7 | 19.9 | 42.2 |
| 1972 | 17.0         |      |      | 40.6   | 51.9 | 59.3            | 61.5 |        | 50.2  |      | 29.3 | 30.8 | 43.7 |
| 1973 | 20.7         | 27.8 |      | 42.2   | 51.5 |                 | 65.1 |        | 53.3  | 44.1 |      | 30.8 | 43.7 |
| 1974 | 21.0         | 32.3 |      | 42.7   | 48.0 |                 | 64.8 |        | 52.8  | 43.6 | 34.8 |      | 41.8 |
| 1975 | 21.5         | 21.5 |      | 37.6   | 48.6 | 55.9            | 69.1 |        | 52.1  | 42.9 | 35.4 | 27.5 | 43.5 |
| 1976 | 27.7         | 29.9 | 31.0 | 43.4   | 51.9 |                 | 63.4 |        | 55.2  | 42.4 | 33.1 | 28.6 |      |
| 1977 | 20.0         | 30.9 | 34.4 | 45.0   | 49.7 | 61.5            | 62.6 |        | 51.7  | 42.5 | 30.4 | 22.0 | 42.8 |
| 1978 | 21.6         | 26.1 | 34.3 | 43.7   | 48.1 | 59.1            | 63.4 |        | 53.7  | 43.7 | 27.2 | 18.8 | 41.7 |
| 1979 | 4.1          | 24.9 | 34.7 | 42.3   | 51.5 | 59.4            | 65.0 | 65.4   | 56.9  | 46.6 | 30.7 | 33.0 | 42.9 |
| 1980 | 16.3         | 29.0 | 32.6 | 47.1   | 54.8 | 56.9            | 63.5 | 58.6   | 54.1  | 45.3 | 35.8 | 32.2 |      |
| 1981 | 30.1         | 31.3 | 38.5 | 44.5   | 52.5 | 53.8            | 62.8 | 66.4   | 55.3  | 43.2 | 36.0 | 27.0 | 45.1 |
| 1982 | 21.6         | 24.5 | 37.5 | 39.4   | 49.8 | 59.8            | 61.1 | 63.0   | 53.4  | 41.0 | 29.1 | 25.9 | 42.2 |
| 1983 | 30.3         | 33.8 | 37.9 | 42.4   | 51.9 | 57.6            | 59.6 | 65.4   | 50.4  | 42.9 | 36.6 | 11.1 | 43.3 |
| 1984 | 27.6         |      | 38.3 | 42.2   | 48.7 | 56.4            | 65.3 | 64.6   | 49.5  | 40.0 | 32.6 | 20.6 | 43.2 |
| 1985 | 19.2         |      | 30.8 | 44.8   | 53.7 | 57.6            | 68.3 | 60.2   | 47.8  | 40.8 | 18.6 | 18.3 |      |
| 1986 | 25.4         | 25.6 | 40.6 | 43.8   | 53.7 | 63.9            | 59.9 |        | 50.2  | 43.0 | 30.3 | 24.9 |      |
| 1987 | 22.2         | 27.9 | 35.0 | 47.8   | 55.6 | 61.6            | 62.9 |        | 56.1  | 43.2 | 35.3 | 25.4 | 44.4 |
| 1988 | 20.5         | 30.3 | 37.8 | 45.7   | 51.4 | 60.9            | 63.7 |        | 53.8  | 47.5 | 36.3 | 23.3 | 44.6 |
| 1989 | 27.5         |      | 28.8 | 44.2   | 49.6 | 59.8            | 65.4 |        | 52.7  | 42.7 | 35.8 | 25.3 | 42.2 |
| 1990 | 30.5         | 24.5 | 34.8 | 45.2   | 49.8 | 57.2            | 65.2 |        | 59.2  | 41.9 | 36.1 | 16.5 | 43.8 |
| 1991 |              | 34.6 | 32.8 | 42.4   | 50.3 | 55.1            | 64.0 |        | 54.4  | 40.6 | 32.1 | 29.3 | 43.3 |
|      | 18.3<br>28.7 | 34.5 | 32.8 | 45.1   | 53.5 | 55.5            | 61.2 |        | 51.1  | 44.7 | 33.1 | 19.4 |      |
| 1992 |              |      | 33.7 | 43.1   | 56.0 | 56.5            | 56.6 |        | 51.4  | 44.4 | 25.0 | 25.4 |      |
| 1993 | 14.7         | 18.4 |      |        |      | 57.3            | 66.4 |        | 56.3  | 43.3 | 32.5 | 27.1 | 45.0 |
| 1994 | 32.9         | 20.6 | 37.5 | 45.4   | 54.0 |                 |      | 59.5   | 54.9  | 41.1 | 34.9 | 26.7 |      |
| 1995 | 23.6         | 33.7 | 33.1 | 42.6   | 51.6 | 56.3            | 63.1 |        |       | 42.1 | 27.3 | 19.8 |      |
| 1996 | 17.4         | 24.0 | 29.0 | 43.2   | 46.6 | 58.5            | 65.4 |        | 52.3  |      | 33.0 | 27.9 |      |
| 1997 | 19.8         | 28.0 | 32.3 | 38.3   | 52.3 | 57.8            | 62.8 | 63.8   | 55.6  | 43.7 | 33.0 | 21.5 | 72.3 |
| MEAN | 22.2         | 27.6 | 33.7 | 43.2   | 51.7 | 58.3            | 63.9 | 63.0   | 53.5  | 43.3 | 32.4 | 25.3 | 43.2 |

Table 10. Summary of precipitation records at the Northwestern Agricultural Research Center, Kalispell, MT, January 1950 thru December 1997.

|      |      |              | - S - I M        |                   |      |      | 12/2 |      |       |      |      |              |                |
|------|------|--------------|------------------|-------------------|------|------|------|------|-------|------|------|--------------|----------------|
| DATE | JAN. | Tota<br>FEB. | Precipit<br>MAR. | ation (in<br>APR. | MAY  | JUNE | JULY | AUG. | SEPT. | ост. | NOV. | DEC.         | TOTAL          |
| 1950 | 2.62 | 1.13         | 2.31             | 0.84              | 0.15 | 3.90 | 3.12 | 0.75 | 0.52  | 2.30 | 1.16 | 2.48         | 21.28          |
| 1951 | 0.94 | 1.29         | 0.62             | 2.32              | 3.77 | 2.26 | 1.03 | 2.86 | 1.49  | 5.62 | 1.01 | 3.31         | 26.52          |
| 1952 | 1.03 | 0.98         | 0.97             | 0.17              | 1.32 | 3.95 | 0.56 |      | 0.13  | 0.05 | 0.60 | 0.98         | 11.43          |
| 1953 | 1.84 | 1.14         | 0.98             | 2.07              | 2.00 | 3.31 | Т    |      | 0.71  | 0.03 | 0.87 | 1.30         | 15.87          |
| 1954 | 2.65 | 0.79         | 0.83             | 0.79              | 1.52 | 2.98 | 2.91 | 3.79 | 1.09  | 0.54 | 1.00 | 0.43         | 19.32          |
| 1955 | 1.00 | 1.31         | 0.44             | 0.82              | 1.18 | 1.86 | 3.08 |      |       | 1.89 | 1.97 | 2.38         | 17.57<br>19.79 |
| 1956 | 1.76 | 1.53         | 0.87             | 1.28              | 1.06 | 4.20 | 2.13 | 3.21 | 1.16  | 1.10 | 0.53 | 0.96         | 14.55          |
| 1957 | 1.47 | 1.14         | 0.75             | 1.22              | 1.75 | 2.51 | 0.52 | 0.78 | 0.10  | 1.59 | 0.96 | 1.76<br>2.77 | 21.67          |
| 1958 | 1.56 | 2.67         | 0.97             | 1.47              | 2.20 | 2.56 | 0.84 | 0.58 | 1.99  | 1.16 | 2.90 |              | 24.65          |
| 1959 | 1.95 | 1.33         | 0.75             | 1.62              | 4.10 | 1.75 | a,eT |      | 4.22  | 3.36 | 4.32 | 0.34         | 16.48          |
| 1960 | 1.67 | 1.10         | 1.01             | 1.23              | 3.27 | 0.69 | 0.13 | 2.43 | 0.55  | 1.44 | 1.72 | 1.24         | 21.68          |
| 1961 | 0.65 | 1.46         | 1.96             | 2.26              | 4.02 | 1.45 | 0.76 | 0.64 | 3.40  | 1.22 | 1.77 | 2.09         | 14.25          |
| 1962 | 1.33 | 1.15         | 1.59             | 0.96              | 2.59 | 1.15 | 0.11 | 0.72 | 0.58  | 1.85 | 1.31 | 0.91         | 18.79          |
| 1963 | 1.69 | 1.21         | 0.85             | 1.07              | 0.57 | 5.00 | 1.44 | 2.10 | 1.46  | 0.75 | 0.95 | 1.70         |                |
| 1964 | 1.46 | 0.41         | 1.57             | 0.87              | 3.33 | 3.86 | 3.01 | 1.64 | 2.27  | 0.85 | 1.62 | 3.62         | 24.51          |
| 1965 | 2.25 | 0.64         | 0.24             | 2.55              | 0.81 | 2.30 | 1.15 | 4.74 | 1.72  | 0.21 | 1.31 | 0.55         | 18.47          |
| 1966 | 1.42 | 0.67         | 0.53             | 0.76              | 1.18 | 6.57 | 2.49 | 1.64 | 0.79  | 1.34 | 3.33 | 1.68         | 22.40          |
| 1967 | 1.50 | 0.62         | 1.27             | 0.99              | 1.30 | 2.53 | 0.02 | 0.01 | 0.91  | 1.88 | 0.62 | 1.16         | 12.81          |
| 1968 | 0.79 | 1.15         | 0.68             | 0.57              | 3.92 | 2.22 | 1.00 | 3.42 | 4.51  | 2.39 | 1.59 | 3.12         | 25.36          |
| 1969 | 3.05 | 0.75         | 0.69             | 1.39              | 1.19 | 5.21 | 0.70 | 0.09 | 1.54  | 1.90 | 0.31 | 1.14         | 17.96          |
| 1970 | 3.10 | 0.89         | 1.49             | 0.76              | 1.97 | 4.37 | 3.08 | 0.44 | 1.79  | 1.38 | 1.75 | 0.99         | 22.01          |
| 1971 | 1.84 | 0.77         | 0.69             | 0.58              | 2.45 | 4.42 | 1.31 | 1.11 | 0.94  | 0.87 | 1.70 | 1.62         | 18.30          |
| 1972 | 1.10 | 1.65         | 2.11             | 0.95              | 1.48 | 3.28 | 1.77 | 0.98 | 1.38  | 1.84 | 0.80 | 2.19         | 19.53          |
| 1973 | 0.52 | 0.56         | 0.70             | 0.45              | 1.13 | 2.14 | 0.01 | 0.63 | 1.37  | 1.41 | 2.95 | 1.94         | 13.81          |
| 1974 | 1.35 | 1.32         | 1.40             | 3.36              | 1.82 | 1.80 | 1.01 | 0.62 | 0.80  | 0.12 | 1.10 | 1.31         | 16.01          |
| 1975 | 1.56 | 1.08         | 1.50             | 1.27              | 1.50 | 1.40 | 1.08 | 4.26 | 1.18  | 2.96 | 0.85 | 1.39         | 20.03          |
| 1976 | 0.91 | 1.12         | 0.34             | 1.92              | 1.90 | 2.49 | 1.49 | 3.42 | 0.96  | 0.62 | 0.73 | 0.86         | 16.76          |
| 1977 | 0.83 | 0.71         | 1.40             | 0.41              | 2.90 | 0.52 | 3.60 | 1.50 | 2.84  | 0.56 | 1.62 | 4.10         | 20.99          |
| 1978 | 2.15 | 0.99         | 0.73             | 2.54              | 3.56 | 2.63 | 3.90 | 3.34 | 1.90  | 0.15 | 0.96 | 0.91         | 23.76          |
| 1979 | 1.70 | 1.45         | 0.82             | 2.33              | 2.67 | 1.23 | 0.40 | 1.79 | 1.03  | 1.75 | 0.50 | 1.03         | 16.70          |
| 1980 | 1.53 | 2.03         | 0.97             | 1.88              | 5.48 | 3.89 | 1.08 | 2.45 | 1.20  | 0.83 | 0.78 | 2.58         | 24.70          |
| 1981 | 1.81 | 1.85         | 2.17             | 1.75              | 3.86 | 4.70 | 1.17 | 0.96 | 0.77  | 0.56 | 1.49 | 1.91         | 23.00          |
| 1982 | 2.38 | 1.48         | 1.16             | 1.60              | 1.25 | 2.41 | 2.06 | 1.17 | 2.37  | 0.75 | 1.39 | 1.60         | 19.62          |
| 1983 | 0.93 | 0.85         | 1.71             | 2.41              | 1.20 | 2.96 | 3.66 | 1.16 | 1.70  | 1.13 | 1.96 | 2.57         | 22.24          |
| 1984 | 0.80 | 2.19         | 1.81             | 1.93              | 2.91 | 2.07 | 0.31 | 0.55 | 2.15  | 2.25 | 1.40 | 1.29         | 19.66          |
| 1985 | 0.31 | 1.28         | 0.90             | 1.31              | 2.81 | 1.89 | 0.35 | 1.62 | 5.35  | 1.55 | 1.61 | 0.51         | 19.49          |
| 1986 | 2.39 | 2.33         | 0.50             | 1.34              | 2.92 | 1.83 | 2.09 | 0.81 | 3.63  | 0.80 | 1.78 | 0.63         | 21.05          |
| 1987 | 0.38 | 0.46         | 3.47             | 1.15              | 1.89 | 1.95 | 4.85 | 0.98 | 0.81  | 0.12 | 0.91 | 1.18         | 18.15          |
| 1988 | 0.98 | 1.03         | 0.77             | 1.36              | 3.60 | 1.98 | 1.07 | 0.13 | 2.30  | 0.62 | 1.39 | 1.69         | 16.92          |
| 1989 | 1.39 | 1.48         | 2.29             | 1.09              | 2.70 | 2.05 | 2.70 | 3.69 | 1.50  | 2.29 | 3.75 | 1.92         | 26.85          |
| 1990 | 0.96 | 1.00         | 1.76             | 1.63              | 3.74 | 2.68 | 2.34 | 2.44 | T Car |      | 1.37 | 2.60         | 22.84          |
| 1991 | 1.41 | 0.41         | 0.72             | 1.21              | 2.72 | 5.36 | 0.77 | 1.15 | 0.80  | 0.75 | 2.26 | 0.58         | 18.14          |
| 1992 | 1.17 | 0.61         | 0.83             | 1.18              | 1.65 | 5.34 | 2.24 | 0.94 | 1.21  | 1.07 | 2.37 | 1.53         | 20.14          |
| 1993 | 1.68 | 0.60         | 0.73             | 3.77              | 2.22 | 4.00 | 7.00 | 1.19 | 1.54  | 0.83 | 1.23 | 1.27         | 26.06          |
| 1994 | 1.43 | 1.49         | 0.11             | 2.01              | 1.79 | 2.59 | 0.10 | 0.23 | 0.46  | 2.12 | 1.89 | 1.07         | 15.29          |
| 1995 | 1.17 | 0.90         | 2.33             | 2.25              | 1.44 | 5.63 | 1.91 | 1.47 | 1.21  | 2.75 | 2.33 | 1.91         | 25.30          |
| 1996 | 2.22 | 1.18         | 1.19             | 3.32              | 4.58 | 2.05 | 0.95 | 0.80 | 2.67  | 1.58 | 3.99 | 3.52         | 28.05          |
| 1997 | 1.50 | 1.62         | 1.18             | 1.69              | 2.62 | 3.41 | 0.99 | 1.94 | 2.36  | 0.94 | 0.33 | 0.42         | 19.00          |
| MEAN | 1.50 | 1.16         | 1.16             | 1.51              | 2.33 | 2.94 | 1.63 | 1.55 | 1.60  | 1.38 | 1.56 | 1.65         | 20.00          |

Table 11. Summary of growing degree day (GDD) data at the Northwestern Agricultural Research Center, May 1, 1949 through October 31, 1997. GDD = Temp Max + Temp Min÷2 - 50 Max Temp > 86F substituted with 86; Min Temp < 50F substituted with 50

| Average growing degree days by month and year.  YEAR MAY JUNE JULY AUG. SEPT. OCT. TOTAL |      |       |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       |        |     |  |  |  |  |
|------------------------------------------------------------------------------------------|------|-------|-------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|--------|-----|--|--|--|--|
| YEAR                                                                                     | DT T | MAY   | JUNE  | JULY  | AUG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SEPT. | OCT.  | TOTAL  | 8., |  |  |  |  |
| 1949                                                                                     |      | 314.0 | 356.5 | 467.0 | 499.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 322.0 | 57.5  | 2016.5 |     |  |  |  |  |
| 950                                                                                      |      | 208.0 | 308.0 | 459.5 | 465.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 314.0 | 97.5  | 1852.0 |     |  |  |  |  |
| 951                                                                                      |      | 223.0 | 251.5 | 488.5 | 411.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 212.5 | 33.0  | 1620.0 |     |  |  |  |  |
|                                                                                          |      |       | 309.0 | 458.5 | 472.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 358.0 | 199.0 | 2040.5 |     |  |  |  |  |
| 952                                                                                      |      | 243.5 | 252.5 | 503.5 | 455.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 336.0 | 172.0 | 1914.0 |     |  |  |  |  |
| 953                                                                                      |      | 194.5 |       |       | 387.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 248.0 | 61.5  | 1695.5 |     |  |  |  |  |
| 954                                                                                      |      | 270.5 | 255.0 | 473.5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 263.0 | 103.5 | 1838.0 |     |  |  |  |  |
| 955                                                                                      |      | 165.0 | 364.5 | 439.5 | 502.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 316.5 | 98.0  | 1976.5 |     |  |  |  |  |
| 956                                                                                      |      | 282.0 | 351.5 | 491.0 | 437.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 60.0  | 2064.5 |     |  |  |  |  |
| 957                                                                                      |      | 312.5 | 350.5 | 509.5 | 466.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 366.0 | 136.0 | 2314.0 |     |  |  |  |  |
| 1958                                                                                     |      | 427.5 | 398.0 | 504.5 | 553.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 295.0 |       |        |     |  |  |  |  |
| 959                                                                                      |      | 187.0 | 370.0 | 499.5 | 417.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 211.0 | 68.0  | 1753.0 |     |  |  |  |  |
| 960                                                                                      |      | 202.5 | 380.5 | 563.0 | 383.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 334.0 | 132.5 | 1995.5 |     |  |  |  |  |
| 961                                                                                      |      | 248.0 | 479.5 | 537.5 | 548.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190.0 | 99.5  | 2103.0 |     |  |  |  |  |
| 962                                                                                      |      | 201.0 | 367.5 | 454.0 | 438.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 326.0 | 86.5  | 1873.0 |     |  |  |  |  |
| 1963                                                                                     |      | 265.0 | 335.0 | 468.0 | 508.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 378.0 | 150.0 | 2104.5 |     |  |  |  |  |
| 1964                                                                                     |      | 219.5 | 324.5 | 484.5 | 357.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 208.0 | 88.0  | 1681.5 |     |  |  |  |  |
| 965                                                                                      |      | 222.0 | 328.5 | 488.5 | 453.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 126.0 | 173.0 | 1791.5 |     |  |  |  |  |
| 966                                                                                      |      | 306.5 | 291.0 | 495.0 | 445.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 375.0 | 97.0  | 2010.0 |     |  |  |  |  |
| 967                                                                                      |      | 255.0 | 354.5 | 538.0 | 545.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 444.0 | 101.5 | 2238.0 |     |  |  |  |  |
| 968                                                                                      |      | 207.5 | 348.0 | 497.0 | 407.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 243.0 | 57.5  | 1760.0 |     |  |  |  |  |
| 969                                                                                      |      | 293.5 | 338.5 | 460.5 | 503.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 306.5 | 38.0  | 1940.5 |     |  |  |  |  |
| 1970                                                                                     |      | 281.5 | 391.0 | 472.5 | 474.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 196.5 | 72.5  | 1888.5 |     |  |  |  |  |
| 1971                                                                                     |      | 259.0 | 263.0 | 434.0 | 553.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 217.0 | 100.0 | 1826.5 |     |  |  |  |  |
|                                                                                          |      | 228.5 | 348.5 | 425.0 | 505.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 226.0 | 87.0  | 1820.5 |     |  |  |  |  |
| 1972                                                                                     |      |       | 320.5 | 515.0 | 497.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 266.5 | 106.5 | 1965.0 |     |  |  |  |  |
| 1973                                                                                     |      | 259.5 |       |       | 432.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 314.0 | 179.0 | 1944.5 |     |  |  |  |  |
| 1974                                                                                     |      | 152.5 | 390.5 | 476.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 77.5  | 1757.0 |     |  |  |  |  |
| 1975                                                                                     |      | 180.0 | 283.5 | 563.0 | 362.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 290.5 | 119.5 | 1828.0 |     |  |  |  |  |
| 1976                                                                                     |      | 251.0 | 247.0 | 463.0 | 400.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 347.5 |       | 1780.0 |     |  |  |  |  |
| 1977                                                                                     |      | 184.0 | 419.0 | 431.5 | 428.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 224.5 | 93.0  |        |     |  |  |  |  |
| 1978                                                                                     |      | 131.0 | 348.0 | 442.0 | 375.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 243.5 | 145.0 | 1684.5 |     |  |  |  |  |
| 1979                                                                                     |      | 225.5 | 368.5 | 484.5 | 510.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 362.0 | 163.0 | 2114.0 |     |  |  |  |  |
| 980                                                                                      |      | 268.0 | 290.0 | 438.5 | 361.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 254.0 | 151.0 | 1762.5 |     |  |  |  |  |
| 1981                                                                                     |      | 209.0 | 210.5 | 445.5 | 517.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 312.5 | 73.0  | 1767.5 |     |  |  |  |  |
| 1982                                                                                     |      | 195.0 | 369.5 | 402.5 | 473.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 282.0 | 66.5  | 1788.5 |     |  |  |  |  |
| 1983                                                                                     |      | 259.5 | 315.5 | 358.5 | 510.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 229.0 | 98.5  | 1771.5 |     |  |  |  |  |
| 1984                                                                                     |      | 162.0 | 294.5 | 511.0 | 511.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 214.0 | 108.5 | 1801.0 |     |  |  |  |  |
| 1985                                                                                     |      | 294.5 | 347.0 | 562.0 | 394.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 162.0 | 67.0  | 1827.0 |     |  |  |  |  |
| 1986                                                                                     |      | 247.5 | 456.5 | 363.0 | 529.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 152.0 | 86.0  | 1834.0 |     |  |  |  |  |
| 1987                                                                                     |      | 287.5 | 404.0 | 434.5 | 388.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 352.5 | 154.0 | 2021.0 |     |  |  |  |  |
| 1988                                                                                     |      | 218.5 | 397.0 | 449.0 | 503.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 276.5 | 197.5 | 2041.5 |     |  |  |  |  |
| 989                                                                                      |      | 178.5 | 350.5 | 516.0 | 388.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 276.5 | 80.0  | 1790.0 |     |  |  |  |  |
|                                                                                          |      | 165.5 | 296.0 | 485.0 | 459.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 417.5 | 75.0  | 1898.0 |     |  |  |  |  |
| 990                                                                                      |      |       |       |       | The second control of | 312.5 | 170.5 | 1864.5 |     |  |  |  |  |
| 991                                                                                      |      | 175.0 | 243.0 | 464.0 | 441.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 223.0 | 140.0 | 1867.0 |     |  |  |  |  |
| 1992                                                                                     |      | 277.0 | 410.5 | 375.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 114.0 | 1581.5 |     |  |  |  |  |
| 993                                                                                      |      | 301.5 | 273.5 | 260.0 | 383.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 249.5 |       | 2061.5 |     |  |  |  |  |
| 1994                                                                                     |      | 261.5 | 315.0 | 512.5 | 529.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 361.0 | 82.0  |        |     |  |  |  |  |
| 1995                                                                                     |      | 219.5 | 275.0 | 427.5 | 381.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 303.5 | 39.0  | 1646.0 |     |  |  |  |  |
| 1996                                                                                     |      | 91.5  | 322.0 | 498.0 | 435.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 214.5 | 108.5 | 1670.0 |     |  |  |  |  |
| 1997                                                                                     |      | 229.0 | 295.5 | 423.0 | 465.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 280.5 | 69.5  | 1763.0 |     |  |  |  |  |
|                                                                                          |      |       |       |       | 2 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75.0  | 10.1  | 1070.5 |     |  |  |  |  |
| MEAN                                                                                     |      | 233.5 | 333.9 | 467.6 | 456.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 280.3 | 104.8 | 1876.5 |     |  |  |  |  |

1876.5

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

42.0

57.8

57.5

12.7

54.4

30.8

69.0

58.0

25.5

63.6

23.8

29.9

61.2

48.3

35.3

81.8

38.4

30.0

61.2

35.8

45.8

57.3

48.3

39.8

34.5

58.8

50.8

57.0

31.8

52.6

38.3

32.8

54.1

128.9

50.8

118.7

Table 12. Summary of snow data at the Northwestern Agricultural Research Center on a crop year basis, September 1, 1949 thru August 31, 1997.

8.6

5.3

8.0

9.0

6.0

2.1

8.7

5.5

4.0

9.2

6.0

4.5

2.5

16.5

19.8

9.1

8.9

7.6

5.2

4.8

16.0

13.0

1.5

5.5

18.8

16.8

1.0

1.5

9.0

22.0

0.0

1.0

9.6

21.3

15.8

T

2.7

16.8

19.3

12.0

11.0

21.0

10.3

18.4

9.5

8.3

0.0

10.0

16.0

48.1

18.9

4.3

9.3

19.1

17.2

28.0

17.0

7.3

4.3

11.5

15.0

15.0

32.8

23.5

9.9

13.2

10.5

42.8

14.3

3.5

5.0

0.0

0.0

1.4

8.1

3.0

5.7

7.5

1.5

8.5

5.5

6.0

9.5

0.0

8.8

1.0

9.6

1.7

0.8

0.5

6.3

3.9

3.0

10.5

13.5

4.0

9.5

4.0

3.8

9.5

4.1

2.9

7.3

6.0

37.0

6.8

16.5

19.3

24.7

16.9

17.2

0.0

7.8

9.3

28.8

29.2

0.0

4.5

6.4

22.7

15.3

13.0

30.1

22.4

14.3

6.0

6.4

8.6

4.3

14.5

7.0

8.5

9.5

5.5

17.0

8.8

1.5

2.0

23.3

12.5

13.1

15.0

25.7

15.5

2.0

3.4

0.7

9.3

0.0

3.0

7.5

3.5

8.0

8.0

12.7

0.8

11.8

6.0

8.1

9.1

3.3

4.3

0.8

0.5

5.5

3.1

13.5

4.0

6.0

8.5

1.5

0.3

1.0

0.0

9.3

13.3

11.3

4.9

50.8

T

15.0

YEAR

1949-50

1950-51

1951-52

1952-53 1953-54

1954-55

1955-56 1956-57

1957-58

1958-59

1959-60

1960-61

1961-62

1962-63

1963-64

1964-65

1965-66

1966-67

1967-68

1968-69

1969-70

1970-71

1971-72

1972-73

1973-74

1974-75

1975-76

1976-77

1977-78

1978-79

1979-80

1980-81

1981-82

1982-83

1983-84

1984-85

1985-86

1986-87

1987-88

1988-89

1989-90

1990-91

1991-92

1992-93

1993-94

1994-95

1995-96

1996-97

MEAN

SEPT.

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.5

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

T

T

0.0

0.0

0.0

0.0

0.0

0.0

4.0

0.0

3.0

4.5

0.0

0.0

3.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

7.3

0.0

0.0

0.5

0.0

1.5

1.0

10.6

T

|        | Average | e snow a | ccumula | ation by | month ar | nd year |       |      |      |      |       |
|--------|---------|----------|---------|----------|----------|---------|-------|------|------|------|-------|
| OCT.   | NOV.    | DEC.     | JAN.    | FEB.     | MAR.     | APR.    | MAY   | JUNE | JULY | AUG. | TOTAL |
| 0.0    | 1.5     | 17.4     | 25.2    | 7.3      | 4.0      | 0.0     | 0.0   | 0.0  | 0.0  | 0.0  | 55.4  |
|        | 4.0     | 7.0      | 15.1    | 14.8     | 7.8      | 10.0    | T     | 0.0  | 0.0  | 0.0  | 58.7  |
| 0.0    |         | 47.2     | 0.0     | 10.0     | 1.8      | 0.0     | PTI D | 0.0  | 0.0  | 0.0  | 71.1  |
| 5.5    | 6.6     |          | 8.4     | 13.1     | 0.0      | 0.0     | 0.0   | 0.0  | 0.0  | 0.0  | 29.5  |
| 0.0    | 1.0     | 7.0      |         | 5.0      | 5.6      | 4.0     | 0.0   | 0.0  | 0.0  | 0.0  | 54.8  |
| 0.0    | 0.0     | 9.3      | 30.9    |          | 4.5      | 0.0     | 0.0   | 0.0  | 0.0  | 0.0  | 38.4  |
| 0.0    | 2.0     | 2.5      | 16.3    | 13.1     |          |         | 0.0   | 0.0  | 0.0  | 0.0  | 76.9  |
| oT inc | 14.6    | 18.4     | 21.5    | 19.2     | 3.2      | 0.0     |       | 0.0  | 0.0  | 0.0  | 43.0  |
| 1.5    | 2.1     | 3.4      | 20.5    | 15.5     | 0.0      | 0.0     | 0.0   |      | 0.0  | 0.0  | 42.8  |
| 0.3    | 5.5     | 3.7      | 0.0     | 27.1     | 6.2      | 0.0     | 0.0   | 0.0  |      |      | 52.4  |
| 0.0    | 2.1     | 21.5     | 13.7    | 15.1     | 0.0      | 0.0     | 0.0   | 0.0  | 0.0  | 0.0  |       |
| 0.0    | 27.8    | 0.0      | 0.0     | 16.5     | 4.5      | 0.0     | 0.0   | 0.0  | 0.0  | 0.0  | 48.8  |
| 0.0    | 1.6     | 13.4     | 5.4     | 1.8      | 0.0      | 0.0     | 0.0   | 0.0  | 0.0  | 0.0  | 22.2  |
| 5.0    | 20.0    | 23.5     | 17.9    | 8.6      | 3.8      | 0.0     | 0.0   | 0.0  | 0.0  | 0.0  | 78.8  |
| 0.0    | 20.0    | 20.0     |         |          |          |         |       | 0.0  | 0.0  | 00   | 120   |

4.0

0.4

1.5

0.0

0.0

2.7

0.0

0.0

4.0

0.0

0.0

0.0

2.0

1.5

3.1

0.1

0.0

4.0

0.0

0.0

1.0

0.0

0.0

1.0

0.0

1.0

1.0

1.0

0.0

2.0

0.5

0.0

2.6

1.0

T

T

0.0

2.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1.8

0.0

0.0

0.1

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.1

T

Mean snowfall for all years =

#### ACHIEVE TANKMIX STUDY

Achieve is a new postemergence grass herbicide which has demonstrated excellent activity against wild oat. This study was conducted to evaluate Achieve in combination with different broadleaf herbicide for crop tolerance and wild oat control in barley.

Wet soil conditions resulted in severe pythium damage to the barley crop, the extent of which precluded taking yield measurements. No differences in crop injuiry were detected, regardless of the tankmix partner. Although Achieve treatments provided at least 90% wild oat control, slight differences in efficacy were noted. As in the past, reuced wild oat control was noted when Achieve was combined with 2, 4-D ester. However, the addition of ammonium sulfate appears to counter this effect.

#### Site Description

Variety: Gallatin Crop: Barley

6- 9-97

Planting Method: Disk Drill

Depth, Unit: 1.5"

Soil Moisture: Good

Plot Length, Unit: 15 FT Plot Width, Unit: 10 FT Site Location: R-13

Field Preparation/Plot Maintenance:

Fertility: Weed Control: Study Design: RCB

5-13-97 58 Lbs. N and 28 Lbs. P Bronate sprayed at 1.5 pt.

Planting Date: 5-13-97

Rate, Unit: 73 Lbs,

Row Spacing, Unit: 7"

Emergence Date: 5-20-97

Acre

Reps: 3

#### Soil Description

% Clay: 10 % Silt: 30 % Sand: 60 % OM:5.2 Texture: Sandy Loam Soil Name: Kalispell Fine Sandy Loam

#### Application Information

6-2-97 Application Date: Time of Day: 3:30 PM Application Method: BACKPACK POST Application Timing: 66 F Air Temp., Unit: % Relative Humidity: 48 Wind Velocity, Unit: 3 MPH

Dew Presence (Y/N): N Soil Temp., Unit: Soil Moisture: GOOD % Cloud Cover:

Plant Species

Plant Stage

Density at Application

2 Leaf Wild Oats Barley

4 Leaf & 1 Tiller

#### Application Equipment

Nozzle Nozzle Nozzle Boom Nozzle Speed Sprayer Height Spacing Width GPA Carrier PSI MPH Type Type 20" 10' 20 H2O 11002XR 14" 2.5 FLATFAN BACKPACK

## Achieve Tankmix Study

|                | Treatment<br>Name                                 | Form<br>Amt | Fm       |                          | Rate<br>Unit                           | BARLEY INJURY PERCENT 6-16-97 | WILD OA<br>CONTROL<br>PERCENT<br>7-4-97 | CONTROL PERCENT | 71 F |
|----------------|---------------------------------------------------|-------------|----------|--------------------------|----------------------------------------|-------------------------------|-----------------------------------------|-----------------|------|
| _              | ACHIEVE                                           |             | WG<br>SL | .18                      | lb ai/A % v/v                          | 3.3                           | 100.0                                   | 100.0           |      |
| 1              | TF8035                                            | 0 0         | ΣГ       | . 5                      | 5 V/V                                  |                               |                                         |                 |      |
| 2 2            | ACHIEVE<br>TF8035                                 |             |          | .18                      | lb ai/A % v/v                          | V\V 8.3 E. C                  | 99.7                                    | 100.0           |      |
| 2              | AMMONIUM SULF                                     | 100         | WG       | 1.5                      | lb pr/A                                |                               |                                         |                 |      |
| 3              | ACHIEVE                                           | 80          | WG       | .18                      | lb ai/A<br>% v/v                       |                               | 99.7                                    | 100.0           |      |
| 3              | TF8035<br>Bronate                                 | 4           | EC       | .7511                    | lb ai/A                                |                               |                                         |                 |      |
| 4<br>4         | ACHIEVE<br>TF8035                                 | 1           | SL       | .18                      | lb ai/A % v/v                          |                               |                                         | 100.0           |      |
| 4              | Bronate<br>AMMONIUM SULF                          |             |          | .7511                    | lb ai/A<br>lb pr/A                     |                               |                                         |                 |      |
| 5<br>5         | ACHIEVE<br>TF8035                                 |             |          | .18                      | lb ai/A<br>% v/v                       | 20.0                          | 99.3                                    |                 |      |
| 5              | Buctril                                           | 2           | EC       | .5                       | lb ai/A                                | Alag di Auri                  |                                         |                 |      |
| 6              |                                                   | 1           | SL       | .18                      |                                        | 16.7                          | 99.0                                    | 100.0           |      |
| 6              | Buctril<br>AMMONIUM SULF                          |             |          | .5<br>1.5                | lb ai/A<br>lb pr/A                     |                               |                                         |                 |      |
| 7<br>7<br>7    | ACHIEVE<br>TF8035<br>STARANE                      | 1           | SL       | .18<br>.5<br>.125        | lb ai/A % v/v lb ai/A                  | 8.3                           | 99.7                                    | 98.7            |      |
| 8<br>8<br>8    | ACHIEVE<br>TF8035<br>STARANE<br>AMMONIUM SULF     | 1           | SL<br>EC | .18<br>.5<br>.125<br>1.5 | lb ai/A % v/v lb ai/A lb pr/A          | 6.7                           | 100.0                                   | 100.0           |      |
| 9<br>9<br>9    | ACHIEVE<br>TF8035<br>2,4-D Ester                  | 1           | SL       | .18<br>.5<br>.5          | lb ai/A<br>% v/v<br>lb ai/A            | 6.7                           | 93.3                                    | 94.3            |      |
| 10             | ACHIEVE<br>TF8035<br>2,4-D Ester<br>AMMONIUM SULF | 1 4         | SL<br>SC |                          | lb ai/A<br>% v/v<br>lb ai/A<br>lb pr/A | 10.0                          | 98.7                                    | 97.7            |      |
| 11<br>11<br>11 | ACHIEVE<br>TF8035<br>CURTAIL M                    | 1           | SL       | .18<br>.5<br>.3463       |                                        | 6.7                           | 99.7                                    | 99.7            |      |
| 12             | ACHIEVE<br>TF8035<br>CURTAIL M<br>AMMONIUM SULF   | 1<br>2.77   | SL<br>EC |                          | % v/v<br>lb ai/A                       | 6.7                           | 99.7                                    | 100.0           |      |

## Achieve Tankmix Study

| Treatment                                  | Form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                             | BARLEY<br>INJURY<br>PERCENT<br>6-16-97                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WILD OAT<br>CONTROL<br>PERCENT<br>7-4-97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WILD OAT<br>CONTROL<br>PERCENT<br>7-21-97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7.944                                      | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ε                                                                                                                                                                                                                  | - 5                                                                                                                                                                                                                                                                                                                                                                         | Alta di et.                                                     | aik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TVB1 RGs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ACHIEVE<br>TF8035<br>PEAK                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SL .5                                                                                                                                                                                                              | % v/v                                                                                                                                                                                                                                                                                                                                                                       |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 98.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ACHIEVE<br>TF8035<br>PEAK<br>AMMONIUM SULF | 1<br>57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SL .5<br>WG .0089                                                                                                                                                                                                  | % v/v<br>lb ai/A                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ACHIEVE<br>TF8035<br>PEAK                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SL .5                                                                                                                                                                                                              | 8 v/v                                                                                                                                                                                                                                                                                                                                                                       | 3.3                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 97.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TF8035<br>PEAK                             | 1<br>57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SL .5<br>WG .0178                                                                                                                                                                                                  | % v/v<br>lb ai/A                                                                                                                                                                                                                                                                                                                                                            |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| UNTREATED                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ndard Dev.= = ck F ck Prob(F) atment F     | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                             | 14.4<br>8.63368<br>133.43<br>0.769<br>0.4717<br>1.186<br>0.3293 | - 3.1<br>DW<br>- 5%<br>- 5%<br>- 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.3<br>1.99386<br>2.14<br>1.189<br>0.3177<br>437.635<br>0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4<br>1.41551<br>1.52<br>0.303<br>0.7404<br>867.978<br>0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                            | Treatment Name  ACHIEVE TF8035 PEAK  ACHIEVE TF8035 PEAK AMMONIUM SULF  ACHIEVE TF8035 PEAK  ACHIEVE TF8035 PEAK  ACHIEVE TF8035 PEAK  AMMONIUM SURF  UNTREATED  (.05) = contained Dev.= conta | ACHIEVE 80 TF8035 1 PEAK 57  ACHIEVE 80 TF8035 1 PEAK 57  AMMONIUM SULF 100  ACHIEVE 80 TF8035 1 PEAK 57  ACHIEVE 80 TF8035 1 PEAK 57  ACHIEVE 80 TF8035 1 PEAK 57  ACHIEVE 100 UNTREATED  (.05) = 1000 CONTREATED | Treatment Name Amt Ds Rate  ACHIEVE 80 WG .18 TF8035 1 SL .5 PEAK 57 WG .0089  ACHIEVE 80 WG .18 TF8035 1 SL .5 PEAK 57 WG .0089  ACHIEVE 80 WG .18 TF8035 1 SL .5 PEAK 57 WG .0089  ACHIEVE 80 WG .18 TF8035 1 SL .5 PEAK 57 WG .0178  ACHIEVE 80 WG .18 TF8035 1 SL .5 PEAK 57 WG .0178  ACHIEVE 80 WG .18 TF8035 1 SL .5 PEAK 57 WG .0178  UNTREATED  (.05) = 100 WG 1.5 | Treatment Name                                                  | Treatment Name Form Fm Rate PERCENT 6-16-97  ACHIEVE 80 WG .18 lb ai/A 0.0  TF8035 1 SL .5 % v/v PEAK 57 WG .0089 lb ai/A  ACHIEVE 80 WG .18 lb ai/A 0.0  TF8035 1 SL .5 % v/v PEAK 57 WG .0089 lb ai/A  AMMONIUM SULF 100 WG 1.5 lb pr/A  ACHIEVE 80 WG .18 lb ai/A 3.3  TF8035 1 SL .5 % v/v PEAK 57 WG .0178 lb ai/A  ACHIEVE 80 WG .18 lb ai/A 3.3  ACHIEVE 80 WG .18 lb ai/A 3.3  TF8035 1 SL .5 % v/v PEAK 57 WG .0178 lb ai/A  ACHIEVE 80 WG .18 lb ai/A 6.7  TF8035 1 SL .5 % v/v PEAK 57 WG .0178 lb ai/A  ACHIEVE 80 WG .18 lb ai/A 6.7  TF8035 1 SL .5 % v/v PEAK 57 WG .0178 lb ai/A  AMMONIUM SURF 100 WG 1.5 lb pr/A  UNTREATED 0.0  (.05) = 14.4  ack F 0.769 ck Prob(F) atment F 0.4717 1.186 | Treatment Form Fm Rate PERCENT 6-16-97  ACHIEVE 80 WG .18 lb ai/A 0.0  TF8035 1 SL .5 % v/v PEAK 57 WG .0089 lb ai/A  ACHIEVE 80 WG .18 lb ai/A 0.0  TF8035 1 SL .5 % v/v PEAK 57 WG .0089 lb ai/A  ACHIEVE 80 WG .18 lb ai/A 0.0  TF8035 1 SL .5 % v/v PEAK 57 WG .0089 lb ai/A  AMMONIUM SULF 100 WG 1.5 lb pr/A  ACHIEVE 80 WG .18 lb ai/A 3.3  TF8035 1 SL .5 % v/v PEAK 57 WG .0178 lb ai/A  ACHIEVE 80 WG .18 lb ai/A 6.7  TF8035 1 SL .5 % v/v PEAK 57 WG .0178 lb ai/A  ACHIEVE 80 WG .18 lb ai/A 6.7  TF8035 1 SL .5 % v/v PEAK 57 WG .0178 lb ai/A  AMMONIUM SURF 100 WG 1.5 lb pr/A  UNTREATED 0.0  (.05) = 14.4 8.63368 133.43 0.769 0.4717 atment F 0.4717 | Treatment Name Form Fm Rate Unit PERCENT PERCENT PERCENT 7-4-97  ACHIEVE 80 WG .18 lb ai/A 0.0 99.0  TF8035 1 SL .5 % v/v PEAK 57 WG .0089 lb ai/A   ACHIEVE 80 WG .18 lb ai/A 0.0 100.0  TF8035 1 SL .5 % v/v PEAK 57 WG .0089 lb ai/A   AMMONIUM SULF 100 WG 1.5 lb pr/A   ACHIEVE 80 WG .18 lb ai/A 3.3 100.0  TF8035 1 SL .5 % v/v PEAK 57 WG .00178 lb ai/A   ACHIEVE 80 WG .18 lb ai/A 3.3 100.0  TF8035 1 SL .5 % v/v PEAK 57 WG .0178 lb ai/A   ACHIEVE 80 WG .18 lb ai/A 6.7 98.3  TF8035 1 SL .5 % v/v PEAK 57 WG .0178 lb ai/A   ACHIEVE 80 WG .18 lb ai/A 6.7 98.3  TF8035 1 SL .5 % v/v PEAK 57 WG .0178 lb ai/A   AMMONIUM SURF 100 WG 1.5 lb pr/A   UNTREATED 0.0 0.0 0.0   (.05) = 14.4 3.3  ACHIEVE 80 WG .15 lb pr/A   UNTREATED 0.0 0.0 0.0   (.05) = 14.4 3.3  ACHIEVE 80 WG .15 lb pr/A   UNTREATED 0.0 0.0 0.0   (.05) = 14.4 3.3  ACHIEVE 80 WG .15 lb pr/A   UNTREATED 0.0 0.0 0.0   (.05) = 14.4 3.3  ACHIEVE 80 WG .15 lb pr/A   UNTREATED 0.0 0.0 0.0   (.05) = 14.4 3.3  ACHIEVE 9.0 A | Treatment Name Form Fm Amt Ds Rate Unit Fercent Percent Percen |

7/12 dl 2.

Alag at a special sto

A'L & & BL. DS TT.D M. JATES

Alto di Care, de Tr.s — M Liarrico Alto di C. Fow DOI - Blue - France

Planting Date: 5-13-97

Emergence Date: 5-20-97

Study Design: RCB

Reps: 3

Rate, Unit: 73 Lbs, Acre

Row Spacing, Unit: 7"

#### ACHIEVE / SURFACTANT STUDY

Achieve is a new postemergence grass herbicide which has demonstrated excellent activity against wild oat. This study was conducted to evaluate Achieve in combination with different surfactants against registered wild oat herbicides for wild oat control in barley.

Wet soil conditions resulted in severe pythium damage to the barley crop, the extent of which precluded taking yield measurements. However, crop injury and wild oat control differences were apparent. Achieve treatments resulted in minor crop injury. The greatest crop injury was noted for Cheyenne. This is not surprising as the product is not labeled for use in barley. Horizon also caused significant crop injury early in the season, but the crop later appeared to recover.

Achieve treatments provided at least 95% wild oat control. Surfactant type had no effect on wild oat control. Of the wild oat herbicides evaluated, the poorest control was obtained with Assert. Puma also failed to provide adequate control at the lowest rate, but dramatically improved as the use rate was doubled.

#### Site Description

Crop: Barley Variety: Gallatin

Planting Method: Disk Drill

Depth, Unit: 1.5"

Soil Moisture: Good

Plot Width, Unit: 10 FT Plot Length, Unit: 15 FT

Site Location: R-13

Field Preparation/Plot Maintenance:

Fertility:

5-13-97 58 Lbs. N & 28 Lbs. P 6- 9-97 Weed Control: Bronate at 1.5 pt.

#### Soil Description

Texture: Sandy Loam % OM: 4.2 % Sand: 60 % Silt: 30 % Clay: 10

pH: 7.7 Soil Name: Kalispell Fine Sandy Loam

#### Application Information

Application Date: 6-2-97 Time of Day: 1:00 PM Application Method: BACKPACK Application Timing: POST Air Temp., Unit: 64 F % Relative Humidity: 57 Wind Velocity, Unit: 3 MPH Dew Presence (Y/N): N Soil Temp., Unit: 68 F GOOD Soil Moisture:

Plant Species Wild Oats

% Cloud Cover:

Plant Stage

Density at Application

2 Leaf 45 Ft2

4 Leaf & 1 Tiller Barley

30

#### Application Equipment

Nozzle Nozzle Boom Sprayer Speed Nozzle Type MPH Size Height Spacing Width GPA Carrier PSI Type

BACKPACK 20" FLATFAN 11002XR 14" 10' 20 20 2.5 H20

## Achieve / Surfactant Study

|                                    | Treatment<br>Name                                        | Form<br>Amt |          |                   | Rate<br>Unit                                             | BARLEY<br>CROP INJ<br>PERCENT<br>6-16-97                       | BARLEY<br>CROP INJ<br>PERCENT<br>7-4-97                        | WILD OAT<br>CONTROL<br>PERCENT<br>7-4-97                      | WILD OAT<br>CONTROL<br>PERCENT<br>7-21-97                      |
|------------------------------------|----------------------------------------------------------|-------------|----------|-------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|
| 1                                  | ACHIEVE<br>TF8035                                        |             |          | .125              | lb ai/A % v/v                                            | 5.0                                                            | 0.0                                                            | 99.0                                                          | 95.7                                                           |
| 2 2 2                              | ACHIEVE<br>TF8035<br>AMMONIUM SULF                       | 1           | SL       | .125<br>.5<br>1.5 | lb ai/A<br>% v/v<br>lb pr/A                              | 5.0                                                            | 0.0                                                            | 95.7                                                          | 100.0                                                          |
| 3                                  | ACHIEVE<br>TF8035                                        |             |          | .18               | lb ai/A % v/v                                            | 13.3                                                           | 0.0                                                            | 98.3                                                          | 99.3                                                           |
| 4<br>4<br>4                        | ACHIEVE<br>TF8035<br>AMMONIUM SULF                       |             | SL       |                   | lb ai/A % v/v lb pr/A                                    | 11.7                                                           | 0.0                                                            | 99.0                                                          | 99.3                                                           |
| 5 5                                | ACHIEVE<br>TF8035                                        | 80          | WG       | .25               | lb ai/A % v/v                                            | 6.7                                                            | 0.0                                                            | 100.0                                                         | 100.0                                                          |
| 6 6                                | ACHIEVE<br>TF8035<br>AMMONIUM SULF                       |             | SL       | .25<br>.5         | lb ai/A<br>% v/v<br>lb pr/A                              | 10.0                                                           | 0.0                                                            | 98.0                                                          | 98.3                                                           |
| 7<br>7<br>7                        | ACHIEVE<br>TF8035<br>LIQUID AMSULF                       | 80          | WG<br>SL | .18<br>.5         | lb ai/A % v/v lb pr/A                                    | 3.3                                                            | 0.0                                                            | 98.3                                                          | 100.0                                                          |
| 8                                  | ACHIEVE<br>TF8035                                        | 80          | WG<br>SL | .18               | lb ai/A % v/v                                            | 13.3                                                           | 0.0                                                            | 99.0                                                          | 100.0                                                          |
| 9                                  | 32% UAN<br>HOELON                                        | 2.67        | EC       |                   | % v/v<br>lb ai/A                                         | 16.7                                                           | 0.0                                                            | 86.7                                                          | 89.7                                                           |
|                                    | ASSERT<br>NIS                                            | 2.5<br>8.35 |          |                   | lb ai/A % v/v                                            | 1.7 1.100                                                      | 0.0                                                            | 71.7                                                          | 60.0                                                           |
| 11                                 | TILLER                                                   | 3.08        | EC       | .6545             | lb ai/A                                                  | 8.3                                                            | 0.0                                                            | 90.0                                                          | 86.7                                                           |
| 12                                 | CHEYENNE                                                 | 2.7         | EC       | .4725             | lb ai/A                                                  | 53.3                                                           | 30.0                                                           | 94.7                                                          | 89.7                                                           |
| 13                                 | PUMA                                                     | 1.56        | EC       | .0644             | lb ai/A                                                  | 0.0                                                            | 0.0                                                            | 94.0                                                          | 66.7                                                           |
| 14                                 | PUMA                                                     | 1.56        | EC       | .1287             | lb ai/A                                                  | 3.3                                                            | 0.0                                                            | 98.3                                                          | 98.3                                                           |
|                                    | HORIZON<br>COC                                           | 2.09        |          |                   | lb ai/A % v/v                                            | 41.7                                                           | 0.0                                                            | 98.7                                                          | 100.0                                                          |
| 16<br>16                           | HORIZON<br>COC                                           | 2.09        |          |                   | lb ai/A % v/v                                            | 18.3                                                           | 0.0                                                            | 98.3                                                          | 100.0                                                          |
| 17                                 | UNTREATED                                                |             |          |                   |                                                          | 0.0                                                            | 10.0                                                           | 0.0                                                           | 0.0                                                            |
| Stan<br>CV<br>Bloc<br>Bloc<br>Trea | (.05) = dard Dev.= = k F k Prob(F) tment F tment Prob(F) | 2.0         | 2        | into r            | ermaningi m<br>er 120 magi er<br>er 130 magi ere<br>eren | 14.4<br>8.66379<br>69.58<br>3.318<br>0.0491<br>8.342<br>0.0001 | 7.0<br>4.20084<br>178.54<br>1.000<br>0.3791<br>9.625<br>0.0001 | 8.8<br>5.28548<br>5.91<br>2.614<br>0.0888<br>62.222<br>0.0001 | 13.3<br>7.99326<br>9.16<br>1.170<br>0.3234<br>30.446<br>0.0001 |

#### ACHIEVE REDUCED RATE STUDY

Achieve is a new postemergence grass herbicide which has demonstrated excellent activity against wild oat. This study was conducted to evaluate the efficacy of reduced rate applications of Achieve to wild oat. Achieve was applied as fractions of the labeled 1.0X rate as follows: 0.12, 0.25, 0.37, 0.50, 0.75, and 1.0X, where 0.178 lb ai/A represents the current labeled rate. Nontreated and handweeded treatments were also included for comparison. Wild oat dry matter, plant density, panicles, and seed yield measurements were taken shortly before harvest. The plots were harvested to determine spring wheat yield and test weight.

All wild oat parameters decreased as Achieve rate was increased but there appears to be little difference in results between the 1.0X rate and the 0.75X rate. As wild oat plant densities and dry weights were reduced, there was a corresponding reduction in wild oat panicles and seed production. Spring wheat yield steadily improved as Achieve rate was increased. Nonetheless the highest yielding Achieve treatment still produced spring wheat yields 11% less than the handweeded control treatment.

#### Site Description

Crop: Spring Wheat Variety: McNeal

Planting Method: Disk Drill Depth, Unit: 1.5"

Soil Moisture: Good

Planting Date: 4-25-97

Rate, Unit: 69 Lbs/Acre Row Spacing, Unit: 7" Emergence Date: 5-6-97

Plot Width, Unit: 10 FT Plot Length, Unit: 15 FT Reps: 3 Site Location: R-3 Study Design: RCB

Field Preparation/Plot Maintenance:

Fertility: 4-16-97 87 Lbs. N and 42 Lbs. P Weed Control: 5-19-97 Bronate at 1.5 pts.

Quad Harvest: 7-28-97 All reported wild oat data

Plot Harvest: 8-22-97

Wild oats planted at 68 Lbs/A or 24 pure-live seeds/ft2

#### Soil Description

% Sand: 40 % Silt: 50 % Clay: 10 Texture: SiL % OM: 2.5

pH: 7.4 Soil Name: Creston Silt Loam

#### Application Information

Application Date: 5-21-97 Time of Day: 2:00 PM Application Method: BACKPACK Application Timing: POST Air Temp., Unit: 79 F % Relative Humidity: 15 Wind Velocity, Unit: 4 MPH

Dew Presence (Y/N): N 80 F Soil Temp., Unit: Soil Moisture: DRY % Cloud Cover:

Plant Species Plant Stage 3 Leaf Wild Oat

4 Leaf & 1 Tiller Spring Wheat

#### Application Equipment

Nozzle Nozzle Boom Sprayer Speed Nozzle MPH Size Height Spacing Width GPA Carrier PSI Type Type 2.5 Flatfan 11002XR 14" 20" 10' H20 Backpack

## Achieve Reduced Rate Study

| Treatment<br>Name            | Rate              | Rate<br>Unit  |      | W. OAT<br>DRY WT<br>GRMS/FT2 | W.OAT<br>PLANTS<br>FT2 | W. OAT<br>HEADS<br>FT2  | W. OAT<br>SEEDS<br>FT2     | W. OAT<br>1000 KWT<br>GRAMS | SPR WHT<br>YIELD<br>BU/ACRE | SPR WHT<br>TEST WT<br>LB/BU |  |
|------------------------------|-------------------|---------------|------|------------------------------|------------------------|-------------------------|----------------------------|-----------------------------|-----------------------------|-----------------------------|--|
| UNTREATED                    |                   |               |      | 55.7                         | 20.9                   | 29.2                    | 1173.3                     | 15.6                        | 23.8                        | 62.6                        |  |
| ACHIEVE<br>TF 8035           | .022              | lb ai/A % v/v |      | 53.2                         | 18.6                   | 33.6                    | 1149.0                     | 14.5                        | 28.9                        | 62.3                        |  |
| ACHIEVE<br>TF 8035           | .046              | lb ai/A % v/v |      | 37.7                         | 15.6                   | 22.2                    | 865.2                      | 12.1                        | 31.6                        | 61.6                        |  |
| ACHIEVE<br>TF 8035           |                   | lb ai/A % v/v |      | 25.9                         | 18.5                   | 23.7                    | 613.2                      | 11.4                        | 38.0                        | 61.0                        |  |
| ACHIEVE<br>TF 8035           |                   | lb ai/A % v/v |      | 11.8                         | 8.0                    | 9.6                     | 274.1                      | 11.0                        | 40.6                        | 61.3                        |  |
| ACHIEVE<br>TF 8035           |                   | lb ai/A % v/v |      | 6.9                          | 4.7                    | 5.3                     | 166.8                      | 8.7                         | 47.9                        | 61.1                        |  |
| ACHIEVE<br>TF 8035           |                   | lb ai/A % v/v |      | 5.4                          | 4.8                    | 6.3                     | 170.3                      | 10.0                        | 51.4                        | 61.2                        |  |
| HAND WEEDEL                  | )                 | RDB ing       | Lead | 0.0                          | 0.0                    | 0.0                     | 0.0                        | 0.0                         | 58.1                        | 62.3                        |  |
| LSD (.05)<br>CV<br>Treatment | =<br>=<br>Prob(F) |               |      | 58.62                        | 9.5<br>47.70<br>0.0017 | 13.5<br>47.50<br>0.0006 | 581.3<br>60.19<br>0.0024 ( | 9.64                        | 10.63                       | 1.0<br>0.96<br>.0211        |  |

Planting Date: 4-22-97

Emergence Date: 5-4-97

Rate, Unit: 69 Lbs/A Row Spacing, Unit: 7"

## WILD OAT POPULATION DYNAMICS WITH REDUCED ACHIEVE RATES

This study investigates long-term wild oat population changes resulting from the use of reduced herbicide rates. The purpose of this study is to determine what level of wild oat control is needed to prevent weed populations from increasing in subsequent years.

The herbicide treatments listed on the data table were applied to wild oat infested spring wheat during 1996. The study area was than recropped to spring wheat in 1997. Different wild oat populations were generated in 1997 as a result of the previous years treatments. During 1996, wild oat control increased as herbicide rate increased. This response was reflected in the 1997 wild oat densities. As would be expected, wild oat densities in 1997 were lowest where control in the previous year was greatest.

Based on the previous years wild oat density, it appears that Achieve applied at 0.089 lb ai/A results in a steady state equilibrium for wild oat densities. Higher rates should reduce wild oat populations.

The range in wild oat densities also provided an assessment of competition on spring wheat yield. Wheat yield ranged from 6 to 41 bu/A depending on the wild oat density. Wild oat competition did not result in wheat mortality, but greatly affected tiller production, and to a lesser extent, test weight.

#### Site Description

Crop: Spring Wheat Variety: McNeal

Planting Method: Disk Drill

Depth, Unit: 1.5" Soil Moisture: Good

Plot Width, Unit: 10 FT Plot Length, Unit: 15 FT Reps: 3
Site Location: F-4 Study Design: RCB

Field Preparation/Plot Maintenance: Previous crop =Spring wheat

Fertility: 4-22-97 58 Lbs. N and 28 Lbs. P

5- 8-97 50 Lbs. N

Weed Control: 5-19-97 Bronate at 1.5 pts./A

8-17-97 Swathed plots 8-22-97 Harvest plots

#### Soil Description

Texture: Clay Loam % OM: 2.6 % Sand: 26 % Silt: 45 % Clay: 29

pH: 5.9

## Wild Oat Population Dynamics with Reduced Achieve Rates

| Trt                                | Treatment<br>Name                                        | Form    | n Fm   | Rate         | Rate<br>Unit                           | WILD OAT<br>PLNT/FT2<br>7 DAYS<br>4-29-97                      | WILD OAT<br>PLNT/FT2<br>8 DAYS<br>4-30-97                     | WILD OAT<br>PLNT/FT2<br>9 DAYS<br>5-1-97                      | WILD OAT<br>PLNT/FT2<br>21 DAYS<br>5-13-97                      | WILD OAT<br>PLNT/FT2<br>7-8-97                                  | WILD OAT<br>DRY WT<br>GRAM/FT2                                   | 1000 KWI                                                     |
|------------------------------------|----------------------------------------------------------|---------|--------|--------------|----------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------|
| 1                                  | UNTREATED                                                | i figur | in to  | e bii        | <del>w of believe</del><br>a bi baccor | 5.2                                                            | 11.7                                                          | 21.5                                                          | 132.5                                                           | 142.0                                                           | 70.8                                                             | 22.8                                                         |
| 2                                  | ACHIEVE<br>TF 8035                                       |         | VG .0  |              | lb ai/A<br>% v/v                       | 1.8                                                            | 4.8                                                           | 9.1                                                           | 72.2                                                            | 80.4                                                            | 54.4                                                             | 24.2                                                         |
| 3                                  | ACHIEVE<br>TF 8035                                       |         | VG .0  |              | lb ai/A % v/v                          | 2.0                                                            | 2.9                                                           | 6.6                                                           | 68.3                                                            | 61.0                                                            | 62.3                                                             | 24.2                                                         |
| 4                                  | ACHIEVE<br>TF 8035                                       |         | VG .0  |              | lb ai/A % v/v                          | 0.6                                                            | 1.5                                                           | 3.0                                                           | 35.5                                                            | 38.7                                                            | 49.8                                                             | 24.6                                                         |
| 5                                  | ACHIEVE<br>TF 8035                                       | 40 V    | VG .0  | 089          | lb ai/A % v/v                          | 0.6                                                            | 1.3                                                           | 3.0                                                           | 24.3                                                            | 27.2                                                            | 42.5                                                             | 25.1                                                         |
| 6                                  | ACHIEVE<br>TF 8035                                       | 40 V    | VG .1  | 134          | lb ai/A<br>% v/v                       | 0.2                                                            | 0.5                                                           | 0.6                                                           | 3.3                                                             | 5.5                                                             | 16.9                                                             | 26.0                                                         |
| 7                                  | ACHIEVE                                                  | 40 V    | VG .1  | 178          | lb ai/A<br>% v/v                       | 0.3                                                            | 0.8                                                           | 0.9                                                           | 4.3                                                             | 4.1                                                             | 15.0                                                             | 26.4                                                         |
| 7                                  | TF 8035                                                  |         | SC . 2 | 25           | 8 V/V                                  | 0.2                                                            | 0.2                                                           | 0.2                                                           | 3.4                                                             | 0.0                                                             | 0.0                                                              | 0.0                                                          |
| Star<br>CV<br>Bloo<br>Bloo<br>Trea | (.05) = ndard Dev.= tk F tk Prob(F) atment F atment Prob |         | e han  | rają<br>ura9 |                                        | 2.8<br>1.62175<br>118.66<br>3.780<br>0.0487<br>3.344<br>0.0260 | 4.5<br>2.55970<br>86.77<br>4.630<br>0.0286<br>6.690<br>0.0013 | 8.4<br>4.79855<br>85.50<br>2.881<br>0.0896<br>6.609<br>0.0014 | 33.1<br>18.9089<br>44.00<br>6.045<br>0.0128<br>17.442<br>0.0001 | 34.3<br>19.6120<br>43.72<br>2.359<br>0.1310<br>18.423<br>0.0001 | 19.7<br>11.2716<br>28.93<br>10.996<br>0.0013<br>15.210<br>0.0001 | 4.5<br>2.5910<br>10.61<br>0.181<br>0.8367<br>0.977<br>0.4846 |

## Wild Oat Population Dynamics with Reduced Achieve Rates

|                                    | Treatment<br>Name             | Form<br>Amt |       | Rate        | Rate<br>Unit                          | SPR WHT<br>YIELD<br>BU/A<br>8-22-97                            | SPR WHT<br>H2O<br>%                                             | SPR WHT<br>TEST WT<br>LBS/BU                                 | SPR WHT<br>PLNT/FT2<br>7-8-97 | SPR WHT<br>HDS/FT2<br>7-8-97                                   |
|------------------------------------|-------------------------------|-------------|-------|-------------|---------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------|-------------------------------|----------------------------------------------------------------|
| 1                                  | UNTREATED                     | Rob         | ive i | nly dia     | n to M in placebo                     | 6.3                                                            | 6.90                                                            | 58.4                                                         | 13.9                          | 14.4                                                           |
| 2                                  | ACHIEVE<br>TF 8035            |             |       | .022        | lb ai/A % v/v                         | 12.7                                                           | 10.33                                                           | 61.5                                                         | 11.8                          | 13.7                                                           |
| 3                                  | ACHIEVE<br>TF 8035            |             |       | .046        | lb ai/A % v/v                         | 13.1                                                           | 10.20                                                           | 61.5                                                         | 15.4                          | 17.6                                                           |
| 4                                  | ACHIEVE<br>TF 8035            |             |       | .067        | lb ai/A % v/v male                    | 19.8                                                           | 12.23                                                           | 61.6                                                         | 13.1                          | 16.2                                                           |
| 5<br>5                             | ACHIEVE<br>TF 8035            |             |       | .089        | lb ai/A % v/v                         | 22.9                                                           | 13.33                                                           | 61.2                                                         | 14.8                          | 20.1                                                           |
| 6                                  | ACHIEVE<br>TF 8035            |             |       | .134        | % v/v                                 | 34.5                                                           | 15.67                                                           | 62.1                                                         | 15.4                          | 25.4                                                           |
|                                    | ACHIEVE<br>TF 8035            |             |       | .178        | lb ai/A % v/v                         | 38.7                                                           | 14.57                                                           | 62.2                                                         | 14.6                          | 29.7                                                           |
| 8                                  | HAND WEEDED                   |             |       | 3<br>1230 E | ATO C DAY O                           | 41.5                                                           | 15.27                                                           | 62.2                                                         | 16.7                          | 30.5                                                           |
| Stan<br>CV<br>Bloc<br>Bloc<br>Trea | <pre>(.05) = dard Dev.=</pre> | Yaca        |       | 37.80       | pure live semp<br>price<br>of 8 Silv. | 8.8<br>5.03943<br>21.27<br>0.069<br>0.9334<br>20.408<br>0.0001 | 2.41<br>1.37641<br>11.18<br>6.750<br>0.0089<br>14.429<br>0.0001 | 1.9<br>1.06051<br>1.73<br>3.638<br>0.0556<br>4.043<br>0.0144 | 0.855                         | 10.2<br>5.84672<br>27.90<br>0.159<br>0.8545<br>3.972<br>0.0135 |

#### ASSERT REDUCED RATE STUDY

This study was conducted to evaluate the response of wild oat to reduced rate applications of Assert. Assert was applied as fractions of the labeled 1.0X rate as follows: 0.12, 0.25,0.37, 0.50, 0.75, and 1.0X where 0.357 lb ai/A represents the 1.0X rate. Nontreated and handweeded treatments were also included for comparison. Wild oat dry matter, plant density, panicles, and seed yield measurements were taken shortly before harvest. The plots were harvested to determine spring wheat yield and test weight.

For all wild oat measurements, maximum herbicidal effect was noted at the 0.75X rate. The trend was for wild oat parameters to decrease as Assert rate increased, but was most apparent for wild oat dry matter and seed production. Not only did wild oat seed numbers decline with rate, but seed weight declined as well. Spring wheat yield increased as herbicide rate was increased except for a slight yield reduction observed at the highest Assert rate. While this difference was nonsignificant, it indicates that crop injury may have resulted at the highest rate. The handweeded treatments produced yields which were 26% greater than the highest yielding Assert treatment.

Bronate at 1.5 pts.

#### Site Description W/W W

Variety: McNeal Crop: Spring Wheat

Planting Method: Disk Drill

Depth, Unit: 1.5

Soil Moisture: Good

Plot Length, Unit: 15 FT Reps: 3 Study Design: RCB

Site Location: R-3 Field Preparation/Plot Maintenance:

Fertility: 4-16-97 87 Lbs. N and 42 Lbs. P

Weed Control:

Plot Width, Unit: 10 FT

5-19-97 Quad Harvest: 7-28-97 All reported wild oat data

Plot Harvest: 8-22-97

Wild oats planted at 68 Lbs./A or 24 pure-live seeds/ft2

#### Soil Description

Texture: SiL pH: 7.4

% OM: 2.5 Soil Name: Creston Silt Loam

% Sand: 40

% Silt: 50

% Clay: 10

Planting Date: 4-25-97

Rate, Unit: 69 Lbs/Acre

Row Spacing, Unit: 7"

Emergence Date: 5-6-97

#### Application Information

Application Date: Time of Day: Application Method: Application Timing:

Air Temp., Unit:

% Relative Humidity:

2:00 PM BACKPACK POST 79 F 15 4 MPH

5-21-97

Wind Velocity, Unit: Dew Presence (Y/N): Soil Temp., Unit: 80 F Soil Moisture: DRY % Cloud Cover:

Plant Species Wild Oat

Plant Stage 3 Leaf

Spring Wheat

4 Leaf & 1 Tiller

#### Application Equipment

Sprayer Speed Nozzle Nozzle Nozzle Boom

Type MPH Type Size Height Spacing Width GPA Carrier PSI Flatfan 11002XR 14" 2.5 20" Backpack

10' 20

H20

## Assert Reduced Rate Study

|                            | Treatment<br>Name                          | Form<br>Amt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |        | Rate<br>Unit  | I          | V.OAT<br>ORY WT<br>GRMS/FT2 | W. OAT<br>PLANTS<br>FT2                  |                                                      |               | W. OAT<br>SEEDS<br>FT2                                | W. OAT<br>1000 KV<br>GRAMS | SPR WH<br>WT YIELD<br>BU/ACR                         | TEST WI                                            |
|----------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|---------------|------------|-----------------------------|------------------------------------------|------------------------------------------------------|---------------|-------------------------------------------------------|----------------------------|------------------------------------------------------|----------------------------------------------------|
| 1                          | UNTREATED                                  | IE LD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 635 | in sui | gnizse :      |            | 9.8                         | 28.0                                     | 27.0                                                 | q sir<br>neve | 1199.4                                                | 16.6                       | 24.6                                                 | 62.1                                               |
| 2                          | ASSERT<br>NIS                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | .046   | lb ai/A % v/v | 4<br>995 6 | 12.8                        | 19.3                                     | 33.3                                                 |               | 778.8                                                 | 12.7                       | 32.8                                                 | 61.8                                               |
|                            | ASSERT<br>NIS                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | .089   | lb ai/A % v/v | la th      | 2.1                         | 17.2                                     | 26.8                                                 |               | 776.9                                                 | 11.0                       | 32.9                                                 | 61.8                                               |
|                            | ASSERT<br>NIS                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | .134   | lb ai/A % v/v | 2          | 3.5                         | 15.8                                     | 31.3                                                 |               | 761.0                                                 | 12.3                       | 38.6                                                 | 62.5                                               |
|                            | ASSERT<br>NIS                              | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | .178   | lb ai/A % v/v | 2          | 9.8                         | 15.6                                     | 34.2                                                 |               | 662.9                                                 | 9.3                        | 42.1                                                 | 62.1                                               |
| _                          | ASSERT<br>NIS                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | .268   | lb ai/A % v/v |            | 5.6                         | 10.9                                     | 21.6                                                 |               | 347.8                                                 | 8.9                        | 43.6                                                 | 61.1                                               |
|                            | ASSERT<br>NIS                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | .357   | lb ai/A % v/v | 1          | 5.6                         | 19.4                                     | 24.5                                                 |               | 350.4                                                 | 9.5                        | 39.2                                                 | 61.4                                               |
| 8                          | HANDWEEDED                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |        |               |            | 0.0                         | 0.0                                      | 0.0                                                  |               | 0.0                                                   | 0.0                        | 59.2                                                 | 63.0                                               |
| Stan<br>CV<br>Bloc<br>Bloc | (.05) = dard Dev.= = k F k Prob(F) tment F | energia de la composição de la composiçã |     | . Ins. | L9            | 8.32       | .40<br>917<br>446 0         | 10.1<br>77579<br>36.61<br>1.333<br>.2952 | 11.7<br>6.68859<br>26.92<br>1.660<br>0.2255<br>8.013 |               | 401.5<br>229.238<br>37.60<br>3.104<br>0.0766<br>7.647 | 12.11<br>0.527<br>0.6017   | 6.2<br>1.56060<br>9.10<br>28.322<br>0.0001<br>24.429 | 1.2<br>.706956<br>1.14<br>3.511<br>0.0581<br>2.290 |

### WILD OAT POPULATION DYNAMICS WITH REDUCED ASSERT RATES

This study investigates long-term wild oat population changes resulting from the use of reduced herbicide rates. The purpose of this study is to determine what level of wild oat control is needed to prevent weed populations from increasing in subsequent years.

The herbicide treatments listed on the data table were applied to wild oat infested spring wheat in 1996. The study area was recropped to spring wheat in 1997. Different wild oat populations were generated in 1997 as a result of the previous years treatments. During 1996, wild oat control increased as herbicide rate increased. As would be expected, wild oat densities in 1997 were lowest where control in the previous year was greatest. Although Assert reduced wild oat dry matter during 1996, the surviving plants produced viable seed, causing an increase in wild oat densities the following year. Based on the previous years wild oat densities, it appears that populations increased regardless of the Assert rate applied in 1996.

#### Site Description

Crop: Spring Wheat Variety: McNeal

Planting Method: Disk Drill

Depth, Unit: 1.5"

Soil Moisture: Good

Planting Date: 4-22-97 Rate, Unit: 69 Lbs/A Row Spacing, Unit: 7" Emergence Date: 5-4-97

Plot Width, Unit: 10 FT Plot Length, Unit: 15 FT Reps: 3

Site Location: F-4 Study Design: RCB

Field Preparation/Plot Maintenance: Previous crop = Spring wheat

Fertility: 4-22-97 58 Lbs. N and 28 Lbs. P

> 5-8-97 50 Lbs. N

5-19-97 Weed Control: Bronate at 1.5 pts./A

8-17-97 Swathed plots 8-22-97 Harvest plots

#### Soil Description

% Clay: 29 % Sand: 26 % Silt: 45 Texture: Clay Loam % OM: 2.6

pH: 5.9

## Wild Oat Population Dynamics with Reduced Assert Rates

|             |                               | Treatment<br>Name             |      | Form<br>Amt | Rate        |                      |      | SPR WHT<br>YIELD<br>BU/A<br>8-22-97                            | SPR WHT<br>H2O<br>%                                             | SPR WHT<br>TEST WT<br>LBS/BU                                 | SPR WHT<br>PLNT/FT2<br>7-9-97                                 | SPR WHT<br>HDS/FT2<br>7-9-97                                   |
|-------------|-------------------------------|-------------------------------|------|-------------|-------------|----------------------|------|----------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|
| _           | 1                             | UNTREATED                     | 3 2  |             | 184         | 2.01                 | 8.11 | 7.5                                                            | 7.67                                                            | 60.2                                                         | 14.5                                                          | 14.0                                                           |
|             | _                             | ASSERT<br>NIS                 |      |             | .046        | lb ai/A % v/v        | 4.5  | 11.8                                                           | 8.30                                                            | 60.8                                                         | 18.4                                                          | 18.3                                                           |
|             |                               | ASSERT<br>NIS                 |      |             | .089        | lb ai/A<br>% v/v     |      | 11.0                                                           | 11.07                                                           | 60.5                                                         | 15.8                                                          | 15.2                                                           |
|             |                               | ASSERT<br>NIS                 |      |             | .134        | lb ai/A % v/v        |      | 16.4                                                           | 10.47                                                           | 60.4                                                         | 19.4                                                          | 20.1                                                           |
|             |                               | ASSERT<br>NIS                 |      |             | .178        | lb ai/A % v/v        |      | 16.2                                                           | 10.47                                                           | 60.7                                                         | 15.1                                                          | 19.5                                                           |
|             |                               | ASSERT<br>NIS                 |      |             | .268        | lb ai/A % v/v        |      | 17.6                                                           | 11.83                                                           | 60.3                                                         | 18.1                                                          | 18.7                                                           |
|             |                               | ASSERT<br>NIS                 |      |             | .357        | lb ai/A % v/v        |      | 19.7                                                           | 13.07                                                           | 61.3                                                         | 17.0                                                          | 19.5                                                           |
| rë j        | 8                             | HANDWEEDED                    |      | e<br>E i    | A<br>PC (2) | 9,1 <u>1</u><br>19,8 | 1.3  | 50.2                                                           | 15.87                                                           | 62.0                                                         | 16.3                                                          | 34.8                                                           |
| S<br>B<br>B | tan<br>V<br>loc<br>loc<br>rea | <pre>(.05) = dard Dev.=</pre> | AL S |             |             |                      |      | 8.0<br>4.58375<br>24.39<br>0.113<br>0.8938<br>25.214<br>0.0001 | 2.35<br>1.33992<br>12.08<br>0.638<br>0.5430<br>11.352<br>0.0001 | 1.7<br>.986715<br>1.62<br>0.858<br>0.4453<br>1.135<br>0.3958 | 9.0<br>5.14001<br>30.53<br>4.267<br>0.0357<br>0.328<br>0.9282 | 11.2<br>6.38259<br>31.88<br>1.718<br>0.2152<br>2.989<br>0.0386 |

### Wild Oat Population Dynamics with Reduced Assert Rates

|                                    | Treatment<br>Name                                    |     |          |             | Rate<br>Unit                    | PLNT/FT2<br>7 DAYS                           | WILD OAT<br>PLNT/FT2<br>8 DAYS<br>4-30-97    | PLNT/FT2<br>9 DAYS                           |                                              | PLNT/FT2                                                       | WILD OAT<br>DRY WT<br>GRAM/FT2                 | WILD OAT<br>1000 KWT<br>GRAMS                                |
|------------------------------------|------------------------------------------------------|-----|----------|-------------|---------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------|
| 1                                  | UNTREATED                                            | 1   |          | g db        | 78.7                            | 6.2                                          | 11.8                                         | 21.4                                         | 140.0                                        | 152.5                                                          | 72.4                                           | 23.1                                                         |
| 2                                  | ASSERT<br>NIS                                        |     | EC<br>EC | .046        | lb ai/A % v/v                   | 1.3                                          | 3.3                                          | 6.4                                          | 66.0                                         | 76.3                                                           | 62.4                                           | 23.5                                                         |
| 3                                  | ASSERT<br>NIS                                        |     | EC<br>EC | .089<br>.25 | lb ai/A % v/v                   | 4.0                                          | 6.6                                          | 12.2                                         | 84.2                                         | 99.5                                                           | 67.2                                           | 24.1                                                         |
| 4                                  | ASSERT<br>NIS                                        | 2.5 | EC<br>EC |             | lb ai/A % v/v                   | 0.6                                          | 1.5                                          | 2.9                                          | 61.0                                         | 82.8                                                           | 55.2                                           | 24.2                                                         |
|                                    | ASSERT<br>NIS                                        | 2.5 | EC<br>EC |             | lb ai/A % v/v                   | 2.3                                          | 4.7                                          | 8.3                                          | 60.0                                         | 60.9                                                           | 64.5                                           | 24.4                                                         |
|                                    | ASSERT<br>NIS                                        | 2.5 | EC<br>EC |             | lb ai/A % v/v                   | 2.3                                          | 4.9                                          | 9.5                                          | 46.7                                         | 53.9                                                           | 59.6                                           | 24.8                                                         |
|                                    | ASSERT<br>NIS                                        | 2.5 | EC .     |             | lb ai/A % v/v                   | 2.7                                          | 4.1                                          | 7.0                                          | 45.4                                         | 64.1                                                           | 57.1                                           | 25.5                                                         |
| 8                                  | HANDWEEDED                                           |     |          |             |                                 | 0.0                                          | 0.1                                          | 0.1                                          | 1.3                                          | 0.0                                                            | 0.0                                            | 0.0                                                          |
| Stan<br>CV<br>Bloc<br>Bloc<br>Trea | (.05) = dard Dev.=  k F k Prob(F) tment F tment Prob |     | i ava    |             | BL.C<br>PRLLE<br>POLLS<br>REP D | 1.90321<br>78.89<br>4.282<br>0.0354<br>3.194 | 3.67737<br>79.73<br>4.498<br>0.0310<br>2.772 | 6.48113<br>76.44<br>5.005<br>0.0229<br>2.947 | 34.6913<br>54.95<br>4.347<br>0.0340<br>3.860 | 53.2<br>30.3787<br>41.19<br>3.746<br>0.0498<br>6.058<br>0.0021 | 11.3571<br>20.73<br>14.208<br>0.0004<br>12.113 | 1.6<br>.896256<br>3.70<br>1.710<br>0.2165<br>2.031<br>0.1227 |

### INTEGRATED WILD OAT MANAGEMENT IN BARLEY

This study was conducted to determine if alternative crop planting patterns and densities could improve barley competitiveness toward wild oat, thereby allowing for reductions in herbicide rates. Barley was seeded at densities of 60, 110, and 150 lb/A in either broadcast or six inch drill patterns to a wild oat infested area. Assert was then applied as fractions of the labeled rate as follows: 0, 0.25, 0.50, and 1.0X.

Barley population and dry matter yields were greatest for broadcast seeding patterns. All other parameters were not affected by seeding pattern. Wild oat dry matter yields decreased as both barley seeding density and Assert rates were increased. These two factors interacted in a positive manner, resulting in greater wild oat dry matter reductions than either single tactic alone. These results indicate that reduced herbicide rate strategies are more consistent when combined with higher crop seeding rates.

### Site Description

Crop: Barley Variety: Gallatin Planting Date: 4-22-97
Planting Method: Broadcast & Drill Rate, Unit: 60, 110, & 150, Lbs/A
Depth, Unit: Brdcst =0-3", Drill =1.5"
Row Spacing, Unit: 6"
Row Spacing, Unit: 6"

Soil Moisture: Good Emergence Date: Brdcst =4-30-97, Drill =5-3-97

Plot Width, Unit: 10 FT Plot Length, Unit: 15 FT Reps: 4

Site Location: R-3 Study Design: Factorial

Field Preparation/Plot Maintenance: Previous crop =Spring wheat

Fertility 4-16-97 87 Lbs. N and 42 Lbs. P Weed Control 5-19-97 Bronate at 1.5 pts./A

8-20-97 Harvest plots

Wild oats broadcast incorporated at 80 Lbs/A

### Soil Description

Texture: SiL % OM: 3.4 % Sand: 40 % Silt: 50 % Clay: 10

pH: 7.7 Soil Name: Creston Silt Loam

### Application Information

Application Date: 5-12-97 Time of Day: 11:30 AM Application Method: BACKPACK Application Timing: POST Air Temp., Unit: 71 F 27 % Relative Humidity: 5 MPH Wind Velocity, Unit: Dew Presence (Y/N): N 74 F Soil Temp., Unit: GOOD Soil Moisture:

Weed Species Weed Stage
Barley 2 Leaf
Wild Oat 1-2 Leaf

% Cloud Cover:

### Application Equipment

Speed Nozzle Nozzle Nozzle Nozzle Boom Sprayer MPH Height Spacing Width GPA Carrier PSI Type Type Size 2.5 FLATFAN 11002XR 14" 20" 10' 20 H20 BACKPACK

Integrated Wild Oat Management in Barley

| m-+    | Treatment             | Form   | Fm |          | WILD OAT<br>PLNT/FT2 | WILD OAT<br>PLNT/FT2 | GRAM/FT2 | CONTROL    | BARLEY<br>PLNT/FT2 |             | BARLEY<br>YIELD<br>BU/A<br>8-20-97 |
|--------|-----------------------|--------|----|----------|----------------------|----------------------|----------|------------|--------------------|-------------|------------------------------------|
|        | Name                  | Amt    | Ds | Rate     | 5-15-97              | 7-21-97              | 7-30-97  | 8-6-97     | 7-21-97            | 7-30-97     | 6-20-97                            |
| 1      | BROADCAST             | et abi |    | and last | 29.0                 | 33.1                 | 45.1     | 0.0        | 29.1               | 79.2        | 61.0                               |
|        | 60 #/A                |        |    |          |                      |                      |          |            |                    |             |                                    |
| 1      | NONTREATED            |        |    |          |                      |                      |          |            |                    | m evilseou  | 9                                  |
| 2      | BROADCAST             |        |    |          | 38.2                 | 38.9                 | 16.0     | 67.3       | 34.2               | 95.0        | 85.3                               |
|        | 60 #/A                |        |    |          |                      |                      |          |            |                    |             |                                    |
| 2      | ASSERT                | 2.5    | EC | .12      |                      |                      |          |            |                    | in building |                                    |
|        | BROADCAST<br>60 #/A   |        |    |          | 28.6                 | 13.9                 | 3.2      | 85.8       | 31.3               | 115.7       | 94.9                               |
|        | ASSERT                | 2.5    | EC | .23      |                      |                      |          |            |                    |             |                                    |
|        |                       |        |    |          |                      | 9.9                  | 1.6      | 95.5       | 27.9               | 102.4       | 95.1                               |
|        | BROADCAST<br>60 #/A   |        |    |          | 37.0                 | 9.9                  | 1.0      | 33.3       | OBTOTO LDO         |             |                                    |
|        | ASSERT                | 2.5    | EC | .46      |                      |                      |          |            |                    |             |                                    |
|        |                       |        |    |          | 0.5                  | 20. 2                | 29.0     | 17.5       | 37.6               | 75.2        | 74.1                               |
|        | BROADCAST             |        |    |          | 31.5                 | 28.3                 | 29.0     | 7019       | T DI sala          |             |                                    |
| 5<br>5 | 110 #/A<br>NONTREATED |        |    |          |                      |                      |          |            |                    |             |                                    |
|        | 110212112112          |        |    |          | 111927 9             | -10 sage n           |          | 82.5       | 36.5               | 69.4        | 89.5                               |
| -      | BROADCAST             |        |    |          | 27.9                 | 24.5                 | 8.9      | 02.3       | Y4                 |             |                                    |
|        | 110 #/A<br>ASSERT     | 2.5    | EC | .12      |                      |                      |          |            |                    |             |                                    |
| Ü      |                       |        |    |          |                      | stord a              |          | 00.0       | 48.1               | 112.4       | 92.6                               |
| 15.1   | BROADCAST             |        |    |          | 40.6                 | 15.0                 | 2.2      | 88.0       | 40.1               | 112.        |                                    |
|        | 110 #/A<br>ASSERT     | 2.5    | EC | .23      |                      |                      |          |            |                    |             |                                    |
|        | ADDDIN                |        |    |          |                      |                      |          | 06.8       | 59.3               | 118.7       | 97.3                               |
| _      | BROADCAST             |        |    |          | 27.2                 | 9.7                  | 0.8      | 96.8       | 39.3               | - 1-2       | 11000000                           |
|        | 110 #/A<br>ASSERT     | 2.5    | EC | .46      |                      |                      |          | small free |                    |             |                                    |
| U      | ADDDINI               | 21,0   |    |          |                      |                      |          | 24 5       | 64.6               | 76.3        | 75.6                               |
| -      | BROADCAST             |        |    |          | 42.5                 | 37.6                 | 23.5     | 34.5       | 04.0               | ,           |                                    |
|        | 150 #/A<br>NONTREATED |        |    |          |                      |                      |          |            |                    |             |                                    |
| 9      | NONTREATED            |        |    |          |                      |                      |          | FF 1       | 100.4              | 93.5        |                                    |
|        | BROADCAST             |        |    | 24.3     | 22.6                 | 5.4                  | 81.5     | 55.1       | 100.4              | of Days     |                                    |
| -      | 150 #/A<br>ASSERT     | 2.5    | EC | .12      |                      |                      |          |            |                    |             |                                    |
| 10     | ADDERI                | 2.0    | 20 |          |                      |                      | - (-)    | 00.5       | 57.6               | 99.2        | 91.9                               |
|        | BROADCAST             |        |    |          | 42.3                 | 23.8                 | 5.0      | 89.5       | 37.0               | 33.2        |                                    |
|        | 150 #/A               | 2.5    | EC | .23      |                      |                      |          |            |                    |             |                                    |
| 11     | ASSERT                | 2.0    |    |          |                      |                      |          |            | 65.1               | 109 0       | 95.7                               |
|        | BROADCAST             |        |    |          | 33.6                 | 7.1                  | 0.9      | 97.0       | 65.1               | 105.0       | 1.03                               |
|        | 150 #/A<br>ASSERT     | 2.5    | EC | .46      |                      |                      |          |            |                    |             |                                    |
| 12     | VOSEVI                | 2.0    | 20 |          |                      |                      |          | 0.0        | 22.6               |             |                                    |
|        | 6" DRILL              |        |    |          | 29.8                 | 26.2                 | 33.8     | 0.0        | 22.0               | 54.5        |                                    |
|        | 60 #/A<br>NONTREATED  |        |    |          |                      |                      |          |            |                    |             |                                    |
| 13     | HOMINDALED            |        |    |          |                      |                      |          |            | 24 9               | 77.7        | 82.9                               |
|        | 6" DRILL              |        |    |          | 43.0                 | 31.3                 | 14.2     | 57.5       | 24.8               | 11.         |                                    |
|        | 60 #/A<br>ASSERT      | 2.5    | EC | .12      |                      |                      |          |            |                    |             |                                    |
| 7.4    | POSINI                | 2.5    | 20 |          |                      |                      |          |            |                    |             |                                    |
| CONT   | INUED                 |        |    |          |                      |                      |          |            |                    |             |                                    |

# Integrated Wild Oat Management in Barley

|                                    | Treatment Name                                                | Form<br>Amt |              | Rate | PLNT/FT2                                                       | PLNT/FT2                                                      |                           | CONTROL 8                                     | BARLEY<br>PLNT/FT2<br>7-21-97                                  | BARLEY<br>DRY WT<br>GRAM/FT2<br>7-30-97                        | BARLEY<br>YIELD<br>BU/A<br>8-20-97                   |
|------------------------------------|---------------------------------------------------------------|-------------|--------------|------|----------------------------------------------------------------|---------------------------------------------------------------|---------------------------|-----------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|
| 15                                 | 6" DRILL<br>60 #/A<br>ASSERT                                  | 2.5         | EC           | .23  | 26.2                                                           | 16.8                                                          | 4.7<br>Ingisw yo          | 75.8                                          | 21.4                                                           | 69.8                                                           | 89.6                                                 |
| 16                                 | 6" DRILL<br>60 #/A<br>ASSERT                                  | 2.5         | EC           | .46  | 24.0                                                           | 8.7                                                           | 0.8                       | 95.5                                          | 19.7                                                           | 70.4                                                           | 91.6                                                 |
|                                    |                                                               |             |              |      | 39.6                                                           | 29.2                                                          | 24.1                      | 17.5 2/190                                    | 32.6                                                           | 55.9                                                           | 70.9                                                 |
| 18                                 | 6" DRILL<br>110 #/A                                           |             | 3/1/<br>110× | 10   | 31.5                                                           | 21.6                                                          | 8.7                       | 67.5                                          | 36.2                                                           | 73.0                                                           | 89.1                                                 |
| 19<br>19                           | ASSERT 6" DRILL 110 #/A ASSERT                                | 2.5         |              |      | 35.8                                                           | 22.5                                                          | 3.2                       | 85.8                                          | 39.4                                                           | 62.5                                                           | 95.3                                                 |
| 20                                 | 6" DRILL<br>110 #/A<br>ASSERT                                 | 2.5         | EC           | .46  | 30.7                                                           | 6.0                                                           | 0.7                       | 96.3                                          | 33.5                                                           | 80.4                                                           | 95.2                                                 |
| 21                                 | 6" DRILL<br>150 #/A<br>NONTREATED                             |             |              |      | 48.8                                                           | 35.0                                                          | 20.5                      | 26.3                                          | 48.6                                                           | 63.0                                                           | 75.3                                                 |
| 22                                 | 6" DRILL<br>150 #/A<br>ASSERT                                 | 2.5         | EC           | . 12 | 32.5                                                           | 22.4                                                          | 6.0                       | 76.3                                          | 51.7                                                           | 80.1                                                           | 85.4                                                 |
| 23                                 | 6" DRILL<br>150 #/A<br>ASSERT                                 | 2.5         | EC .         | .23  | 33.7                                                           | 23.1                                                          | 3.3                       | 87.0                                          | 52.1                                                           | 65.8                                                           | 91.2                                                 |
| 24                                 | 6" DRILL<br>150 #/A<br>ASSERT                                 | 2.5         | EC .         | . 46 | 43.1                                                           | 7.2                                                           | 0.5                       | 98.0                                          | 49.3                                                           | 93.4                                                           | 93.5                                                 |
| Star<br>CV<br>Bloc<br>Bloc<br>Trea | (.05) = adard Dev.= = tk F tk Prob(F) ttment F ttment Prob(F) | yw i m      | 1:           |      | 14.8<br>13.4136<br>39.19<br>2.506<br>0.0662<br>1.028<br>0.4449 | 7.7<br>10.4493<br>48.76<br>4.612<br>0.0053<br>3.724<br>0.0001 | 1.459<br>0.2333<br>20.399 | 6.03422<br>8.95<br>1.406<br>0.2484<br>117.353 | 25.4<br>11.8820<br>29.15<br>0.711<br>0.5487<br>5.466<br>0.0001 | 10.7<br>17.9715<br>21.57<br>0.858<br>0.4672<br>4.574<br>0.0001 | 7.5743<br>8.77<br>1.056<br>0.3737<br>7.332<br>0.0001 |

### SPRING WHEAT SEEDING PATTERN AND DENSITY STUDY

This study was established to compare the effect of crop seeding pattern and densities on the agronomic response of three spring wheat varieties. Border, Pondera, and McNeal spring wheats were seeded conventionally with a double disk drill on six inch row spacings or by broadcast methods at rates of either 60, 110, or 150 lb/A.

Spring wheat heads/tillers and dry weights per unit area were greater for broadcast treatments than for drilled treatments. This response demonstrates that broadcast treatments result in a more uniform seeding arrangement and minimize plant to plant competition. The greater plant weight and tillering resulted in slightly greater lodging for the broadcast treatments.

Seeding density had minimal effect on the crop except for percent moisture at harvest. As seeding rates increased, grain moisture decreased, indicating that higher seeding rates hasten maturity. While several agronomic factors were impacted by the imposed treatments, there were no yield differences regardless of variety, seeding pattern, or density.

### Site Description

Crop: Spring Wheat

Planting Date: 4-22-97

Rate, Unit: 60, 110, & 150, Lbs/A

Row Spacing, Unit: 6"

Emergence Date: Brdcst =5-1-97, Drill =5-3-97

Variety: Border, Fortuna, & McNeal

Planting Method: Broadcast & Drill

Depth,Unit: Brdcst =0-3", Drill =1.5"

Soil Moisture: Good

Plot Width, Unit: 10 FT Plot Length, Unit: 15 FT Reps: 4
Site Location: R-3 Study Design: Factorial
Field Preparation/Plot Maintenance: Previous crop =Spring wheat
Fertility: 4-16-97 87 Lbs. N and 42 Lbs. P
Weed Control: 5-19-97 Bronate at 1.5 pts./A
8-21-97 Harvest plots

### Soil Description

Texture: SiL % OM: 3.4 % Sand: 40 % Silt: 50 % Clay: 10 pH: 7.7 Soil Name: Creston Silt Loam

Spring Wheat Seeding Pattern And Density Study

| Tr             | t Treatment<br>Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SPR WHEAT PLNT/FT2 | SPR WHEAT<br>HEAD/FT2<br>7-28-97 | DRY WT<br>GRAMS/FT2 | SPR WHEAT<br>LODGING<br>0-9<br>8-15-97 | SPR WHEAT<br>YIELD<br>BU/A<br>8-20-97 | SPR WHEAT<br>H2O<br>%<br>8-20-97 | SPR WHEAT<br>TEST WT<br>LBS/BU<br>9-3-97 |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------|---------------------|----------------------------------------|---------------------------------------|----------------------------------|------------------------------------------|
| _              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80.82              | 1. 5.1                           |                     | 1.5                                    | 72.5                                  | 14.58                            | 62.0                                     |
| 1              | BORDER<br>BROADCAST<br>60 #/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20.9               | 69.2                             | 102.7               | 1.3                                    | 72.5                                  | 14.50                            | 22.0                                     |
| 2 2 2 2        | BROADCAST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 37.9               | 86.2                             | 101.9               | 1.3                                    | 67.2                                  | 14.38                            | 62.4                                     |
| 3 3 3          | THE STATE OF THE PARTY OF THE P | 55.3               | 85.0                             | 108.4               | 2.3                                    | 75.5                                  | 14.15                            | 62.3                                     |
| 4              | 6" DRILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21.9               | 66.5                             | 92.2                | 0.8                                    | 69.0                                  | <b>14.67</b>                     | 62.1                                     |
| 5              | BORDER<br>6" DRILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 38.8               | 64.9                             | 69.4                | 1.0                                    | 72.0                                  | 14.03                            | 62.2                                     |
| 5              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                  |                     |                                        |                                       |                                  |                                          |
| 6              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 46.6               | 70.6                             | 81.8                | 0.8                                    | 65.0                                  | 14.48                            | 62.0                                     |
| 6              | 6" DRILL<br>150 #/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                                  |                     |                                        |                                       |                                  |                                          |
| 77             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31.1               | 86.9                             | 116.9               | 7.0                                    | 70.6                                  | 14.30                            | 62.4                                     |
| 8              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 47.3               | 93.5                             | 110.8               | 6.8                                    | 71.6                                  | 13.95                            | 62.2                                     |
| 9              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60.5               | 77.9                             | 103.5               | 6.8                                    | 67.7                                  | 13.97                            | 62.1                                     |
| 10<br>10<br>10 | 6" DRILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22.5               | 49.1                             | 79.4                | 4.3                                    | 69.0                                  | 14.10                            | 61.9                                     |
| 11             | FORTUNA<br>6" DRILL<br>110 #/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 34.1               | 65.6                             | 97.0                | 4.0                                    | 68.3                                  | 12.63                            | 62.6                                     |
| 12<br>12       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48.4               | 64.6                             | 83.8                | 5.8                                    | 73.7                                  | 12.83                            | 62.2                                     |
| 13<br>13       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 41.2               | 87.2                             | 127.6               | 0.0                                    | 74.8                                  | 15.45                            | 62.0                                     |
| 14<br>14       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 51.0               | 77.0                             | 97.8                | 0.0                                    | 65.9                                  | 14.35                            | 62.1                                     |

CONTINUED...

## Spring Wheat Seeding Pattern And Density Study

|                                    | Treatment<br>Name                                                        |    | SPR WHEAT<br>PLNT/FT2<br>7-28-97                               | SPR WHEAT<br>HEAD/FT2<br>7-28-97                               | SPR WHEAT<br>DRY WT<br>GRAMS/FT2<br>8-1-97                     | SPR WHEAT<br>LODGING<br>0-9<br>8-15-97                         | SPR WHEAT<br>YIELD<br>BU/A<br>8-20-97                        | SPR WHEAT<br>H2O<br>%<br>8-20-97                              | SPR WHEAT<br>TEST WT<br>LBS/BU<br>9-3-97                          |
|------------------------------------|--------------------------------------------------------------------------|----|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|
| 15<br>15<br>15                     | McNEAL<br>BROADCAST<br>150 #/A                                           | .1 | 54.6                                                           | 84.1                                                           | 106.3                                                          | 0.5                                                            | 74.1                                                         | 15.05                                                         | 62.1                                                              |
| 16<br>16<br>16                     | McNEAL<br>6" DRILL<br>60 #/A                                             |    | 20.2                                                           | 48.6                                                           | 82.1                                                           | 0.0                                                            | 75.2                                                         | 17.30                                                         | 61.9                                                              |
| 17<br>17<br>17                     | McNEAL<br>6" DRILL<br>110 #/A                                            |    | 35.9                                                           | 70.6                                                           | 112.5                                                          | 0.0                                                            | 76.2                                                         | 15.22                                                         | 61.9                                                              |
| 18<br>18<br>18                     | McNEAL<br>6" DRILL<br>150 #/A                                            |    | 47.0                                                           | 67.2                                                           | 94.9                                                           | 0.3                                                            | 67.3                                                         | 14.40                                                         | 62.2                                                              |
| Star<br>CV<br>Bloc<br>Bloc<br>Trea | <pre>(.05) = ndard Dev.= = tk F tk Prob(F) atment F ttment Prob(F)</pre> |    | 18.7<br>13.0655<br>32.89<br>0.077<br>0.9722<br>3.764<br>0.0001 | 22.5<br>15.7363<br>21.55<br>0.453<br>0.7166<br>2.619<br>0.0041 | 25.2<br>17.6119<br>17.92<br>0.256<br>0.8570<br>2.867<br>0.0019 | 1.0<br>.717051<br>30.37<br>0.180<br>0.9094<br>53.784<br>0.0001 | 7.6<br>5.33959<br>7.54<br>1.252<br>0.3007<br>1.771<br>0.0594 | 1.79<br>1.24989<br>8.66<br>0.483<br>0.6955<br>2.564<br>0.0049 | 0.5<br>0.350300<br>0.5681<br>0.7531<br>0.52604<br>1.179<br>0.3139 |

### SPRING WHEAT AND BARLEY SEED SIZE STUDY

This study was conducted to determine if crop competitiveness toward wild oat could be improved through the selection and use of large seed size classes.

Seed size classes were obtained by screening bulk seed of McNeal spring wheat and Gallatin barley over a standard 6/64 sieve. That which remained on top of the sieve was considered large, and that which passed through was considered small. Large, small, and ungraded (Bulk)seed of each variety was seeded at 60 lb/A as well as at a target population of 16 plants per square foot. Wild oat seed was then broadcast over designated plots and raked in to facilitate germination.

The greatest differences were observed between crop species, with barley being the most competitive toward wild oat. Compared to spring wheat, barley plants had greater leaf areas (LAI), produced more heads/tillers, and were less affected by wild oat competition. Crop seed size had no effect on wild oat dry weights, but yield reductions were less with the use of large seed compared to small. These results indicate that yield loss due to weeds can be reduced by using large seed size classes.

### Site Description

Crop: Spring Wheat & Barley Planting Date: 4-23-97

Rate, Unit: 60 Lbs/A & 16 Plants/Ft2

Row Spacing, Unit: 6"

Site Location: R-3

Plot Width, Unit: 4.2 FT

Soil Moisture: Good

Plot Length, Unit: 15 FT

Field Preparation/Plot Maintenance: Previous crop =Spring wheat Fertility: 4-16-97 87 Lbs. N and 42 Lbs.P

Weed Control: 5-19-97 Bronate at 1.5 pts./A

8-26-97 Harvest plots

Wild oats hand seeded and incorporated at 71 Lbs/A

Depth, Unit: 3"

Variety: McNeal & Gallatin

Emergence Date: 5-5-97

Planting Method: Plot Drill

Reps: 3

Study Design: RCB

### Soil Description

Texture: SiL % OM: 3.4 % Sand: 40 % Silt: 50 % Clay: 10

pH: 7.7 Soil Name: Creston Silt Loam

## Spring Wheat & Barley Seed Size Study

| Tri              | Treatment<br>Name                            | CANOPY<br>LAI<br>7-13-97 | CROP<br>PLNT/FT2<br>7-23-97 | CROP<br>HEAD/FT2<br>7-23-97 | CROP<br>DRY WT<br>GRAMS/FT2<br>7-28-97 | WILD OAT<br>DRY WT<br>GRAMS/FT2<br>7-28-97 | CROP<br>YIELD<br>BU/A<br>8-26-97         | CROP<br>TEST WT<br>LB/BU |
|------------------|----------------------------------------------|--------------------------|-----------------------------|-----------------------------|----------------------------------------|--------------------------------------------|------------------------------------------|--------------------------|
| 1<br>1<br>1      | McNEAL<br>LARGE<br>60 LBS/A<br>WILD OATS     | 3.700                    | 13.8                        | 16.9                        | 41.0                                   | 83.6                                       | 37                                       | 62.2                     |
| 2 2 2            | MCNEAL<br>LARGE<br>60 LBS/A                  | 2.367                    | 13.0                        | 35.7                        | 101.3                                  |                                            | 69                                       | 61.6                     |
| 3<br>3<br>3      | McNEAL<br>LARGE<br>16 PLNTS/FT2<br>WILD OATS | 3.333<br>veluco min      | 13.0                        | 14.1                        | 27.3                                   | 69.1                                       | 35                                       | 62.5                     |
| 4<br>4<br>4      | McNEAL<br>LARGE<br>16 PLNTS/FT2              | 2.470                    | 10.8 TOWN                   | 30.4                        | 98.9                                   |                                            | 71 00 hora<br>h sasta las<br>norfuera ja | 61.8                     |
| 5<br>5<br>5<br>5 | McNEAL<br>SMALL<br>60 LBS/A<br>WILD OATS     | 3.717                    | 13.8                        | 16.9                        | 26.1                                   | 62.0                                       | 32                                       | 62.0                     |
| 6 6 6            | MCNEAL<br>SMALL<br>60 LBS/A                  | 2.600                    | 13.2                        | 30.8                        | 80.1                                   |                                            | 69                                       | 61.9                     |
| 7<br>7<br>7<br>7 | MCNEAL<br>SMALL<br>16 PLNTS/FT2<br>WILD OATS | 3.487                    | 10.0                        | 11.9                        | 17.5                                   | 85.5                                       | 27                                       | 61.4                     |
| 8<br>8           | McNEAL<br>SMALL<br>16 PLNTS/FT2              | 2.100                    | 13.0                        | 29.9                        | 80.6                                   |                                            | 67                                       | 61.9                     |
|                  | McNEAL<br>BULK<br>60 LBS/A<br>WILD OATS      | 3.510                    | 17.1                        | 21.0                        |                                        | 48.3                                       | 39                                       | 61.5                     |
| 10               | McNEAL<br>BULK<br>60 LBS/A                   | 2.533                    | 14.4                        | 39.3                        | 107.4                                  |                                            | 73                                       | 60.9                     |
| 11<br>11         | McNEAL<br>BULK<br>16 PLNTS/FT2<br>WILD OATS  | 3.870                    | 16.5                        | 17.9                        | 33.5                                   | 63.0                                       | 30                                       | 61.3                     |
| 12               | McNEAL<br>BULK<br>16 PLNTS/FT2               | 2.030                    | 10.8                        | 29.6                        | 90.2                                   |                                            | 70                                       | 61.5                     |
| 13<br>13         | GALLATIN<br>LARGE<br>60 LBS/A<br>WILD OATS   | 4.173                    | 12.7                        | 43.1                        | 78.0                                   | 30.3                                       | 65                                       | 53.5                     |

CONTINUED...

# Spring Wheat & Barley Seed Size Study

| -                                         |                                                | CANOPY<br>LAI                                                   | CROP<br>PLNT/FT2                                              | CROP<br>HEAD/FT2                                                | CROP<br>DRY WT                               | DRY WT                                                         | CROP<br>YIELD                                                | CROP<br>TEST WT                                                |
|-------------------------------------------|------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------|
|                                           | Treatment<br>Name                              | 7-13-97                                                         | 7-23-97                                                       | 7-23-97                                                         | 7-28-97                                      | 7-28-97                                                        | BU/A<br>8-26-97                                              | LB/BU                                                          |
|                                           | GALLATIN<br>LARGE                              | 2.943                                                           | 9.7                                                           | 50.9                                                            | 91.9                                         |                                                                | 94                                                           |                                                                |
| 14                                        | 60 LBS/A                                       |                                                                 |                                                               |                                                                 |                                              |                                                                |                                                              |                                                                |
| 15<br>15<br>15<br>15                      | GALLATIN<br>LARGE<br>16 PLNTS/FT2<br>WILD OATS | 4.007                                                           | 18.3                                                          | 38.8                                                            | anoithib thee.                               | 40.4                                                           | of action in                                                 |                                                                |
| 16                                        | GALLATIN                                       | 3.027                                                           |                                                               | 57.6                                                            |                                              |                                                                | 91                                                           |                                                                |
| 16<br>16                                  | LARGE<br>16 PLNTS/FT2                          |                                                                 |                                                               |                                                                 |                                              |                                                                |                                                              | 32.3                                                           |
| 17<br>17<br>17                            | SMALL<br>60 LBS/A                              | 3.417                                                           | 16.1                                                          |                                                                 | 46.8                                         |                                                                | 58                                                           | 53.7                                                           |
| 17                                        | WILD OATS                                      |                                                                 |                                                               |                                                                 |                                              |                                                                |                                                              |                                                                |
| 18<br>18<br>18                            | GALLATIN<br>SMALL<br>60 LBS/A                  | 2.943                                                           | 13.3                                                          | 56.2                                                            | 101.8                                        |                                                                | 97                                                           | 53.0                                                           |
| 10                                        |                                                |                                                                 |                                                               |                                                                 |                                              |                                                                |                                                              | A Linguist                                                     |
| 19<br>19<br>19                            | GALLATIN<br>SMALL<br>16 PLNTS/FT2              |                                                                 | 9.1                                                           | 24.1                                                            | 37.4                                         | 34.3                                                           | 56                                                           | 52.7                                                           |
| 19                                        | WILD OATS                                      |                                                                 |                                                               |                                                                 |                                              |                                                                |                                                              |                                                                |
| 20                                        | GALLATIN<br>SMALL                              | 2.940                                                           | 12.7                                                          | 62.8                                                            | 110.1                                        |                                                                | 90                                                           | 53.7                                                           |
| 20                                        | 16 PLNTS/FT2                                   |                                                                 |                                                               |                                                                 |                                              |                                                                |                                                              |                                                                |
|                                           | GALLATIN<br>BULK                               | 3.697                                                           | 10.0                                                          | 31.0                                                            | 50.9                                         | 58.3                                                           | 69                                                           | 53.4                                                           |
| 21<br>21                                  | 60 LBS/A<br>WILD OATS                          |                                                                 |                                                               |                                                                 |                                              |                                                                |                                                              |                                                                |
|                                           |                                                |                                                                 |                                                               | mend dit                                                        | Creston i                                    |                                                                |                                                              |                                                                |
| 22                                        | GALLATIN<br>BULK<br>60 LBS/A                   | 3.110                                                           | 13.0                                                          | 65.0                                                            | 109.5                                        |                                                                | 93                                                           | 52.3                                                           |
| 23<br>23                                  | GALLATIN<br>BULK<br>16 PLNTS/FT2<br>WILD OATS  | 3.527                                                           | 14.9                                                          | 42.9                                                            | 64.9                                         | 44.4                                                           | 70                                                           | 53.0                                                           |
| 24                                        | GALLATIN<br>BULK<br>16 PLNTS/FT2               | 2.910                                                           | 14.7                                                          | 46.2                                                            | 88.1                                         |                                                                | 97                                                           | 53.4                                                           |
| LSD<br>Stan<br>CV<br>Bloc<br>Bloc<br>Trea | (.05) = dard Dev.=                             | 0.485<br>.294114<br>9.31<br>5.011<br>0.0107<br>12.235<br>0.0001 | 4.8<br>2.88933<br>21.90<br>2.254<br>0.1169<br>2.034<br>0.0213 | 13.8<br>8.34843<br>23.83<br>0.514<br>0.6017<br>10.411<br>0.0001 | 16.6779<br>23.69<br>0.033<br>0.9676<br>9.985 | 25.4<br>14.9377<br>26.82<br>2.504<br>0.1058<br>4.293<br>0.0020 | 10<br>6.33234<br>9.67<br>5.348<br>0.0083<br>37.098<br>0.0001 | 1.1<br>.650824<br>1.13<br>0.115<br>0.8912<br>135.444<br>0.0001 |

### SPRING WHEAT VARIETY BLENDS

A variety blend is defined as a simple procedure of mechanically mixing seed from two or more varieties in an attempt to obtain genetic diversity. It is suggested that variety blends will yield higher under certain environmental conditions than the average of the individual component varieties. The deeper genetic pool allows for buffering against detrimental factors such as; weeds, insects, disease, lodging, and drought, translating to more stable yearly performances than varieties grown independently.

This study found no significant differences between the blends and the average of the individual component varieties for plants/ft2, heading, test weight, 1000 kernel weight, and protein. Yield was found to be completely non-significant. An explanation for the blends "average" performance is probably due to the stress-free growing season in which all varieties performed equally as well.

### Site Description

Crop: Spring Wheat

Variety: Various

Planting Date: 4-23-97

Planting Method: Plot Drill Depth, Unit: 1.5"

Row Spacing, Unit: 6"

Rate, Unit: 80 Lbs/A Soil Moisture: Good

Emergence Date: 5-5-97

Plot Width Unit: 4.2 FT

Plot Length, Unit: 15 FT Reps: 3

Site Location: R-3 Study Design: RCB

Field Preparation/Plot Maintenance:

Fertility:

4-16-97 87 Lbs. N and 42 Lbs.P

5-19-97 Bronate at 1.5 pt. Weed Control:

> 8-26-97 Harvest plots

### Soil Description

% Clay: 10 Texture: SiL % Om: 2.5 % Sand: 40 % Silt: 50

Soil Name: Creston Silt Loam

## Spring Wheat Variety Blends

| Trt<br>No                          | Treatment<br>Name                                                        | SPR WHT<br>PLNT/FT2<br>5-15-97                         | SPR WHT<br>HD DATE<br>JULIAN                        | SPR WHT<br>TEST WT<br>LBS/BU<br>8-29-97            | SPR WHT<br>1000 KWT<br>GRAMS<br>8-29-97                      | SPR WHT<br>PROTEIN<br>PERCENT                                 | SPR WHT<br>YIELD<br>BU/AC<br>8-26-97                           |
|------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|
| 1                                  | AMIDON                                                                   | 1 ard pris 23 mais                                     | 172.0                                               | 61.1                                               | 37.9                                                         | 14.20                                                         | 70.0                                                           |
| 2                                  | McNEAL                                                                   | 17                                                     | 173.3                                               | 62.2                                               | 42.6                                                         | 14.53                                                         | 73.8                                                           |
| 3                                  | FERGUS                                                                   | skove na 12                                            | 167.3                                               | 61.9                                               | 43.5                                                         | 14.27                                                         | 78.3                                                           |
| 4                                  | AMIDON/MCNEAL                                                            | /FERGUS 22                                             | 169.3                                               | 61.6                                               | 43.2                                                         | 14.53                                                         | 79.3                                                           |
|                                    | HI-LINE                                                                  | 25                                                     | 169.3                                               | 61.9                                               | 40.2                                                         | 14.33                                                         | 69.8                                                           |
|                                    | WPB 926                                                                  | 11                                                     | 167.0                                               | 61.2                                               | 50.1                                                         | 14.03                                                         | 73.4                                                           |
| 7                                  | NEWANA                                                                   | 23                                                     | 174.0                                               | 62.3                                               | 40.0                                                         | 13.63                                                         | 71.0                                                           |
| 8                                  | HI-LINE/926/N                                                            | EWANA 19                                               | 168.0                                               | 62.2                                               | 42.3                                                         | 14.00                                                         | 73.2                                                           |
| Stan<br>CV<br>Bloc<br>Bloc<br>Trea | <pre>(.05) = idard Dev.= = ik F ik Prob(F) itment F itment Prob(F)</pre> | 5.02790<br>26.35<br>0.120<br>0.8875<br>3.412<br>0.0241 | 0.9<br>.540062<br>0.32<br>1.000<br>0.3927<br>76.551 | 0.6<br>.357566<br>0.58<br>0.000<br>1.0000<br>5.080 | 4.4<br>2.50722<br>5.90<br>0.755<br>0.4884<br>6.238<br>0.0019 | 0.44<br>.253503<br>1.79<br>3.738<br>0.0500<br>4.219<br>0.0106 | 10.2<br>5.81661<br>7.90<br>10.737<br>0.0015<br>1.135<br>0.3963 |

### BARLEY VARIETY BLENDS

A variety blend is a simple procedure of mechanically mixing seed of two or more varieties in an attempt to obtain genetic diversity. It is suggested that variety blends will vield higher under certain environmental conditions than the average of the individual component varieties. The deeper genetic pool allows for buffering against detrimental factors such as: weeds, insects, disease, lodging, and drought, translating to more stable yearly performances than varieties grown independently.

This study found no significant differences between the blends and the average of the individual component varieties for plants/ft2, heading, and lodging. Yield was found to be completely non-significant. While slight differences did occur between the blends and components' mean for % plump, test weight was identical. An explanation for the blends "average" performance could be due to the environmental conditions present for this growing season which did not bring into effect the genetic diversity present in the blends or simply the varieties selected were not all that diverse.

### Site Description

Crop: Barley

Planting Method: Plot Drill

Depth, Unit: 1.5" Soil Moisture: Good Variety: Various

Plot Width, Unit: 4.16 FT Plot Length, Unit: 10 FT

Site Location: Y-2

Field Preparation/Plot Maintenance: 58 Lbs. N and 28 Lbs. P

Fertility: 5-19-97

Weed Control: 6- 2-97 Harvest Plots: 8-21-97

Planting Date: 5-10-97 Rate, Unit: 77 Lbs/A Row Spacing, Unit: 6" Emergence Date: 5-16-97

Reps: 3

Study Design: RCB

Barley Variety Blends

Bronate at 1.5 pts.

|             | Frt Treatment<br>No Name                       | BARLEY<br>STAND<br>PLNTS/FT2<br>5-21-97                      | BARLEY<br>HD DATE<br>JULIAN                                   | BARLEY<br>LODGING<br>0-9<br>8-21-97                           | BARLEY<br>YIELD<br>BU/ACRE<br>8-21-97                         | BARLEY<br>TEST WT<br>LBS/BU | BARLEY PLUMP PERCENT |
|-------------|------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|-----------------------------|----------------------|
| 1           | BARONESSE                                      | 20.5                                                         | 187.7                                                         | 3.3                                                           | 115.8                                                         | 54.1                        | 94.00                |
| 2           | CHINOOK                                        | 21.0                                                         | 186.3                                                         | 2.7                                                           | 99.8                                                          | 55.9                        | 92.00                |
| 3           | GALLATIN                                       | 25.2                                                         | 185.7                                                         | 4.0                                                           | 97.1                                                          | 53.9                        | 89.50                |
| 4           | BARONESSE/CHINOOK/GALLATIN                     | 23.8                                                         | 186.3                                                         | 3.0                                                           | 101.8                                                         | 54.6                        | 93.00                |
| 5           | MEDALLION                                      | 31.5                                                         | 187.3                                                         | 3.7                                                           | 109.8                                                         | 48.9                        | 72.00                |
| 6           | LEWIS                                          | 19.1                                                         | 185.7                                                         | 3.0                                                           | 101.0                                                         | 55.0                        | 94.00                |
| 7           | STARK                                          | 20.5                                                         | 182.7                                                         | 2.0                                                           | 108.3                                                         | 55.1                        | 98.00                |
| 8           | MEDALLION/LEWIS/STARK                          | 23.5                                                         | 185.3                                                         | 3.0                                                           | 93.0                                                          | 53.2                        | 86.50                |
| S<br>E<br>E | <pre>cv = lock F lock Prob(F) reatment F</pre> | 7.4<br>.19882<br>18.14<br>0.496<br>0.6195<br>2.682<br>0.0551 | 1.4<br>.805488<br>0.43<br>9.440<br>0.0025<br>10.853<br>0.0001 | 2.0<br>1.14694<br>37.20<br>2.882<br>0.0895<br>0.851<br>0.5655 | 16.4<br>9.27469<br>8.98<br>4.145<br>0.0405<br>1.932<br>0.1448 |                             |                      |

### FIDEL / RAPTOR TOLERANCE STUDY

Raptor is a new member of the imidazolinone herbicide family. This product has demonstrated tolerance toward legumes but not cereals. The exception being 'Fidel', a winter wheat cultivar developed by American Cyanamid. This study was conducted to evaluate the tolerance of Fidel to applications of Raptor as a function of herbicide rate, surfactant type and crop growth stage.

The planting was late (10/21/96) and the crop did not emerge until the following spring. Raptor was applied at the 2 and 4- leaf growth stage of the crop on 4/21/97 and 4/28/97, respectively.

Winter wheat crop injury increased as herbicide rates increased. Crop injury was not observed or was minor when Raptor was applied at the 1X and 2X rates. While significant crop injury did occur at the 4X and 8X dosages, there was no effect on yield or the associated yield components. The observed injury appears to only effect heading dates and delay crop maturity. Injury appeared to be less severe when Raptor was applied with a nonionic surfactant, but these differences were not significant.

An application of Raptor was made to a small planting of Judith winter wheat. This was done to confirm the sensitivity of wheat to this chemical. No yield data is available since Raptor killed the entire wheat planting. Although only one susceptible variety was screened, it appears that the resistant trait is needed if Raptor is to be used.

Fidel appears to have excellent tolerance to Raptor under the conditions of this experiment and yielded well considering the late planting. Additional studies should be conducted under more typical planting conditions to verify crop tolerance to Raptor applications.

### Fidel / Raptor Tolerance Study

## a lebt pulse notice to ent Site Descriptionupe brawer to mension besidence a

Crop: Winter Wheat Variety: Fidel Planting Date: 10-21-96
Planting Method: Plot drill Rate, Unit: 94 Lbs./A

Planting Method: Plot drill

Rate, Unit: 94 Lbs./A

Depth, Unit: 1.5" Row Spacing, Unit: 6"

Emergence Date: Spring

Soil Moisture: Good

Plot Width, Unit: 10 FT Plot Length, Unit: 15 FT Site Location: R-3 Study Design: RCB

Reps: 3

Visvimagen Talscu.

Plot Maintenance:

Fertility:

9-19-96 32 Lbs. N and 40 Lbs. S

5- 9-97 96 Lbs. N and 46 Lbs. P

Weed Control: 5-19-97 Bronate at 1.5 pt.

# Soil Description

Texture: Coarse Silty Mixed % OM: 2.7 % Sand: 40 % Silt: 50 % Clay: 10

pH: 7.1 Soil Name: Creston Silt Loam

### Application Information done to confirm the sensitivity of wheat to this chemical. Polyn

Application Date: 4-21-97 4-28-97 Application Date:

Time of Day:

Application Method:

Application Timing:

BACKPACK

BACKPACK

BACKPACK

BACKPACK

FOST (2LF) POST (4LF)

57 F

Relative Humidity:

44 57

Wind Velocity, Unit:

2-4 MPH

0-4 MPH Wind Velocity, Unit: 2-4 MPH 0-4 MPH
Dew Presence (Y/N): N Wind verocity,
Dew Presence (Y/N):
N
59 F Soil Moisture:

GOOD

90

52 F GOOD

% Cloud Cover:

Weed Species Weed Stage Density at Application 4-21 Fidel 2 to 3 leaf 12 plants/ linear ft. 4-28 Fidel 3 to 5 leaf

### Application Equipment

Sprayer Type

Speed Nozzle Nozzle Nozzle Boom MPH Type Size Height Spacing Width GPA Carrier PSI

BACKPACK 2.5 FLATFAN 11002XR 14" 20" 10' 20 H20 20

Fidel / Raptor Tolerance Study

|                | rt Treatment<br>Name           | Form            | ı Fm     | 9080        | Grow | FIDEL<br>CROP INJ<br>PERCENT<br>4-28-97 | FIDEL<br>CROP INJ<br>PERCENT<br>5-5-97 | FIDEL<br>CROP INJ<br>PERCENT<br>5-12-97 | FIDEL<br>CROP INJ<br>PERCENT<br>5-19-97 | FIDEL<br>CROP INJ<br>PERCENT<br>5-27-97 | FIDEL<br>H DATE<br>JULIAN |
|----------------|--------------------------------|-----------------|----------|-------------|------|-----------------------------------------|----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|---------------------------|
| 1              | UNTREATED                      | <br>8           | 8        |             | 3.0  | 0.0                                     | 0.0                                    | 0.0                                     | 0.0                                     | 0.3                                     | 164.0                     |
| 2              | RAPTOR<br>NIS<br>UAN 28%       | 1<br>1<br>100   | EC       | .25         | 2-LF | 0.0                                     | 0.0                                    | 3.3                                     | 0.0                                     | 0.0                                     | 164.3                     |
| 3              | RAPTOR<br>NIS                  | 1               | EC<br>EC | .040        | 2-LF | 0.0                                     | 0.0                                    | 3.3                                     | 3.3                                     | 3.3                                     | 164.3                     |
| 3              | UAN 28%                        | 100             | EC       | 105         |      |                                         |                                        |                                         |                                         |                                         |                           |
| 4              | RAPTOR<br>NIS<br>UAN 28%       | 1               | EC       |             | 2-LF | 0.0                                     | 6.7                                    | 30.0                                    | 28.3                                    | 23.3                                    | 165.0                     |
| 5<br>5         | RAPTOR<br>NIS<br>UAN 28%       |                 | EC<br>EC | .160        | 2-LF | 0.0                                     | 55.0                                   | 66.7                                    | 73.3                                    | 75.0                                    | 166.7                     |
| 3              | RAPTOR<br>SUN-IT II            | 1               | EC<br>EC | .020        | 2-LF | 0.0                                     | 0.0                                    | 5.0                                     | 6.7                                     | 3.3                                     | 164.0                     |
| 10             | UAN 28%                        | 100             | EC       | 1           |      |                                         |                                        |                                         |                                         |                                         | Fue /B                    |
| 11<br>11<br>11 | RAPTOR<br>SUN-IT II<br>UAN 28% | 1<br>100<br>100 | EC       |             | 2-LF | 0.0                                     | 3.3                                    | 11.7                                    | 3.3                                     | 3.3                                     | 164.0                     |
| 12<br>12<br>12 | RAPTOR<br>SUN-IT II<br>UAN 28% | 1<br>100<br>100 | EC       | .75         | 2-LF | 0.0                                     | 28.3                                   | 48.3                                    | 45.0                                    | 36.7                                    | 165.0                     |
| 13<br>13<br>13 | RAPTOR<br>SUN-IT II<br>UAN 28% | 1<br>100<br>100 | EC       | .75         | 2-LF | 0.0                                     | 56.7                                   | 78.3                                    | 81.7                                    | 83.3                                    | 167.0                     |
| 6              | RAPTOR<br>NIS<br>UAN 28%       | 1<br>1<br>100   | EC       | .020<br>.25 | 4-LF |                                         | 3.3                                    | 6.7                                     | 8.3                                     | 0.0                                     | 164.0                     |
| 7              | RAPTOR<br>NIS<br>UAN 28%       |                 | EC       | .25         | 4-LF |                                         | 0.0                                    | 13.3                                    | 18.3                                    | 10.0                                    | 165.0                     |
| 8              | RAPTOR<br>NIS<br>UAN 28%       |                 | EC       | .080<br>.25 | 4-LF |                                         | 3.3                                    | 33.3                                    | 40.0                                    | 43.3                                    | 165.7                     |
| 9              | RAPTOR<br>NIS<br>UAN 28%       | 1<br>1<br>100   | EC       |             | 4-LF |                                         | 3.3                                    | 60.0                                    | 83.3                                    | 85.0                                    | 168.0                     |

CONTINUED...

Fidel / Raptor Tolerance Study

|                      | t Treatment<br>Name            |          | For             |          | Rate | Grow<br>Stg | FIDEL<br>CROP INJ<br>PERCENT<br>4-28-97 | FIDEL<br>CROP INJ<br>PERCENT<br>5-5-97 | PERCENT                       | FIDEL<br>CROP INJ<br>PERCENT<br>5-19-97 | FIDEL<br>CROP INJ<br>PERCENT<br>5-27-97 | FIDEL<br>H DATE<br>JULIAN |
|----------------------|--------------------------------|----------|-----------------|----------|------|-------------|-----------------------------------------|----------------------------------------|-------------------------------|-----------------------------------------|-----------------------------------------|---------------------------|
| 14<br>14<br>14       | RAPTOR<br>SUN-IT II<br>UAN 28% | <u>×</u> | 100             |          |      | 4-LF        | 0.¢                                     | 0.0                                    | 3.3                           | 3.3                                     | 3.3                                     | 164.3                     |
| 15<br>15<br>15       | RAPTOR<br>SUN-IT II<br>UAN 28% |          |                 | EC<br>EC | .040 | 4-LF        |                                         | 0.0                                    | 16.7                          | 13.3                                    | 10.0                                    | 164.3                     |
| 16<br>16<br>16       | RAPTOR<br>SUN-IT II<br>UAN 28% |          | 1<br>100<br>100 | EC       |      | 4-LF        |                                         | 0.0                                    | 50.0                          | 66.7                                    | 63.3                                    | 167.3                     |
| 17<br>17<br>17       | RAPTOR<br>SUN-IT II<br>UAN 28% |          | 1<br>100<br>100 | EC       | .75  | 4-LF        |                                         | 10.0                                   | 68.3                          | 91.7                                    | 91.7                                    | 170.7                     |
|                      | (.05) = ndard Dev.=            |          | }               |          |      | 0 0         |                                         |                                        |                               |                                         |                                         | 1.6<br>979571<br>0.59     |
| Bloc<br>Bloc<br>Trea |                                | )        |                 |          |      |             | 0.000<br>1.0000 0<br>0.000 1            | .2488<br>2.195                         | 1.631<br>0.2117 0<br>25.969 2 | 4.376<br>0.0209 0<br>7.476 2            | 2.332<br>0.1134 0<br>21.069 1           | 5.538<br>.0086<br>0.774   |

# Fidel / Raptor Tolerance Study

|                                    | t Treatment                                                  |                       |                |             | FIDEL<br>Grow | FIDEL<br>PLANTS                                              | FIDEL<br>HEADS<br>FT2              | DRY MAT    | FIDEL<br>YIELD<br>T BU/ACRE                  |                                                              | FIDEL<br>1000 KWT                                            | PROTEIN<br>PERCENT                                            |
|------------------------------------|--------------------------------------------------------------|-----------------------|----------------|-------------|---------------|--------------------------------------------------------------|------------------------------------|------------|----------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|
| _                                  | Name<br>UNTREATED                                            | Amt                   | DS             | Rate        | Stg           | FT2                                                          | 30                                 | 4.4        |                                              |                                                              | 45.6                                                         |                                                               |
| 2                                  | RAPTOR<br>NIS<br>UAN 28%                                     | 1                     | EC             | .25         | 2-LF          | 16                                                           | 34                                 | 4.8        | 83.1                                         | 60.3                                                         | 45.4                                                         | 11.83                                                         |
| 3                                  | RAPTOR<br>NIS<br>UAN 28%                                     | 100                   |                | .25         | 2-LF          | 16 0                                                         | 35                                 | 5.6        | 91.4                                         | 60.2                                                         | 45.8                                                         | 12.20                                                         |
| 4                                  | RAPTOR<br>NIS<br>UAN 28%                                     | 1                     | EC             | .080        | 2-LF          | 14                                                           | 27                                 | 5.1        | 82.1                                         | 60.0                                                         | 45.7                                                         | 12.30                                                         |
| 5                                  | RAPTOR<br>NIS<br>UAN 28%                                     | 1                     | EC             | .25         | 2-LF          | 16                                                           |                                    | 4.4        | 79.9                                         | 54.7                                                         | 45.2                                                         | 12.37                                                         |
| 10                                 | RAPTOR<br>SUN-IT II<br>UAN 28%                               | 1<br>100<br>100       | EC             | .75         | 2-LF          | 15                                                           | 33                                 | 5.4        | 90.1                                         | 60.0                                                         | 45.7                                                         | 12.03                                                         |
| 11                                 |                                                              | 100                   | EC             | .75         |               | 15                                                           | 30                                 | 4.9        | 87.9                                         | 60.0                                                         | 45.6                                                         | 12.03                                                         |
| 12<br>12<br>12                     | UAN 28% RAPTOR SUN-IT II UAN 28%                             | 1<br>100<br>100       | EC<br>EC       | .080<br>.75 | 2-LF          | 15 F. 3 L                                                    | 30                                 | 5.1        | 88.3                                         | 60.1                                                         | 46.7                                                         | 12.50                                                         |
| 13<br>13                           | RAPTOR<br>SUN-IT II                                          | 1<br>100<br>100       | EC<br>EC       | .160<br>.75 | 2-LF          |                                                              | 30                                 | 5.9        | 87.1                                         | 58.9                                                         | 45.2                                                         | 12.43                                                         |
| 6                                  | RAPTOR<br>NIS<br>UAN 28%                                     | 1<br>1<br>100         | EC<br>EC       | .020<br>.25 | 4-LF          | 14                                                           | 28                                 | 5.7        | 84.0                                         | 60.4                                                         | 45.6                                                         | 11.87                                                         |
| 7                                  | RAPTOR<br>NIS<br>UAN 28%                                     | 1<br>1<br>100         | EC<br>EC<br>EC | .040<br>.25 | 4-LF          | 15                                                           | 35                                 | 5.3<br>KTM | 91.3                                         | 60.1                                                         | 46.5                                                         | 12.27                                                         |
| 8                                  | RAPTOR<br>NIS<br>UAN 28%                                     | 1<br>1<br>100         | EC<br>EC<br>EC | .080<br>.25 | 4-LF          | 16                                                           | 34                                 | 5.4        | 86.6                                         | 62.5                                                         | 46.7                                                         | 12.43                                                         |
| 9                                  | NIS                                                          | 1<br>1<br>100         | EC             | .25         | 4-LF          | 17                                                           | 31                                 |            |                                              | 59.5                                                         | 47.1                                                         | 12.27                                                         |
|                                    |                                                              |                       |                |             |               |                                                              |                                    |            |                                              |                                                              |                                                              |                                                               |
| 14                                 | RAPTOR<br>SUN-IT II<br>UAN 28%                               | 100                   | EC             | .75         |               | 14                                                           |                                    |            | 92.9                                         | 59.8                                                         | 46.0                                                         | 12.07                                                         |
| 15                                 | RAPTOR<br>SUN-IT II<br>UAN 28%                               | 100                   | EC .           | .040<br>.75 |               | 11                                                           | 30                                 | 6.6        | 95.2                                         | 59.8                                                         |                                                              | 11.97                                                         |
| 16                                 | RAPTOR<br>SUN-IT II<br>UAN 28%                               | 1 :<br>100 :<br>100 : | EC .           | .75         | 4-LF          | 13                                                           | 32                                 | 6.4        | 89.0                                         | 59.8                                                         | 45.8                                                         |                                                               |
| 17                                 | SUN-IT II                                                    | 1 1<br>100 1<br>100 1 | EC .           | 75          | 4-LF          | 12                                                           | 31                                 | 6.9        | 96.4                                         | 52.1                                                         | 45.3                                                         | 12.07                                                         |
| Star<br>CV<br>Bloc<br>Bloc<br>Trea | (.05) = dard Dev.= = ck F ck Prob(F) atment F etment Prob(F) | ¥                     | -              |             |               | 5<br>3.10084<br>21.52<br>12.462<br>0.0001<br>0.748<br>0.7272 | 15.02<br>13.239<br>0.0001<br>0.946 |            | 10.2407<br>11.71<br>0.312<br>0.7343<br>0.755 | 5.0<br>2.96968<br>5.01<br>1.022<br>0.3712<br>1.934<br>0.0549 | 1.8<br>1.10527<br>2.41<br>1.371<br>0.2684<br>0.815<br>0.6605 | 0.43<br>.255869<br>2.10<br>0.446<br>0.6440<br>1.915<br>0.0576 |

### WILD OAT CONTROL IN LENTILS WITH ASSURE II

This study was established to evaluate wild oat control with Assure II as a function of application rate and surfactant type. Assure II was applied at 3, 7, and 10 oz/A with either a nonionic surfactant (NIS), methylated seed oil (MSO), or crop oil concentrate (COC). Surfactant type had a significant effect on wild oat control, the importance of which became more evident as rates were reduced. MSO was the most effective surfactant, followed by COC and NIS, respectively.

### Site Description

Crop: Lentils Variety: Brewers Planting Date: 4-23-97
Planting Method: Dbl Disk drill Rate, Unit: 70 Lbs/A
Depth, Unit: 1.5" Soil Moisture: Good Emergence Date: 4-30-97

Plot Width, Unit: 10 FT Plot Length, Unit: 15 FT Reps: 3

Site Type: Offstation Study Design: RCB

Plot Maintenance: Area was hand weeded for broadleaves with seeding and

fertility done in a manner consistent with the field as a whole.

### Application Information

Application Date: 5-21-97 Time of Day: 11:00 AM Application Method: BACKPACK Application Timing: POST Air Temp., Unit: 71 F % Relative Humidity: 23 Wind Velocity, Unit: 2 MPH Dew Presence (Y/N): N Soil Temp., Unit: 70 F Soil Moisture: GOOD % Cloud Cover:

Weed Species Weed Stage
Wild Oats 3 Leaf
Lentils 3"

### Application Equipment

Nozzle Nozzle Nozzle Boom Sprayer Speed Carrier PSI Type MPH Type Size Height Spacing Width GPA 2.5 Flatfan 11002xR 14" 20" 10' 20 H20 Backpack

Wild Oat Control in Lentils with Assure II

|                                    | Treatment<br>Name                                                   | Form<br>Amt                             | Fm<br>Ds   | Rate                                                                              | WILD OAT<br>CONTROL<br>PERCENT<br>7-11-97                       | WILD OAT<br>CONTROL<br>PERCENT<br>7-21-97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | angle m                        |
|------------------------------------|---------------------------------------------------------------------|-----------------------------------------|------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| 1<br>1                             | ASSURE II<br>MSO                                                    |                                         | EC<br>EC   |                                                                                   | 98.3                                                            | 97.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Syriams.                       |
| 2 2                                | ASSURE II                                                           | .8                                      | EC<br>EC   | 10                                                                                | off of body 97.3                                                | 98.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |
| 3                                  | ASSURE II<br>NIS                                                    | .8                                      | EC<br>EC   | 10<br>.25                                                                         |                                                                 | 97.0 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |
| 4<br>4                             | ASSURE II<br>MSO                                                    | .8                                      | EC<br>EC   | 7                                                                                 | 97.0                                                            | 95.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |
| 5                                  | ASSURE II                                                           | .8                                      | EC<br>EC   | 7                                                                                 | 94.7                                                            | 88.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |
| 6                                  | ASSURE II<br>NIS                                                    | .8                                      | EC<br>EC   | .25                                                                               | 76.7                                                            | 78.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |
| 7<br>7                             | ASSURE II<br>MSO                                                    | .8                                      | EC<br>EC   | 3                                                                                 | 89.7                                                            | 85.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |
| 8                                  | ASSURE II                                                           | .8                                      | EC<br>EC   | 3                                                                                 | 68.3                                                            | 70.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |
|                                    | ASSURE II<br>NIS                                                    | .8                                      | EC<br>EC . | 3.25                                                                              | secolut 6.7                                                     | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |
| 10                                 | NONTREATED                                                          |                                         | 地点         | 00:5<br>2387.48                                                                   | 0.0                                                             | MT DE TO TO THE TOTAL OF THE TO | tabri yak<br>du meng<br>mulaya |
| Stan<br>CV<br>Bloc<br>Bloc<br>Trea | <pre>(.05) = dard Dev.= = k F k Prob(F) tment F tment Prob(F)</pre> | 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | .70 .31    | 7 85<br>24<br>2 24 3<br>3 53<br>3 50<br>3 50<br>3 50<br>3 50<br>3 50<br>3 50<br>3 | 16.8<br>9.80986<br>13.56<br>3.826<br>0.0412<br>44.342<br>0.0001 | 14.4<br>8.38650<br>11.65<br>6.588<br>0.0071<br>56.929<br>0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |

5-29 Quackgrass

Mint

### QUACKGRASS CONTROL IN PEPPERMINT WITH ASSURE II

This study was established to evaluate quackgrass control with Assure II as a function of application rate, timing, and surfactant type. Assure II was applied at 7, 10, and 15 oz/A with either a nonionic surfactant (NIS), or methylated seed oil (MSO) plus 28% UAN as fall (9/23/96) or spring (5/6/97) applications. Sequential applications also were included which consisted of fall (9/23/96) plus spring (5/29/97) timings. The difference in timings for the two spring applications results from the fact that quackgrass spring regrowth was delayed where fall applications had previously been applied. All timings were targeted at the 6 to 8 inch quackgrass growth stage.

Generally, quackgrass control was similar regardless of surfactant type or application timing e.g. fall vs spring. Assure use rate appeared to be the only variable which significantly affected control. The exception being when sequential applications were used. Sequential treatments provided the most complete control, with minor differences in control being detected as a function of rate.

The same series of treatments will be re-applied to the same plots to evaluate long-term control strategies. Fall repeat timings were applied 9/8/97. The spring repeat timings will again be applied at the 6 to 8 inch stage of quackgrass regrowth.

### Site Description

Crop: Peppermint Variety: Black Mitchum Planting Date: 4-4-93 Planting Method: Roots Study conducted on an established stand of peppermint. Plot Width, Unit: 10 FT Plot Length, Unit: 15 FT Reps: 3 Site Location: R-7 Study Design: RCB Plot Maintenance: Wheel line irrigation Fertility: 4-11-97 150 Lbs. N, 30 Lbs. S 6-16-97 50 Lbs. N 17 Lbs. N, 78 Lbs. P, 120 Lbs. K 10- 8-97 Weed Control: Stinger at .5 pt. Basagran at 2 qt. + Buctril at .5 pt.

### Soil Description

Texture: Silt Loam % OM: 4.4 % Sand: 40 % Silt: 50 % Clay: 10 pH: 7.8 Soil Name: Creston Silt Loam

#### Application Information

| Application Date:<br>Time of Day:<br>Application Method:<br>Application Timing: | BACKPACK     | 5-6-97<br>11:00 AM<br>BACKPACK<br>POST | 5-29-97<br>10:00 AM<br>BACKPACK<br>POST | 9-8-97<br>11:00<br>BACKPACK<br>POST |
|---------------------------------------------------------------------------------|--------------|----------------------------------------|-----------------------------------------|-------------------------------------|
| Air Temp., Unit:                                                                | 54 F         | 55 F                                   | 68 F                                    | 68 F                                |
| % Relative Humidity:                                                            | 58           | 51                                     | 55                                      | 48                                  |
| Wind Velocity, Unit:                                                            | 7 MPH        | 3 MPH                                  | 3 MPH                                   | 0 MPH                               |
| Dew Presence (Y/N):                                                             | N            | Y                                      | Y                                       | Y                                   |
| Soil Temp., Unit:                                                               | 50 F         | 50 F                                   | 62 F                                    | 68 F                                |
| Soil Moisture:                                                                  | GOOD         | GOOD                                   | GOOD                                    | GOOD                                |
| % Cloud Cover:                                                                  | 0            | 85                                     | 30                                      | 0                                   |
|                                                                                 |              |                                        |                                         |                                     |
| Plant Species Plant 9-23 Quackgrass 5-6 Quackgrass                              | 4-8"<br>6-8" | Density at Full Full                   | Application                             |                                     |

6-9"

4"

# Spotty Application Equipment

Full

| Sprayer  | Speed | Nozzle  | Nozzle  | Nozzle | Nozzle  | Boom  |     |         |     |
|----------|-------|---------|---------|--------|---------|-------|-----|---------|-----|
| Type     | MPH   | Type    | Size    | Height | Spacing | Width | GPA | Carrier | PSI |
| BACKPACK | 2.5   | FLATFAN | 11002XR | 74"    | 20"     | 70'   | 20  | H20     | 20  |

# Quackgrass Control in Peppermint with Assure II

|                                        | Treatment                     | Form<br>Amt        |                      | Rate         |      |              | Grow<br>Stg                      |                                 |                          |                                                                      | QUACK<br>DRY MAT<br>TON/ACRE<br>8-12-97 | MINT<br>OIL<br>LB/ACRE<br>8-12-97                          |
|----------------------------------------|-------------------------------|--------------------|----------------------|--------------|------|--------------|----------------------------------|---------------------------------|--------------------------|----------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------|
|                                        | ASSURE II<br>NIS              |                    | EC<br>EC             |              |      |              | FALL                             | 99.3                            | 60.0                     | 1.78                                                                 | 1.72                                    | 45.0                                                       |
| 2                                      |                               | 1                  |                      | 1            | qt   | pr/A         |                                  | 99.7                            | 75.0                     | 1.95                                                                 | 1.48                                    | 54.7                                                       |
| 2                                      | UAN 28%                       | Sunna.             | EC                   | 2            | qt   | pr/A         | FALL                             |                                 |                          |                                                                      |                                         |                                                            |
| 3                                      | ASSURE II                     |                    |                      | 10           |      |              | FALL<br>FALL                     | 100.0                           | 72.7                     | 1.33                                                                 | 1.89                                    | 50.8                                                       |
| 4<br>4<br>4                            | ASSURE II<br>MSO<br>UAN 28%   | 1                  | EC                   | 10<br>1<br>2 | qt   | pr/A         | FALL<br>FALL<br>FALL             | 100.0                           | 79.3                     | 2.01                                                                 | 1.35                                    | 47.1                                                       |
| 5<br>5                                 | ASSURE II<br>NIS              |                    |                      | 15<br>1      |      |              | FALL<br>FALL                     | 100.0                           | 81.7                     | 2.14                                                                 | 0.85                                    | 50.6                                                       |
| 6 6 6                                  | ASSURE II<br>MSO<br>UAN 28%   | 1                  | EC<br>EC             | 1            | qt   | pr/A         | FALL<br>FALL<br>FALL             | 100.0                           | 88.0                     | 2.42                                                                 | 0.47                                    | 53.8                                                       |
|                                        | ASSURE II<br>NIS              |                    | EC EC                |              |      |              | SPRING                           |                                 | 50.0                     | 0.95                                                                 | 2.52                                    | 25.7                                                       |
| 8<br>8                                 | ASSURE II<br>MSO<br>UAN 28%   | 1                  | EC :                 | 1            | qt   | pr/A         | SPRING<br>SPRING<br>SPRING       | to ue wa                        | 40.0                     | 0.72                                                                 | 2.69                                    | 21.6                                                       |
| 9                                      | ASSURE II                     | .8                 | EC I                 |              |      |              | SPRING<br>SPRING                 |                                 | 71.7                     | 1.52                                                                 | 1.53                                    | 40.1                                                       |
| 10<br>10<br>10                         | ASSURE II<br>MSO<br>UAN 28%   | 1                  |                      | Large        | qt   | pr/A         | SPRING<br>SPRING<br>SPRING       |                                 | 81.3                     | 1.86                                                                 | 0.86                                    | 47.8                                                       |
|                                        | ASSURE II                     |                    | EC 1                 |              |      |              | SPRING<br>SPRING                 |                                 | 83.3                     | 2.00                                                                 | 0.60                                    | 46.6                                                       |
| 12                                     | ASSURE II<br>MSO<br>UAN 28%   | 1 1                | EC 1<br>EC 1<br>EC 2 |              | qt   | pr/A         | SPRING<br>SPRING<br>SPRING       |                                 | 86.7                     | 2.10                                                                 | 0.22                                    | 52.8                                                       |
| 13                                     | ASSURE II                     | 1 H                | EC 1                 |              | qt j | pr/A<br>pr/A |                                  | 99.0                            | 96.0                     | 2.66                                                                 | 0.33                                    | 61.3                                                       |
| 14                                     | ASSURE II                     | .8 E<br>1 E<br>1 E | EC 1                 | 0 0          | qt p | or/A         |                                  | 99.7                            | 96.0                     | 2.82                                                                 | 0.05                                    | 60.9                                                       |
| 15                                     | ASSURE II                     | 1 E                | C 1                  | 5 6          | at i | or/A B       | FALL<br>FALL<br>SPRING<br>SPRING | 100.0                           | 98.7                     | 2.57                                                                 | 0.03                                    | 60.1                                                       |
|                                        | NONTREATED                    |                    |                      |              |      |              |                                  | 0.0                             | 0.0                      | 0.01                                                                 | 3.50                                    | 0.6                                                        |
| Stand<br>CV<br>Block<br>Block<br>Treat | <pre>(.05) = dard Dev.=</pre> |                    |                      |              |      |              | 0<br>6131                        | 0.64<br>0.652<br>.5281<br>2.945 | 13.25<br>4.770<br>0.0159 | 1.06<br>635896 .7<br>35.28<br>0.746<br>0.4829 0<br>4.180<br>0.0004 0 | 61.46<br>1.044<br>.3645 0<br>5.257      | 17.9<br>.6977<br>23.79<br>0.798<br>.4601<br>6.944<br>.0001 |

# LONG-TERM. QUACKGRASS CONTROL IN PEPPERMINT WITH ASSURE II

Quackgrass is a weed which commonly infests mint fields in western Montana. While Assure II has demonstrated significant activity towards this weed, annual applications are needed to maintain acceptable levels of control. This study was conducted to monitor long-term control of quackgrass when utilizing annual applications of Assure II with the intent of optimizing herbicide inputs.

Assure II was applied at 7, 10, and 15 oz/A with either a nonionic surfactant (NIS) or methylated seed oil (MSO) plus 28% UAN. These treatments were applied either in the fall or spring when 6 to 8 inches of quackgrass regrowth was present. The first series of treatments were applied during the 1995/1996 season. Fall treatments were applied on 8/25/95 and spring treatment were applied on 5/27/96. Treatments were then reapplied to the same plots during the 1996/1997 season. Sequential fall applications were made on 9/23/96 and sequential spring applications were made on 5/6/97. This report details the results of the sequential applications.

The effect of quackgrass competition on mint hay and oil yields is apparent in the nontreated check. Left uncontrolled, quackgrass developed into a sod, completely eliminating the mint crop. Generally all treatments initially provided excellent control, regardless of rate, surfactant, or application timing. However, long-term control did appear to be affected by use rate, with control improving as the rate of Assure II increased. The effect of surfactants was slight and was only apparent at the lowest rate. This was especially evident with the spring applications where MSO plus 28% UAN provided better control than NIS. Overall, spring applications provided the most complete control and may be related to the time interval difference between application and harvest.

## Long-Term. Quackgrass control in Peppermint with Assure II.

### Site Description

Crop: Peppermint Variety: Black Mitcham Planting Date: 4-4-93

Planting Method: Roots

Study conducted on an established stand of peppermint.

Plot Width, Unit: 10 FT Plot Length, Unit: 15 FT Reps: 3 Site Location: R-7 Plot Maintenance: Wheel line irrigation Study Design: RCB

Fertility: 4-11-97 150 Lbs. N, 30 Lbs. S 6-16-97 50 Lbs. N

Weed Control: Stinger at .5 pt.

Basagran at 2 qt. + Buctril at .5 pt.

### Soil Description

% OM: 4.4 % Sand: 40 % Silt: 50 % Clay: 10 Texture: Silt Loam

pH: 7.8 Soil Name: Creston Silt Loam

### Application Information

| Application Date:<br>Time of Day: | 8-25-95<br>4:00 PM | 5-7-96<br>1:00 PM | 9-23-96<br>12:45 PM | 5-6-97<br>10:30 AM |       |
|-----------------------------------|--------------------|-------------------|---------------------|--------------------|-------|
| Application Method:               | BACKPACK           | BACKPACK          | BACKPACK            | BACKPACK           |       |
| Application Timing:               | POST               | POST              | POST                | POST               | - 4   |
| Air Temp., Unit:                  | 75 F               | 57 F              | 54 F                |                    | 55 F  |
| % Relative Humidity:              | 25                 | 47                | 58                  | 51                 |       |
| Wind Velocity, Unit:              |                    | 7 MPH             | 7.5 N               | MPH                | 3 MPH |
| Dew Presence (Y/N):               | N                  | N                 | N                   | Y                  |       |
| Soil Temp., Unit:                 | 74 F               | 49 F              | 50 F                |                    | 50 F  |
| Soil Moisture:                    | GOOD               | GOOD              | GOOD                | GOOD               |       |
| % Cloud Cover:                    | 0                  | 50                | SUPTINGO            | 80                 |       |

Plant Stage Density at Application 4-8" 10/ft Plant Species 8-25-95 Quackgrass 6-8" 5- 7-96 Quackgrass Full Trans 4-8" 9-23-96 Quackgrass 6-8" 5- 6-97 Quackgrass

### Application Equipment

| Sprayer  | Speed | Nozzle  | Nozzle  | Nozzle | Nozzle  | Boom  |     |         |           |  |
|----------|-------|---------|---------|--------|---------|-------|-----|---------|-----------|--|
| Type     | MPH   | Type    | Size    | Height | Spacing | Width | GPA | Carrier | PSI<br>20 |  |
| BACKPACK | 2.5   | FLATFAN | 11002XR | 14"    | 20"     | 10'   | 20  | 1120    | 20        |  |

Long-Term. Quackgrass Control in Peppermint with Assure II.

|                                    | Treatment                                                           | Form<br>Amt |          |   | Grow I                     | PERCENT               | PERCEN'                                                        | QUACK L CONTROL I PERCENT 7-17-97  |                                   | QUACK<br>DRY MAT<br>TON/ACRE<br>8-12-97 |                                                               |
|------------------------------------|---------------------------------------------------------------------|-------------|----------|---|----------------------------|-----------------------|----------------------------------------------------------------|------------------------------------|-----------------------------------|-----------------------------------------|---------------------------------------------------------------|
| 1                                  | ASSURE II                                                           |             | EC<br>EC |   | FALL<br>FALL               | 95.0                  | 98.7                                                           | 71.7                               | 1.58                              | 1.79                                    | 48.0                                                          |
| 2 2 2                              | ASSURE II<br>MSO<br>UAN 28%                                         | 1           | EC<br>EC | 1 | FALL<br>FALL               | 96.0                  | 96.7                                                           | 76.7                               | 1.36                              | 1.82                                    | 53.7                                                          |
| 3                                  | ASSURE II<br>NIS                                                    |             | EC<br>EC |   | FALL                       | 96.0                  | 99.7                                                           | 83.3                               | 1.87                              | 1.25                                    | 53.2                                                          |
| 4<br>4<br>4                        | ASSURE II<br>MSO<br>UAN 28%                                         | 1           | EC<br>EC | 1 | FALL<br>FALL               | 96.0                  | 99.7                                                           | 82.7                               | 2.22                              | 1.01                                    | 52.0                                                          |
|                                    | ASSURE II                                                           |             | EC<br>EC |   | FALL<br>FALL               | 96.0                  | 100.0                                                          | 92.0                               | 2.30                              | 0.72                                    | 55.6                                                          |
| 6<br>6                             | ASSURE II<br>MSO<br>UAN 28%                                         | 1           | EC<br>EC | 1 | FALL<br>FALL               | 95.0                  | 100.0                                                          | 91.7                               | 2.67                              | 0.15                                    | 61.2                                                          |
|                                    | ASSURE II<br>NIS                                                    |             | EC<br>EC |   | SPRING<br>SPRING           |                       | 53.3                                                           | 73.3                               | 2.00                              | 1.10                                    | 52.9                                                          |
| 8<br>8<br>8                        | ASSURE II<br>MSO<br>UAN 28%                                         | 1           | EC<br>EC | 1 | SPRING<br>SPRING<br>SPRING |                       | 79.7                                                           | 96.3                               | 2.72                              | 0.44                                    | 62.5                                                          |
|                                    | ASSURE II<br>NIS                                                    |             | EC<br>EC |   | SPRING<br>SPRING           | 93.3                  | 84.0                                                           | 99.0                               | 2.93                              | 0.07                                    | 53.3                                                          |
| 10                                 | ASSURE II<br>MSO<br>UAN 28%                                         | 1           | EC<br>EC | 1 | SPRING<br>SPRING<br>SPRING |                       | 88.7                                                           | 96.7                               | 3.07                              | 0.00                                    | 64.9                                                          |
| 11<br>11                           | ASSURE II<br>NIS                                                    |             | EC<br>EC |   | SPRING<br>SPRING           | 94.0                  | 85.0                                                           | 98.3                               | 2.83                              | 0.01                                    | 59.6                                                          |
| 12                                 | ASSURE II<br>MSO<br>UAN                                             | 1           | EC<br>EC | 1 | SPRING<br>SPRING<br>SPRING |                       | 92.3                                                           | 99.3                               | 2.75                              | 0.01                                    | 61.1                                                          |
| 13                                 | NONTREATED                                                          |             |          |   |                            | 0.0                   | 0.0                                                            | 0.0                                | 0.02                              | 3.47                                    | 0.6                                                           |
| Stan<br>CV<br>Bloc<br>Bloc<br>Trea | <pre>(.05) = dard Dev.= = k F k Prob(F) tment F tment Prob(F)</pre> |             |          |   | 0.<br>78                   | 5.97<br>0.201<br>8191 | 10.3<br>5.12285<br>7.39<br>1.061<br>0.3616<br>63.152<br>0.0001 | 12.16<br>4.066<br>0.0302<br>21.321 | 23.51<br>1.081<br>0.3551<br>8.100 | 67.30<br>3.583<br>0.0435<br>8.221       | 16.1<br>.53438<br>18.27<br>2.434<br>0.1090<br>8.753<br>0.0001 |

### 1996 MINT CARRYOVER STUDY

Mint acreage has been expanding in western Montana. As more producers become interested in this crop, questions have arose with respect to previous herbicide use injuring baby mint. This study was conducted to investigate the carryover potential of three ALS inhibitors - Assert, Pursuit, and Raptor.

The three herbicides were applied in the spring of 1996 at their respective 1X and 2X use rates. Nontreated controls were also included for each product. The study is designed to look at a 12 month and 24 month recropping interval. Baby mint was planted the spring of 1997 in those plots which were designated for the 12 month rotation interval. The plots designated for the 24 month recrop interval were planted to spring wheat.

Severe injury was observed with both Pursuit and Assert 12 months after application. While injury was greatest at the 2X rate, the level of injury observed with the 1X rates of both herbicides was also unacceptable and was reflected in mint hay yields. Raptor appears to be the most tolerant towards mint as injury was minor and mint hay yields were not significantly different from the nontreated control.

### Site Description

Crop: Peppermint Variety: Black Mitchum Planting Date: 4-24-97
Planting Method: Hand Row Spacing, Unit: 22" Seeding Depth: 4"
Soil Moisture: Good Emergence Date: 5-15-97

Plot Width, Unit: 10 FT Plot Length, Unit: 15 FT

Reps: 3 Site Location: R-3 Study Design: RCB

Field Preparation/Plot Maintenance: Roto-tilled and culti-packed prior to stolon planting. Irrigated as needed beginning 5-12-97.

Fertility: 4-21-97 100 Lbs. N, 52 Lbs. P, 60 Lbs. K, 24 Lbs. S

7- 1-97 100 Lbs. N 8-19-97 50 Lbs. N

Weed control: 5-16-97 Sinbar at 1 Lb.

5-30-97 Assure II at 15 oz.

### Soil Description

Texture: Coarse Silty Mix % OM: 3.0 % Sand: 40 % Silt: 50 % Clay: 10 pH: 7.4 Soil Name: Creston Silt Loam

#### Application Information

Application Date: 5-24-96 5-3-96 Time of Day: 12:00 PM 11:00 AM Application Method: BACKPACK BACKPACK Application Timing: PRE POST Air Temp., Unit: 52 F 65 F % Relative Humidity: 72 31 0 MPH 3 MPH Wind Velocity, Unit: Dew Presence (Y/N): N N Soil Temp., Unit: 50 F 58 F Soil Moisture: GOOD GOOD % Cloud Cover: 10

### Application Equipment

| Sprayer  | Speed | Nozzle  | Nozzle  | Nozzle | Nozzle  | Boom  |     |         |     |
|----------|-------|---------|---------|--------|---------|-------|-----|---------|-----|
| Type     | MPH   | Type    | Size    | Height | Spacing | Width | GPA | Carrier | PSI |
| Backpack | 2.5   | Flatfan | 11002XR | 14"    | 20"     | 10'   | 20  | H20     | 20  |

# 1996 MINT CARRYOVER STUDY

| Trt<br>No | Treatment Name   | Form<br>Amt | Fm<br>Ds | Rate |                                          |            | MINT<br>INJURY<br>PERCENT<br>7-4-97 |       | DW          | tokiñ<br>tav T |  |
|-----------|------------------|-------------|----------|------|------------------------------------------|------------|-------------------------------------|-------|-------------|----------------|--|
| 1         | ASSERT           | 2.5         | EC       | .92  | soy ment was pla<br>erfort interval. The | sten rithe | 66.7                                | 0.59  |             |                |  |
| 1         | BARLEY           |             |          |      |                                          |            |                                     |       |             |                |  |
| 1         | 12 MO            |             |          |      |                                          |            |                                     |       |             |                |  |
| 2         |                  |             |          |      |                                          |            |                                     |       |             |                |  |
| 2         | BARLEY           |             |          |      |                                          |            |                                     |       |             |                |  |
| 2         |                  |             |          |      |                                          |            |                                     |       |             |                |  |
| 3         |                  |             |          |      |                                          |            |                                     |       |             |                |  |
| 3         | BARLEY           |             |          |      |                                          |            |                                     |       |             |                |  |
| 3         | 12 MO            |             |          |      |                                          |            |                                     |       |             |                |  |
| 4         | PURSUIT          | 2           | FC       | 092  |                                          |            | 55.0                                | 0.59  |             |                |  |
| 4         | LENTILS          |             |          |      |                                          |            |                                     |       |             |                |  |
| 4         | 12 MO            |             |          |      |                                          |            |                                     |       |             |                |  |
|           |                  |             |          |      |                                          |            |                                     | 0.70  |             |                |  |
| 5         | PURSUIT          | 2           | EC       | .046 |                                          |            |                                     |       |             |                |  |
| 5<br>5    | LENTILS          |             |          |      |                                          |            |                                     |       |             |                |  |
| 5         | 12 MO            |             |          |      |                                          |            |                                     |       |             |                |  |
| 6         | NONTREATED       |             |          |      |                                          |            | 10.0                                | 1.04  |             |                |  |
| 6         | LENTILS          |             |          |      |                                          |            |                                     |       |             |                |  |
| 6         | 12 MO            |             |          |      |                                          |            |                                     |       |             |                |  |
| 7         | AC299263         | 2           | FC       | .063 |                                          |            | 20.0                                |       |             |                |  |
| 7         | LENTILS          | 2           | ПС       | .005 |                                          |            |                                     |       |             |                |  |
| 7         | 12 MO            |             |          |      |                                          |            |                                     |       |             |                |  |
|           |                  |             |          |      |                                          |            | TE-0E-8                             | 1 06  |             |                |  |
| 8         | AC299263         | 2           | EC       | .032 |                                          |            | 20.0                                | 1.06  |             |                |  |
| 8         | LENTILS<br>12 MO |             |          |      |                                          |            |                                     |       |             |                |  |
| 8         | 12 MO            |             |          |      |                                          |            |                                     |       |             |                |  |
| 9         | NONTREATED       |             |          |      |                                          |            | 0.0                                 | 1.22  |             |                |  |
| 9         | LENTILS          |             |          |      |                                          |            |                                     |       |             |                |  |
| 9         | 12 MO            |             |          |      |                                          |            |                                     |       |             |                |  |
|           |                  |             |          |      | 26-45-3                                  |            |                                     |       | adam merena | Thef           |  |
| LSD       | (.05) =          |             |          |      |                                          |            | 37.7                                | 0.29  |             |                |  |
|           | ndard Dev.=      |             |          |      |                                          |            |                                     | 70074 |             |                |  |
| CV        | =                |             |          |      |                                          |            | 72.96                               | 18.27 |             |                |  |
|           | ck F             |             |          |      |                                          |            |                                     | 0.147 |             |                |  |
|           | ck Prob(F)       |             |          |      |                                          |            |                                     | .0001 |             |                |  |
|           | atment F         |             |          |      |                                          |            | 3.353                               | 5.474 |             |                |  |
| Tre       | atment Prob(F)   |             |          |      |                                          | 0.         | .0189 0                             |       |             |                |  |
|           |                  |             |          |      |                                          |            |                                     |       |             |                |  |

### LIVING MULCH STUDY

A living mulch should insulate the mint from cold temperatures and dessication. The greater the amount of plant material produced in the fall, the better the insulative properties should be. This study evaluated living mulch crops and straw mulches in an attempt to enhance winter survivability of peppermint.

Early, persistant, and abundant snow cover prevented an assessment of winter injury with these treatments. More to the point, there were no differences in mint hay yields. However, differences were observed in terms of the amount of residue remaining the next spring from the various treatments. The greatest residue was obtained from an October application of straw. The August straw treatment and the spring rye treatments produced equal quantities of residue. Spring triticale had the lowest amount of residue remaining. Efforts will continue to evaluate different crops as potential living mulches.

### Site Description

Crop: Peppermint Variety: Black Mitchum

Planting Method: Roots

Study conducted on an established stand of peppermint.

Plot Width, Unit: 10 FT Plot Length, Unit: 15 FT Reps: 3
Site Location: R-5 Study Design: RCB

Field Preparation/Plot Maintenance:

Rye (Gazelle) planted at 120 Lbs./A Mulches: 8-21-96 Triticale (Sunland) planted at 120 Lbs./A 8-22-96 Straw 1 application at 1 ton/A 9-17-96 Straw 2 application at 1 ton/A 8-22-96 50 Lbs. N, 50 Lbs. P, 50 Lbs. K Fertility: 100 Lbs. N, 52 Lbs. P, 60 Lbs. K, 24 Lbs. S 4-21-97 7- 1-97 132 Lbs. N 4-13-97 Weed Control Stinger at .5 pt. + Sinbar at .5 lb. 5- 8-97 Poast at 2 pts. 5-14-97 Basagran at 2 qt. + Buctril at .5 pt.

### Soil Description

Texture: Coarse Silty Mixed % Om: 2.8 % Sand: 40 % Silt: 50 % Clay: 10 Ph: 6.4 Soil Name: Creston Silt Loam

### Application Equipment

| Sprayer  | Speed | Nozzle | Nozzle | Nozzle | Nozzle  | Boom  |     |         |     |
|----------|-------|--------|--------|--------|---------|-------|-----|---------|-----|
| Type     | MPH   | Type   | Size   | Height | Spacing | Width | GPA | Carrier | PSI |
| Backpack |       |        |        |        |         |       |     | H20     |     |

### LIVING MULCH STUDY

| T: | rt Treatment<br>o Name   | RESIDUE<br>TON/ACRE<br>4-17-97 | MINT<br>YIELD<br>TON/ACRE<br>8-18-97 |
|----|--------------------------|--------------------------------|--------------------------------------|
|    | 1 SPRING RYE             | 9v010 10.86                    | and 2.75 malerana visa               |
|    | 2 SPRING TRITICALE       | 0.33                           | 2.85                                 |
|    | 3 STRAW I (AUG)          | 0.86                           | 2.71 mon ganga men                   |
| 3  | 4 STRAW II (OCT)         | 1.29                           | 3.08                                 |
| ţ  | 5 CHECK                  | 0.00                           | 2.79                                 |
|    | SD (.05) = tandard Dev.= | 0.52                           | 0.79                                 |
| CI |                          | 41.65                          | 14.76                                |
|    | lock F                   | 0.044                          | 0.471                                |
| B  | lock Prob(F)             | 0.9576                         | 0.6407                               |
|    | reatment F               | 9.872                          | 0.364                                |
| Tı | reatment Prob(F)         | 0.0035                         | 0.8281                               |

### TOADFLAX SCREEN

Toadflax infestations are rapidly expanding in local mint production fields. Few options are available to control this perennial noxious weed. This research was initiated to evaluate several commonly use herbicides in an attempt to find management options for this weed. The intent was not only to find control options for mint production, but to also develop management strategies for other widely grown rotational crops.

The herbicides evaluated included Raptor, Pursuit, Harmony Extra, Roundup, 2,4-D, Stinger, Sinbar, Sencor, and Goal. These herbicides were applied in the fall and spring when toadflax plants were 4 inches tall.

The toadflax and mint stands were both erratic, making the control and crop injury assessments difficult. However, a few generalizations can be made. Most products provided similar control regardless of whether they were applied in the fall or spring. The exceptions were Harmony Extra and Sencor, both of which showed greater activity when applied in the spring. Stinger and Sinbar were the least effective in controlling toadflax, whereas Goal showed the greatest activity. While Goal initially caused dramatic injury symptoms, the toadflax eventually recovered.

### Site Description

### Crop: Peppermint

```
Plot Length, Unit: 15 FT
                                                         Reps: 3
Plot Width, Unit: 10 FT
Site Location: Tutvedt farm
                                                         Study Design: RCB
Field Preparation/Plot Maintenance:
                                       30 Lbs. N, 104 Lbs. P, & 120 Lbs. K
                           9-24-96
           Fertility:
                           9-24-96
                                       Sinbar at 1 lb/A
          Weed control:
                           5-18-97
                                       Tankmix:
                                       Stinger at 6 oz/A +
                                       Buctril at 1 pt/A +
                                       Basagran at 1 pt/A +
                                       Tough at 1 pt/A +
                                      COC at 1 pt/A
          Irrigation:
                                       Center pivot as needed
```

### Application Information

|                                         | A                           | В                              |
|-----------------------------------------|-----------------------------|--------------------------------|
| Application Date:                       | 9-27-96 5-20-97             |                                |
| Time of Day:                            | 2:00 PM 11:00 AM            | M ANTHER TO TOTAL              |
| Application Method: Application Timing: | BACKPACK BACKPACE POST POST | X #\34 #p   1 3≦ E             |
| Air Temp., Unit:                        | 66 F 68 F                   |                                |
| % Relative Humidity:                    | 42 29                       |                                |
| Wind Velocity, Unit:                    | 2 MPH 5 MPH                 |                                |
| Dew Presence (Y/N):                     | N N                         |                                |
| Soil Temp., Unit:                       | 54 F 59 F                   |                                |
| Soil Moisture:                          | GOOD GOOD                   |                                |
| % Cloud Cover:                          | 20 0                        |                                |
| Plant Species<br>9-27 Toadflax          |                             | nsity at Application % of Area |
| 5-20 Toadflax<br>Mint                   | 4 inch<br>2 inch            | 4/20 25 1 28 1                 |

### Application Equipment

| Sprayer  | Speed | Nozzle  | Nozzle  | Nozzle | Nozzle  | Boom  |     |         |     |
|----------|-------|---------|---------|--------|---------|-------|-----|---------|-----|
| Type     | MPH   | Type    | Size    | Height | Spacing | Width | GPA | Carrier | PSI |
| Backpack | 2.5   | Flatfan | 11002XR | 14"    | 20"     | 10'   | 20  | H20     | 20  |

# TOADFLAX SCREEN

|          | Treatmen<br>Name   | t Form     |    | Rate   | Rai<br>Un: |       | Grow<br>Stg | Toadfi<br>Injury<br>Percer<br>10-10- | y I | oadflax<br>njury<br>ercent<br>0-28-96 | Injury<br>Percent         |   |
|----------|--------------------|------------|----|--------|------------|-------|-------------|--------------------------------------|-----|---------------------------------------|---------------------------|---|
| 1        | RAPTOR             | 2          | EČ | 4      |            | pr/A  | FALL        | 20.0                                 | 3   | 8.3                                   | 83.3                      |   |
| 1        | 28% UAN            |            | EC |        |            | pr/A  |             |                                      |     |                                       |                           |   |
| 1        | MSO                | 1          | EC | 1      | qt         | pr/A  |             |                                      |     |                                       |                           |   |
| 2        | PURSUIT            | 2          | EC | Δ      | 07         | pr/A  | FAI.I.      | 20.0                                 | 4   | 5.0                                   | 80.0                      |   |
| 2        | 28% UAN            |            | EC |        |            | pr/A  |             | ASTUTE TO                            |     |                                       |                           |   |
| 2        | MSO                |            | EC |        |            | pr/A  |             |                                      |     |                                       |                           |   |
| 2        | PISO               | naire leng | ПО | edt ni | 3          | que n |             |                                      |     |                                       |                           |   |
| 3        | HARMONY            | EXTRA 75   | DF | .6     | oz         | pr/A  | FALL        | 21.7                                 | 5   | 6.7                                   | 65.0                      |   |
| 3        | 28% UAN            | bane 1     | EC | 2      | qt         | pr/A  |             |                                      |     |                                       |                           |   |
| 3        | MSO                | 1          | EC | 1      | qt         | pr/A  |             |                                      |     |                                       |                           |   |
| 1        | ROUNDUP            | 1          | EC | 2      | at.        | pr/A  | FAT.T.      | 21.7                                 | 4   | 0.0                                   | 66.7                      |   |
| 4        | 28% UAN            |            | EC |        |            | pr/A  |             |                                      |     |                                       |                           |   |
| 4        | MSO                |            | EC |        |            | pr/A  |             |                                      |     |                                       |                           |   |
| -        |                    |            |    |        | - ·        |       |             | on Burder 11                         | _   |                                       | 70.0                      |   |
| 5        | 2,4-D              |            | EC |        |            | pr/A  | FALL        | 33.3                                 | 5   | 5.0                                   | 70.0                      |   |
| 5        | 28% UAN            |            | EC |        |            | pr/A  |             |                                      |     |                                       |                           |   |
| 5        | MSO                | 034 7 1    | EC | 1      | qt         | pr/A  |             |                                      |     |                                       |                           |   |
| 6        | STINGER            | 3          | EC | 1 6 6  | nt         | pr/A  | FALL        | 5.0                                  | 2   | 0.0                                   | 30.0                      | - |
| 6        | 28% UAN            |            | EC |        |            | pr/A  | Dinal       |                                      |     |                                       |                           |   |
| 6        | MSO OAN            |            | EC |        |            | pr/A  |             |                                      |     |                                       |                           |   |
| •        | 1100               | _          |    | TAN 10 | 1          |       |             |                                      |     |                                       |                           |   |
| 7        | SINBAR             | 80         | WP | 2      |            | pr/A  | FALL        | 38.3                                 | 4   | 1.7                                   | 16.7                      |   |
| 7        | 28% UAN            |            | EC |        |            | pr/A  |             |                                      |     |                                       |                           |   |
| 7        | MSO                | 1          | EC | 1      | qt         | pr/A  |             |                                      |     |                                       |                           |   |
| 8        | SENCOR             | 75         | DF | .67    | 1h         | pr/A  | FALL        | 36.7                                 | 6   | 1.7                                   | 33.3                      |   |
| 8        | 28% UAN            |            | EC |        |            | pr/A  |             |                                      |     |                                       |                           |   |
| 8        | MSO                |            | EC |        |            | pr/A  |             |                                      |     |                                       |                           |   |
|          |                    |            |    |        | -          | 8     |             | Ä.                                   | _   |                                       | 66.7                      |   |
| 9        | GOAL               | 1.6        |    |        |            | pr/A  | FALL        | 99.0                                 | 9   | 9.3                                   | 66.7                      |   |
| 9        | 28% UAN            |            | EC |        |            | pr/A  |             |                                      |     |                                       |                           |   |
| 9        | MSO                | 1          | EC | 1      | qt         | pr/A  |             |                                      |     |                                       |                           |   |
| 10       | RAPTOR             | 2          | EC | Δ      | 0.7        | nr/A  | SPRING      | 0.0                                  |     | 0.0                                   | 88.3                      |   |
| 10       | 28% UAN            |            | EC |        |            | pr/A  |             |                                      |     |                                       |                           |   |
| 10       | MSO                |            | EC |        |            | pr/A  |             |                                      |     |                                       |                           |   |
|          |                    | _          |    | _      |            |       |             |                                      |     |                                       | Medical Research Services |   |
| 11       | PURSUIT            |            | EC |        |            |       | SPRING      | 0.0                                  |     | 0.0                                   | 83.3                      |   |
| 11       | 28% UAN            |            | EC |        |            | pr/A  |             |                                      |     |                                       |                           |   |
| 11       | MSO                | 1          | EC | 1      | qt         | pr/A  |             |                                      |     |                                       |                           |   |
| 10       | UN DMONIT!         | בעשטא פ    | שת | 6      | 0.7        | nr/n  | SPRING      | 0.0                                  |     | 0.0                                   | 93.0                      |   |
| 12<br>12 | HARMONY<br>28% UAN | EXTRA 75   | EC |        |            | pr/A  |             | 0.0                                  |     | 9                                     |                           |   |
| 12       | MSO                |            | EC |        |            | pr/A  |             |                                      |     |                                       |                           |   |
| 14       | 1150               | _          | 20 | -      | 4-         | F-/   |             |                                      |     |                                       |                           |   |
|          |                    |            |    |        |            |       |             |                                      |     |                                       |                           |   |

CONTINUED...

## TOADFLAX SCREEN

| Trt<br>No                          |                               | Form<br>Amt |                | Rate    | Ra<br>Un |                      | Grow<br>Stg | Toadfl<br>Injury<br>Percen<br>10-10-              | Injury<br>t Percent                                             | Injury<br>Percent                                              |  |
|------------------------------------|-------------------------------|-------------|----------------|---------|----------|----------------------|-------------|---------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|--|
| 13<br>13                           | ROUNDUP<br>28% UAN            | 1           | EC             | 2       | qt       | pr/A                 | SPRING      | 0.0                                               | 0.0                                                             | 56.7                                                           |  |
| 13                                 | MSO                           | 1           | EC             |         | qt       | pr/A                 |             |                                                   |                                                                 |                                                                |  |
| 14<br>14                           | 2,4-D<br>28% UAN              | 3.8         | EC<br>EC       |         |          | pr/A<br>pr/A         | SPRING      | 0.0                                               | 0.0                                                             | 80.0                                                           |  |
| 14                                 | MSO                           | 1           | EC             | 1       | qt       | pr/A                 |             |                                                   |                                                                 |                                                                |  |
| 15<br>15<br>15                     | STINGER<br>28% UAN<br>MSO     | 1           | EC<br>EC       | 2       | qt       | pr/A<br>pr/A<br>pr/A | SPRING      | 0.0                                               |                                                                 | 26.7                                                           |  |
| 16<br>16                           | SINBAR<br>28% UAN             |             | WP<br>EC       |         |          | pr/A<br>pr/A         | SPRING      | 0.0                                               | 0.0                                                             | 26.7                                                           |  |
| 16                                 | MSO                           |             | EC             |         |          | pr/A                 |             |                                                   |                                                                 |                                                                |  |
| 17<br>17<br>17                     | SENCOR<br>28% UAN<br>MSO      | 1           | DF<br>EC<br>EC |         | qt       | pr/A<br>pr/A<br>pr/A | SPRING      | 0.0                                               | 0.0                                                             | 80.0                                                           |  |
| 18                                 | GOAL<br>28% UAN<br>MSO        |             | EC<br>EC       | 2       | qt       | pr/A<br>pr/A<br>pr/A | SPRING      | 0.0                                               | 0.0                                                             | 99.3                                                           |  |
|                                    | CHECK                         | e 1104      | 131            | d forms | ers.     | Tgetqr               |             | 0.0                                               | 0.0                                                             | 26.7                                                           |  |
| 20                                 | CHECK                         |             |                |         |          |                      |             | 0.0                                               | 0.0                                                             | 33.3                                                           |  |
| Stan<br>CV<br>Bloc<br>Bloc<br>Trea | <pre>(.05) = dard Dev.=</pre> |             |                |         |          |                      | 0 2         | 12.7<br>69552<br>52.06<br>0.717<br>.4947<br>9.645 | 12.4<br>7.53012<br>32.91<br>0.570<br>0.5703<br>46.402<br>0.0001 | 51.9<br>31.4575<br>52.18<br>3.209<br>0.0516<br>2.152<br>0.0219 |  |

### TOADFLAX CONTROL WITH GOAL IN PEPPERMINT

Toadflax infestations are rapidly expanding in local mint production fields. Few options are available to control this perennial noxious weed. This research was initiated to evaluate applications of Goal herbicide for the potential to manage this pest.

This study evaluated Goal as a function of application timing, rate, and formulation. Early applications on April 30 consisted of liquid and impregnated formulations applied at several rates. Conventional postemergence applications were made on May 20, and consisted solely of the liquid formulation. Sequential applications were made 19 days later to half of the May 20 treatments.

The toadflax and mint stands were both erratic, making the control and crop injury assessments difficult. However, a few generalizations can be made. There appears to be little difference in herbicide tolerance between toadflax and the mint crop. Both species responded to applications of goal to the same extent. Sequential applications provided greater control than single applications. Sequential application made at 0.25 lb ai/A initially provided 98 percent control of both species. The toadflax eventually recovers, as growth resumes from the underground rhizome system.

The liquid formulation provided greater toadflax control than that of the impregnated material. Correspondingly, the degree of mint injury also was greater with the liquid formulation. The 2.0 pound rate of Goal, when impregnated, provided about 60 percent control of toadflax, yet only resulted in a 17 percent crop injury rating. While these results are preliminary, it appears that the impregnated formulation of goal may be the best approach to manage toadflax.

## Toadflax Control with Goal in Peppermint

### Site Description

Crop: Peppermint

Plot Width, Unit: 10 FT Plot Length, Unit: 15 FT Reps: 3

Site Location: Tutvedt farm Study Design: RCB Field Preparation/Plot Maintenance:

Weed control: 5-18-97 Tankmix:

Stinger at 6 oz/A + Buctril at 1 pt/A + Basagran at 1 pt/A + Tough at 1 pt/A + COC at 1 pt A

Irrigation:

Center pivot as needed

### Application Information

| Application Date: Time of Day: Application Method: Application Timing: Air Temp., Unit: % Relative Humidity: Wind Velocity, Unit: Dew Presence (Y/N): Soil Temp., Unit: Soil Moisture: % Cloud Cover: | A<br>4-30-97<br>12:00 PM<br>BACKPACK<br>DORMANT<br>56 F<br>38<br>6 MPH<br>N<br>48 F<br>GOOD<br>95 | B<br>5-20-97<br>11:00 AM<br>BACKPACK<br>POST<br>68 F<br>29<br>5 MPH<br>N<br>59 F<br>GOOD | C<br>5-29-97<br>12:30<br>BACKPACK<br>POST<br>70 F<br>33<br>1.5 MPH<br>Y<br>68 F<br>GOOD<br>50 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                       |                                                                                                   |                                                                                          |                                                                                               |

Plant Species Plant Stage Density at Application

4-30 Toadflax 1 inch Sparse Canada Thistle 2 inch Rosette Spotty

5-20 Toadflax 4 inch 2 inch Mint 4 inch 5-29 Toadflax

### Application Equipment

| Sprayer Speed Nozzle Nozzle Nozzle Type MPH Type Size Height Backpack 2.5 Flatfan 11002XR 14" | Spacing | Width | GPA | Carrier<br>H2O | PSI<br>20 |
|-----------------------------------------------------------------------------------------------|---------|-------|-----|----------------|-----------|
|-----------------------------------------------------------------------------------------------|---------|-------|-----|----------------|-----------|

## Toadflax Control with Goal in Peppermint

|                                    | Treatment<br>Name              |   | Form<br>Amt |          | Rate           |                | te<br>it             |   | row<br>tg | for:                      | Toadfl<br>Injury<br>Percer<br>5-20-9         | y<br>nt                  | Toadf<br>Injur<br>Perce<br>6-9-9             | y<br>nt | Mint<br>Crop<br>Perc<br>6-9-                      | ent |
|------------------------------------|--------------------------------|---|-------------|----------|----------------|----------------|----------------------|---|-----------|---------------------------|----------------------------------------------|--------------------------|----------------------------------------------|---------|---------------------------------------------------|-----|
| 1                                  | GOAL                           |   | 2.0         | EC       | 2.0            | lb             | ai/A                 | E | Post      | Emer                      | 63.3                                         |                          | 98.3                                         |         | 86.7                                              |     |
| 2                                  | GOAL                           |   | 2.0         | EC       | 1.0            | lb             | ai/A                 | E | Post      | Emer                      | 51.3                                         |                          | 56.7                                         |         | 40.0                                              |     |
| 3                                  | GOAL                           |   | 2.0         | EC       | 0.5            | lb             | ai/A                 | E | Post      | Emer                      | 21.3                                         |                          | 44.2                                         |         | 32.1                                              |     |
| 4                                  | GOAL                           |   | .005        | G        | 2.0            | lb             | ai/A                 | E | Post      | Emer                      | 43.8                                         |                          | 61.7                                         |         | 17.1                                              |     |
| 5                                  | GOAL                           |   | .005        | G        | 1.0            | lb             | ai/A                 | E | Post      | Emer                      | 15.0                                         |                          | 38.3                                         |         | 10.0                                              |     |
| 6                                  | GOAL<br>MSO                    |   | 1           | EC       |                | qt             | ai/A<br>pr/A         |   |           |                           | 0.0                                          |                          | 88.2                                         |         | 42.1                                              |     |
| 6                                  | UAN 28%                        |   | 1           | EC       | 2              | qt             | pr/A                 |   |           |                           |                                              |                          |                                              |         |                                                   |     |
| 7<br>7<br>7                        | GOAL<br>MSO<br>UAN 28%         |   | 1           | EC<br>EC |                | qt             | ai/A<br>pr/A<br>pr/A |   | -3" 85    |                           | 0.0                                          |                          | 51.7                                         |         | 26.7                                              |     |
| 8<br>8                             | GOAL<br>MSO<br>UAN 28%         |   | 1           | EC<br>EC |                | qt             | ai/A<br>pr/A<br>pr/A |   | -3"       |                           | 31.7                                         |                          | 36.7                                         |         | 43.3                                              |     |
| 9                                  | GOAL<br>MSO                    |   | 2.0         |          | 0.25           | lb             | ai/A<br>pr/A         |   | -3"       |                           | 0.0                                          |                          | 98.7                                         |         | 99.0                                              |     |
| 9 9                                | UAN 28%<br>GOAL<br>MSO         |   | 2.0<br>1    | EC<br>EC | 2<br>0.25<br>1 | qt<br>lb<br>qt | pr/A<br>ai/A<br>pr/A | + | 1 Wee     | k                         |                                              |                          |                                              |         |                                                   |     |
| 9                                  | UAN 28%                        |   | 1           | EC       | 2              | qt             | pr/A                 |   |           |                           |                                              |                          |                                              |         |                                                   |     |
| 10                                 | GOAL<br>MSO<br>UAN 28%<br>GOAL |   | 1 2.0       | EC<br>EC | 2<br>0.125     | qt<br>qt<br>lb | pr/A<br>pr/A<br>ai/A | + |           |                           | 0.0                                          |                          | 68.3                                         |         | 68.3                                              |     |
|                                    | MSO<br>UAN 28%                 |   |             | EC<br>EC |                |                | pr/A<br>pr/A         |   |           |                           |                                              |                          |                                              |         |                                                   |     |
| 11                                 | GOAL<br>MSO<br>UAN 28%         |   | 1           | EC<br>EC |                | qt             | ai/A<br>pr/A<br>pr/A |   | -3"       |                           | 0.0                                          |                          | 59.7                                         |         | 53.0                                              |     |
| 11                                 | GOAL<br>MSO<br>UAN 28%         |   | 1           |          | 1              | qt             | ai/A<br>pr/A<br>pr/A |   | 1 Wee     | koriga                    |                                              |                          |                                              |         |                                                   |     |
|                                    | CHECK                          |   | •           | БС       |                | _              | PI/A                 |   |           |                           | 0.0                                          |                          | 0.0                                          |         | 0.0                                               |     |
| Stan<br>CV<br>Bloc<br>Bloc<br>Trea |                                | = | -           |          |                |                |                      |   |           | 19.<br>17<br>0<br>0.<br>3 | 32.0<br>1227<br>5.68<br>.356<br>7038<br>.402 | 34.<br>7<br>0<br>0.<br>2 | 57.4<br>4193<br>6.22<br>.065<br>9374<br>.968 | 0.      | 48.1<br>.8453<br>33.58<br>0.413<br>.6652<br>3.763 |     |

Intrastate Spring Barley Evaluation

PROJECT LEADERS:

Bob Stougaard and Doug Holen, Kalispell, MT.

Tom Blake and Pat Hensleigh, PS&ES, Bozeman, MT.

OBJECTIVE:

To evaluate spring barley varieties for yield, quality, lodging resistance, and improved resistance to foliar diseases, in consideration for future release to Montana grain growers.

Yields were lower than average with 21 of the 64 entries topping

RESULTS:

100 bu/A. Yields ranged from 121 bu/A (Nebula) to 77 (MT940013). Overall test weight (52.4 lbs/bu) was very good when compared to previous years. Only Nebula and MTLB 48 did not make 50 lbs/bu. Significant lodging was documented in 1997 which may have led to the poor average percent plump. Six cultivars had plumps of 94.5%, while MTLB 48 was only 66.5%. 42% of the entries were above 90% plump. Eight cultivars displayed good lodging resistance including Nebula, BZ594-19, Logan, Stark, and four experimentals, while eight others, led by Harrington, were very poor. A late spring resulted in heading dates, and harvest one to two weeks later than normal. Foliar diseases were overwhelming in that those present were just bulked into an overall leaf-spot complex and rated by how much of the plant was affected. Little to no susceptibility differences existed among the cultivars under high pressure, as all were hit equally as severe.

SUMMARY:

Late planting and saturated soils led to slow initial growth and below average yields. Test weights measured high despite significant lodging throughout the nursery. The lodging in combination with severe disease pressure, did however, result in low percent plumps.

**FUTURE PLANS:** 

Cultivars will continue to be evaluated at Kalispell through cooperative testing in an attempt to identify cultivars best adapted to District 1 growing conditions.

Agronomic data from the Intrastate Spring Barley Nursery grown at the Northwestern Agricultural Research Center in Kalispell, MT. Table 1.

Planted: May 10, 1997 Harvested: August 21, 1997

|               | HD DATE        | HEIGHT YIELD                 | TWT   | PLUMP | LDG  |        | PYTHIUM |
|---------------|----------------|------------------------------|-------|-------|------|--------|---------|
| VARIETY       | JULIAN         | INCH BU/A                    | LB/BU | 8     | 0-9  | 0-3 1/ | 1-3 2/  |
| B) Retrest    | b reduitor con |                              | 40 40 | 07 50 | 19   | 2.97   | 2.97    |
| Nebula        | 189.69         | 30.80 121.19                 | 48.40 | 94.50 | 1.27 | 2.73   | 2.68    |
| Stander       |                | 38.91 114.36                 |       | 94.50 | 07   | 2.94   | 2.99    |
| WPB BZ 594-19 | 187.40         | 36.61 113.33                 |       |       | .77  | 3.06   | 3.07    |
| Logan         | 183.62         | 37.36 111.30                 | 53.10 | 91.00 |      | 2.82   | 2.99    |
| AC 96/1114    |                | 34.38 110.05                 | 51.40 |       | 1.94 | 2.63   | 3.01    |
| MT950186      | 185.49         | 34.90 109.34                 |       | 92.50 |      |        | 3.00    |
| Baronesse     | 187.98         | 34.06 109.02                 | 52.80 | 90.50 | 2.93 | 3.02   | 2.67    |
| Foster        |                | 39.32 108.31                 | 51.30 | 93.50 | 1.73 | 2.94   |         |
| Stark         | 183.12         | 39.22 106.83                 | 52.70 | 94.50 |      | 3.05   | 3.04    |
| H1851195      | 186.72         | 39.45 106.48                 | 52.90 |       |      | 2.79   | 2.95    |
| 2B945337      | 184.52         | 37.11 105.48                 | 52.70 | 94.50 | 1.61 | 2.92   | 3.01    |
| MTLB 32       | 187.18         | 35.30 104.85                 | 52.40 | 78.00 |      | 2.67   | 2.98    |
| MT930204      | 183.38         | 39.32 104.56                 | 52.90 | 90.50 | 4.50 | 2.83   | 2.69    |
| Chinook       | 185.78         | 36.77 104.46                 | 53.10 | 89.00 | 3.12 | 2.70   | 2.39    |
| MT940214      |                | 37.20 104.17                 |       | 91.00 | 1.62 | 3.06   | 3.00    |
| GS 1750       | 190.17         | 27.59 104.13                 |       | 89.50 | 1.18 | 2.90   | 3.00    |
|               | 188.06         | 27.59 104.13<br>36.81 102.85 | 51.80 | 71.00 | 4.62 | 2.46   | 3.00    |
| MT930169      | 100.00         | 36.71 102.49                 | 52.90 | 92.00 |      | 2.83   | 2.99    |
| MT940218      | 187.60         | 36.20 101.43                 |       | 94.50 | 2.50 | 2.54   | 2.93    |
| BA 1202       |                | 36.66 100.46                 |       |       | 4.02 | 2.54   | 2.97    |
| MT950175      | 186.38         | 40.00 100.07                 |       | 87.00 |      | 2.89   | 3.02    |
| Harrington    |                |                              | 54.10 | 90.00 |      | 2.81   | 2.96    |
| Lewis         |                |                              |       | 93.00 | 2.24 | 2.71   | 2.65    |
| MT910189      |                | 37.88 99.93                  | 50.60 | 85.50 | 3.20 | 2.92   | 2.97    |
| Coors C22     | 192.38         | 33.49 99.78                  |       |       |      | 2.87   | 2.99    |
| MT950081      | 186.99         | 35.02 99.72                  |       | 86.50 |      | 2.79   | 2.97    |
| 2B914947      | 189.60         | 36.80 98.59                  |       |       | 3.34 | 2.94   | 2.97    |
| MT886610      | 185.57         | 37.36 98.31                  |       | 86.50 |      | 2.83   | 3.05    |
| MTLB 2        | 186.51         | 34.52 97.46                  | 52.50 | 93.00 | .61  | 2.73   | 2.97    |
| MTLB 6        |                | 34.80 96.23                  |       | 87.50 | 2.29 |        | 3.03    |
| MT940082      | 185.72         | 33.07 96.02                  |       |       | .54  | 2.90   | 2.68    |
| 2B925550      | 187.90         | 37.74 95.16                  |       | 94.50 | 2.55 | 2.97   | 2.97    |
| MT920041      | 185.75         | 36.53 94.88                  | 52.00 | 91.50 | 1.10 | 2.79   |         |
| MT950102      |                | 33.27 94.74                  |       | 89.50 | 1.71 | 2.67   | 2.32    |
| MT940087      | 188.00         | 36.11 94.61                  | 53.40 | 92.00 | 2.51 | 2.55   | 2.38    |
| MT920073      | 184.82         | 33.22 94.44                  | 52.40 | 89.50 | 2.41 | 2.64   | 2.78    |
| MT950091      | 188.45         | 32.50 94.33                  |       | 86.00 | 3.32 | 2.60   | 2.99    |
| MT920161      | 185.77         | 38.37 93.86                  | 52.60 |       | 3.55 | 2.79   | 2.99    |
| Galena        |                | 32.13 93.41                  | 51.90 | 84.00 | 2.41 | 2.74   | 2.91    |
| MT940196      | 187.32         | 34.18 93.24                  | 51.10 | 83.50 | 3.56 | 2.86   | 2.36    |
| MT940121      |                | 35.58 92.33                  | 51.50 | 89.00 | 2.89 | 2.53   | 2.71    |
| MT950170      | 183.83         | 30.94 92.15                  | 51.00 | 85.50 | 3.14 | 2.79   | 3.03    |
| MTLB 57       | 184.65         | 33.71 92.09                  | 52.30 | 86.50 | 3.40 | 2.54   | 2.95    |
| Gallatin      | 185.45         | 38.89 91.76                  | 53.30 | 86.50 | 2.67 | 2.95   | 3.00    |
|               | 184.84         | 32.23 91.64                  | 51.90 | 91.00 | 1.27 | 2.60   | 3.01    |
| MT950155      | 187.67         | 38.20 91.62                  | 51.90 | 88.50 | 2.65 | 2.60   | 2.98    |
| MT920201      | 185.72         | 36.68 90.98                  | 52.30 | 94.00 | 3.29 | 2.97   | 2.97    |
| MT950121      | 190.17         | 33.97 90.62                  | 50.70 | 88.50 | 4.83 | 2.84   | 2.97    |
| MT950168      | 184.35         | 34.98 90.13                  | 51.70 | 86.50 | 1.53 | 2.90   | 2.97    |
| MT950156      |                |                              | 51.70 | 88.00 | 2.91 | 3.13   | 2.38    |
| MTLB 30       | 189.17         |                              | 51.90 | 85.50 | 3.98 | 2.43   | 2.29    |
| MTLB 5        | 188.20         |                              | 53.30 | 72.50 | 1.41 | 2.79   | 3.00    |
| MT940053      | 188.83         | 34.30 89.07                  | 55.50 | 12.50 |      |        |         |

(Continued on next page)

Table 1 (Cont'd). Agronomic data from the Intrastate Spring Barley Nursery.

Planted: May 10, 1997

Harvested: August 21, 1997

| VARIETY        | amese 9 , 2 Bu       | HD DATE        | HEIGHT<br>INCH | YIELD<br>BU/A | TWT<br>LB/BU    | PLUMP %  | LDG<br>0-9 | LF SPOT<br>0-3 1/ | PYTHIUM<br>1-3 2/ |
|----------------|----------------------|----------------|----------------|---------------|-----------------|----------|------------|-------------------|-------------------|
| VAKILLI        |                      |                |                |               |                 |          |            |                   |                   |
| MT920059       |                      | 187.42         | 38.71          | 89.06         | 53.90           | 90.00    | 1.35       | 2.90              | 2.98              |
| MT920053       |                      | 186.27         | 36.29          | 88.48         | 53.40           | 87.00    | 2.79       | 2.71              | 3.00              |
|                |                      | 192.22         | 28.93          | 88.24         | 51.60           | 77.00    | 2.91       | 2.46              | 3.03              |
| MT950064       |                      | 182.60         | 37.12          | 86.86         | 52.70           | 89.00    | 3.59       | 2.87              | 2.95              |
| MT950151       |                      | 186.48         | 35.26          | 86.86         | 53.00           | 83.50    | 2.42       | 2.67              | 3.05              |
| MT950154       |                      | 190.25         | 34.99          | 86.51         | 49.30           | 66.50    | 4.07       | 2.48              | 2.69              |
| MTLB 48        |                      |                | 36.36          | 86.34         | 52.60           | 89.50    | 1.77       | 2.89              | 2.68              |
| Н3860224       |                      | 189.37         |                |               | 54.10           | 92.00    | 1.41       | 2.84              | 2.31              |
| MT910150       |                      | 185.72         | 34.95          | 84.67         | 52.90           | 88.50    | .74        | 2.59              | 2.97              |
| MT940071       |                      | 185.13         | 32.29          | 84.51         | 51.90           | 83.00    | 2.97       | 2.49              | 2.75              |
| MT940177       |                      | 186.77         | 33.56          | 82.27         | 200 000 000 000 |          | 1.98       | 2.30              | 3.02              |
| Moravian 1     | 4                    | 182.80         | 29.92          | 81.04         | 53.30           | 86.50    | 1.88       | 2.57              | 2.70              |
| MTLB 13        |                      | 187.70         | 33.05          | 80.91         | 50.30           | 85.10    | 14         |                   | 2.99              |
| MT940013       |                      | 187.08         | 31.78          | 77.27         | 50.80           | 84.00    | 3.21       | 2.40              | 2.33              |
|                | The second section 2 |                |                |               | or new roots    | 11111111 | 8          |                   |                   |
| rays and the d | alon linear to       | Se se de la la |                |               | ILS ELLINA      | cual bu  | 0.5        | 2 0               | 2.9               |
| MEAN           |                      | 186.7          | 35.4           | 96.5          | 52.4            | 88.0     | 2.5        | 2.8               |                   |
| C.V.           |                      | 0.5            | 6.4            | 11.6          | NA              | NA       | 45.8       | 12.7              | 9.9               |
|                | (0.5)                | 1.4            | 3.8            | 18.3          | NA              | NA       | 1.9        | 0.6               | 0.5               |

<sup>1/</sup> DISEASE LEVELS: 1=DISEASE COMPLEX UP 1/3 OF PLANT, 2=UP 2/3 OF PLANT, 3= WHOLE

PLANT

STUNTING, 3=LITTLE OR NO PLOT EFFECT

<sup>2/</sup> DISEASE LEVELS: 1=COMPETE PLOT YELLOWING & STUNTING, 2=PARTIAL PLOT YELLOWING &

Early Yield Spring Barley Evaluation

PROJECT LEADERS:

Bob Stougaard and Doug Holen, Kalispell, MT

Tom Blake and Pat Hensleigh, PS&ES, Bozeman, MT

**OBJECTIVE:** 

To evaluate spring barley varieties for yield, quality, lodging resistance, and improved resistance to foliar diseases, in consideration for future releases to Montana grain growers.

RESULTS:

As a result of high visible variability within and between plots, and demonstrated by heading date measurements, this nursery was terminated on August 4.

SUMMARY:

A cool and very wet spring resulted in late planting and poor early growth conditions. Early in the season, plants displayed stunted and yellowing symptoms later identified as Pythium. The result was erratic growth patterns within plots and specifically between reps due to Pythium patches. Pythium evaluations revealed no genetic resistance among cultivars, resulting in plots not representative enough for normal or altered variable

measurements.

**FUTURE PLANS:** 

Cultivars will continue to be evaluated at Kalispell through cooperative testing in an attempt to identify cultivars best adapted to District 1 growing conditions.

Table 1. Agronomic data from the Early Yield Spring Barley Nursery grown at the Northwestern Agricultural Research Center in Kalispell, MT

Planted: May 10, 1997

Harvested: Terminated

| VARIETY         | 1.90 | HD DATE JULIAN   | PYTHIUM<br>1-3 1/ | Taccaer |
|-----------------|------|------------------|-------------------|---------|
| 77.00.2.2.2     | 83.1 | 00.001           |                   | 0220964 |
| T960044         |      | 196.08           | 1.93              |         |
| T960162         |      | 195.75           | 1.58              |         |
| T960045         |      | 195.62           | 1.93              |         |
| T960013         |      | 194.78           | 2.71              |         |
| T960111         |      | 194.22           | 2.37              |         |
| T960141         |      | 193.62           | 1.95              |         |
| T960152         |      | 193.46           | 1.70              |         |
| T960154         |      | 193.22           | 1.69              |         |
| T960017         |      | 192.76           | 1.98              |         |
| T960127         |      | 192.24           | 2.33              |         |
|                 |      | 192.04           | 2.06              |         |
| T960101         |      | 191.96           | 2.06              |         |
| T960175         |      | 191.84           | 2.32              |         |
| T960029         |      |                  | 2.07              |         |
| T960098         |      | 191.82           | 1.61              |         |
| T960192         |      | 191.73           |                   |         |
| T960019         |      | 191.70           | 2.30              |         |
| T960156         |      | 191.42           | 2.04              |         |
| arrington       |      | 191.25           | 1.62              |         |
| T960184         |      | 191.07           | 1.87              |         |
| r960039         |      | 191.03           | 2.56              |         |
| r960140         |      | 190.82           | 1.93              |         |
| 1960174         |      | 190.79           | 1.67              |         |
| 1960099         |      | 190.52           | 2.27              |         |
| T960082         |      | 190.18           | 2.59              |         |
| T960178         |      | 190.14           | 2.41              |         |
| T960170         |      | 190.11           | 2.02              |         |
| T960028         |      | 190.11           | 2.01              |         |
|                 |      | 189.89           | 2.45              |         |
| C167-46         |      | 189.89           | 2.38              |         |
| r960087         |      | 189.66           | 2.28              |         |
| r960195         |      | 189.64           | 2.09              |         |
| r960222         |      |                  | 2.63              |         |
| <b>r</b> 960086 |      | 189.64           |                   |         |
| 7960228         |      | 189.51           | 2.37              |         |
| 1960182         |      | 189.44           | 2.00              |         |
| 1960225         |      | 189.03           | 1.67              |         |
| 7960188         |      | 189.02           | 2.90              |         |
| 960197          |      | 188.97           | 3.00              |         |
| 1960198         |      | 188.97           | 1.36              |         |
| 7960102         |      | 188.67           | 2.68              |         |
| 960089          |      | 188.60           | 1.59              |         |
| r960213         |      | 188.44           | 2.38              |         |
| 1960055         |      | 188.40           | 2.67              |         |
| aronesse        |      | 188.39           | 2.35              |         |
|                 |      | 188.29           | 2.06              |         |
| hinook          |      | 188.06           | 2.68              |         |
| allatin         |      |                  | 1.40              |         |
| 1960199         |      | 188.00           | 2.33              |         |
| ewis            |      | 187.75<br>187.54 | 2.32              |         |
| T960181         |      | 18/ 54           | 4.34              |         |

(Continued on next page)

Table 1 (Con't). Agronomic data from Early Yield Spring Barley Nursery.

| VARIETY   | Yal)      | HD DATE<br>JULIAN | PYTHIUM<br>1-3 | Planted: M |
|-----------|-----------|-------------------|----------------|------------|
|           | HITTHE IN | 30 86. 201.       | 1.00           |            |
| MT960041  |           | 187.44            | 1.90           |            |
| MT960104  |           | 186.68            | 1.66           |            |
| MT960230  |           | 186.40            | 1.85           |            |
| MT960226  |           | 185.88            | 2.11           |            |
| Stark     |           | 185.57            | 2.33           |            |
| MT960170  |           | 184.68            | 2.61           |            |
| Morex     |           | 184.08            | 2.32           |            |
| BC167-49  |           | 183.69            | 1.93           |            |
| MT960177  |           | 183.56            | 2.41           |            |
| BC167-32  |           | 183.11            | 1.95           |            |
|           |           | 182.26            | 2.10           |            |
| Steptoe   |           | 181.72            | 2.44           |            |
| BC72-44   |           | 181.23            | 2.14           |            |
| BC72-50   |           | 180.89            | 2.08           |            |
| BC72-31   |           | 180.73            | 1.94           |            |
| BC72-14   |           | N 25 COC 1000     | 2.41           |            |
| BC167-41  |           | 180.01            | 2.41           |            |
|           |           |                   |                | 58558608   |
| \C_7\\    |           | 189.00            | 2.10           |            |
| MEAN      |           | 0.59              | 26.70          |            |
| C.V.      |           |                   | 0.95           |            |
| LSD (.05) |           | 1.88              | 0.33           |            |

<sup>1/</sup> DISEASE LEVELS: 1=COMPLETE PLOT YELLOWING & STUNTING, 2=PARTIAL PLOT YELLOWING & STUNTING, 3=LITTLE OR NO PLOT EFFECT

State Oat Evaluation

PROJECT LEADERS:

Bob Stougaard and Doug Holen, Kalispell, MT

Tom Blake and Pat Hensleigh, PS&ES, Bozeman, MT

OBJECTIVE:

To evaluate oat varieties for adaptability, yield, quality, and

disease resistance in northwestern Montana.

**RESULTS:** 

Yields in 1997 varied from 185 bu/A (Monida) to 86 (Whitestone). Due to late planting and adverse early growing conditions, heading dates and harvest maturity was delayed one to two weeks from normal. Height was also affected which resulted in shorter plots and less lodging than average. Four varieties displayed good lodging resistance (87AB5125, 90AB1322, Ajay, and Whitestone). Test weight was slightly better than past averages with Monida and

ABSP 9-2 exceeding 39 lbs/bu.

SUMMARY:

Adverse initial growing conditions resulted in poor yields but good test weights. The disease Pythium was present throughout the nursery which resulted in reduced plant height, later maturity, and an overall plant discoloration from dark to pea green.

**FUTURE PLANS:** 

Cultivars will continue to be evaluated at Kalispell through cooperative testing in an attempt to identify cultivars best adapted

to District 1 growing conditions.

Table 1. Agronomic data from the Montana Statewide Oat Nursery grown at the Northwestern Agricultural Research Center in Kalispell, MT.

Planted: May 10, 1997 Harvested: September 23, 1997

| VARIETY                                                                                                                                                                                                                                                       | HD DATE<br>JULIAN                                                                                                    | HEIGHT YIEI<br>INCH BU/A                                                                                      |                                                                                                         | TWT<br>LB\BU                                                                           | n |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---|
| CI483126 Monida ABSP 9-2 83/Ab3119/Monida 86AB664 Ogle/75Ab861 CELSIA Celsia 87AB5125 Ogle/75Ab861 PRAIRIE Prairie 90Ab1322 80Ab1322/Monida ND860416 Otana/Valley 86AB4582 Monida/Reselection 83AB3250 Powell CI 9252 Otana 82Ab1142 Ajay 81Ab5792 Rio Grande | 193.00<br>190.33<br>191.00<br>194.00<br>191.67<br>187.00<br>189.33<br>191.67<br>189.33<br>195.00<br>191.33<br>190.00 | 41.10 157. 43.93 144. 37.67 140. 37.27 128. 32.40 127. 40.70 127. 39.90 125. 35.83 122. 37.63 112. 32.03 100. | 17 3.00<br>67 1.33<br>33 2.00<br>70 .00<br>67 1.33<br>43 .33<br>33 1.67<br>70 1.33<br>73 2.33<br>33 .00 | 39.90<br>36.50<br>38.40<br>38.50<br>37.30<br>38.80<br>37.40<br>36.40<br>37.90<br>38.20 |   |
| ND870258 Whitestone  MEAN                                                                                                                                                                                                                                     | 193.00                                                                                                               | 30.20 86.<br>37.7 130.                                                                                        |                                                                                                         | 36.20                                                                                  |   |
| C.V.<br>LSD (.05)                                                                                                                                                                                                                                             | 0.3                                                                                                                  | 14.5 18.<br>9.2 40.                                                                                           | 4 102.0                                                                                                 | NA<br>NA                                                                               |   |

Advanced Spring Wheat Evaluation

PROJECT LEADERS:

Bob Stougaard and Doug Holen, Kalispell, MT.

Luther Talbert and Susan Lanning, PS&ES, Bozeman, MT.

OBJECTIVE:

To determine the adaptability of spring wheat varieties grown under high moisture conditions in northwestern Montana.

RESULTS:

Late planting due to very wet conditions, in combination with a severe outbreak of Pythium, led to the lowest average yield this nursery has had in Kalispell. Yields ranged from 68.8 bu/A (MT9644) to 21.6 (MT9453). Heading dates were one week later than normal. Test weight, lodging, and height were at or near normal for this location. 39% of the entries had test weights at 60 lbs/bu or above while 45% of the entries displayed good lodging resistance. Proteins averaged 12.3 percent with MT9627 highest at 13.9% and Penawawa (soft white) lowest at 9.6.

SUMMARY:

Pythium affects on plots were apparent early in the season and continued through grain fill and dry down. Early leaf loss and little tillering indicated low yields by heading. No genetic resistance is recognized in spring wheats, meaning the Pythium ratings taken are a measurement of damage rather than resistant vs.

susceptible.

FUTURE PLANS:

Cultivars will continue to be evaluated at Kalispell in an attempt to identify those best adapted for growth in northwestern Montana.

Agronomic data from the Advanced Spring Wheat Nursery grown at the Northwestern Agricultural Research Center in Kalispell, MT. Table 1.

Planted: May 10, 1997 Harvested: August 30, 1997

| 1.00                    |                          | HD DATE | HEIGHT<br>INCH | YIELD<br>BU/A | LDG<br>0-9 | TWT<br>LB/BU | PYTHIUM<br>1-3 1/ | PROTEIN %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------|--------------------------|---------|----------------|---------------|------------|--------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VARIETY                 |                          | OTITAIN | 114011         | DOTA          |            |              |                   | AND DESCRIPTION OF THE PERSON |
| 0.644                   | the Attraction of Street | 187.00  | 39.10          | 68.80         | 2.00       | 60.90        | 2.33              | 13.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MT 9644                 |                          | 184.00  | 30.70          | 59.93         | 1.00       | 59.10        | 2.67              | 12.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| BZ987331                |                          | 190.00  | 32.00          | 52.17         | .00        | 57.70        | 2.33              | 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| VANNA                   |                          | 185.00  | 34.50          | 49.93         | .00        | 60.20        | 3.00              | 13.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| GRANDIN                 |                          | 185.00  | 40.80          | 49.30         | 3.00       | 60.10        | 2.67              | 13.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MT 9607                 |                          | 186.00  | 30.47          | 46.20         | .33        | 61.90        | 2.33              | 13.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MT 9627                 |                          | 186.67  | 39.77          | 45.13         | 2.67       | 59.80        | 2.33              | 13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MT 9608                 |                          | 186.33  | 34.90          | 42.30         | 1.00       | 60.20        | 2.33              | 13.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ERNEST                  |                          | 188.67  | 31.73          | 41.63         | .33        | 57.50        | 2.00              | 10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MT 9675                 |                          | 187.33  | 32.43          | 41.47         | .00        | 59.50        | 2.33              | 13.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MCNEAL                  |                          | 188.67  | 36.87          | 41.30         | .33        | 60.10        | 2.00              | 12.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MT 9433                 |                          | 184.33  | 32.17          | 41.00         | 2.67       | 58.60        | 2.00              | 11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| BZ992632                |                          |         | 39.50          | 39.70         | 2.33       | 61.70        | 2.00              | 13.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MT 9653                 |                          | 187.33  | 33.63          | 39.47         | .33        | 61.20        | 2.33              | 13.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MT 9541                 |                          | 186.00  | 31.33          | 39.43         | 3.00       | 60.50        | 1.33              | 13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MT 9513                 |                          | 184.00  |                | 39.33         | .00        | 59.50        | 2.33              | 11.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| NEWANA                  |                          | 188.67  | 29.17          | 37.33         | .33        | 57.80        | 2.33              | 12.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| WESTBRED 926            |                          | 181.67  | 29.67          |               |            | 60.80        | 2.33              | 12.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MT 9410                 |                          | 184.00  | 36.47          | 36.93         | 1.33       | 57.80        | 2.33              | 13.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| T 9667                  |                          | 185.67  | 37.13          | 36.73         | 2.67       |              | 2.00              | 11.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| T 9619                  |                          | 186.33  | 35.30          | 36.60         | 1.33       | 60.30        | 2.00              | 13.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| T 9507                  |                          | 184.33  | 31.77          | 36.57         | 1.67       | 59.10        |                   | 11.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| T 9542                  |                          | 187.67  | 28.23          | 36.33         | 1.00       | 57.20        | 1.67              | 11.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| HATCHER                 |                          | 188.67  | 40.43          | 35.67         | 1.67       | 58.20        | 2.00              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| T 9553                  |                          | 185.33  | 31.90          | 35.60         | . 67       | 60.30        | 2.33              | 12.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ESTBRED 936             | 1                        | 182.33  | 26.10          | 34.67         | .00        | 59.50        | 2.33              | 11.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| HI-LINE                 | ot seemsund the          | 184.33  | 27.53          | 34.63         | .33        | 56.70        | 2.33              | 13.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PENAWAWA                | en oa Neo allab m 61     | 188.33  | 28.47          | 34.60         | .00        | 58.10        | 1.67              | 9.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| T 9565                  | 1                        | 183.33  | 35.70          | 34.27         | 2.00       | 61.90        | 2.00              | 11.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| T 9628                  |                          | 183.67  | 29.57          | 34.13         | .00        | 60.60        | 1.67              | 13.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| LEW                     |                          | 190.00  | 37.93          | 33.80         | 2.67       | 59.30        | 2.33              | 11.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| AT 9539                 |                          | 186.33  | 32.17          | 33.20         | 1.00       | 60.20        | 2.00              | 12.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| VESTBRED EXPR           |                          | 186.33  | 24.80          | 32.50         | .00        | 59.10        | 1.33              | 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                         |                          | 185.33  | 35.33          | 32.30         | .33        | 59.80        | 2.00              | 12.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| RENTON                  |                          | 184.33  | 34.73          | 32.17         | 2.33       | 59.20        | 2.33              | 12.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| T 9609                  |                          | 186.33  | 27.43          | 31.73         | .00        | 57.90        | 1.67              | 13.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| JEN 2600                |                          | 184.67  | 35.67          | 31.43         | 1.67       | 60.30        | 2.00              | 12.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| T 9602                  |                          | 183.67  | 27.70          | 31.33         | 3.00       | 58.80        | 1.33              | 13.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| T 9508                  |                          |         | 32.27          | 31.00         | .00        | 59.10        | 1.33              | 12.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| T 9660                  |                          | 187.00  |                | 30.63         | .00        | 60.10        | 2.00              | 12.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3Z992588                |                          | 185.33  | 27.73          |               | 1.67       | 58.80        | 2.00              | 12.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| T 9668                  |                          | 187.00  | 34.10          | 30.17         | 1.33       | 60.90        | 1.67              | 12.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| AMIDON                  |                          | 187.00  | 37.63          | 29.63         |            | 58.90        | 1.33              | 12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| FERGUS                  |                          | 181.67  | 28.37          | 29.63         | . 67       | 59.90        | 1.67              | 12.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MT 9603                 |                          | 186.67  | 38.20          | 28.33         | 2.33       |              | 2.00              | 11.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| FORTUNA                 |                          | 184.67  | 38.47          | 26.23         | 4.00       | 56.70        | 1.67              | 10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| T 9662                  |                          | 187.33  | 25.73          | 25.03         | .00        | 59.20        |                   | 12.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| T 9558                  |                          | 189.33  | 29.67          | 24.93         | . 67       | 56.80        | 2.00              | 11.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MT 9631                 |                          | 188.33  | 35.07          | 24.57         | 2.00       | 62.20        | 1.67              | 11.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| GLENMAN                 |                          | 187.67  | 27.57          | 22.47         | 2.33       | 56.40        | 1.67              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MT 9453                 | 1                        | 188.67  | 33.07          | 21.63         | 1.00       | 59.60        | 1.33              | 13.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MEAN                    | 1                        | 186.1   | 32.9           | 36.4          | 1.2        | 59.4         | 2.0               | 12.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MEAN<br>C.V.<br>LSD (.0 |                          | 186.1   | 32.9           | 30.4          | 1.2        | 33.4         |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

<sup>1/</sup> DISEASE LEVELS: 1=COMPLETE PLOT YELLOWING & STUNTING, 2=PARTIAL PLOT YELLOWING & STUNTING, 3=LITTLE OR NO PLOT EFFECT

Preliminary Hard White Spring Wheat Evaluation

PROJECT LEADERS:

Bob Stougaard and Doug Holen, Kalispell, MT

Luther Talbert and Susan Lanning, PS&ES, Bozeman, MT

OBJECTIVE:

To evaluate experimental hard white spring wheat cultivars for yield, lodging, quality, and disease resistance in northwestern

Montana.

RESULTS:

Overall yields were very poor in response to high levels of Pythium (also called browning root rot) infection. Yields for the 31 entries ranged from 55 (MTHW9603) to 26 (hard red check-HiLine) bu/A with an overall mean of 36. Test weights were fair with 81% below 60 lbs/bu. Test weights ranged from 62.4 (MTHW9718) to 56.4 (MTHW9704) lbs/bu. As a result of the Pythium, height and yield were significantly reduced, which led to minor lodging. Most entries displayed good straw strength. While Pythium was this years most performance limiting factor, ratings did not identify real susceptibility differences, such a response confirms the belief that no genetic resistance exists among small grain varieties. Proteins ranged from 13.9 (MTHW9418) to 9.8 (ID377S) %, and averaged

12.2%.

SUMMARY:

The Pythium epidemic severely hindered data collection as all agronomic measurements were drastically influenced. 1997 was the first year this evaluation was located in Kalispell so results could not be compared to previous years.

**FUTURE PLANS:** 

Promising hard white spring wheats will continue to be evaluated at

Kalispell to identify those with the potential to become a

recommended variety in District 1.

Table 1. Agronomic data from the Preliminary Hard White Spring Wheat Nursery grown at the Northwestern Agricultural Research Center in Kalispell, MT.

Planted: May 10, 1997

Harvested: August 30, 1997

|                      |                       | HD DATE  | HEIGHT   | YIELD   | LDG      | TWT      | PYTHIUM | PROTEIN |
|----------------------|-----------------------|----------|----------|---------|----------|----------|---------|---------|
| JARIETY              |                       | JULIAN   | INCH     | BU/A    | 0-9      | LB/BU    | 1-3 1/  | ક       |
| ARIEII               |                       |          |          |         |          |          |         |         |
| MTHW9603             |                       | 187.00   | 31.87    | 54.93   | 1.33     | 58.60    | 2.33    | 12.2    |
| MTHW9708             |                       | 186.33   | 30.73    | 52.53   | . 67     | 59.00    | 2.33    | 12.6    |
| MTHW9700             |                       | 186.00   | 26.23    | 49.37   | .00      | 58.00    | 2.33    | 12.1    |
| MTHW9701             |                       | 184.00   | 29.63    | 48.13   | 1.00     | 58.70    | 2.33    | 12.5    |
| MTHW9420             |                       | 184.33   | 26.53    | 41.73   | .00      | 60.40    | 2.33    | 12.1    |
| THW9712              |                       | 181.00   | 31.00    | 40.87   | 3.33     | 60.80    | 2.00    | 12.9    |
| MTHW9712             |                       | 185.33   | 31.63    | 40.27   | .00      | 59.50    | 2.00    | 12.9    |
| MTHW9704             |                       | 184.00   | 28.87    | 37.97   | 1.67     | 56.40    | 2.00    | 11.1    |
| MTHW9704             |                       | 181.33   | 31.77    | 37.53   | 2.00     | 62.40    | 1.67    | 13.9    |
| MTHW9718             |                       | 188.00   | 31.90    | 36.80   | 1.00     | 59.30    | 2.33    | 11.5    |
| MTHW9320             |                       | 182.00   | 26.90    | 36.77   | .33      | 60.20    | 2.00    | 13.9    |
| THW9418              |                       | 184.33   | 27.93    | 36.73   | . 67     | 59.60    | 2.00    | 11.9    |
| MTHW9705             |                       | 185.00   | 29.40    | 36.13   | 1.33     | 58.40    | 1.67    | 12.8    |
| MTHW9709             |                       | 183.00   | 30.70    | 35.97   | 2.33     | 58.90    | 1.33    | 13.1    |
|                      |                       | 180.67   | 22.83    | 35.43   | 1.00     | 59.20    | 2.00    | 11.2    |
| KLASIC<br>ID377S     |                       | 183.67   | 28.23    | 34.87   | .00      | 59.60    | 2.00    | 9.8     |
|                      |                       | 184.33   | 30.43    | 34.03   | 1.00     | 59.60    | 2.00    | 13.5    |
| MTHW9717<br>MTHW9707 |                       | 186.33   | 27.03    | 33.30   | 1.00     | 57.50    | 2.33    | 12.5    |
|                      |                       | 184.00   | 35.17    | 33.07   | 2.33     | 61.60    | 2.33    | 12.2    |
| MTHW9714             |                       | 179.67   | 24.40    | 33.03   | 2.67     | 59.80    | 2.00    | 11.3    |
| MTHW9511             |                       | 184.67   | 28.07    | 32.23   | 1.67     | 59.30    | 2.00    | 10.9    |
| MTHW9713             |                       | 183.67   | 27.80    | 31.23   | .67      | 58.70    | 1.67    | 13.5    |
| MTHW9710             |                       | 184.33   | 28.77    | 31.03   | . 67     | 57.40    | 1.67    | 11.5    |
| MTHW9421             |                       | 183.00   | 26.77    | 30.83   | .67      | 58.60    | 2.00    | 12.1    |
| MTHW9703             |                       | 186.00   | 30.97    | 30.43   | .33      | 59.10    | 1.67    | 11.1    |
| MTHW9604             |                       | 185.00   | 29.80    | 29.63   | 2.67     | 59.10    | 1.67    | 12.1    |
| MTHW9715             |                       | 179.00   | 25.60    | 28.83   | 2.67     | 61.30    | 1.67    | 11.9    |
| MTHW9515             |                       |          | 26.53    | 28.80   | 1.00     | 58.40    | 1.33    | 11.7    |
| MTHW9711             |                       | 186.33   | 26.10    | 26.87   | .67      | 58.20    | 1.67    | 11.6    |
| MTHW9422             |                       | 184.67   |          | 26.50   | 2.00     | 59.80    | 1.67    | 11.6    |
| MTHW9508             |                       | 179.67   | 28.37    | 26.33   | .33      | 59.60    | 2.00    | 13.0    |
| HI-LINE              |                       | 183.33   | 24.80    | 26.33   | . 33     | 33.00    | 2.00    |         |
| 51H                  | DELIBERAGE EL BOOO AR | DIEDCILE | 618/W E1 | dere vi | وحطر إهد | Y relate | 1700    | AUTO CO |
|                      |                       | 183.9    | 28.6     | 35.9    | 1.2      | 59.3     | 1.9     | 12.2    |
| MEAN                 |                       | 0.6      | 9.1      | 34.5    | 63.9     | NA.      | 25.3    | NA      |
| C.V.                 |                       | 0.6      | 4.2      | 20.2    | 1.3      | NA       | 0.8     | NA      |

<sup>1/</sup> DISEASE LEVELS: 1=COMPLETE PLOT YELLOWING & STUNTING, 2=PARTIAL PLOT YELLOWING & STUNTING, 3=LITTLE OR NO PLOT EFFECTS

Intrastate Winter Wheat Evaluation: Lodging and

disease resistance

PROJECT LEADERS:

Bob Stougaard and Doug Holen, Kalispell, MT

Phil Bruckner and Jim Berg, PS&ES, Bozeman, MT

OBJECTIVE:

To evaluate of Montana adapted cultivars for yield, lodging, quality, and disease resistance. Special attention to fully document dwarf

bunt, stripe rust, and leaf rust reactions.

**RESULTS:** 

Overall yields were very good considering that winter survival ranged from 5% (BZ9W92-712-a) to 78% (Agassiz), with a mean of 48%. Yields for the 48 entries ranged from 126 (Promontory) to 71 (Roughrider) bu/A with an overall mean of 102. Test weights were good with 33% of the varieties below 60 lbs/bu. The mean test weight was 60.3 lbs/bu with a high of 62.7 (MT9524). Lodging

throughout the nursery was significant with a handful of cultivars

nearly flat (Roughrider, Agassiz, Norstar, and Winridge). Promontory, Quantum 1824, MT9524, MT9432, and Redwin displayed excellent lodging resistance. Winter condition were ideal for the germination and plant inoculation of TCK. Pronghorn, Yuma, Niobrara, Halt, and Roughrider were hit hardest by TCK and resulted in poor agronomic performance. Promontory, Blizzard,

Quantum 566, Manning, Winridge, and Bonneville were least affected by TCK which resulted in all being located in the top 10 for yield. Moderate to high levels of leaf rust was present. Seventeen of the 48 cultivars showed no signs of infection while eight were

highly infested.

SUMMARY:

Yields and test weights were surprisingly good in relation to the poor growing season and heavy disease pressures present throughout. This crop year was beneficial to gathering good lodging and disease notes and specific variety responses to the detrimental conditions.

**FUTURE PLANS:** 

High yielding disease resistant cultivars will continue to be evaluated at Kalispell to identify those with the best potential for production in this region as well as document potential production

problems for producers across the state.

1. Agronomic data from the Intrastate Winter Wheat Nursery grown at the Northwestern Agricultural Research Center in Kalispell, MT. Table 1.

| PROMONTORY 45.00 161.71 37.00 .33 126.05 59.10 2.0005 6.5 6.5 6.6 6.6 6.7 164.88 42.27 6.52 121.59 60.10 .00 1.67 4.5 6.5 121.27 8.6 6.6 1.00 .00 1.67 4.5 6.5 121.27 8.6 6.6 1.00 .00 1.67 4.5 6.5 121.27 8.6 6.6 1.00 .00 1.67 4.5 6.5 121.27 8.6 6.6 1.00 .00 1.67 4.5 6.5 121.27 8.6 6.6 1.00 .00 1.67 4.5 6.5 121.27 8.6 6.6 1.00 .00 1.67 4.5 6.5 121.27 8.6 6.6 1.00 .00 1.67 4.5 6.5 121.27 8.6 6.6 1.00 .00 1.67 4.5 6.5 121.27 8.6 6.6 1.00 .00 1.67 4.5 6.5 121.27 8.6 6.6 1.00 .00 1.67 4.5 6.5 121.27 8.6 6.6 1.00 .00 1.67 4.5 6.5 121.27 8.6 6.6 1.00 .00 1.67 4.5 6.5 121.20 8.6 6.5 12.6 1.00 1.00 1.67 4.5 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.6 6.5 121.20 8.    | TARTETY           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        | TWT   | LF RST | TCK    | AGRO   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------|-------|--------|--------|--------|
| REMONTORY  48.33 163.91 45.27 3.18 123.99 60.10 .00 1.67 4.8  LESTREL  48.07 164.88 42.27 6.52 121.59 60.80 2.00 1.67 4.8  LORGAN  46.67 164.88 42.27 6.52 121.59 60.80 2.00 1.67 4.8  LIZZARD  40.07 165.41 70.77 6.32 119.26 61.60 3.00 .22 4.5  LIZZARD  40.07 165.41 70.77 6.33 119.26 61.60 3.00 .22 4.5  LIZZARD  40.07 165.41 70.77 6.33 119.26 61.60 3.00 .22 4.5  LIZZARD  40.07 165.41 70.77 6.33 119.26 61.60 3.00 .22 4.5  LIZZARD  40.07 165.41 70.77 6.33 119.26 61.60 3.00 .22 4.5  LIZZARD  40.07 165.41 70.77 6.33 119.26 61.60 3.00 .22 4.5  LIZZARD  40.07 165.19 39.53 6.00 115.15 55.16 60.20 .00 .76 4.5  LIZZARD  40.07 165.19 39.53 6.00 115.15 55.16 60.20 .00 .76 4.5  LIZZARD  40.07 165.19 39.53 6.00 115.17 65.00 60.00 115.17 6.00 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125.50 60.00 125 | VARIETI           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        | LB/BU |        | 0-3 1/ | 0-9 2/ |
| RESIDENTIAL  48.33 163.91 45.27 3.18 123.89 60.80 2.00 1.67 4.8  48.33 163.91 45.27 3.18 123.89 60.80 2.00 1.67 4.8  48.33 162.38 39.50 4.6.52 121.59 60.80 2.00 1.46 2.8  48.31 162.2RRD  40.00 165.41 47.27 6.33 119.26 61.60 3.00 .22 4.6  48.01 63.19 39.53 3.67 117.85 60.60 1.00 .94 5.8  48.01 63.19 39.53 6.00 115.14 58.70 3.00 .27 4.2  48.01 106 45.00 163.19 39.53 6.00 115.14 58.70 3.00 .27 4.2  48.01 106 45.00 163.19 39.53 6.00 115.14 58.70 3.00 .27 4.2  48.01 106 45.00 163.19 39.53 6.00 115.14 58.70 3.00 .27 4.2  48.01 106 45.00 163.19 39.53 6.00 115.14 58.70 3.00 .27 4.2  48.01 106 45.00 163.19 39.53 6.00 115.14 58.70 3.00 .27 4.2  48.01 106 45.00 163.19 39.53 6.00 115.11 5.8  48.01 106 45.00 163.19 39.53 6.00 115.11 5.8  48.01 106 45.00 163.19 39.53 6.00 115.11 5.8  48.01 106 45.00 163.19 39.53 6.00 115.11 5.8  48.01 106 45.00 163.19 4.0  48.01 106 45.00 163.19 4.0  48.01 106 45.00 163.19 4.0  48.01 106 45.00 163.19 4.0  48.01 106 45.00 163.19 4.0  48.01 106 45.00 163.19 4.0  48.01 106 45.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 163.00 | 11/1 /2           | 45 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 161 71 | 37.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .33  | 126.05 | 59.10 | 2.00   | 05     | 6.90   |
| GESTREL  46.67 164.88 42.27 6.52 121.59 60.80 2.00 1.46 2.01  GRAGAN  40.00 165.41 47.27 6.33 119.26 61.60 3.00 .22 4.01  SIGRORN  40.00 165.41 47.27 6.33 119.26 61.60 3.00 .22 4.01  SIGRORN  40.01 165.41 47.27 3.00 3.67 117.85 60.60 1.00 .94 5.9  SURNITIMS 566 23.33 162.38 39.50 6.00 115.14 58.70 3.00 .27 4.1  SURNITIMS 56 23.33 162.38 39.50 6.00 115.14 58.70 3.00 .27 4.1  SURNITIMS 56 6 7.166.84 48.53 7.20 113.55 61.60 2.00 .77 4.1  SURNITIMS 56 6.7 166.84 48.53 7.20 113.55 61.60 2.00 .25 3.0  SURNITIMS 66 7.7 166.84 48.53 7.20 113.55 61.60 2.00 .25 3.0  SURNITIMS 67 166.84 48.53 7.20 113.55 61.60 2.00 .25 3.0  SURNITIMS 68 8.22 40 1.00 162.35 44.63 4.41 108.89 60.70 .00 1.94 4.1  SURNITIMS 7 1.00 162.35 4.63 4.41 108.89 60.70 .00 1.94 4.1  SURNITIMS 7 1.00 162.35 4.63 4.41 108.89 60.70 .00 1.94 4.1  SURS 7 1.00 162.35 4.63 4.41 108.89 60.70 .00 1.94 4.1  SURNITIMS 7 1.00 162.35 4.63 4.41 108.89 60.70 .00 1.94 4.1  SURNITIMS 7 1.00 162.35 4.63 4.41 108.89 60.70 .00 1.04 4.1  SURNITIMS 7 1.00 162.35 4.63 4.41 108.89 60.70 .00 1.04 4.1  SURNITIMS 7 1.00 162.35 4.63 4.41 108.89 60.70 .00 1.04 4.1  SURNITIMS 7 1.00 162.35 4.63 4.70 107.33 62.40 1.00 1.02 4.1  SURNITIMS 7 1.00 162.68 4.33 4.70 107.33 60.70 2.00 1.48 5.1  SURNITIMS 8 1.00 163.02 45.03 4.70 107.33 60.70 2.00 2.42 3.1  SURNITIMS 8 1.00 163.02 45.03 2.33 105.49 60.80 2.00 1.73 4.1  SURNITIMS 8 1.00 162.68 43.30 2.33 105.49 60.80 2.00 1.24 3.1  SURNITIMS 8 1.00 162.68 43.30 2.33 105.49 60.80 2.00 2.03 4.1  SURNITIMS 8 1.00 162.68 43.30 2.33 105.49 60.80 2.00 2.03 4.1  SURNITIMS 8 1.00 162.68 43.30 2.33 105.49 60.80 2.00 2.00 2.42 3.1  SURSTEN 8 1.00 162.68 43.30 2.33 105.49 60.80 2.00 2.00 2.42 3.1  SURSTEN 8 1.00 162.68 43.30 2.33 105.49 60.80 2.00 2.00 2.42 3.1  SURSTEN 8 1.00 162.68 43.30 2.33 105.49 60.80 2.00 2.00 2.00 2.00 2.00 2.00 2.00                                                                                                                                                                                                                      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        | 60.10 | .00    | 1.67   | 4.81   |
| GRICAN   40.00 165.41   47.27   6.33   119.26   61.60   3.00   .22   4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | KESTREL           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 52 | 121 59 |       |        | 1.46   | 2.75   |
| MEAN   47.8   163.0   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50   47.50    | MORGAN            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        |       |        |        | 4.0    |
| MEAN   48.6   163.7   37.00   37.00   37.00   -1.6   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2     | BLIZZARD          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | The state of the s |      |        |       |        |        | 5.9    |
| NUMBER 1566 23.33 162.38 39.30 4.21 102.3 6.00 113.4 58.70 3.00 .27 4.2 17.2 17.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BIGHORN           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        |       |        |        | 4.3    |
| #ANNING #3.00 163.19 39.33 59.4 114.65 60.80 1.00 1.76 4.0 175514 51.67 164.31 42.13 5.34 114.65 60.80 1.00 1.76 4.0 175514 55.06 167.15 47.80 6.07 111.71 61.50 3.0031 4.0 171111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | QUANTUM 566       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        |       |        |        |        |
| TIPS114   S1.0   164.51   42.13   7.20   113.55   61.60   2.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   3.00   .25   | MANNING           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        |       |        |        |        |
| MINISTOE   56.67   166.84   48.53   7.20   113.55   61.50   2.00   2.30   3.50   2.00   2.00   3.50   2.00   2.00   3.50   2.00   2.00   3.50   2.00   3.50   2.00   3.50   2.00   3.50   2.00   3.50   2.00   3.50   2.00   3.50   3.50   2.00   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.5   | T9514             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        |       |        |        |        |
| SONNEVILLE 41.67 167.15 47.80 6.07 111.71 61.50 3.00 2.05 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   | 56.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 166.84 | 48.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |        |       |        |        |        |
| IELLEY   55.00 165.13   45.03   6.02 110.45   60.50   3.00   1.94   4.00 (ACKY   40.00 162.35   44.63   44.1 109.89   60.70   .00   1.94   4.00 (ACKY   40.00 163.21   42.63   3.57 109.77   60.60   .00   2.35   4.00   109272   73.33   162.30   40.80   2.21   108.89   60.70   .00   1.48   5.00   109272   55.00 161.83   42.77   3.33   108.73   62.40   1.00   1.33   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00   4.00     |                   | 41.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 167.15 | 47.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.07 | 111.71 |       |        |        |        |
| NOCKY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | 55.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 165.13 | 45.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.02 | 110.45 | 60.50 |        |        |        |
| IDSUIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 44.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.41 | 109.89 |       |        |        |        |
| 109277 73.33 162.30 40.80 2.21 108.98 60.30 2.00 1.48 5.00 109272 55.00 161.83 42.77 3.33 108.73 62.40 1.00 1.33 4.0 1093153 55.07 161.85 41.43 3.80 108.41 61.30 1.00 1.02 4.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.57 | 109.77 | 60.60 |        | 2.35   |        |
| DISPAY   S.   10   10   10   10   10   10   10   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        | 60.30 | 2.00   | 1.48   | 5.0    |
| SEPARTOR   Separate    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        |       | 1.00   | 1.33   | 4.2    |
| TRHARDT UNDANTUM EXP. 1824  40.00 161.55 35.27 .54 108.14 58.50 .00 .53 6.1 180 181 181 181 181 181 181 181 181 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        |       | 1.00   | 1.02   | 4.4    |
| ## AUTHOR EXP. 1824  ## 40.00 161.33 37.27 3.92 107.88 61.40 .00 1.73 4.9 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260.15 1260 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        |       |        |        | 6.3    |
| ## ## ## ## ## ## ## ## ## ## ## ## ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | QUANTUM EXP. 1824 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        |       |        |        | 4.5    |
| STRITTECH 542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EKOTA             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | The second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.92 | 107.88 |       |        |        |        |
| RENDHORN 45.00 159.03 42.03 42.05 45.00 10.00 159.05 5.00 10.00 162.68 43.03 2.53 105.74 59.10 1.00 1.92 5.50 10101TH 50.00 162.68 43.03 2.53 105.74 59.10 1.00 1.92 5.50 100554 55.00 162.61 41.73 6.77 104.50 59.80 2.00 1.98 3.00 12.00 1.98 43.00 162.00 1.00 162.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HYBRITECH 542     | the state of the s |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.70 | 107.33 |       |        |        |        |
| NDITH   50.00   162.68   43.30   2.53   105.49   52.70   2.00   1.41   6.51   6.51   6.52   6.52   6.50   163.02   45.03   2.3   105.49   62.70   2.00   1.41   6.51   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6.52   6   | RONGHORN          | 45.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 159.03 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.12 | 106.68 |       |        |        |        |
| ## ## ## ## ## ## ## ## ## ## ## ## ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 162.68 | 43.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |        | 59.10 |        |        |        |
| STA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | 55.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 163.02 | 45.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |        |       |        |        |        |
| ## A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 41.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.77 | 104.50 | 59.80 |        |        |        |
| ## 43.33 163.21 44.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.47 | 104.34 | 61.10 | .00    |        |        |
| ACGUIRE  40.00 160.21 39.23 3.01 103.38 62.20 .00 .53 5.6  AT 9441 63.33 163.38 41.30 4.60 103.15 59.80 3.00 2.19 4.2  ALLIANCE  58.33 159.86 39.13 5.89 102.12 59.20 .00 2.28 2.6  ALLIANCE  58.6-1533 70.00 163.37 43.30 3.81 100.06 60.50 .00 1.54 4.6  58.6-1533 70.00 161.42 40.17 4.18 99.30 59.50 .00 2.32 3.6  ACMA  43.33 159.91 34.53 3.52 98.43 58.90 1.00 2.61 3.9  ACMA  ASSEDWIN 43.33 165.38 46.87 1.07 98.17 61.60 3.00 1.93 4.7  ACMA  ASSEDWIN 43.33 165.38 46.87 1.07 98.17 61.60 3.00 1.93 4.7  ACMA  ASSEDWIN 46.67 163.72 40.70 6.16 97.71 56.80 .00 2.31 3.6  ACMA  ASSEDWIN 46.67 161.55 42.23 6.54 94.92 60.60 1.00 1.86 3.6  ACMA  ASSEDWIN 46.67 161.55 42.23 6.54 94.92 60.60 1.00 1.86 3.6  ACMA  ASSEDWIN 46.67 161.55 42.23 6.54 94.92 60.60 1.00 1.86 3.6  ACMA  ASSEDWIN 46.67 161.55 42.23 6.54 94.92 60.60 1.00 1.86 3.6  ACMA  ASSEDWIN 46.67 161.55 42.23 6.54 94.92 60.60 1.00 2.35 5.6  ACMA  ASSEDWIN 46.67 161.55 42.23 6.54 94.92 60.60 1.00 1.86 3.6  ACMA  ASSEDWIN 46.67 161.55 42.23 6.54 94.92 60.60 1.00 1.86 3.6  ACMA  ASSEDWIN 46.67 161.55 42.23 6.54 94.92 60.60 1.00 1.86 3.6  ACMA  ASSEDWIN 46.67 161.55 42.23 6.54 94.92 60.60 1.00 2.35 5.6  ACMA  ASSEDWIN 46.67 161.55 42.23 6.54 94.92 60.60 1.00 1.86 3.6  ACMA  ASSEDWIN 46.67 161.55 42.23 6.54 94.92 60.60 1.00 2.00 2.35 5.6  ACMA  ASSEDWIN 46.67 161.55 42.23 6.54 94.92 60.60 1.00 1.86 3.6  ACMA  ASSEDWIN 46.67 161.55 42.23 6.54 94.92 60.60 1.00 2.00 2.35 5.6  ACMA  ASSEDWIN 46.67 161.59 42.00 4.26 94.60 58.10 2.00 2.35 5.6  ACMA  ASSEDWIN 46.67 163.28 39.93 1.91 86.25 60.50 3.00 2.14 2.6  ACMA  ASSEDWIN 46.67 163.28 39.93 1.91 86.25 60.50 3.00 1.76 4.2  ACMA  ASSEDWIN 56.67 163.28 39.93 1.91 86.25 60.50 3.00 1.76 4.2  ACMA  ASSEDWIN 56.67 163.28 39.93 1.91 86.25 60.50 3.00 1.76 4.2  ACMA  ASSEDWIN 56.67 163.28 39.93 1.91 86.25 60.50 3.00 1.76 4.2  ACMA  ASSEDWIN 56.67 163.67 30.97 1.36 74.47 57.80 1.00 2.27 3.8  ACMA  ASSEDWIN 56.67 163.67 30.97 1.36 74.47 57.80 1.00 2.27 3.8  ACMA  ASSEDWIN 56.67 163.67 30.97 1.36 74.47 57.80 1.00 2.27 3.8  ACMA  ASSEDWIN 56.6 |                   | 13.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 163 21 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        | 62.30 | 2.00   | 2.13   |        |
| ACCOUNTE (1.30) ACCOUNTE (1.30 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        |       | .00    | .53    | 5.6    |
| MEAN  AVAILABLA SHAPE  158.33 159.86 39.13 5.89 102.12 59.20 .00 2.28 2.6  ANGUARD  58.33 159.86 39.13 5.89 102.12 59.20 .00 2.28 2.6  ANGUARD  40.00 163.37 43.30 3.81 100.06 60.50 .00 1.54 4.6  40.00 161.42 40.17 4.18 99.30 59.50 .00 2.32 3.6  ENDAIN  43.33 159.91 34.53 3.52 98.43 58.90 1.00 2.61 3.9  ENDAIN  43.33 159.93 34.53 3.52 98.43 58.90 1.00 2.61 3.9  ENDAIN  ENDAIN  43.33 159.93 34.77 97.89 59.20 1.00 2.55 3.9  ENDAIN  ENDAIN  ENDAIN  ENDAIN  43.33 159.32 35.93 3.77 97.89 59.20 1.00 2.55 3.9  ENDAIN  EN |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        |       | 3.00   | 2.19   | 4.3    |
| ALDITANCE ALTOROGRAPH AND C.V.  ALTOROGRAPH AND CARP AND CARP AND CARP AND C.V.  AS 161.00 163.37 43.30 3.81 100.06 60.50 .00 1.54 4.6 A. 6. 60.50 .00 2.32 3.6 A. 6. 60.50 .00 2.31 3.6 A. 6. 60.50 .00 2.00 2.00 2.00 A. 6. 60.50 .00 2.00 2.00 2.00 A. 6. 60.50 .00 2.00 2.00 2.00 A. 60.50 .00 2.00 2.00 2.00 2.00 A. 60.50 .00 2.00 2.00 2.00 2.00 2.00 A. 60.50 .00 2.00 2.00 2.00 2.00 2.00 A. 60.50 .00 2.00 2.00 2.00 2.00 2.00 2.00 2                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        |       | .00    | 2.28   | 2.6    |
| ARNGUARD  40.00 163.37 43.30 59.10 69.30 59.50 .00 2.32 3.686-1533  70.00 161.42 40.17 4.18 99.30 59.50 .00 2.61 3.90  EDWIN  43.33 159.91 34.53 3.52 98.43 58.90 1.00 2.61 3.90  ELEWIN  43.33 159.32 35.93 3.77 97.89 59.20 1.00 2.55 3.80  ELES  46.67 163.72 40.70 6.16 97.71 56.80 .00 2.31 3.00  ELES  46.67 161.55 42.23 6.54 94.92 60.60 1.00 1.86 3.00  ELES  ELES  46.67 161.55 42.23 6.54 94.92 60.60 1.00 1.86 3.00  ELES  ELES  40.00 164.50 42.00 4.26 94.60 58.10 2.00 2.35 5.00  ELES  ELES  ELES  43.33 167.80 52.33 7.32 93.77 62.00 3.00 2.14 2.00  ELES  E | ALLIANCE          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        |       | . 00   | 1.54   | 4.6    |
| MEAN   47.8   163.0   42.0   4.1   102.3   60.3   1.00   2.61   3.52   1.00   2.61   3.52   1.00   2.61   3.52   1.00   2.61   3.52   1.00   2.61   3.52   1.00   2.61   3.52   1.00   2.61   3.52   1.00   2.61   3.52   1.00   2.61   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   1.00   2.55   3.52   3.52   3.52   3.52   3.52   3.52   3.52   3.52   3.52   3.52     | ANGUARD           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        |       |        |        | 3.6    |
| ## A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 886-1533          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        |       |        |        |        |
| REDWIN  43.33 159.32 35.93 3.77 97.89 59.20 1.00 2.55 3.5  IJULES  46.67 163.72 40.70 6.16 97.71 56.80 .00 2.31 3.0  IJULES  46.67 161.55 42.23 6.54 94.92 60.60 1.00 1.86 3.0  IJULES  46.67 161.55 42.23 6.54 94.92 60.60 1.00 1.86 3.0  IJULES  IJULES  46.67 161.55 42.23 6.54 94.92 60.60 1.00 1.86 3.0  IJULES  IJULES  46.67 161.55 42.23 6.54 94.92 60.60 1.00 1.86 3.0  IJULES  IJULES  46.67 161.55 42.23 6.54 94.92 60.60 1.00 1.86 3.0  IJULES  IJULES  IJULES  46.67 161.55 42.23 6.54 94.92 60.60 1.00 1.86 3.0  IJULES  IJULES  IJULES  IJULES  46.67 161.55 42.23 6.54 94.92 60.60 1.00 1.86 3.0  IJULES  IJUL | ZUMA AMU          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        |       |        |        |        |
| ## A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | REDWIN            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        |       |        |        |        |
| TULES 46.67 163.72 40.70 6.16 97.71 56.80 .00 2.31 3.8  TIBER 43.33 165.65 47.37 1.72 97.11 61.30 2.00 2.06 3.8  TIBER 46.67 161.55 42.23 6.54 94.92 60.60 1.00 1.86 3.0  TI 91192 70.00 164.50 42.00 4.26 94.60 58.10 2.00 2.35 5.0  TAMPART 20.00 164.73 44.20 5.42 94.35 60.70 2.00 1.10 3.7  TORSTAR 43.33 167.80 52.33 7.32 93.77 62.00 3.00 2.14 2.3  TORSTAR 48.33 159.79 40.43 3.93 93.63 58.60 .00 2.82 3.8  TIOBRARA 48.33 159.79 40.43 3.93 93.63 58.60 .00 2.82 3.8  TAMPART 46.67 159.01 35.43 2.08 88.23 57.30 1.00 2.73 3.8  TAMPART 46.67 163.28 39.93 1.91 86.25 60.50 3.00 1.76 4.3  TORSTAR 45.00 166.13 49.63 6.38 86.18 60.30 .00 1.76 4.3  TORSTAR 45.00 166.13 49.63 6.38 86.18 60.30 .00 1.76 4.3  TORSTAR 45.00 166.13 49.63 6.38 86.18 60.30 .00 1.76 4.3  TORSTAR 45.00 166.13 49.63 6.38 86.18 60.30 .00 1.76 4.3  TORSTAR 45.00 166.13 49.63 6.38 86.18 60.30 .00 1.76 4.3  TORSTAR 45.00 166.13 49.63 6.38 86.18 60.30 .00 1.76 4.3  TORSTAR 45.00 166.13 49.63 6.38 86.18 60.30 .00 1.76 4.3  TORSTAR 45.00 166.13 49.63 6.38 86.18 60.30 .00 1.76 4.3  TORSTAR 45.00 166.13 49.63 6.38 86.18 60.30 .00 1.76 4.3  TORSTAR 45.00 166.13 49.63 6.38 86.18 60.30 .00 1.76 4.3  TORSTAR 45.00 166.13 49.63 6.38 86.18 60.30 .00 1.76 4.3  TORSTAR 45.00 166.13 49.63 6.38 86.18 60.30 .00 1.76 4.3  TORSTAR 45.00 166.13 49.63 6.38 86.18 60.30 .00 1.76 4.3  TORSTAR 45.00 166.13 49.63 6.38 86.18 60.30 .00 1.76 4.3  TORSTAR 45.00 166.13 49.63 6.38 86.18 60.30 .00 1.76 4.3  TORSTAR 45.00 166.13 49.63 6.38 86.18 60.30 .00 1.76 4.3  TORSTAR 45.00 166.13 49.63 6.38 86.18 60.30 .00 1.76 4.3  TORSTAR 45.00 166.13 49.63 6.38 86.18 60.30 .00 1.76 4.3  TORSTAR 45.00 166.13 49.63 6.38 86.18 60.30 .00 1.76 4.3  TORSTAR 45.00 166.13 49.63 6.38 86.18 60.30 .00 1.76 4.3  TORSTAR 45.00 166.13 49.63 6.38 86.18 60.30 .00 1.76 4.3  TORSTAR 46.67 159.00 1.35 4.3  TORSTAR 46.67 150.00 1.30 1.30 1.30 1.70 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.3            | VISTA             | 43.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 159.32 | 35.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | -      |       |        |        |        |
| ### ### ### ### ### ### ### ### ### ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | 46.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 163.72 | 40.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.16 |        |       |        |        |        |
| ## 46.67 161.55 42.23 6.54 94.92 60.60 1.00 1.86 3.0   ## 91192 70.00 164.50 42.00 4.26 94.60 58.10 2.00 2.35 5.0   ## 20.00 164.73 44.20 5.42 94.35 60.70 2.00 1.10 3.0   ## 20.00 164.73 44.20 5.42 94.35 60.70 2.00 1.10 3.0   ## 20.00 164.73 44.20 5.42 94.35 60.70 2.00 1.10 3.0   ## 20.00 164.73 44.20 5.42 94.35 60.70 2.00 1.10 3.0   ## 20.00 164.73 44.20 5.42 94.35 60.70 2.00 1.10 3.0   ## 20.00 164.73 44.20 5.42 94.35 60.70 2.00 1.10 3.0   ## 20.00 164.73 44.20 5.42 94.35 60.70 2.00 1.10 3.0   ## 20.00 1.00 2.14 2.0   ## 20.00 164.73 1.00 2.14 2.0   ## 20.00 1.00 2.82 3.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ## 20.00 1.72 4.0   ##  |                   | 43.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 165.65 | 47.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.72 | 97.11  | 61.30 |        |        |        |
| 70.00 164.50 42.00 4.26 94.60 58.10 2.00 2.35 5.00  MAMPART 20.00 164.73 44.20 5.42 94.35 60.70 2.00 1.10 3.00  MORSTAR 43.33 167.80 52.33 7.32 93.77 62.00 3.00 2.14 2.30  MIOBRARA 48.33 159.79 40.43 3.93 93.63 58.60 .00 2.82 3.93  MKRON 38.33 161.96 40.17 2.98 92.89 60.80 .00 1.72 4.00  MALT 46.67 159.01 35.43 2.08 88.23 57.30 1.00 2.73 3.00  MILLT 36.67 163.28 39.93 1.91 86.25 60.50 3.00 1.76 4.00  MICHARD 45.00 166.13 49.63 6.38 86.18 60.30 .00 1.89 3.20  MICHARD 45.00 166.13 49.63 6.38 86.18 60.30 .00 1.89 3.20  MICHARD 56.67 163.67 30.97 1.36 74.47 57.80 1.00 2.27 3.00  MEAN 56.67 163.79 49.20 8.23 71.34 60.30 1.00 2.94 1.00  MEAN 50.00 163.79 49.20 8.23 71.34 60.30 1.00 2.94 1.00  MEAN 50.00 163.79 49.20 8.23 71.34 60.30 1.00 2.94 1.00  MEAN 6.V. 35.9 0.4 4.7 27.5 9.9 NA NA 29.7 21.00  MEAN 6.V. 35.9 0.4 4.7 27.5 9.9 NA NA 29.7 21.00  MEAN 6.V. 35.9 0.4 4.7 27.5 9.9 NA NA 29.7 21.00  MEAN 6.V. 35.9 0.4 4.7 27.5 9.9 NA NA 29.7 21.00  MEAN 6.V. 35.9 0.4 4.7 27.5 9.9 NA NA 29.7 21.00  MEAN 70.00 163.79 49.20 8.23 71.34 60.30 NA 29.7 21.00  MEAN 70.00 163.79 49.20 8.23 71.34 60.30 NA 29.7 21.00  MEAN 70.00 163.79 49.20 8.23 71.34 60.30 NA 29.7 21.00  MEAN 70.00 163.79 49.20 8.23 71.34 60.30 NA 29.7 21.00  MEAN 70.00 163.79 49.20 8.23 71.34 60.30 NA 29.7 21.00  MEAN 70.00 163.79 49.20 8.23 71.34 60.30 NA 29.7 21.00  MEAN 70.00 163.79 49.20 8.23 71.34 60.30 NA 29.7 21.00  MEAN 70.00 163.79 49.20 8.23 71.34 60.30 NA 29.7 21.00  MEAN 70.00 163.79 49.20 8.23 71.34 60.30 NA 29.7 21.00  MEAN 70.00 163.79 49.20 8.23 71.34 60.30 NA 29.7 21.00  MEAN 70.00 163.79 49.20 8.23 71.34 60.30 NA 29.7 21.00  MEAN 70.00 163.79 49.20 8.23 71.34 60.30 NA 29.7 21.00  MEAN 70.00 163.79 49.20 8.23 71.34 60.30 NA 29.7 21.00  MEAN 70.00 163.79 49.20 8.23 71.34 60.30 NA 29.7 21.00  MEAN 70.00 163.79 49.20 8.23 71.34 60.30 NA 29.7 21.00  MEAN 70.00 163.79 49.20 8.23 71.34 60.30 NA 29.7 21.00  MEAN 70.00 163.79 49.20 8.23 71.30 NA 29.7 21.00  MEAN 70.00 163.79 163.00 NA 20.00  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 42.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.54 | 94.92  | 60.60 |        |        |        |
| ZAMPART JORSTAR JORSTAR JIOBRARA JIOBRA |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.26 | 94.60  | 58.10 | 2.00   |        |        |
| 43.33 167.80 52.33 7.32 93.77 62.00 3.00 2.14 2.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.42 | 94.35  | 60.70 | 2.00   | 1.10   |        |
| MEAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CAMPART           | 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 93.77  | 62.00 | 3.00   | 2.14   | 2.3    |
| MEAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        |       | .00    | 2.82   | 3.9    |
| XRON   38.33   161.96   40.17   2.36   32.03   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   32.05   | IOBRARA           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        |       |        | 1.72   | 4.0    |
| ## 9222  ## 9222  ## 9222  ## 9222  ## 9222  ## 9222  ## 9222  ## 9222  ## 9222  ## 9223  ## 9223  ## 9224  ## 9224  ## 9225  ## 9225  ## 9225  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ## 9226  ##  | KRON              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        |       |        |        |        |
| ## 9222   LKHORN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ALT               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        |       |        |        |        |
| ## AN C.V.   45.00 166.13 49.63 0.36 00.16 00.30 3.00 2.16 1.5 49.83 163.25 46.73 8.70 76.52 60.30 3.00 2.16 1.5 49.83 163.25 46.73 8.70 76.52 60.30 3.00 2.16 1.5 49.83 163.25 46.73 8.70 76.52 60.30 3.00 2.16 1.5 49.89 1.5 5.33 163.43 32.53 1.13 75.59 59.10 .00 .70 2.6 40.80 1.00 2.27 3.5 49.80 1.00 2.27 3.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94 1.5 49.80 1.00 2.94  | T 9222            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        |       |        |        |        |
| GASSIZ Z9W92-712-a 5.33 163.25 46.73 8.70 70.32 60.00 .70 2.6 S0RWIN OUGHRIDER 5.36 7 163.67 30.97 1.36 74.47 57.80 1.00 2.27 3.9 5.000 163.79 49.20 8.23 71.34 60.30 1.00 2.94 1.9  MEAN C.V. 35.9 0.4 4.7 27.5 9.9 NA NA 29.7 21.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LKHORN            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        |       |        |        |        |
| 5.33 163.43 32.53 1.13 75.59 59.10 .00 .70 2.00 160 160 160 160 160 160 160 160 160 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AGASSIZ           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        |       | _      |        |        |
| MEAN C.V. 35.9 0.4 4.7 27.5 9.9 NA NA 29.7 21.0 0.8 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 5.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 163.43 | 32.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |        |       |        |        |        |
| MEAN 47.8 163.0 42.0 4.1 102.3 60.3 1.3 1.7 4.3 C.V. 35.9 0.4 4.7 27.5 9.9 NA NA 29.7 21.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | 56.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 163.67 | 30.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.36 |        |       |        |        |        |
| MEAN 47.8 163.0 42.0 4.1 102.3 60.3 11.0 C.V. 35.9 0.4 4.7 27.5 9.9 NA NA 29.7 21.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 49.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.23 | 71.34  | 60.30 | 1.00   | 2.94   | 1.9    |
| C.V. 35.9 0.4 4.7 27.5 9.9 NA NA 29.7 21.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MEAN              | 47.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 163.0  | 42.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.1  | 102.3  | 60.3  |        |        | 4.1    |
| C.V. ND ND 0.8 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 9.9    | NA    |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        | NA    | NA     | 0.8    | 1.4    |

<sup>1/</sup> DISEASE LEVELS: 1=LOW, 2=MODERATE, 3=HIGH 2/ AGRONOMIC SCALE BASED ON OVERALL APPEARANCE (POOR 0 TO 9 GOOD)

Advanced Yield Winter Wheat Evaluation: Lodging and

disease resistance

PROJECT LEADERS:

Bob Stougaard and Doug Holen, Kalispell, MT

Phil Bruckner and Jim Berg, PS&ES, Bozeman, MT

**OBJECTIVE:** 

To evaluate adapted, new, and introduced cultivars for yield, lodging, quality, and disease resistance in northwestern Montana. Special attention to fully document dwarf bunt (TCK), stripe rust,

and leaf rust reactions.

RESULTS:

Overall yields were good considering that winter survival ranged from 61% (MT9426) to 85% (MT9513), with a mean of 67%. Yields for the 36 entries ranged from 123 (MT9535) to 76 (MTW9617) bu/A with an overall mean of 97. Test weights were fair with 50% of the cultivars below 60 lbs/bu but four topping 62 (MT9523, MT9623, MTS97107, and MT9658). The mean test weight was 59.8. Lodging was significant throughout the nursery. MT9523 and MT9602 illustrated excellent lodging resistance while nine other cultivars showed good straw strength. Winter conditions were ideal for the germination and plant inoculation of TCK. Ten of

the entries were very susceptible to TCK with four cultivars

(MT9535, MT9610, MTS97104, and MT9557) displaying moderate resistance. Moderate to high levels leaf rust was present and documented. Eleven of the 36 cultivars were highly susceptible

with none found to be resistant.

SUMMARY:

Yields and test weight were good in relation to the poor growing season and heavy disease pressures present throughout. This crop year was beneficial in gathering good lodging and disease notes and specific cultivar responses to the detrimental conditions.

**FUTURE PLANS:** 

High yielding disease resistant cultivars will continue to be evaluated at Kalispell to identify those with the best potential for production in this region as well as document potential production problems for producers across the state.

Agronomic data from the Advanced Winter Wheat Nursery grown at the Northwestern Table 1. Agriculture Research Center in Kalispell, MT.

Planted: September 25, 1996

77.67 165.89

70.80 165.92

73.56 163.93

60.89 165.11

71.06 164.28

84.74 163.75

74.94 166.75

63.91 164.64

71.90 164.92

63.79 165.75

70.20 166.40

70.92 162.40

69.71 164.28

66.06 161.96

81.72 163.06

71.21 162.94 40.17

65.00 166.15 43.30

72.10 163.06 43.17

70.80 166.31 41.20

69.94 166.83 38.87

62.79 164.74 44.87

70.09 162.42 35.27

68.30 165.81 42.67

73.62 163.29 40.17

37.27

41.07

39.50

41.47

45.70

39.80

46.20

79.43 163.87

70.49 166.68

MT9535

NEELEY

MT9610

MTS97102

MT 9426

MTS97104

KESTREL

MTW9635

MTS97105

MTS97103

MTS97107

MT 9403

MT 9431

MTS97101

MT 9409

MT9620

MTW9636

MT9621

MT9640

MT9506

MTW9633

MT9658

MTW9631

MTW9617

MT 9402

MT9513

REDWIN

MT9601

JUDITH

MT9526

MT9602

MTW9505

MT9605

LF RUST TCK AGRO TWT YIELD W SURV HD DATE HEIGHT LDG 0-3 1/ 0-9 2/ 0-3 1/ LB/BU JULIAN INCH 0-9 BU/A 1.19 4.18 64.45 165.46 39.63 5.06 123.35 59.60 3.00 1.91 3.93 1.00 5.39 113.09 61.20 44.37 5.03 1.00 1.92 1.98 108.45 58.60 39.50 1.32 4.36 1.00 60.30 4.66 107.69 47.10 2.02 4.96 3.00 73.05 162.78 42.53 1.06 105.18 62.20 2.00 1.68 70.89 166.56 47.77 4.56 105.11 62.00 3.73 1.89 6.73 105.11 60.20 1.00 39.23 69.37 164.22 43.17 1.62 3.75 101.49 61.00 2.00 3.92 3.00 2.51 62.36 162.22 45.97 1.76 101.22 59.20 1.08 5.75 1.24 101.07 57.40 3.00 74.20 167.44 38.07 4.28 2.83 2.00 45.30 3.42 100.49 60.30 2.00 1.36 3.86 7.19 100.27 57.90 69.77 163.83 38.07 2.09 4.03 82.93 163.90 41.60 3.46 100.26 58.90 1.00 38.87 1.75 4.33 2.00 1.31 100.23 58.10 2.59 4.35 1.00 98.85 60.30 2.33 38.97 1.22 98.11 57.80 3.00 1.57 4.84 40.83 3.97 1.98 1.00 2.00 97.26 61.30 45.17 2.67 2.97 1.00 58.30 6.80 96.97 38.07 1.57 4.33 1.00 78.62 162.53 45.40 96.86 62.10 4.84 4.15 3.39 96.02 58.80 2.62 75.37 162.60 39.63 2.00

2.00

3.00

2.00

3.00

3.00

3.00

2.00

3.00

2.00

1.00

1.00

1.00

1.00

2.00

3.00

1.00 2.16

2.01 95.52 60.40

93.56

92.95

92.74

91.69

90.88

89.52

89.41

4.38 86.25 58.40

3.38 75.81 58.50

87.79 59.70

87.75 57.40

87.24 62.20

60.70

61.90

57.40

60.10

58.80

60.10

57.70

61.80

59.90

60.80

1.40 94.90

1.56 94.20

.54 93.26

1.52

4.01

3.56

1.61

5.46

4.30

4.94

3.97

2.46

2.73

4.71

5.54

4.39

4.20

5.42

4.16

3.97

4.27

3.53

3.20

4.12

3.71

4.31

4.28

2.35

2.44

2.06

1.70

1.59

2.46

2.44

2.78

3.14

2.41

2.98

2.53 4.05

3.22 3.46

2.33

2.24

Harvested: August 20, 1997

|                           |      |     |                    |      |     |    |                 |      | 130/15             |
|---------------------------|------|-----|--------------------|------|-----|----|-----------------|------|--------------------|
| MEAN<br>C.V.<br>LSD (.05) | 11.1 | 0.4 | 41.7<br>4.0<br>2.7 | 27.6 | 7.6 | NA | 1.9<br>NA<br>NA | 23.1 | 4.3<br>13.3<br>1.0 |

<sup>1/</sup> DISEASE LEVELS: 1=LOW, 2=MODERATE, 3=HIGH

<sup>2/</sup> AGRONOMIC SCORE BASED ON OVERALL APPEARANCE (POOR 0 TO 9 GOOD)

Soft White Winter Wheat Evaluation

PROJECT LEADERS:

Bob Stougaard and Doug Holen, Kalispell, MT

Phil Bruckner and Jim Berg, PS&ES, Bozeman, MT

OBJECTIVE:

To evaluate soft white winter wheat lines for adaptability, quality, and

disease resistance in northwestern Montana.

RESULTS:

This study was terminated on April 29 due to an overall stand

survival of 25%.

SUMMARY:

130 continuous days of snow cover led to severe levels of snow

mold which became lethal to a bulk of the stand. Recovery of

slightly infected plants was slow to non-existent due to extended cold

and saturated soil conditions.

**FUTURE PLANS:** 

Continued soft white winter wheat evaluations with this 18 variety

nursery in an attempt to identify cultivars best adapted for the Pacific

Northwest and northwestern Montana's unique conditions

specifically.

Table 1. Agronomic data from the Soft White Winter Wheat Nursery grown at the Northwestern Agricultural Research Center in Kalispell, MT.

Planted: September, 25, 1996

Harvested: Terminated

| VARIETY    | 0  | 76.85<br>51.38 | 10 50 | 10.a<br>3.56 | WINTER %<br>SURVIVAL | 11 DR . 17 | . 60%<br>60%<br>010 |
|------------|----|----------------|-------|--------------|----------------------|------------|---------------------|
| -          |    |                | 10.24 |              | V0.18 04.80          | 12 05.05   | 9,518,61            |
| ML 6W93-5  | 98 |                |       |              | 41.67                |            |                     |
| MACVICAR   |    |                |       |              | 36.67                |            |                     |
| LAMBERT    |    |                |       |              | 33.33                |            |                     |
| ELTAN      |    |                |       |              | 31.67                |            |                     |
|            |    |                |       |              |                      |            |                     |
| CASHUP     |    |                |       |              | 31.67                |            |                     |
| MALCOLM    |    |                |       |              | 20.07                |            |                     |
| ROD        |    |                |       |              | 28.33                |            |                     |
| KMOR       |    |                |       |              | 28.33                |            |                     |
| STEPHENS   |    |                |       |              | 28.33                |            |                     |
| LEWJAIN    |    |                |       |              | 28.33                |            |                     |
| DAWS       |    |                |       |              | 27.00                |            |                     |
| NEELEY     |    |                |       |              | 23.67                |            |                     |
| HILL 81    |    |                |       |              | 21.67                |            |                     |
| MCDERMID   |    |                |       |              | 20.00                |            |                     |
| BU 6W93-48 | 81 |                |       |              | 18.67                |            |                     |
| W301       |    |                |       |              | 16.67                |            |                     |
| MADSEN     |    |                |       |              | 13.33                |            |                     |
|            |    |                |       |              |                      |            |                     |
| GENE       |    |                |       |              | 5.67                 |            |                     |
| MEAN       |    |                |       |              | 25.8                 |            |                     |
| CV         |    |                |       |              | 75 4                 |            |                     |

MEAN 25.8 C.V. 75.4 LSD (.05) 32.2

Western Regional Hard Red Winter Wheat Evaluation

PROJECT LEADERS:

Bob Stougaard and Doug Holen, Kalispell, MT Phil Bruckner and Jim Berg, PS&ES, Bozeman, MT

**OBJECTIVE:** 

To evaluate hard red winter wheat lines for adaptability, yield, quality, and disease resistance in northwestern Montana.

RESULTS:

The mean yield for 1997 was 95.2 bu/A, which is average for this location but generous in a year which saw only 56% stand survival due to severe snow mold infection. Washington line 007818 had the highest yield at 117 bu/A, with the lowest being the long time check Kharkof at 57 bu/A. Utah lines produced three of the top four yielding cultivars. Overall nursery test weights were slightly below average at 59.7 lbs./bu, with six entries above 62 and five below 58. Severe lodging was documented with only WA007816, Utah 100, 82Cam097, OR889176, and OR908482 displaying mentionable resistance. 82Cam097 is a very late cultivar.

SUMMARY:

130 days of continuous deep snow cover led to conditions ideal for snow mold infection and spread, and for a full blown TCK outbreak. While winterkill and disease pressures were significant, yields were average in this nursery. Test weights were lower due to severe lodging and TCK bunted kernels.

**FUTURE PLANS:** 

1997 concludes the inclusion of this nursery in the cultivar evaluation tests in an attempt to centralize efforts on the remaining nurseries and best serve the research needs of northwestern Montana in relation to variety performances.

Table 1. Agronomic data from the Western Regional Hard Red Winter Wheat Nursery grown at the Northwestern Agricultural Research Center in Kalispell, MT.

Planted: September 25, 1996

Harvested: August 21, 1997

| blow well-take as a -3 | W SURV | HD DATE | HEIGHT |      | YIELD  | TWT     |
|------------------------|--------|---------|--------|------|--------|---------|
| VARIETY                | 8      | JULIAN  | INCH   | 0-9  | BU/A   | LB/BU   |
|                        | 52 22  | 167.00  | 48.53  | 5.00 | 116.83 | 59.10   |
| WA007818               |        | 165.33  | 45.77  |      | 112.43 | 62.50   |
| UT201971               |        | 164.00  | 39.10  |      | 112.10 | 62.00   |
| UT203032               |        | 163.33  | 42.77  |      | 111.17 | 62.50   |
| UT199847               |        | 162.33  | 37.80  |      | 109.83 | 57.90   |
| ID000498               |        | 166.67  | 42.10  |      | 108.87 | 63.00   |
| WA007815               |        | 163.33  | 39.13  |      | 106.47 | 62.00   |
| ID000511               |        | 164.00  | 38.87  | 6.33 |        | 59.00   |
| ID000512               |        | 166.00  | 43.33  | 2.33 |        | 60.80   |
| WA007816               |        |         | 43.57  |      | 101.37 | 62.30   |
| UT199838               |        | 163.67  |        | 5.33 | 99.93  | 59.10   |
| ID000479               |        | 165.33  | 39.87  | 4.67 | 99.33  | 61.00   |
| 95CAM012               |        | 165.67  | 44.60  | 2.33 | 98.43  | 56.20   |
| UTAH 100               |        | 166.00  | 38.60  |      | 98.27  | 58.40   |
| ID000510               |        | 164.00  | 39.77  | 4.00 | 97.73  | 56.40   |
| ID000509               |        | 163.00  | 38.07  | 7.33 |        | 58.10   |
| ID000513               |        | 164.00  | 35.27  | 3.33 | 97.63  | 58.40   |
| 82CAM097               |        | 170.00  | 40.07  | 2.00 | 94.73  |         |
| WA007814               |        | 163.33  | 42.37  | 5.67 | 94.67  | 60.30   |
| ID000497               |        | 163.33  | 44.23  | 5.67 | 94.27  | 61.60   |
| OR889176               |        | 166.00  | 32.53  | 1.00 | 91.03  | 57.00   |
| UT944158               |        | 166.67  | 41.60  | 7.00 | 89.97  | 54.80   |
| ID000501               |        | 162.33  | 29.13  | 3.00 | 88.47  | 60.60   |
| WA007773               |        | 164.67  | 45.70  | 7.33 | 87.37  | 61.10   |
| WA007817               |        | 164.33  | 49.23  | 7.00 | 86.73  | 60.30   |
| ID000514               | 50.00  | 164.67  | 43.57  | 6.67 | 85.17  | 59.60   |
| WANSER                 | 56.67  | 164.33  | 45.93  | 6.00 | 83.63  | 60.30   |
| ID000477               | 63.33  | 164.33  | 44.47  | 6.00 | 76.47  | 61.70   |
| WA007819               | 53.33  | 163.67  | 38.57  | 5.33 | 74.37  | 59.20   |
| OR908482               | 35.00  | 163.33  | 32.17  | 2.00 | 73.03  | 58.00   |
| KHARKOF                | 56.67  | 165.67  | 40.53  | 8.33 | 57.43  | 58.60   |
| MEDAL                  | 55.7   | 164.7   | 40.9   | 5.2  | 95.2   | 59.7    |
| MEAN                   | 19.4   | 0.3     |        | 21.3 | 10.7   | NA      |
| C.V.                   |        |         | 4.6    | 1.8  | 16.7   | NA      |
| LSD (.05)              | 17.7   | 0.8     | 4.0    | 1.0  | 10.7   | * *** * |

TITLE: Intrastate Alfalfa Yield Trials - Irrigated & Dryland

PROJECT LEADERS: R. Ditterline / R. Dunn, MSU-Bozeman

COOPERATORS: L. Welty / L. Strang, MSU-NWARC

Alfalfa varieties were established each spring from 1995 to 1997 at dryland sites and from 1994 to 1997 at irrigated sites. The dryland trials planted in 1995 and 1996 and the 1995 irrigated trial were harvested three times: in mid-June, early August, and after frost (late September to early October). The 1997 trials were harvested early August and after frost. The irrigated 1994 trial was harvested 6/16 and 8/8 and the study terminated. The 1996 irrigated trial exhibited poor vigor due to saturated soil during the early growing season. It was harvested 6/16 and then left to reestablish itself until after frost. Both 1995 nurseries and the 1996 dryland trial were harvested three times: at the bud stage in mid-June, full bloom in early August, and after frost.

Precipitation during the April through August growing season was only 7% above average, but was 91% above average from September to December of 1996 resulting in saturated soil conditions at the irrigated sites. Because of this, yields in the 1995 and 1996 irrigated trials were very poor compared to the dryland trials which are located on lighter soil at a higher elevation.

The 1994 irrigated trial was terminated after the second harvest in 1997 (Table 1a). Mean dry matter production for the 4-year duration was 18.32 tons/acre. The most productive cultivar was 'Pasture Plus' with 19.65 tons/acre, and the lowest was 'Ladak' 65' with 16.28 tons/acre (Table 1b). The 1995 dryland trial showed uniform vigorous spring growth due to abundant moisture on well-drained soil (Table 3a). There were no significant differences among cultivars in total yield for 1997, or over the 3-year life of the nursery (Table 3b). Mean total dry matter yield for 1997 was 6.08 tons/acre, with DK 127 having the highest. The irrigated nursery had areas of soil saturation damage, which reduced yields about 30% compared to the previous season (Table 2b). 'Oneida VR' and 'Key', which have high resistance to Vert wilt had the highest yields in 1997 with over 4 tons/acre (Table 2a). The 1996 dryland trial, located in a well-drained site, experienced healthy, vigorous spring growth (Table 5a). Total 1997 production (3 cuttings) averaged 5.21 tons/acre, with no significant differences among cultivars at the 95% confidence level. Because of excessively wet spring soil conditions, the irrigated trial did not fare as well. Yields ranged from 2.02 tons/acre (Ladak 65) to 3.08 tons/acre ('Ultra') (Table 4a). The 1997 dryland trial was seeded May 2. Stand establishment was variable, and portions of some plots were reseeded on June 2. Yields averaged 2.17 tons/acre over two cuttings (Table 6b). The irrigated 1997 trial was seeded May 7. Stand establishment was good, and the two cuttings produced an average of 2.83 tons/acre (Table 6a).

The 'Puna' chicory planted in the borders of both 1996 alfalfa trials grew vigorously again in 1997. It is interesting that the chicory at the heavy soil, irrigated site tolerated the extreme wet soil conditions much better than the alfalfa in the same nursery. Chicory is perennial forage especially suited to dryland conditions because of its deep taproot, but it also exhibited adaptation to soggy soil conditions.

Table 1a. Total dry matter yield of the 1994 Intrastate Alfalfa Yield Trial at Kalispell-irrigated in 1997.

| VARIETY           | MTNo       | FD1          | <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u> | <u>Vigor</u> (0-5) | Harvest-1   | Harvest-2 | Total t/a |
|-------------------|------------|--------------|----------------------------------------------|--------------------|-------------|-----------|-----------|
| 14.5000           | 054        | 4            | R                                            | 4.0                | 2.36        | 2.02      | 4.38      |
| WL-323            | 251<br>287 | 4            | R                                            | 3.8                | 2.36        | 1.98      | 4.34      |
| 330               | 284        | 4            | R                                            | 4.5                | 2.39        | 1.93      | 4.32      |
| Hygain<br>ZX 9344 | 279        |              |                                              | 4.0                | 2.38        | 1.89      | 4.27      |
| PGI 9047          | 275        | n an<br>Laid | 21/Y 12/39                                   | 3.5                | 2.24        | 2.03      | 4.27      |
| 5454              | 263        | 4            | MR                                           | 4.5                | 2.47        | 1.80      | 4.27      |
|                   | 283        |              | IVIIX                                        | 4.0                | 2.27        | 1.96      | 4.23      |
| 91-12             | 286        | 4            | R                                            | 3.5                | 2.24        | 1.98      | 4.22      |
| Rushmore          |            | 4            | K                                            | 4.3                | 2.36        | 1.80      | 4.16      |
| Pasture Plus      | 277        |              |                                              | 3.3                | 2.33        | 1.82      | 4.14      |
| ABI 9033          | 280        | 4            | R                                            | 3.8                | 2.25        | 1.86      | 4.11      |
| Reward            | 276        | 3            | R                                            | 3.3                | 2.24        | 1.87      | 4.11      |
| MP2000            | 289        | _            | K                                            | 3.5                | 2.24        | 1.87      | 4.11      |
| ABI 923AA         | 281        |              | HR                                           | 3.8                | 2.22        | 1.87      | 4.09      |
| Legendairy        | 288        | 2            |                                              | 3.8                | 2.25        | 1.79      | 4.04      |
| 5262              | 214        | 2            | LR                                           | 3.3                | 2.23        | 1.78      | 4.01      |
| MS9301            | 293        | _            | -                                            |                    | 2.23        | 1.79      | 4.00      |
| Avalanche         | 282        | 2            | HR                                           | 3.3                | 2.27        | 1.79      | 3.97      |
| Magnum III-W      |            | 3            | MR                                           | 3.3                | 2.27        | 1.72      | 3.96      |
| Sterling          | 290        | 2            | R                                            | 3.5                |             | 1.61      | 3.90      |
| Wrangler          | 146        | 2            | LR                                           | 3.5                | 2.29        | 1.70      | 3.84      |
| Vernema           | 220        | 4            | MR                                           | 3.5                | 2.14        | 1.63      | 3.83      |
| MS9304            | 294        | ากรูขลา      | ा 🖫 ह                                        | 3.5                | 2.20        | 1.72      | 3.83      |
| Dividend          | 291        | 2            | R                                            | 3.3                | 2.11        | 1.68      | 3.81      |
| ZC 9030           | 278        | OT I         | dS ald                                       | 3.3                | 2.13        |           | 3.76      |
| Aspen             | 292        | 4            | R                                            | 3.3                | 2.11        | 1.65      | 3.63      |
| Perry             | 133        | 3            | ia bar                                       | 3.3                | 2.16        | 1.47      | 3.62      |
| Ladak 65          | 2          | p.1          | D 0                                          | 2.8                | 2.14        | 1.48      | 3.02      |
| moon              |            |              |                                              | 3.6                | 2.25        | 1.79      | 4.04      |
| mean<br>LSD(0.05) |            |              |                                              | 0.7                | 0.14        | 0.27      | 0.34      |
| CV(s/mean)x1      | 00         |              |                                              | 14.0               | 4.6         | 10.7      | 5.9       |
| CV(S/IIICall)XI   | 00         |              |                                              | 17.0               | DELIG BRIDE | 7 75W De  |           |

<sup>1</sup> Fall Dormancy rating

Seeding date: 4/27/94

Seeding date: 4/2//94
Stage of maturity at cutting: harv1-mid bud

<sup>&</sup>lt;sup>2</sup> Vert Wilt resistance

Table 1b. Total dry matter yield of the 1994 Intrastate Alfalfa Yield Trial at Kalispell-irrigated from 1994 to 1997.

|                  |     |          |                 |      |      |      |      | 1994-97 |
|------------------|-----|----------|-----------------|------|------|------|------|---------|
| VARIETY          |     | MTNo FD1 | VW <sup>2</sup> | 1994 | 1995 | 1996 | 1997 | TOTAL   |
| VAINLIT          |     | MITTO TO | hente           | t/a  | t/a  | t/a  | t/a  | t/a     |
| Pasture Plus     |     | 277 -    |                 | 3.50 | 5.88 | 6.12 | 4.16 | 19.65   |
| 5454             |     | 263 4    | MR              | 3.37 | 5.71 | 5.87 | 4.27 | 19.21   |
| Hygain           |     | 284 4    | R               | 3.35 | 5.57 | 5.91 | 4.32 | 19.14   |
| ZX 9344          |     | 279 -    |                 | 3.63 | 5.49 | 5.72 | 4.27 | 19.11   |
| 330              |     | 287 4    | R               | 3.42 | 5.48 | 5.77 | 4.34 | 19.01   |
| Reward           |     | 276 4    | R               | 3.62 | 5.55 | 5.71 | 4.11 | 18.99   |
| 5262             |     | 214 2    | LR              | 3.59 | 5.55 | 5.81 | 4.04 | 18.99   |
| WL-323           |     | 251 4    | R               | 3.57 | 5.18 | 5.70 | 4.38 | 18.82   |
| Legendairy       |     | 288 2    | HR              | 3.30 | 5.65 | 5.63 | 4.09 | 18.67   |
| PGI 9047         |     | 275 -    | -               | 3.49 | 5.40 | 5.50 | 4.27 | 18.66   |
| ABI 9033         |     | 280 -    | -               | 3.40 | 5.44 | 5.63 | 4.14 | 18.61   |
| Rushmore         |     | 286 4    | R               | 3.33 | 5.44 | 5.50 | 4.22 | 18.49   |
| MP2000           |     | 289 3    | R               | 3.62 | 5.33 | 5.32 | 4.11 | 18.37   |
| MS9301           |     | 293 -    |                 | 3.47 | 5.39 | 5.37 | 4.01 | 18.24   |
| <b>ABI 923AA</b> |     | 281 -    |                 | 3.35 | 5.24 | 5.52 | 4.11 | 18.22   |
| Magnum III-W     | /et | 285 3    | MR              | 3.36 | 5.29 | 5.54 | 3.97 | 18.15   |
| Avalanche        |     | 282 2    | HR              | 3.51 | 5.14 | 5.50 | 4.00 | 18.14   |
| Vernema          |     | 220 4    | MR              | 3.76 | 5.16 | 5.35 | 3.84 | 18.11   |
| 91-12            |     | 283 -    | -               | 3.43 | 5.05 | 5.39 | 4.23 | 18.09   |
| MS9304           |     | 294 -    | -               | 3.65 | 5.38 | 5.19 | 3.83 | 18.05   |
| Dividend         |     | 291 2    | R               | 3.45 | 5.31 | 5.26 | 3.83 | 17.84   |
| Sterling         |     | 290 2    | R               | 3.20 | 5.23 | 5.38 | 3.96 | 17.77   |
| ZC 9030          |     | 278 -    | _               | 3.50 | 5.09 | 5.23 | 3.81 | 17.64   |
| Aspen            |     | 292 4    | R               | 3.54 | 5.07 | 5.11 | 3.76 | 17.48   |
| Wrangler         |     | 146 2    | LR              | 3.48 | 4.74 | 5.31 | 3.90 | 17.42   |
| Perry            |     | 133 3    |                 | 3.55 | 5.03 | 5.21 | 3.63 | 17.42   |
| Ladak 65         |     | 2 1      | _               | 3.32 | 4.41 | 4.93 | 3.62 | 16.28   |
|                  |     |          |                 |      |      |      |      |         |
| mean             |     |          |                 | 3.47 | 5.30 | 5.50 | 4.04 | 18.32   |
| LSD(0.05)        |     |          |                 | 0.32 | 0.34 | 0.33 | 0.34 | 0.85    |
| CV(s/mean)       |     |          |                 | 6.5  | 4.5  | 4.3  | 5.9  | 3.3     |
|                  |     |          |                 |      |      |      |      |         |

<sup>1</sup>Fall Dormancy rating

<sup>2</sup> Vert wilt resistance

Seeding date: 4/27/94

Fertilizer. 44 lbs/a N + 208 lbs/a P<sub>2</sub>O<sub>5</sub> preplant; 16.5 lbs N + 78 lbs/a P<sub>2</sub>O<sub>5</sub> on 4/15/96

Table 2a. Total dry matter yield of the 1995 Intrastate Alfalfa Yield Trial at Kalispell-irrigated in 1997.

|            |                   |     |                 |        |     |         |             |           |                  | 1997  |
|------------|-------------------|-----|-----------------|--------|-----|---------|-------------|-----------|------------------|-------|
| VARIETY    | MTNo              | FD1 | VW <sup>2</sup> | Occupa | ncy | Harvest | -1 <u>}</u> | Harvest-2 | <u>Harvest-3</u> | TOTAL |
| 81 61      | E\                |     | E\1             | % of p |     | t/a     |             | t/a       | t∕a              | t/a   |
| Oneida VR  | 309               | 3   | HR              | 99     |     | 1.63    |             | 1.63      | 0.91             | 4.17  |
| Key        | 305               | 4   | HR              | 99     |     | 1.48    |             | 1.64      | 0.96             | 4.07  |
| Accord     | 298               | 4   | R               | 99     |     | 1.42    |             | 1.68      | 0.96             | 4.06  |
| WI95-1     | 310               | 2   | LR              | 100    |     | 1.57    |             | 1.65      | 0.84             | 4.05  |
| DK 127     | 302               | 3   | R               | 99     |     | 1.31    |             | 1.73      | 0.97             | 4.01  |
| Stamina    | 296               | 4   | HR              | 99     |     | 1.38    |             | 1.57      | 0.89             | 3.84  |
| ABI 9231   | 306               | 4   | HR              | 98     |     | 1.31    |             | 1.60      | 0.90             | 3.81  |
| ZX9345A    | 301               | 4   | R               | 98     |     | 1.34    |             | 1.57      | 0.89             | 3.80  |
| FGEXP      | 313               |     | 10.5            | 98     |     | 1.27    |             | 1.53      | 0.93             | 3.73  |
| ZX9345B    | 307               | 4   | HR              | 97     |     | 1.27    |             | 1.52      | 0.87             | 3.66  |
| 5454       | 263               | 4   | MR              | 98     |     | 1.33    |             | 1.50      | 0.81             | 3.64  |
| Defiant    | 299               | 2   | HR              | 96     |     | 1.15    |             | 1.53      | 0.84             | 3.52  |
| 5472       | 221               | 4   | MR              | 97     |     | 1.16    |             | 1.48      | 0.87             | 3.51  |
| 5262       | 214               | 2   | LR              | 97     |     | 1.16    |             | 1.47      | 0.81             | 3.44  |
| 3L 102     | 311               |     | -2.3            | 96     |     | 1.12    |             | 1.43      | 0.86             | 3.41  |
| Haygrazer  | 300               | 4   | R               | 99     |     | 1.27    |             | 1.30      | 0.78             | 3.36  |
| Aspen      | 308               | 4   | R               | 91     |     | 1.11    |             | 1.37      | 0.85             | 3.33  |
| 5312       | 297               | 3   | HR              | 96     |     | 1.17    |             | 1.36      | 0.78             | 3.30  |
| Proof      | 303               | 3   | R               | 96     |     | 1.04    |             | 1.44      | 0.80             | 3.28  |
| Leafmaster | 304               | 4   | HR              | 91     |     | 1.17    |             | 1.34      | 0.76             | 3.27  |
| Viking 1   | 232               | 2   | HR              | 97     |     | 1.01    |             | 1.38      | 0.85             | 3.24  |
| 3L 103     | 312               | _   |                 | 96     |     | 1.08    |             | 1.30      | 0.84             | 3.21  |
| Vernal     | 8                 | 2   | 30 E            | 95     |     | 1.20    |             | 1.29      | 0.71             | 3.19  |
| Riley      | 122               | 4   | LR              | 94     |     | 1.10    |             | 1.24      | 0.77             | 3.11  |
| Ladak 65   | 2                 | 1   | 474             | 97     |     | 1.30    |             | 1.12      | 0.48             | 2.90  |
| Eadan 00   | : Tish            |     |                 |        |     |         |             |           |                  |       |
| mean       |                   |     |                 | 97     |     | 1.25    |             | 1.47      | 0.84             | 3.56  |
| LSD(0.05)  |                   |     |                 | 5(P=.0 | 6)  | NS      |             | 0.28      | 0.12             | 0.45  |
| CV(s/mean) | x100              |     |                 | 3.7    | ,   | 23.3    |             | 13.4      | 10.1             | 5.7   |
|            | The second second |     |                 |        |     |         |             |           |                  |       |

1Fall Dormancy rating

<sup>2</sup>Vert wilt resistance

Seeding date: 4/25/95

Fertilizer: 22 lbs/a N + 104 lbs/a P<sub>2</sub>O<sub>5</sub> on 5/8/97 Stage of maturity at cutting: Harvest 1&3 - early bud

Table 2b. Total dry matter yield of the 1995 Intrastate Alfalfa Yield Trial at Kalispell-irrigated from 1995-1997.

| VARIETY Oneida VR Key                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MTNo<br>309<br>305 | FD¹ 3 4 | W <sup>2</sup> HR HR | 1995<br>t/a<br>2.99<br>3.02 | 1996<br>t/a<br>6.13<br>6.01 | 1997<br>t/a<br>4.17<br>4.07 | 1995-97<br><u>TOTAL</u><br><i>t/a</i><br>13.29<br>13.10 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------|----------------------|-----------------------------|-----------------------------|-----------------------------|---------------------------------------------------------|
| Accord                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 298                | 4       | R                    | 3.01                        | 5.98                        | 4.06                        | 13.05                                                   |
| DK 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 302                | 3       | R                    | 2.94                        | 6.04                        | 4.01                        | 13.00                                                   |
| WI95-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 310                | 2       | LR                   | 2.78                        | 5.95                        | 4.05                        | 12.78                                                   |
| 5454                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 263                | 4       | MR                   | 2.80                        | 6.07                        | 3.64                        | 12.51                                                   |
| FGEXP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 313                | 10.5    | -                    | 2.90                        | 5.88                        | 3.73                        | 12.51                                                   |
| 3L 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 311                | 55.X    | 1_                   | 3.02                        | 6.07                        | 3.41                        | 12.50                                                   |
| Stamina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 296                | 4       | HR                   | 2.97                        | 5.61                        | 3.84                        | 12.42                                                   |
| ZX9345A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 301                | 4       | R                    | 2.73                        | 5.60                        | 3.80                        | 12.13                                                   |
| ABI 9231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 306                | 4       | HR                   | 2.53                        | 5.75                        | 3.81                        | 12.09                                                   |
| Proof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 303                | 3       | R                    | 2.80                        | 5.92                        | 3.28                        | 12.00                                                   |
| 5262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 214                | 2       | LR                   | 2.57                        | 5.76                        | 3.44                        | 11.77                                                   |
| 5472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 221                | 4       | MR                   | 2.57                        | 5.67                        | 3.51                        | 11.75                                                   |
| 5312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 297                | 3       | HR                   | 2.69                        | 5.72                        | 3.30                        | 11.71                                                   |
| ZX9345B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 307                | 4       | HR                   | 2.63                        | 5.31                        | 3.66                        | 11.60                                                   |
| Viking 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 232                | 2       | HR                   | 2.82                        | 5.54                        | 3.24                        | 11.60                                                   |
| 3L 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 312                | 02.0    | -                    | 2.76                        | 5.54                        | 3.21                        | 11.50                                                   |
| Defiant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 299                | 2       | HR                   | 2.40                        | 5.53                        | 3.52                        | 11.45                                                   |
| Aspen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 308                | 4       | R                    | 2.58                        | 5.50                        | 3.33                        | 11.41                                                   |
| Vernal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                  | 2       | -                    | 2.48                        | 5.37                        | 3.19                        | 11.03                                                   |
| Haygrazer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 300                | 4       | R                    | 2.55                        | 5.04                        | 3.36                        | 10.95                                                   |
| Leafmaster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 304                | 4       | HR                   | 2.43                        | 4.93                        | 3.27                        | 10.62                                                   |
| Riley                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 122                | 4       | LR                   | 2.38                        | 4.83                        | 3.11                        | 10.32                                                   |
| Ladak 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                  | 1       | -                    | 2.40                        | 4.97                        | 2.90                        | 10.26                                                   |
| mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |         |                      | 2.71                        | 5.63                        | 3.56                        | 11.89                                                   |
| LSD(0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |         |                      | 0.23                        | 0.45                        | 0.45                        | 1.27                                                    |
| CV(s/mean) x100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |         |                      | 6.0                         | 5.7                         | 5.7                         | 7.6                                                     |
| The state of the s |                    |         |                      |                             |                             |                             |                                                         |

<sup>&</sup>lt;sup>1</sup> Fall Dormancy rating

Seeding date: 4/25/95

Fertilizer: 44 lbs/a N + 208 lbs/a P<sub>2</sub>O<sub>5</sub> prelant;

22 lbs/a N + 104 lbs/a P<sub>2</sub>O<sub>5</sub> on 5/8/97

<sup>&</sup>lt;sup>2</sup> Vert Wilt resistance

Table 3a. Total dry matter yield of the 1995 Intrastate Alfalfa Yield Trial at Kalispell-dryland in 1997.

1997 TOTAL MTNo FD¹ VW² Occupancy Harvest-1 Harvest-2 Harvest-3 Variety t/a t/a t/a % of plot t/a 1.28 6.58 2.53 2.77 99 302 3 R **DK 127** 1.31 6.53 2.47 2.75 98 305 4 HR Key 6.48 2.95 2.36 1.18 2 100 WI95-1 310 LR 6.48 1.19 2.94 2.35 99 3 HR Oneida VR 309 6.46 1.24 2.41 100 2.81 4 MR 221 5472 6.36 1.22 2.57 HR 90 2.57 304 4 Leafmaster 1.23 6.32 2.41 2.68 298 4 R 99 Accord 1.10 6.25 2.85 2.31 2 LR 96 5262 214 6.23 1.25 2.63 2.36 95 R 308 4 Aspen 6.18 2.31 1.16 99 2.71 4 HR 296 Stamina 6.16 1.18 2.70 2.28 3 HR 98 297 5312 1.11 6.11 2.17 2.83 100 5454 263 4 MR 6.04 2.25 1.14 2.65 R 97 300 4 Haygrazer 6.01 1.04 2.77 2.21 100 299 2 HR Defiant 5.98 1.14 2.26 100 2.59 ZX9345A 301 R 1.12 5.97 2.22 2.63 311 100 3L 102 5.93 2.15 1.10 2.69 99 **FGEXP** 313 5.87 1.11 2.52 2.24 99 4 HR ZX9345B 307 5.86 2.24 1.10 2.53 R 98 303 3 Proof 5.78 1.06 2.11 2 2.61 232 HR 99 Viking 1 5.75 2.20 1.01 2.54 98 Vernal 8 2 1.12 5.75 2.16 2.48 100 3L 103 312 5.74 1.08 2.59 2.07 4 99 306 HR ABI 9231 5.66 0.97 2.06 95 2.64 122 LR 4 Riley 5.53 0.76 2.10 2.67 1 100 Ladak 65 2 6.08 2.27 1.13 2.68 98 mean NS 0.22 NS NS 3 LSD(0.05) 9.7 13.3 14.1 8.2 2.2 CV (s/mean)\*100

Fertilizer: 22 lbs/a N + 104 lbs/a P<sub>2</sub>O<sub>5</sub> on 4/23/97

<sup>&</sup>lt;sup>1</sup> Fall Dormancy rating

<sup>&</sup>lt;sup>2</sup> Vert Wilt resistance

Table 3b. Total dry matter yield of the 1995 Intrastate Alfalfa Yield Trial at Kalispell-dryland from 1995-97.

|                   |             |                 |                |             |      |      | 1995-97 |
|-------------------|-------------|-----------------|----------------|-------------|------|------|---------|
| JATOI S           | 188 AST     | ED1             | 1000           | 1005        | 1996 | 1997 | TOTAL   |
| VARIETY           | <u>MTNo</u> | FD <sup>1</sup> | W <sup>2</sup> | <u>1995</u> |      | t/a  | t/a     |
|                   |             |                 |                | t/a         | t/a  |      | 15.79   |
| WI95-1            | 310         | 2               | LR             | 3.41        | 5.89 | 6.48 |         |
| Aspen             | 308         | 4               | R              | 3.23        | 5.49 | 6.23 | 14.96   |
| Oneida VR         | 309         | 3               | HR             | 3.15        | 5.31 | 6.48 | 14.95   |
| 5262              | 214         | 2               | LR             | 3.20        | 5.36 | 6.25 | 14.81   |
| 3L 102            | 311         | -75             | -              | 3.49        | 5.33 | 5.97 | 14.79   |
| 5472              | 221         | 4               | MR             | 2.89        | 5.06 | 6.46 | 14.40   |
| DK 127            | 302         | 3               | R              | 3.07        | 4.74 | 6.58 | 14.39   |
| Stamina           | 296         | 4               | HR             | 3.12        | 5.05 | 6.18 | 14.36   |
| Defiant           | 299         | 2               | HR             | 3.07        | 5.25 | 6.01 | 14.33   |
| FGEXP             | 313         | -80             | -              | 3.17        | 5.16 | 5.93 | 14.26   |
| ZX9345A           | 301         | 4               | R              | 3.07        | 5.11 | 5.98 | 14.17   |
| Leafmaster        | 304         | 4               | HR             | 3.01        | 4.75 | 6.36 | 14.11   |
| Key               | 305         | 4               | HR             | 3.07        | 4.51 | 6.53 | 14.11   |
| Accord            | 298         | 4               | R              | 3.17        | 4.55 | 6.32 | 14.02   |
| 5454              | 263         | 4               | MR             | 2.83        | 5.01 | 6.11 | 13.95   |
| Riley             | 122         | 4               | LR             | 2.94        | 5.21 | 5.66 | 13.82   |
| Haygrazer         | 300         | 4               | R              | 2.93        | 4.64 | 6.04 | 13.61   |
| ABI 9231          | 306         | 4               | HR             | 2.98        | 4.90 | 5.74 | 13.61   |
| Proof             | 303         | 3               | R              | 3.00        | 4.46 | 5.86 | 13.33   |
| Viking 1          | 232         | 2               | HR             | 3.19        | 4.29 | 5.78 | 13.26   |
| ZX9345B           | 307         | 4               | HR             | 2.91        | 4.46 | 5.87 | 13.23   |
| 5312              | 297         | 3               | HR             | 2.87        | 4.19 | 6.16 | 13.22   |
| Ladak 65          | 2           | 108             | -              | 2.85        | 4.66 | 5.53 | 13.05   |
| Vernal            | 8           | 2               | -              | 2.80        | 4.29 | 5.75 | 12.84   |
| 3L 103            | 312         | -00/            | -              | 3.16        | 3.84 | 5.75 | 12.73   |
| 3L 103            | 98.5        |                 |                |             |      |      |         |
| mean              |             |                 |                | 3.06        | 4.86 | 6.08 | 14.00   |
| LSD(0.05)         |             |                 |                | NS          | NS   | NS   | NS      |
| CV (s/mean)*100   | RCF         |                 |                | 13.2        | 19.3 | 9.7  | 11.9    |
| CV (Silicali) 100 |             |                 |                |             | 3 .  |      |         |

<sup>&</sup>lt;sup>1</sup> Fall Dormancy rating

Seeding date: 4/25/95

Fertilizer: 44 lbs/a N + 208 lbs/a P<sub>2</sub>O<sub>5</sub> preplant; 22 lbs/a N + 104 lbs/a P<sub>2</sub>O<sub>5</sub> on 4/23/97

<sup>&</sup>lt;sup>2</sup> Vert Wilt resistance

Table 4a. Total dry matter yield of the 1996 Intrastate Alfalfa Yield Trial at Kalispell-irrigated in 1997.

| ingated in 195 |          |                       | 6/16/97   | 10/2/97   | 1997  |
|----------------|----------|-----------------------|-----------|-----------|-------|
| Variety        | MTNo FD1 | VW <sup>2</sup> Stand | Harvest-1 | Harvest-2 | TOTAL |
| Tel.           | 1481     | %                     | t/a       | t/a       | t/a   |
| Ultra          | 229 3    | R 85                  | 1.23      | 1.85      | 3.08  |
| MT 9305        | 328 -    | - 81                  | 1.23      | 1.68      | 2.91  |
| Rainier        | 320 3    | R 91                  | 1.32      | 1.56      | 2.88  |
| Hyland         | 322 3    | R 88                  | 1.06      | 1.80      | 2.86  |
| Legendairy 2.0 | 321 3    | R 90                  | 1.24      | 1.56      | 2.80  |
| Oasis 371      | 324 -    | - 8 90                | 1.27      | 1.53      | 2.79  |
| Magnum III     | 238 4    | MR 88                 | 1.19      | 1.61      | 2.79  |
| 329            | 317 -    | - 86                  | 1.06      | 1.65      | 2.70  |
| Bighorn        | 316 4    | R 84                  | 71.11     | 1.55      | 2.66  |
| Wrangler       | 146 2    | LR 86                 | 1.15      | 1.51      | 2.66  |
| Magnagraze     | 323 3    | R 89                  | 1.09      | 1.55      | 2.64  |
| MT 9308        | 330 -    | - 80                  | 1.04      | 1.57      | 2.61  |
| 5454           | 263 4    | MR 89                 | 1.14      | 1.43      | 2.57  |
| WL 325 HQ      | 319 3    | R 83                  | 1.09      | 1.48      | 2.56  |
| MT 9503        | 335 -    | - 78                  | 0.99      | 1.56      | 2.55  |
| WL 324         | 318 3    | R 85                  | 1.10      | 1.42      | 2.51  |
| Excalibur II   | 248 -    | - 85                  | 0.99      | 1.51      | 2.50  |
| MT 9310        | 332 -    | - 70                  | 0.98      | 1.50      | 2.47  |
| Oneida VR      | 309 3    | HR 75                 | 0.84      | 1.54      | 2.38  |
| Affinity+Z     | 315 4    | HR 81                 | 0.91      | 1.46      | 2.37  |
| MT 9321        | 333 -    | - 73                  | 0.80      | 1.58      | 2.37  |
| Riley          | 122 4    | LR 74                 | 0.95      | 1.41      | 2.36  |
| MT 9303        | 326 -    | - 76                  | 0.81      | 1.52      | 2.33  |
| XAL 46         | 314 -    | - 33 270              | 0.80      | 1.53      | 2.33  |
| MT 9316        | 334 -    | - 3279                | 0.84      | 1.49      | 2.33  |
| MT 9304        | 327 -    | - 81.873              | 0.92      | 1.41      | 2.32  |
| MT 9309        | 331 -    | - 74                  | 0.86      | 1.38      | 2.24  |
| MT 9306        | 329 -    | - 69                  | 0.71      | 1.52      | 2.23  |
| MT 9302        | 325 -    | - 60                  | 0.59      | 1.60      | 2.19  |
| Ladak 65       | 2 1      | - 6 76                | 0.74      | 1.28      | 2.02  |
| mean           |          | 80                    | 1.00      | 1.53      | 2.53  |
| LSD(0.05)      |          | 16                    | NS        | 0.14      | 0.52  |
| CV(s/mean) x10 | 00       | 14.6                  | 34.7      | 6.5       | 14.6  |
|                |          |                       |           |           |       |

<sup>&</sup>lt;sup>1</sup> Fall Dormancy rating

Seeding date: 5/10/96

Stage of maturity at cutting: Harvest 1 - early bud; Harvest 2 - late bloom

<sup>&</sup>lt;sup>2</sup> Vert Wilt resistance

Table 4b. Total dry matter yield of the 1996 Intrastate Alfalfa Yield Trial at Kalispell-irrigated from 1996-97.

| VARIETY                          | MTNo F      | ED1   | VW²     | 1996 | 1997 | TOTAL |
|----------------------------------|-------------|-------|---------|------|------|-------|
| ATOT Edge a                      | C. Lawrence | Н     |         | t/a  | t/a  | t/a   |
| Ultra                            | 229         | 3     | R       | 1.36 | 3.08 | 4.43  |
| Hyland                           | 322         | 3     | R       | 1.28 | 2.86 | 4.14  |
| MT 9305                          | 328         | -     |         | 1.15 | 2.91 | 4.06  |
| Rainier                          | 320         | 3     | R       | 1.15 | 2.88 | 4.03  |
| Magnum III                       | 238         | 4     | MR      | 1.19 | 2.79 | 3.98  |
| Magnagraze                       | 323         | 3     | R       | 1.30 | 2.64 | 3.94  |
| Oasis 371                        | 324         | -     | 00.5    | 1.14 | 2.79 | 3.94  |
| 5454                             | 263         | 4     | MR      | 1.35 | 2.57 | 3.92  |
| Bighom                           | 316         | 4     | R       | 1.25 | 2.66 | 3.91  |
| 329                              | 317         | -     | 66.7    | 1.09 | 2.70 | 3.79  |
| MT 9308                          | 330         | -     | 5 P. J. | 1.15 | 2.61 | 3.76  |
| WL 325 HQ                        | 319         | 3     | R       | 1.18 | 2.56 | 3.74  |
| Legendairy 2.0                   | 321         | 3     | R       | 0.91 | 2.80 | 3.71  |
| MT 9503                          | 335         | -     | 80.1    | 1.03 | 2.55 | 3.57  |
| WL 324                           | 318         | 3     | R       | 1.05 | 2.51 | 3.56  |
| Excalibur II                     | 248         | -     | 28.T    | 1.02 | 2.50 | 3.52  |
| Wrangler                         | 146         | 2     | LR      | 0.84 | 2.66 | 3.50  |
| MT 9310                          | 332         | _     | 55.7    | 0.86 | 2.47 | 3.33  |
| XAL 46                           | 314         | -     | 2.39    | 1.00 | 2.33 | 3.33  |
| Affinity+Z                       | 315         | 4     | HR      | 0.96 | 2.37 | 3.33  |
| Riley                            | 122         | 4     | LR      | 0.96 | 2.36 | 3.32  |
| MT 9321                          | 333         | _     | LC Z    | 0.93 | 2.37 | 3.30  |
| MT 9302                          | 325         | -     | 35.5    | 1.07 | 2.19 | 3.26  |
| MT 9306                          | 329         | _     | 2.42    | 1.00 | 2.23 | 3.23  |
| MT 9304                          | 327         | _     | 2.37    | 0.86 | 2.32 | 3.18  |
| Oneida VR                        | 309         | 3     | HR      | 0.80 | 2.38 | 3.18  |
| MT 9309                          | 331         |       | Z# =    | 0.91 | 2.24 | 3.15  |
| MT 9303                          | 326         | _     | 2.21    | 0.81 | 2.33 | 3.14  |
| MT 9316                          | 334         | -     | 2.58    | 0.71 | 2.33 | 3.03  |
| Ladak 65                         | 2           | 1     | 14 2    | 0.74 | 2.02 | 2.76  |
| Ladak 00                         | - 7V        |       |         |      |      |       |
| mean                             |             |       |         | 1.03 | 2.53 | 3.57  |
| LSD(0.05)                        |             |       |         | 0.25 | 0.52 | 0.68  |
| CV(s/mean) x100                  |             |       |         | 17.5 | 14.6 | 13.6  |
| <sup>1</sup> Fall Dormancy ratio |             | resis | stance  | 6.0  |      |       |

<sup>1</sup> Fall Dormancy rating; <sup>2</sup> Vert Wilt resistance

Seeding date: 5/10/96

Fertilizer: 44 lbs/a N + 208 lbs/a P<sub>2</sub>O<sub>5</sub> preplant

Pesticides: 6-oz/a Pursuit, 2-qt/a Poast + 946 ml Dash on 8/6/96

Table 5a. Total dry matter yield of the 1996 Intrastate Alfalfa Yield Trial at Kalispelldryland in 1997.

|                   |      |     |                 |       |           |           |           | 1997  |
|-------------------|------|-----|-----------------|-------|-----------|-----------|-----------|-------|
| VARIETY           | MTNo | FD1 | VW <sup>2</sup> | Vigor | Harvest-1 | Harvest-2 | Harvest-3 | TOTAL |
| <u> </u>          | 00.0 |     | E-s             | (0-5) | t/a       | t/a       | t/a       | t/a   |
| Ultra             | 229  | 3   | R               | 4.5   | 2.60      | 1.94      | 1.14      | 5.69  |
| MT 9304           | 327  | _   | - 01            | 5.0   | 2.63      | 1.86      | 1.20      | 5.68  |
| Bighorn           | 316  | 4   | R               | 4.8   | 2.58      | 1.92      | 1.16      | 5.66  |
| Rainier           | 320  | 3   | R               | 5.0   | 2.66      | 1.82      | 1.11      | 5.58  |
| MT 9503           | 335  | -   | -               | 4.8   | 2.58      | 1.85      | 1.11      | 5.54  |
| Riley             | 122  | 4   | LR              | 4.8   | 2.51      | 1.77      | 1.20      | 5.48  |
| XAL 46            | 314  | -   | -               | 5.0   | 2.65      | 1.80      | 1.03      | 5.48  |
| WL 324            | 318  | 3   | R               | 5.0   | 2.63      | 1.74      | 1.06      | 5.42  |
| Hyland            | 322  | 3   | R               | 5.0   | 2.48      | 1.81      | 1.13      | 5.41  |
| 5454              | 263  | 4   | MR              | 5.0   | 2.46      | 1.83      | 1.09      | 5.38  |
| MT 9305           | 328  | -   |                 | 4.8   | 2.52      | 1.76      | 1.07      | 5.35  |
| Oneida VR         | 309  | 3   | HR              | 5.0   | 2.58      | 1.74      | 1.01      | 5.33  |
| MT 9309           | 331  |     | - 27            | 4.8   | 2.44      | 1.83      | 1.05      | 5.32  |
| Affinity+Z        | 315  | 4   | HR              | 5.0   | 2.35      | 1.82      | 1.11      | 5.28  |
| WL 325 HQ         | 319  | 3   | R               | 5.0   | 2.49      | 1.72      | 1.07      | 5.28  |
| Magnagraze        | 323  | 3   | R               | 4.8   | 2.34      | 1.85      | 1.07      | 5.25  |
| MT 9321           | 333  | -   | -               | 4.5   | 2.39      | 1.85      | 0.98      | 5.22  |
| Excalibur II      | 248  | -   | - 20            | 4.8   | 2.56      | 1.69      | 0.97      | 5.21  |
| MT 9310           | 332  | -   | - 89            | 4.3   | 2.47      | 1.78      | 0.94      | 5.20  |
| MT 9308           | 330  | -   | - 88            | 4.5   | 2.51      | 1.68      | 0.98      | 5.17  |
| MT 9302           | 325  | -   | - 10            | 4.8   | 2.46      | 1.65      | 1.05      | 5.16  |
| Magnum III        | 238  | 4   | MR              | 5.0   | 2.42      | 1.67      | 1.05      | 5.14  |
| Wrangler          | 146  | 2   | LR              | 4.8   | 2.37      | 1.79      | 0.97      | 5.12  |
| Oasis 371         | 324  | -   | - 68            | 5.0   | 2.46      | 1.64      | 0.89      | 4.99  |
| MT 9306           | 329  | -   | - 10            | 4.5   | 2.42      | 1.63      | 0.92      | 4.97  |
| Legendairy 2.0    | 321  | 3   | R               | 4.8   | 2.21      | 1.62      | 0.94      | 4.76  |
| MT 9316           | 334  | -   |                 | 5.0   | 2.58      | 1.37      | 0.77      | 4.71  |
| Ladak 65          | 2    | 1   | - 27            | 4.5   | 2.41      | 1.54      | 0.72      | 4.67  |
| 329               | 317  | -   | -               | 4.3   | 2.27      | 1.42      | 0.78      | 4.46  |
| MT 9303           | 326  | -   | - 80            | 4.5   | 2.15      | 1.47      | 0.77      | 4.39  |
| moan              |      |     |                 | 4.8   | 2.47      | 1.73      | 1.01      | 5.21  |
| mean<br>LSD(0.05) |      |     |                 | 0.5   | NS        | NS        | NS        | NS    |
| CV(s/mean) x10    | 00   |     |                 | 7.1   | 9.5       | 16.3      | 23.8      | 12.5  |

<sup>&</sup>lt;sup>1</sup> Fall Dormancy rating <sup>2</sup> Vert Wilt resistance

Stage of maturity at cutting: Harvest 1 - early bud; Harvest 2 - 90% bloom; Harvest 3 - early bud

Table 5b. Total dry matter yield of the 1996 Intrastate Alfalfa Yield Trial at Kalispell-dryland from 1996-97.

| Bighorn Ultra MT 9304 WL 324 XAL 46 MT 9503 Rainier Hyland 5454 Affinity+Z MT 9308 Riley MT 9302 MT 9305 MT 9321 | MTNo FD¹  316 4 229 3 327 - 318 3 314 - 335 - 320 3 322 3 263 4 315 4 330 - 122 4 325 - 328 - 333 - | RR . R R R R . R        | 1996<br>t/a<br>3.04<br>2.95<br>2.81<br>3.05<br>2.93<br>2.85<br>2.80<br>2.81<br>2.84<br>2.93<br>2.94<br>2.61<br>2.90<br>2.70<br>2.75 | 1997 t/a 5.66 5.69 5.68 5.42 5.48 5.54 5.58 5.41 5.38 5.28 5.17 5.48 5.16 5.35 5.22 5.25 | 1996-1997<br>TOTAL<br>t/a<br>8.70<br>8.64<br>8.49<br>8.48<br>8.40<br>8.39<br>8.38<br>8.22<br>8.22<br>8.21<br>8.11<br>8.08<br>8.06<br>8.05<br>7.97<br>7.97 |
|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                  |                                                                                                     | 88<br>85                |                                                                                                                                     | 5.35                                                                                     | 8.05                                                                                                                                                      |
|                                                                                                                  |                                                                                                     | R                       | 2.75<br>2.72                                                                                                                        | 5.22<br>5.25                                                                             | 7.97<br>7.97                                                                                                                                              |
| WL 325 HQ<br>Excalibur II                                                                                        | 319 3<br>248 -                                                                                      | R                       | 2.66<br>2.68                                                                                                                        | 5.28<br>5.21                                                                             | 7.94<br>7.89                                                                                                                                              |
| MT 9309                                                                                                          | 331 -<br>329 -                                                                                      | 0.6                     | 2.52                                                                                                                                | 5.32<br>4.97                                                                             | 7.84<br>7.76                                                                                                                                              |
| MT 9306<br>MT 9310                                                                                               | 332 -                                                                                               | -                       | 2.47<br>2.30                                                                                                                        | 5.20<br>5.33                                                                             | 7.67<br>7.63                                                                                                                                              |
| Oneida VR<br>Magnum III                                                                                          | 309 3<br>238 4                                                                                      | HR<br>MR                | 2.46                                                                                                                                | 5.14                                                                                     | 7.60<br>7.57                                                                                                                                              |
| Wrangler<br>Oasis 371                                                                                            | 146 2<br>324 -                                                                                      | LR<br>-                 | 2.45<br>2.41                                                                                                                        | 5.12<br>4.99                                                                             | 7.39                                                                                                                                                      |
| Ladak 65<br>Legendairy 2.0                                                                                       | 2 1<br>321 3                                                                                        | R                       | 2.62<br>2.49                                                                                                                        | 4.67<br>4.76                                                                             | 7.28<br>7.24                                                                                                                                              |
| MT 9316                                                                                                          | 334 -<br>317 -                                                                                      | 1 - P <sup>a</sup> bloc | 2.41<br>2.59                                                                                                                        | 4.71<br>4.46                                                                             | 7.12<br>7.05                                                                                                                                              |
| MT 9303                                                                                                          | 326 -                                                                                               | -                       | 2.53                                                                                                                                | 4.39                                                                                     | 6.93                                                                                                                                                      |
| mean<br>LSD(0.05)<br>CV(s/mean) x100                                                                             |                                                                                                     |                         | 2.70<br>0.48(P=.08)<br>12.6                                                                                                         | 5.21<br>NS<br>12.5                                                                       | 7.91<br>NS<br>11.42                                                                                                                                       |
| <sup>1</sup> Fall Dormancy rating                                                                                | Se                                                                                                  | eding date:             | 4/26/96                                                                                                                             |                                                                                          |                                                                                                                                                           |

<sup>2</sup> Vert Wilt resistance

Fertilizer: 25 lbs/a N + 120 lbs/a  $P_2O_5$  preplant; Pesticides: 6-oz/a Pursuit on 8/6/96

Table 6a. Total dry matter yield of the 1997 Intrastate Alfalfa Yield Trial at Kalispell-irrigated.

|                             |           |        |       | 8/1/97    | 10/6/97   | 1997  |
|-----------------------------|-----------|--------|-------|-----------|-----------|-------|
| VARIETY                     | MTNo      | FD¹ W² | Stand | Harvest-1 | Harvest-2 | TOTAL |
| Trivia is                   |           |        | %     | t/a       | t/a       | t/a   |
| 5301                        | 340       | 3,0,0  | 88    | 1.87      | 1.38      | 3.26  |
| DK 140                      | 342       | 4 R    | 96    | 1.92      | 1.21      | 3.13  |
| DK 142                      | 343       | 4 R    | 100   | 1.95      | 1.08      | 3.03  |
| 3L 102                      | 336       | CO 6   | 92    | 1.81      | 1.19      | 3.00  |
| Rhino                       | 339       | 3 R    | 97    | 1.88      | 1.09      | 2.97  |
| DK 143                      | 344       | 3 R    | 89    | 1.83      | 1.10      | 2.93  |
| 5396                        | 345       | 00.5   | 88    | 1.75      | 1.18      | 2.93  |
| Cimmaron 3I                 | 338       | 4 LR   | 91    | 1.71      | 1.21      | 2.91  |
| Ace                         | 337       | 4 R    | 96    | 1.78      | 1.13      | 2.91  |
| 645                         | 341       | 3 R    | 93    | 1.74      | 1.04      | 2.78  |
| Oneida VR                   | 309       | 3 HR   | 92    | 1.62      | 1.13      | 2.75  |
| Wrangler                    | 146       | 2 LR   | 91    | 1.62      | 0.94      | 2.56  |
| Ladak 65                    | 2         | De .S  | 95    | 1.62      | 0.82      | 2.44  |
| Riley                       | 122       | 4 LR   | 46    | 1.11      | 0.93      | 2.05  |
| 7 ()                        |           |        |       |           |           |       |
| mean                        |           |        | 89    | 1.73      | 1.10      | 2.83  |
| LSD(0.05)                   |           |        | 6     | 0.18      | 0.12      | 0.27  |
| CV(s/mean) x                | 100       |        | 5.0   | 7.2       | 7.3       | 6.6   |
| o v (onnoun) x              | 200       |        |       |           |           |       |
| 1 Fall Dormand              | cv rating |        |       |           |           |       |
| <sup>2</sup> Vert Wilt resi | -         |        |       |           |           |       |
|                             | 000       |        |       |           |           |       |
| Seeded 5/9/97               | 7 7.6     |        |       |           |           |       |
|                             | O lhala   |        |       |           |           |       |

Seeding rate: 8 lbs/a

Fertilizer: Fall, 1996 - 44 lbs/a N + 208 lbs/a  $P_2O_5$ 

Pesticide: 6/3/97 - Pursuit, 6 oz/a

Stage of maturity at cutting: Harvest 1 - 1st bloom; Harvest 2 - early bud

Table 6b. Total dry matter yield of the 1997 Intrastate Alfalfa Yield Trial at Kalispell-dryland.

| VARIETY           | MTNo    | FD1              | <u>VV</u> 2          | Stand | Harvest-1 | Harvest-2 |      |
|-------------------|---------|------------------|----------------------|-------|-----------|-----------|------|
|                   |         | UMAV             | AM-ASI               | %     | t/a       | t/a       | t/a  |
| DK 142            | 343     | 4                | R                    | 94    | 1.63      | 0.77      | 2.40 |
| DK 140            | 342     | 4                | R                    | 90    | 1.69      | 0.71      | 2.39 |
| Rhino             | 339     | 3                | R                    | 90    | 1.59      | 0.79      | 2.38 |
| 645               | 341     | 3                | R                    | 91    | 1.56      | 0.73      | 2.28 |
| 31 102            | 336     | 2 -              | -                    | 91    | 1.52      | 0.74      | 2.27 |
| Cimmaron 3i       | 338     | 4                | LR                   | 88    | 1.48      | 0.78      | 2.26 |
| DK 143            | 344     | 3                | R                    | 89    | 1.53      | 0.71      | 2.24 |
| Oneida VR         | 309     | 3                | HR                   | 91    | 1.44      | 0.76      | 2.19 |
| 5301              | 340     | _                | ela <del>m</del> ni. | 85    | 1.50      | 0.64      | 2.14 |
| 5396              | 345     | 10-2             | ala. <del></del> hi  | 85    | 1.52      | 0.62      | 2.13 |
| Wrangler          | 146     | 2                | LR                   | 95    | 1.41      | 0.65      | 2.06 |
| Ladak 65          | 2       | la <b>L</b> aile | N = ki               | 90    | 1.47      | 0.57      | 2.03 |
| Ace               | 337     | 4                | R                    | 88    | 1.37      | 0.64      | 2.02 |
| Riley             | 122     | M 4              | LR                   | 41    | 0.95      | 0.58      | 1.52 |
| Talloy            | TERVIEW | 16               | 2015                 |       |           |           |      |
| mean              |         |                  |                      | 86    | 1.47      | 0.69      | 2.17 |
| LSD(0.05)         |         |                  |                      | 10    | 0.19      | 0.13      | 0.23 |
| CV(s/mean) x1     | 00      |                  |                      |       | 9.1       | 13.3      | 7.4  |
| OV (Sillicall) XI |         |                  |                      |       |           |           |      |

<sup>&</sup>lt;sup>1</sup> Fall Dormancy rating

Seeded 5/2/97

Seeding rate: 8 lbs/a

Fertilizer: Fall, 1996 - 44 lbs/a N + 208 lbs/a P₂O₅

Stage of maturity at cutting: Harvest 1 - late bloom; Harvest 2 - early bud

<sup>&</sup>lt;sup>2</sup> Vert Wilt resistance

TITLE:

1997 Montana Uniform Spring Cereal Forage Trial - Dryland

PROJECT LEADER:

D. Wichman, MSU-CARC

COOPERATORS:

L. Welty / L. Strang, MSU-NWARC

Two cultivars of triticale, 6 barley, 3 oat cultivars, and an oat/barley combination were compared for forage dry matter yield (Table 1). Entries were seeded May 7, 1997, in a randomized complete block design with 4 replicates.

All entries had vigorous stands. 'MT910207' barley was the first to head (June 29), while 'Charisma' oat was the latest (July 16). 'Otana' oat was tallest (54 inches), and Charisma oat was shortest (40 inches). All plots were harvested July 18, when the plants were between anthesis and soft dough stage. The oats were less mature than the barleys and triticale. The highest yielding cultivars, with over 5 tons/acre, were 'Haybet', 'Westford', and 'Washford' barleys. The experimental barleys and triticales were least productive.

Table 1. Agronomic data for the Cereal Forage Trial at Kalispell in 1997.

| Entry             |    | <u>Vigor</u><br>(0-5) <sup>1</sup> | H | eading<br>day <sup>2</sup> | r A | Height inches | Maturity at harvest | Yield<br>t/a |  |
|-------------------|----|------------------------------------|---|----------------------------|-----|---------------|---------------------|--------------|--|
| Haybet Barley     |    | 4.3                                |   | 58                         |     | 48            | 8                   | 5.35         |  |
| Westford Barley   |    | 5.0                                |   | 62                         |     | 49            | 6                   | 5.28         |  |
| Washford Barley   |    | 5.0                                |   | 62                         |     | 46            | 6                   | 5.02         |  |
| Otana Oats        |    | 4.3                                |   | 62                         |     | 54            | 6                   | 4.98         |  |
| Celesia Oats      |    | 4.0                                |   | 63                         |     | 51            | 6                   | 4.93         |  |
| BZ 593-164 Barle  | ey | 5.0                                |   | 62                         |     | 51            | 7                   | 4.89         |  |
| Oat/Barley        | •  | 4.5                                |   | 61                         |     | 48            | 7                   | 4.84         |  |
| MT 910207 Barle   | ev | 4.5                                |   | 53                         |     | 46            | 9                   | 4.66         |  |
| Pronghorn Tritica | -  | 4.5                                |   | 58                         |     | 51            | 7                   | 4.62         |  |
| Sunland Triticale |    | 4.0                                |   | 60                         |     | 46            | 7                   | 4.59         |  |
| Charisma Oats     |    | 4.0                                |   | 70                         |     | 40            | 5                   | 4.47         |  |
| FR 588-241 Barl   | еу | 5.0                                |   | 61                         |     | 41            | grido is            | 4.47         |  |
| mean              |    | 4.5                                |   | 61                         |     | 48            | 7                   | 4.84         |  |
| LSD(0.05)         |    | 0.5                                |   | 1                          |     | 2             | 1                   | 0.58         |  |
| CV(s/mean)        |    | 7.4                                |   | 1.2                        |     | 2.5           | 9.5                 | 8.2          |  |

<sup>1/</sup>low-high vigor

2 days after planting

Seeding Rates:

Barley/Oat - 33 lbs/a Pronghorn - 60 lbs/a Sunland - 40 lbs/a Oat/Barley - 50 lbs/a

<sup>&</sup>lt;sup>3</sup>/<sub>5=early inflorescence; 6=inflorescence; 7=anthesis; 8=milk; 9=soft dough</sub>

TITLE:

Perennial Forage Grass Trial - Irrigated

PROJECT LEADER:

D. Cash, MSU-Bozeman

COOPERATORS:

L. Welty / L. Strang, MSU-NWARC

A trial comparing 6 meadow bromegrass cultivars was seeded on May 10, 1996. Cultivars included 'Regar', 'Fleet', 'Paddock', and 3 experimental lines. In 1997 all cultivars exhibited excellent vigor and stand persistence. Four cuttings were made between June and October. Total yields from the four harvests averaged 6.62 tons/acre and were similar for all cultivars (Table 1).

Table1. Total dry matter yields (tons/acre) of meadow bromegrass cultivars at Kalispell in 1997.

|            |                   |               |           |           | 1997               |
|------------|-------------------|---------------|-----------|-----------|--------------------|
| CULTIVAR   | Harvest-1         | Harvest-2     | Harvest-3 | Harvest-4 | TOTAL              |
| Mb-1       | 2.44              | 1.64          | 1.36      | 1.08      | 6.51               |
| Mb-2       | 2.50              | 1.72          | 1.38      | 1.14      | 6.74               |
| Mb-3       | 2.47              | 1.66          | 1.39      | 1.14      | 6.66               |
| Regar      | 2.49              | 1.75          | 1.41      | 1.08      | 6.73               |
| Fleet      | 2.45              | 1.67          | 1.31      | 0.99      | 6.42               |
| Paddock    | 2.52              | 1.70          | 1.40      | 1.07      | 6.69               |
|            |                   |               |           |           |                    |
| Mean       | 2.48              | 1.69          | 1.37      | 1.08      | 6.62               |
|            | and the second of | HOURY, OLD OF |           |           | (the factor) is ex |
| LSD(0.05)  | NS                | NS            | NS        | NS        | NS                 |
| CV(s/mean) | 8.6               | 5.0           | 7.7       | 6.8       | 4.5                |
|            |                   |               |           |           |                    |

TITLE:

Chicory/Orchardgrass Harvest Timing Trial – Irrigated

PROJECT LEADER:

L. Welty, MSU-NWARC

L. Strang, MSU-NWARC

'Puna' chicory and 'Potomac' orchardgrass were seeded alone and in mixtures in a randomized complete block design with 4 replicates. The experiment was designed as a 3 x 3 factorial with 3 species treatments (chicory, orchardgrass, and mixture) and 3 harvest-timing treatments (two, three, and four cuttings). Seeding date was May 7, 1997. Plots containing an alfalfa/chicory mixture bordered each replicate. Seeding rate was 4 lbs/a for the chicory, 6 lbs/acre for the grass and 3-lbs/acre chicory with 4-lbs/acre orchard grass for the mixture. The harvest timing treatments will begin in 1998. For the establishment year, the nursery was cut twice, on August 1 and October 6. At the first harvest chicory yields averaged 2.24 tons/acre, orchard grass 0.79 tons/acre, and the mixture 2.37 tons/acre. At the fall cutting chicory averaged 1.56 tons/acre, orchard grass 2.20 tons/acre, and the mixture 1.89 tons/acre (Table 1). Chicory was dominant over the grass the first part of the season, but orchard grass dominated the late season regrowth. This preliminary data indicates that chicory mixed with orchard grass can provide a steady supply of forage throughout the growing season. The effects of different cutting intervals will be tested beginning in 1998.

Table 1. Total dry matter yields (tons/acre) of chicory, orchard grass, chicory/orchard grass mixture, and chicory/alfalfa mixture at Kalispell in 1997.

| Species                         | Harvest-1<br>8/1/97 | Harvest-2<br>10/6/97 | Total Yield         |
|---------------------------------|---------------------|----------------------|---------------------|
| Chicory                         | 2.24                | 1.56                 | 3.80                |
| Orchard grass                   | 0.79                | 2.20                 | 2.98                |
| Chic+Orch                       | 2.37                | 1.89                 | 4.26                |
| Chic+Alfalfa                    | 3.18                | 1.51                 | 4.68                |
| mean<br>LSD(0.05)<br>CV(s/mean) | 2.14<br>0.12<br>3.5 | 1.79<br>0.31<br>11.0 | 3.93<br>0.33<br>5.3 |

Seeding date: 5/7/97

Fertilizer: 5/24/97 - 60 lbs N/A Pesticide: 6/3/97 - Pursuit, 6 oz/a

TITLE: 1997 Western Regional Dry Pea and Lentil Yield Trials - Dryland

PROJECT LEADER: Dr. Fred Muehlbauer, WSU, Pullman, WA

COOPERATORS: L eon E. Welty, Professor of Agronomy, MSU, Kalispell, MT

Louise Strang, Research Specialist, MSU, Kalispell, MT

Steve Druffel, Spokane Seed, Spokane, WA

Sixteen dry pea and twelve lentil varieties were seeded on May 7, 1997. Excellent stands were obtained. Precipitation from April through August was 10.65 inches, 7% above average. Except for a cooler than average April, temperatures during this period were nearly normal. Wet winter and spring weather delayed planting by three weeks compared to the norm. Slightly higher than average moisture conditions from April through June promoted good establishment and vegetative growth. These conditions retarded pod and seed development in the lentils, thereby reducing yields 35% compared to 1996. The older, lower yielding pea cultivars also had lower yields than in 1996, but some of the newer entries in the trial produced over 3000 lbs/acre (Table 1). No disease problems were encountered.

The highest yielding pea cultivar was 'CLM Carrera' (submitted by Spokane Seeds), an early maturing semi-leaf yellow pea which produced 3963 lbs/acre (Table 1). 'Eston' was the highest yielding lentil variety with 1888 lbs/acre (Table 2). Sclerotinia mold symptoms were not observed this year.

There has been increased interest in dwarf and semi-dwarf and "semi-leafless" (afila type) varieties. Because they are resistant to lodging, varieties of these growth types are less susceptible to foliar diseases such as *Sclerotinia* and dry more rapidly at maturity. In this trial, the yellow- seeded 'CLM Carrera', 'Capella', 'Fallon', and 'CDN Carnival' and the green-seeded 'Radley', 'Solara', and 'PS210370' have these growth form characteristics.

Table 1. Agronomic data for the Dry Pea Yield Trial at Kalispell in 1997.

| Variety  CLM Carrera  Rex  Fallon  Solara | Stand<br>%<br>93<br>98<br>96<br>97 | First<br>Flower<br>day <sup>1</sup><br>50<br>52<br>53<br>54 | Nodes to 1 <sup>st</sup> Flower # 13 14 14 13 | Maturity day 1 92 94 93 94 | Height<br>Inches<br>30<br>40<br>34<br>25 | Seed<br><u>Size</u><br>#/lb<br>1910<br>1992<br>1872<br>1823 | <u>Yield</u> <i>lbs/a</i> 3963 3387 3361 3344 |
|-------------------------------------------|------------------------------------|-------------------------------------------------------------|-----------------------------------------------|----------------------------|------------------------------------------|-------------------------------------------------------------|-----------------------------------------------|
| CDN Express                               | 90                                 | 55                                                          | 13                                            | 98                         | 39                                       | 2148                                                        | 3091                                          |
| CDN Carnival                              | 95                                 | 57                                                          | 16                                            | 93                         | 36                                       | 2539                                                        | 3065                                          |
| PS210370                                  | 97                                 | 46                                                          | 9                                             | 91                         | 28                                       | 2068                                                        | 2922                                          |
| Radley                                    | 98                                 | 56                                                          | 15                                            | 94                         | 30                                       | 2828                                                        | 2679                                          |
| CDN Grande                                | 96                                 | 56                                                          | 14                                            | 97                         | 43                                       | 2415                                                        | 2543                                          |
| Capella                                   | 97                                 | 56                                                          | 15                                            | 94                         | 37                                       | 2280                                                        | 2426                                          |
| Joel                                      | 98                                 | 47                                                          | 12                                            | 92                         | 52                                       | 2250                                                        | 1875                                          |
| Shawnee                                   | 97                                 | 45                                                          | is 11 do                                      | 91                         | 58                                       | 2270                                                        | 1792                                          |
| Columbian                                 | 97                                 | 40                                                          | 8                                             | 93                         | 44                                       | 2473                                                        | 1694                                          |
| Umatilla                                  | 97                                 | 49                                                          | 13                                            | 92                         | 56                                       | 2135                                                        | 1693                                          |
| Alaska 81                                 | 99                                 | 41                                                          | 8                                             | 91                         | 62                                       | 2871                                                        | 1463                                          |
| Latah                                     | 99                                 | 44                                                          | 10                                            | 93                         | 59                                       | 2825                                                        | 1453                                          |
| mean                                      | 96                                 | 50                                                          | 12                                            | 93                         | 42                                       | 2294                                                        | 2547                                          |
| LSD(0.05)                                 | 3                                  | 1                                                           | and Mouth a                                   | 2                          | 8                                        | 275                                                         | 454                                           |
| CV(s/mean)                                | 1.9                                | 1.3                                                         | 5.5                                           | 1.4                        | 14.2                                     | 8.4                                                         | 12.5                                          |

<sup>1</sup> days after seeding a language MIO belooks wolley and plant airly of yoursest

Seeding date: 5/7/97 Harvest area: 40 ft²

Fertilizer: 22 lbs N/a & 104 lbs  $P_2O_5$  on 5/8/97.

Table 2 . Agronomic data for the Lentil Yield Trial at Kalispell in 1997.

|            |            | FIRST         |               |               | SEED  |          |
|------------|------------|---------------|---------------|---------------|-------|----------|
| VARIETY    | <u>STA</u> | <b>FLOWER</b> | MATURITY      | <b>HEIGHT</b> | SIZE  | YIELD    |
|            | ND         |               |               | v. Professo   |       |          |
|            | %          | day1          | day1          | inches        | #/lb  | lbs/acre |
| Eston      | 98         | 57            | 103           | 24            | 15670 | 1888     |
| Crimson    | 97         | 59            | 99            | 22            | 16480 | 1568     |
| Brewer     | 97         | 49            | 99            | 26            | 8335  | 1563     |
| Mason      | 97         | 52            | 98            | 24            | 7229  | 1415     |
| LC460266   | 97         | 50            | 99            | 23            | 8283  | 1402     |
| Palouse    | 96         | 51            | 98            | 24            | 7024  | 1394     |
| Pardina    | 98         | 51            | 99            | 25            | 13520 | 1297     |
| LC460212   | 95         | 56            | 101           | 23            | 7641  | 1295     |
| Redchief   | 93         | 49            | 98            | 25            | 9250  | 1286     |
| LC460202   | 89         | 54            | 99            | 22            | 7723  | 1183     |
| LC460199   | 97         | 54            | 99            | 23            | 8174  | 1169     |
| Richlea    | 98         | 58            | 103           | 24            | 9489  | 1159     |
|            |            |               |               |               |       |          |
| mean       | 96         | 53            | 99            | 23            | 9902  | 1385     |
| LSD(0.05)  | NS         | da 1 Les      | 1             | 2             | 718   | 218      |
| CV(s/mean) | 5.0        | 1.3           | ua lidhornsi. | 6.1           | 5.0   | 11.0     |

<sup>1</sup> days after seeding

Seeding date: 5/7/97

Fertilizer: 22 lbs N/a & 104 lbs P<sub>2</sub>O<sub>5</sub> on 5/8/97

Harvest area = 40 sqft

TITLE: Evaluation of Mint Cultivars in the Presence and Absence of V. dahliae

PERSONNEL: Leon E. Welty, Professor of Agronomy, MSU, Kalispell, MT

Louise Strang, Research Specialist, MSU, Kalispell, MT Bill Grey, Asst. Research Professor, MSU, Bozeman, MT

No differences in winter survival among peppermint cultivars were observed in 1997 (Table 1a). As in 1996, spearmint cultivars were hurt by the winter more than peppermint cultivars. Native was superior to Scotch in stand survival and stolon spread (Table 3a). Unlike 1996, no differences between meristem and non-meristem propagated spearmint were found (Table 3a & b). Disease (mainly rust) and insect predations were minor in 1997.

Black Mitcham stem-cut propagated (Plant Tech material) produced the highest peppermint oil yields, while T-84-5 had the lowest (Table 1b). Differences among peppermint hay yields were not significant. When oil yields are compared over the duration of the experiment (excluding the establishment year) Black Mitcham - stem-cut (Plant Tech) had significantly higher average yield than the other entries in the trial, including the Blacks from the other sources. The meristem-propagated material had significantly lower average yield than the other Blacks. In 1997, meristem Black Mitcham was producing as well as or better than all entries other than stem-cut Plant Tech-94 (Table 2a.). Although oil yield differences persisted, dry matter production was similar for all cultivars the last two years (Table 2b.).

Native spearmint was much more vigorous than Scotch, especially during the first growth cycle in 1997 (Table 3a). There were no consistent differences between propagation types as in previous years. Native yielded 33% more dry matter and 19% less oil than Scotch in 1997 (Table 3b). This is in contrast to last year's observation that greater vigor is needed to maximize oil yields in a double cut spearmint situation. When total season oil yields are compared over the duration of the trial, Scotch produced more oil than Native, and the meristem lines produced more than the stem-cut lines for both species (Table 4a). Native produced more dry matter than Scotch, but differences between meristem and non-meristem derived lines were not significant (Table 4b).

The Black Mitcham peppermint oil differed from the other peppermint cultivars in several quality components. The Blacks had higher levels of menthofuran and pulegone and lower levels of menthone than the other varieties (Tables 5a & b). Meristem Black Mitcham had higher menthol and lower menthofuran than the stem-cut and *in vitro* nodal propagated lines. The two spearmint cultivars produced oils with different chemical compositions (Table 6a & b). Native had higher levels of cineole and dihydrocarvone and lower levels of limonene, octanol, and carvone than Scotch. Stem-cut Native had consistently higher carvone levels than meristem Native suggesting an interaction between cultivar and propagation source for this product.

Table 1a. Spring stand evaluation (5/15/97) of peppermint cultivars in 1997.

|                               | ROW<br>COVER<br>(0-5)1 | <u>VIGOR</u><br>(0-5) <sup>2</sup> | STOLON<br>SPREAD<br>(0-5)3 |
|-------------------------------|------------------------|------------------------------------|----------------------------|
| Black Mitcham-stem cut        | 3.8                    | 4.9                                | 3.3                        |
| Black Mitcham- in vitro nodal | 3.9                    | 4.4                                | 3.6                        |
| Black Mitcham-meristem        | 3.8                    | 4.1                                | 3.9                        |
| Murray Mitcham-stem cut       | 3.8                    | 4.4                                | 3.4                        |
| Roberts Mitcham-stem cut      | 3.8                    | 4.3                                | 3.8                        |
| M-83-7 - stem cut             | 3.8                    | 4.4                                | 3.9                        |
| T-84-5 - stem cut             | 3.6                    | 4.4                                | 3.1                        |
|                               |                        |                                    |                            |
| Mean                          | 3.8                    | 4.4                                | 3.6                        |
| LSD(0.10)                     | NS                     | 0.4                                | 0.5                        |
| CV(s/mean)x100                | 12.5                   | 9.9                                | 16.0                       |

<sup>&</sup>lt;sup>1</sup> 0=no cover; 5=entire plot area covered

Table 1b. Hay and oil yield of peppermint cultivars harvested in 1997.

|                  |               | HAY   | OIL           |
|------------------|---------------|-------|---------------|
|                  |               | YIELD | YIELD         |
|                  |               | t/a   | lbs/a         |
| Black Mitcham-s  | tem cut       | 4.90  | 80.1          |
| Black Mitcham- i | n vitro nodal | 5.31  | 74.7          |
| Black Mitcham-m  | neristem      | 4.41  | 73.8          |
| Murray Mitcham-  | stem cut      | 5.21  | 70.1          |
| Roberts Mitcham  | n-stem cut    | 4.98  | 71.2          |
| M-83-7 - stem cu | ıt            | 5.15  | 74.6          |
| T-84-5 - stem cu | t ere         | 5.06  | 66.5          |
| Magn 814         |               | E 00  | 72.001.010.51 |
| Mean             |               | 5.00  | 73.0          |
| LSD(0.10)        |               | NS    | 6.7           |

<sup>&</sup>lt;sup>2</sup> 0=no growth; 5=all plants exhibiting healthy, vigorous growth

<sup>3 0=</sup>no spread from crowns; 5=extensive spreading

Table 2a. Oil yield of peppermint cultivars evaluated at Kalispell, MT from 1995 to 1997 (lbs/acre).

|                  |                  | 1995 | 1996                 | 1997 | MEAN |
|------------------|------------------|------|----------------------|------|------|
|                  |                  |      |                      |      |      |
| Black Mitcham -  | stem cut         | 54.0 | 97.3                 | 80.1 | 77.1 |
| Black Mitcham    | - in vitro nodal | 45.0 | 91.5                 | 74.7 | 70.4 |
| Black Mitcham -  | - meristem       | 35.5 | 85.2                 | 73.8 | 64.8 |
| Murray Mitcham   | n - stem cut     | 43.2 | 86.7                 | 70.1 | 66.7 |
| Roberts Mitchar  | m - stem cut     | 47.4 | 95.0                 | 71.2 | 71.2 |
| M-83-7 - stem c  | ut               | 48.5 | 86.3                 | 74.6 | 69.8 |
| T-84-5 - stem cu | ut 🧆 🌯           | 44.2 | 84.6                 | 66.5 | 65.1 |
|                  |                  |      |                      |      |      |
| mean             |                  | 45.4 | 89.5                 | 73.0 | 69.3 |
| LSD(0.10)        |                  | 4.4  | 9.2                  | 6.7  | 4.8  |
|                  |                  |      | (P=0.14)             |      |      |
|                  |                  |      | THE RESIDENCE AND TO |      |      |

Table 2b. Hay yield of peppermint cultivars evaluated at Kalispell, MT from 1995 to 1997 (tons/acre).

|                               | 1995   | 1996 | 1997 | Mean |
|-------------------------------|--------|------|------|------|
|                               |        |      |      |      |
| Black Mitcham - stem cut      | 4.44   | 4.59 | 4.90 | 4.64 |
| Black Mitcham - in vitro noda | 1 4.58 | 4.62 | 5.31 | 4.84 |
| Black Mitcham - meristem      | 4.63   | 4.63 | 5.41 | 4.89 |
| Murray Mitcham - stem cut     | 4.90   | 4.27 | 5.21 | 4.79 |
| Roberts Mitcham - stem cut    | 4.99   | 4.44 | 4.98 | 4.80 |
| M-83-7 - stem cut             | 5.02   | 4.50 | 5.15 | 4.89 |
| T-84-5 - stem cut             | 4.77   | 4.43 | 5.06 | 4.75 |
|                               |        |      |      |      |
| mean                          | 4.76   | 4.50 | 5.15 | 4.80 |
| LSD(0.10)                     | 0.37   | NS   | NS   | NS   |
|                               |        |      |      |      |

Table 3a. Spring stand evaluation (5/15/97) of spearmint cultivars in 1997.

|                                    | ROW<br>COVER<br>(0-5)1 | STOLON<br>SPREAD<br>(0-5) <sup>2</sup> |  |
|------------------------------------|------------------------|----------------------------------------|--|
| Native-stem cut<br>Native-meristem | 3.5                    | 4.4                                    |  |
| Scotch-stem cut<br>Scotch-meristem | 1.8<br>1.6             | <sub>10.00-11</sub> 3.1                |  |
| mean<br>LSD(0.10)                  | 2.7<br>0.4             | 3.8<br>0.5                             |  |
| CV(s/mean)x100                     | 15.4                   | 15.7                                   |  |

Table 3b. Hay and oil yield of spearmint cultivars in 1997.

|                 | 1st Cuttin | ig 7/7/97 | 2 <sup>nd</sup> Cut | ting 9/ 9/97 |       |       |
|-----------------|------------|-----------|---------------------|--------------|-------|-------|
|                 | Hay        | Oil       | Hay                 | Oil          | Total | Total |
|                 | Yield      | Yield     | <b>Yield</b>        | Yield        | Hay   | Oil   |
|                 | t/a        | lbs/a     | t/a                 | lbs/a        | t/a   | lbs/a |
| Native-stem cut | 5.04       | 59.4      | 3.51                | 49.9         | 8.55  | 109.3 |
| Native-meristem | 5.02       | 56.1      | 3.64                | 45.5         | 8.66  | 101.6 |
| Scotch-stem cut | 3.43       | 73.2      | 3.01                | 54.3         | 6.44  | 127.5 |
| Scotch-meristem | 3.34       | 76.1      | 3.16                | 57.7         | 6.50  | 133.8 |
|                 |            |           |                     |              |       |       |
| mean            | 4.21       | 66.2      | 3.33                | 51.9         | 7.53  | 118.1 |
| LSD(0.10)       | 0.28       | 9.8       | 0.24                | 6.8          | 0.35  | 12.5  |
| CV(s/mean)x100  | 7.6        | 17.2      | 8.4                 | 15.3         | 5.4   | 12.3  |

Table 4a. Oil yield of spearmint cultivars evaluated at Kalispell, MT from 1995 to 1997 (lbs/acre).

| -  |     | 11- |     |     |
|----|-----|-----|-----|-----|
| Fi | rst | Há  | arv | est |

| FIRST Harvest                        |                                              |                               |                                |                                  |                                |
|--------------------------------------|----------------------------------------------|-------------------------------|--------------------------------|----------------------------------|--------------------------------|
| Species                              | Propagation                                  | 1995                          | 1996                           | 1997                             | mean                           |
| Native<br>Native<br>Scotch<br>Scotch | stem-cut<br>meristem<br>stem-cut<br>meristem | 35.0<br>38.9<br>56.5<br>67.5  | 38.2<br>61.1<br>56.8<br>74.8   | 59.4<br>56.1<br>73.2<br>76.1     | 44.2<br>52.0<br>62.2<br>72.8   |
| Mean<br>LSD(0.10)                    |                                              | 49.5<br>7.7                   | 57.7<br>10.0                   | 66.2<br>9.8                      | 57.8<br>5.1                    |
| Second Harve                         | est                                          |                               |                                |                                  |                                |
| Species                              | Propagation                                  | <u>1995</u>                   | 1996                           | 1997                             | mean                           |
| Native<br>Native<br>Scotch<br>Scotch | stem-cut<br>meristem<br>stem-cut<br>meristem | 30.0<br>33.8<br>40.6<br>47.0  | 32.9<br>35.0<br>45.3<br>45.4   | 49.9<br>45.5<br>54.3<br>57.7     | 37.6<br>38.1<br>46.7<br>50.0   |
| Mean<br>LSD(0.10)                    |                                              | 34.8<br>4.6                   | 37.7<br>5.8                    | 49.9<br>6.8                      | 40.8<br>3.0                    |
| TOTAL YIELD                          |                                              |                               |                                |                                  |                                |
| Species                              | Propagation                                  | 1995                          | 1996                           | 1997                             | mean                           |
| Native<br>Native<br>Scotch<br>Scotch | stem-cut<br>meristem<br>stem-cut<br>meristem | 65.0<br>72.7<br>97.1<br>114.5 | 73.4<br>96.1<br>106.4<br>120.2 | 109.3<br>101.6<br>127.5<br>133.8 | 82.6<br>90.1<br>110.3<br>122.8 |
| Mean<br>LSD(0.10)                    |                                              | 78.3<br>8.5                   | 92.0<br>12.3                   | 112.8<br>12.5                    | 94.3<br>6.5                    |

Table 4b. Hay yield of spearmint cultivars evaluated at Kalispell, MT from 1995 to 1997 (tons dry matter/acre).

| •                                    | 17%                                             |                                      |                                      |                                      |                                      |
|--------------------------------------|-------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| First Harves                         | t                                               |                                      |                                      |                                      |                                      |
| Species Native Native Scotch Scotch  | Propagation Stem-cut Meristem Stem-cut Meristem | 1995<br>3.11<br>3.62<br>2.85<br>3.22 | 1996<br>3.09<br>3.42<br>2.99<br>3.07 | 1997<br>5.04<br>5.02<br>3.43<br>3.34 | mean<br>3.74<br>4.02<br>3.09<br>3.21 |
| mean<br>LSD(0.10)                    |                                                 | 3.20<br>0.31                         | 3.14<br>0.48                         | 4.21<br>0.28                         | 3.51<br>0.26                         |
| Second Han                           | vest                                            |                                      |                                      |                                      |                                      |
| Species                              | Propagation                                     | <u>1995</u>                          | 1996                                 | <u>1997</u>                          | mean                                 |
| Native<br>Native<br>Scotch<br>Scotch | Stem-cut Meristem Stem-cut Meristem             | 2.79<br>3.24<br>2.59<br>2.69         | 3.16<br>3.21<br>2.93<br>2.94         | 3.76<br>3.37<br>3.21<br>2.97         | 3.24<br>3.27<br>2.91<br>2.86         |
| mean<br>LSD(0.10)                    |                                                 | 2.83<br>0.22                         | 3.06<br>0.20                         | 3.33<br>0.45                         | 3.07<br>0.17                         |
| TOTAL YIEL                           | D                                               |                                      |                                      |                                      |                                      |
| Species Native Native Scotch Scotch  | Propagation Stem-cut Meristem Stem-cut Meristem | 1995<br>5.76<br>6.78<br>5.14<br>5.56 | 1996<br>6.24<br>6.62<br>5.91<br>6.00 | 1997<br>8.81<br>8.39<br>6.64<br>6.30 | mean<br>6.93<br>7.26<br>5.90<br>5.95 |
| mean<br>LSD(0.10)                    |                                                 | 5.81<br>0.40                         | 6.19<br>NS                           | 7.53<br>0.59                         | 6.51<br>0.35                         |

Table 5a. Quality components of peppermint cultivars at the R-3 site in 1997 (GC%).

| ne               |                        |                              |                        |                         |                          |                   |                   |      |           | -              |
|------------------|------------------------|------------------------------|------------------------|-------------------------|--------------------------|-------------------|-------------------|------|-----------|----------------|
| Pulego           | 2.0                    | 1.9                          | 1.6                    | 1.0                     | 1.1                      | 1.3               | 1.4               | 1.5  | 0.2       | 9.3            |
| Esters           | 4.8                    | 4.7                          | 4.5                    | 4.8                     | 4.6                      | 4.6               | 4.9               | 4.7  | NS        | 7.7            |
| Menthol          | 38.9                   | 37.8                         | 39.4                   | 38.1                    | 37.2                     | 37.7              | 36.9              | 38.0 | NS        | 4.9            |
| Menthone         | 16.9                   | 19.9                         | 20.1                   | 22.8                    | 24.1                     | 23.1              | 24.1              | 21.6 | 3.6       | 13.5           |
| Mentho-<br>furan | 9.9                    | 8.9                          | 9.7                    | 4.8                     | 5.0                      | 5.6               | 0.9               | 6.8  | 9.0       | 9.7            |
| Total            | 49.4                   | 48.2                         | 49.7                   | 48.6                    | 47.4                     | 48.0              | 47.5              | 48.4 | NS        | 4.8            |
| Total<br>Ketones | 19.0                   | 22.1                         | 22.3                   | 25.2                    | 26.8                     | 25.7              | 26.7              | 24.0 | 3.8       | 12.8           |
| Total<br>Heads   | 10.3                   | 10.6                         | 10.0                   | 11.3                    | 10.7                     | 10.9              | 10.6              | 10.6 | 0.4       | 2.8            |
| Growth           | midbloom               | midbloom                     | midbloom               | midbloom                | midbloom                 | midbloom          | midbloom          |      |           |                |
|                  | Black Mitcham-stem cut | Black Mitcham-in vitro nodal | Black Mitcham-meristem | Murray Mitcham-stem cut | Roberts Mitcham-stem cut | M-83-7 - stem cut | T-84-5 - stem cut | Mean | LSD(0.10) | CV(s/mean)x100 |

Table 5b. Quality components of peppermint cultivars at the R-8 site in 1997.

|                             | Growth | Total | Total   | Total   | Mentho- |          |         |        |     |  |
|-----------------------------|--------|-------|---------|---------|---------|----------|---------|--------|-----|--|
|                             | Stage  | Heads | Ketones | Alcohol | furan   | Menthone | Menthol | Esters | 0   |  |
| lack Mitcham-stem cut       | pnq    | 11.5  | 22.6    | 49.7    | 4.3     | 20.4     | 39.1    | 4.7    |     |  |
| lack Mitcham-in vitro nodal | pnq    | 10.7  | 26.4    | 48.7    | 4.2     | 24.0     | 38.4    | 4.5    |     |  |
| Black Mitcham-meristem      | pnq    | 11.0  | 23.1    | 51.4    | 3.6     | 21.0     | 40.8    | 4.6    |     |  |
| Aurray Mitcham-stem cut     | pnq    | 11.6  | 27.4    | 49.4    | 1.9     | 24.7     | 38.9    | 4.7    |     |  |
| Roberts Mitcham-stem cut    | pnq    | 11.3  | 28.1    | 48.9    | 2.2     | 25.5     | 38.4    | 4.7    |     |  |
| M-83-7 - stem cut           | pnq    | 11.1  | 26.9    | 49.8    | 2.2     | 24.3     | 39.0    | 4.9    |     |  |
| T-84-5 - stem cut           | pnq    | 11.3  | 31.2    | 46.5    | 2.4     | 28.6     | 36.0    | 4.7    | 0.4 |  |
| mean                        |        | 11.2  | 26.5    | 49.2    | 3.0     | 24.1     | 38.7    | 4.7    |     |  |
| LSD(0.10)                   |        | 0.4   | 2.3     | 2.2     | 0.3     | 2.2      | 1.8     | SN     | 0.1 |  |
| CV(s/mean)x100              |        | 3.1   | 7.2     | 3.6     | 8.3     | 7.5      | 3.9     | 5.8    |     |  |
|                             |        |       |         |         |         |          |         |        |     |  |

Table 6a. Quality components of spearmint cultivars at the R-3 site in 1997 (GC%).

| •                              |              |          |                 |          |         |         | Dihydro |         |
|--------------------------------|--------------|----------|-----------------|----------|---------|---------|---------|---------|
| 1 <sup>st</sup> Cutting 7/7/97 | <u>Stage</u> | a:Pinene | <u>b:Pinene</u> | Limonene | Cineole | Octanol | carvone | Carvone |
| Native-stem                    | mid bloom    | 0.9      | 1.3             | 8.4      | 1.6     | 1.0     | 2.0     | 60.1    |
| Native-meristem                | mid bloom    | 0.9      | 1.3             | 9.3      | 1.6     | 1.0     | 2.5     | 58.8    |
| Scotch-stem                    | mid bloom    | 0.7      | 1.1             | 14.1     | 1.1     | 2.3     | 0.9     | 69.4    |
| Scotch-meristem                | early bloom  | 0.8      | 1.2             | 13.9     | 1.0     | 2.2     | 1.2     | 70.1    |
|                                |              | 0.0      |                 |          | 1.0     | 1.6     | 1.6     | 64.6    |
| mean                           |              | 0.8      | 1.2             | 11.4     | 1.3     | 1.6     | 1.6     |         |
| LSD(0.10)                      |              | 0.0      | 0.0             | 0.5      | 0.2     | 0.1     | 0.4     | 1.2     |
| CV(s/mean)x100                 |              | 3.4      | 3.1             | 3.4      | 13.2    | 5.3     | 17.1    | 1.4     |
| 2 <sup>nd</sup> Cutting 9/9/97 | Growth       |          |                 |          |         |         | Dihydro |         |
| 2 Cuturing 9/9/9/              | Stage        | a:Pinene | b:Pinene        | Limonene | Cineole | Octanol | carvone | Carvone |
| Native-stem                    | mid bloom    | 1.3      | 1.7             | 9.6      | 2.0     | 0.9     | 3.0     | 60.6    |
| Native-meristem                | early bloom  | 1.4      | 1.9             | 10.5     | 2.4     | 0.9     | 4.2     | 57.8    |
| Scotch-stem                    | mid bloom    | 1.1      | 1.6             | 18.0     | 1.4     | 2.5     | 1.0     | 65.8    |
| Scotch-meristem                | mid bloom    | 1.3      | 1.9             | 19.9     | 1.3     | 2.4     | 1.5     | 63.0    |
|                                |              |          |                 |          |         |         |         |         |
| mean                           |              | 1.3      | 1.8             | 14.5     | 1.8     | 1.7     | 2.4     | 61.8    |
| LSD(0.10)                      |              | 0.2      | NS              | 1.6      | 0.1     | 0.2     | 0.3     | 2.7     |
| CV(s/mean)x100                 |              | 9.9      | 9.1             | 8.3      | 5.4     | 6.9     | 10.6    | 3.4     |
|                                |              | 9.9      | 9.1             | 0.5      | J.4     | 0.5     | 10.0    | 0.4     |

Table 6b. Quality components of spearmint cultivars at the R-8 site in 1997 (GC%).

| 1 <sup>st</sup> Cutting<br>7/7/97<br>Native-stem<br>Native-meristem<br>Scotch-stem<br>Scotch-meristem | Growth Stage mid bloom mid bloom mid bloom early bloom | a:Pinene<br>0.9<br>0.9<br>0.7<br>0.7 | b:Pinene<br>1.1<br>1.3<br>1.0<br>1.0 | Limonene<br>8.5<br>9.1<br>14.2<br>13.6 | Cineole 1.4 1.5 1.2 1.0  | Octanol 1.0 1.0 2.5 2.2  | Dihydro<br>carvone<br>1.8<br>2.9<br>0.7<br>0.8 | Carvone<br>60.5<br>58.6<br>70.3<br>71.5 |
|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------|--------------------------|--------------------------|------------------------------------------------|-----------------------------------------|
| mean<br>LSD(0.10)<br>CV(s/mean)x100                                                                   |                                                        | 0.8<br>0.1<br>11.3                   | 1.1<br>NS<br>16.1                    | 11.3<br>0.8<br>5.2                     | 1.3<br>0.2<br>8.7        | 1.7<br>0.1<br>3.0        | 1.6<br>0.2<br>9.9                              | 65.2<br>2.0<br>2.2                      |
| 2nd Cutting                                                                                           | Growth                                                 |                                      |                                      |                                        |                          |                          | Dihydro                                        |                                         |
|                                                                                                       |                                                        |                                      |                                      |                                        |                          |                          |                                                |                                         |
| 9/9/97                                                                                                | Stage                                                  | a:Pinene                             | b:Pinene                             | Limonene                               | Cineole                  | Octanol                  | Carvone                                        | Carvone<br>62.9                         |
| 9/9/97<br>Native-stem                                                                                 | mid bloom                                              | 1.1                                  | 1.5                                  | 9.0                                    | 2.0                      | 1.0                      | 2.4                                            | 62.9                                    |
| 9/9/97                                                                                                | mid bloom<br>early bloom                               | 1.1                                  | 1.5<br>1.7                           | 9.0<br>10.1                            |                          |                          |                                                |                                         |
| 9/9/97<br>Native-stem<br>Native-meristem                                                              | mid bloom                                              | 1.1                                  | 1.5                                  | 9.0                                    | 2.0                      | 1.0<br>0.9               | 2.4<br>3.6                                     | 62.9<br>58.2                            |
| 9/9/97<br>Native-stem<br>Native-meristem<br>Scotch-stem                                               | mid bloom<br>early bloom<br>early bloom                | 1.1<br>1.3<br>1.0                    | 1.5<br>1.7<br>1.5                    | 9.0<br>10.1<br>16.7                    | 2.0<br>2.2<br>1.5        | 1.0<br>0.9<br>2.3        | 2.4<br>3.6<br>1.0                              | 62.9<br>58.2<br>66.6                    |
| 9/9/97<br>Native-stem<br>Native-meristem<br>Scotch-stem                                               | mid bloom<br>early bloom<br>early bloom                | 1.1<br>1.3<br>1.0                    | 1.5<br>1.7<br>1.5                    | 9.0<br>10.1<br>16.7                    | 2.0<br>2.2<br>1.5        | 1.0<br>0.9<br>2.3        | 2.4<br>3.6<br>1.0                              | 62.9<br>58.2<br>66.6                    |
| 9/9/97 Native-stem Native-meristem Scotch-stem Scotch-meristem                                        | mid bloom<br>early bloom<br>early bloom                | 1.1 6<br>1.3 7<br>1.0<br>1.1         | 1.5<br>1.7<br>1.5<br>1.5             | 9.0<br>10.1<br>16.7<br>16.8            | 2.0<br>2.2<br>1.5<br>1.2 | 1.0<br>0.9<br>2.3<br>2.1 | 2.4<br>3.6<br>1.0<br>1.4                       | 62.9<br>58.2<br>66.6<br>66.3            |

TITLE:

Black Mitcham Peppermint Propagation Trial, 1995-1997

PERSONNEL:

Leon E. Welty, Professor of Agronomy, MSU, Kalispell, MT

Louise Strang, Research Specialist, MSU, Kalispell, MT

The four propagation lines from Lake and Summit had good winter survival. The three *in vitro* culture lines were slightly more vigorous than the stem-cut line (Table 1), but differences were not as obvious as in 1996.

No significant differences among the four lines for either hay or oil yield were found in 1997 (Table 2a & b). Unlike the previous year, the stem cut material produced as much oil as the *in vitro* material.

When yields were averaged over the two years after establishment, the stem-cut line averaged less oil than the *in vitro* lines, but not by a significant amount (Table 2a). There were significant differences, however, in average hay production (Table 2b). The stem cut line produced less vegetation than the nodal culture lines, showing less vigorous vegetative growth.

There were no significant oil quality differences among propagation types in 1997 (Table 3).

Table 1. Spring stand observations on Black Mitcham propagation lines at Kalispell in 1997.

| Propagation S    | ource    |      | R | ow Cover<br>(0-5) <sup>1</sup> | Stol | on Spread<br>(0-5) <sup>2</sup> |
|------------------|----------|------|---|--------------------------------|------|---------------------------------|
| in vitro nodal-1 | 994-plua |      |   | 4.0                            |      | 4.8                             |
| in vitro nodal-1 |          |      |   | 4.4                            |      | 4.7                             |
| in vitro nodal-1 | , .      | root |   | 4.0                            |      | 5.0                             |
| stem cut - bare  | root     |      |   | 3.3                            |      | 4.3                             |
|                  |          |      |   |                                |      |                                 |
| Mean             |          |      |   | 3.4                            |      | 4.2                             |
| LSD(0.10)        |          |      |   | 0.6                            |      | 0.5                             |
|                  |          |      |   |                                |      |                                 |

<sup>&</sup>lt;sup>1</sup> 0=no cover; 5=entire plot area covered

<sup>&</sup>lt;sup>2</sup> 0=no spread from crowns; 5=extensive spreading

Table 2a. Oil yield of Black Mitcham propagation lines evaluated at Kalispell, MT from 1996 to 1997 (lbs/acre).

| Propagation<br>Source         | Oil<br><u>Yield</u><br><b>1996</b> | Oil<br><u>Yield</u><br><b>1997</b> | Average |
|-------------------------------|------------------------------------|------------------------------------|---------|
| in vitro nodal-1994-plug      | 99.0                               | 89.8                               | 94.4    |
| in vitro nodal-1992-plug      | 103.2                              | 86.4                               | 94.8    |
| in vitro nodal-1994-bare root | 117.1                              | 82.4                               | 99.7    |
| stem cut - bare root          | 93.5                               | 89.6                               | 91.6    |
| mean (mean)                   | 94.3                               | 83.5                               | 88.9    |
| LSD(0.10)                     | 14.3                               | NS                                 | 8.2     |
|                               |                                    |                                    |         |

Table 2b. Hay yield of Black Mitcham propagation lines evaluated at Kalispell, MT from 1996 to 1997 (tons dry matter/acre).

| Propagation                   | Yield | Yield | Average |
|-------------------------------|-------|-------|---------|
| Source                        | 1996  | 1997  |         |
| in vitro nodal-1994-plug      | 3.96  | 4.37  | 4.16    |
| in vitro nodal-1992-plug      | 4.42  | 4.38  | 4.40    |
| in vitro nodal-1994-bare root | 4.70  | 4.33  | 4.51    |
| stem cut - bare root          | 3.25  | 4.20  | 3.72    |
| mean                          | 3.62  | 4.19  | 3.90    |
| LSD(0.10)                     | 0.50  | NS    | 0.41    |

Table 3. Quality components of Black Mitcham propagation lines in 1997 (GC%).

| PROPAGATION           |       | Total | Total   | Total   | Mentho- |          |         |        |          |
|-----------------------|-------|-------|---------|---------|---------|----------|---------|--------|----------|
| SOURCE                | Stage | Heads | Ketones | Alcohol | furan   | Menthone | Menthol | Esters | Pulegone |
|                       |       | %     | %       | %       | %       | %        | %       | %      | %        |
| Lake-plug-1994 *      | veg.  | 9.9   | 31.0    | 45.5    | 1.0     | 28.0     | 36.2    | 3.7    | 0.1      |
| Lake-plug-1992 *      | veg.  | 9.3   | 32.9    | 44.9    | 1.0     | 29.8     | 35.4    | 3.8    | 0.1      |
| Lake-bare root-1994 * | veg.  | 9.2   | 33.7    | 44.5    | 1.0     | 30.5     | 34.9    | 3.7    | 0.2      |
| Summit-bare root **   | veg.  | 9.5   | 31.3    | 45.3    | 1.9     | 28.5     | 35.7    | 3.9    | 0.3      |
|                       |       |       |         |         |         |          |         |        |          |
| mean                  |       | 9.5   | 32.2    | 45.1    | 1.2     | 29.2     | 35.6    | 3.8    | 0.2      |
| LSD(0.10)             |       | NS    | NS      | NS      | NS      | NS       | NS      | NS     | NS       |

TITLE: Black Mitcham Peppermint Propagation Trial, 1996-1997

PERSONNEL: Leon E. Welty, Professor of Agronomy, MSU, Kalispell, MT

Louise Strang, Research Specialist, MSU, Kalispell Dr. Bill Grey, Asst. Research Professor MSU, Bozeman, MT

Gail Sharp, Research Assistant, MSU, Bozeman, MT Cathy & Tom Smith, Summit Labs, Fort Collins, CO

The seven MIRC entries (Table 1) allow us to compare different propagation methods carried out in the same laboratory, eliminating variance due to the propagation environment (equipment, personnel, source material, etc.). Plants propagated from meristem culture produced significantly more dry matter than non-meristem plants (Tables 1 & 2). This supports previous observations that meristem derived Black Mitcham exhibits more vigorous growth than non-meristem peppermint. There was no difference in hay yield between single parent derivation and propagation from a group.

Propagation method, parental selection, and the interaction between them (Table 4) affected oil yield. Meristem propagated plants produced less oil than either stem cut or nodal tissue culture propagated plants. Plots containing plants propagated from a random selection within the mother block tended to produce more oil than those containing clones from a single parent. The difference was most notable for the stem cut propagated mint. Parental source was an insignificant factor within the nodal and meristem groups. The superiority of using a random selection of parental plants indicates that there is some variation within the Black Mitcham mother block for some trait influencing oil yield. The fact that this was not observed in the entries that had been propagated by meristem culture suggests that this "high oil" factor was reduced or eliminated by this technique. Since the random selection lines were never subjected to heat treatment, we cannot blame this aspect of the process.

Cathy Smith of Summit Labs reported that leaf samples from the Black Mitcham parent plant were sent to Dr. Steve Lommel at North Carolina State University. His laboratory confirmed the presence of a new mint virus in the parent plant. Samples of both the heat-treated and non heat-treated meristem lines from this study were submitted in September 1996. Although there was no official report submitted, Summit Labs was told that all samples were virus-free.

The objective of propagating at NWARC was to determine if the high vigor/lower oil yield characteristic attributed to in vitro nodal or meristem culture could be transferred through the stem-cut process. Plants derived from the Lake-94 (source: Lake-92) nodal material produces significantly more dry matter and less oil than that derived from the Roberts-94 (Plant Tech) stem cut material, which parallels differences observed in the original 1994 nursery (Table 2). Thus, it appears that the high vigor/low oil yield characteristics associated with the 94 nodal material or conversely, the high oil yield/low vigor associated with the Plant Tech material are being transferred through the stem-cut process. All plant material stem-cut propagated from original tissue culture material (Lake-94, R-5 field – meristem, R-7 field – meristem) in the early 90's tended to produce more hay and less oil than original stem-cut material.

Bill Grey and Gail Sharp at MSU examined the endophyte-yield relationship. Stem samples from each plot in two replicates of this study were collected after harvest, surface sterilized with Clorox, and the sap extracted in a phosphate buffer. Serial dilutions were made from the tissue suspensions and plated out. Results are summarized in Table 2. Peppermint propagated from field sources (PlantTech-94, R-7, Montana-1, and Idaho) had the highest endophyte levels, particularly PlantTech-94, which came from a low vigor high yielding entry in the 1994 Cultivar Evaluation Trial. Overall, plants propagated by tissue culture (nodal or meristem) had lower endophyte levels (MIRC 2-5, Lake-96). Of the MIRC entries, MIRC-6, which was stem cut propagated from a random selection of mother block plants, had the highest endophyte level as well as the highest oil yield (Table 2).

Correlation between response variables reveals a strong negative correlation between dry matter production and oil yield (Table 3). Oil yield and early season stand vigor are also negatively correlated. Endophytic bacteria level is negatively correlated with vigor and hay yield, implying a stress effect by the endophyte. Any direct correlation with oil yield is insignificant, so bacteria alone cannot account for high oil production.

Analysis of oil components showed no significant differences in levels of total alcohol, menthol, or esters among the 15 propagation lines tested. There were significant differences, however, in other components, indicating variation in oil chemistry among propagation sources and methods (Table 5). Most notably, MIRC-2, -5, and -7 (single parent sources) had higher menthone levels than the MIRC lines propagated from several random plants from the mother block. NWARC propagation from the plots derived from Lake-94 material had significantly different levels of total heads, menthofuran, and pulegone than oil from plants propagated from the Plant Tech material in the same nursery.

Table 1. Descriptions of entries in Black Mitcham peppermint propagation evaluation planted at NWARC in 1996.

| Source     | Propagator  | Method                  | <u>Origin</u>                                  |
|------------|-------------|-------------------------|------------------------------------------------|
| MIRC-1     | Summit Labs | stem cut                | parent plant                                   |
| MIRC-2     | Summit Labs | nodal tissue culture    | parent plant                                   |
| MIRC-3     | Summit Labs | meristem tissue culture | random selection                               |
| MIRC-4     | Summit Labs | nodal tissue culture    | random selection                               |
| MIRC-5     | Summit Labs | meristem tissue culture | parent plant                                   |
| MIRC-6     | Summit Labs | stem cut                | random selection                               |
| MIRC-7     | Summit Labs | stem cut                | reestablished tissue culture from parent plant |
| Lake-96    | Lake's      | nodal tissue culture    | bacteria infected culture                      |
| Lake-94    | NWARC       | stem cut                | 1994 propagation trial - nodal                 |
| Roberts-94 | NWARC       | stem cut                | 1994 propagation trial-stem-cut                |
| R-5 field  | NWARC       | stem cut                | meristem low vigor field                       |
| R-7 field  | NWARC       | stem cut                | meristem high vigor field                      |
| Montana-1  | NWARC       | stem cut                | high yielding field-Flathead #1                |
| Montana-2  | NWARC       | stem cut                | high yielding field-Flathead #2                |
| Idaho      | NWARC       | stem cut                | McClelland stolons                             |
|            |             |                         |                                                |

Table 2. Stand observations, hay and oil yields, and level\* of endophytic bacteria from Black Mitcham propagation lines in 1997.

| SOURCE      | ROW<br>COVER | VIGOR     | STOLON<br>SPREAD          | HAY<br>YIELD | OIL<br>YIELD | BACT   |
|-------------|--------------|-----------|---------------------------|--------------|--------------|--------|
| SOUNCE      | (0-5)1       | $(0-5)^2$ | $\frac{(0-5)^3}{(0-5)^3}$ | tons/acre    | lbs/acre     | level* |
| MIRC-1      | 4.5          | 4.8       | 5.0                       | 4.68         | 67.8         | 2      |
| MIRC-2      | 4.8          | 5.0       | 4.5                       | 4.83         | 73.2         | 2      |
| MIRC-3      | 5.0          | 5.0       | 5.0                       | 5.38         | 59.7         | 2      |
| MIRC-4      | 5.0          | 4.3       | 4.3                       | 4.63         | 77.4         | 1      |
| MIRC-5      | 5.0          | 5.0       | 5.0                       | 5.41         | 62.2         | 2      |
| MIRC-6      | 4.5          | 4.3       | 4.0                       | 4.61         | 81.2         | 3      |
| MIRC-7      | 4.6          | 5.0       | 4.5                       | 4.93         | 71.2         | 2      |
| Lake-96     | 4.8          | 4.8       | 4.5                       | 4.30         | 77.0         | 2      |
| Lake-94     | 3.5          | 4.0       | 3.0                       | 4.57         | 70.7         | 2      |
| Roberts-94  | 2.8          | 3.0       | 2.3                       | 3.89         | 83.1         | 3      |
| R-5 field   | 3.3          | 3.3       | 2.8                       | 4.08         | 70.9         | 2      |
| R-7 field   | 3.5          | 3.5       | 3.0                       | 4.27         | 68.2         | 3      |
| Montana-1   | 3.5          | 3.3       | 3.0                       | 4.26         | 72.9         | 4      |
| Montana-2   | 2.5          | 2.8       | 2.0                       | 3.69         | 77.1         | 2      |
| ldaho       | 3.0          | 3.3       | 2.3                       | 4.05         | 75.5         | 3      |
| LSD(0.10)   | 0.6          | 0.5       | 0.6                       | 0.60         | 9.3          |        |
| CV(s/mean)% | 12.1         | 9.3       | 13.8                      | 11.3         | 10.8         |        |

<sup>10=</sup>no cover, 5=entire plot area covered

<sup>&</sup>lt;sup>2</sup> 0=no growth; 5=plants exhibiting healthy, vigorous growth

<sup>&</sup>lt;sup>3</sup>0=no spread from crowns; 5=extensive spreading

<sup>\*</sup> number of colony forming units / gm fresh plant weight: 1=100,000-1,000,000; 2=1,000,000-10,000,000; 3=10,000,000-100,000,000; 4=10,000,000-100,000,000

Table 3. Pearson correlations (r²) with P-values of vigor, yield, and endophyte levels of Black Mitcham propagation lines at Kalispell in 1997.

|              |         | -artiner | Hay Yield        | Oil | Yield         | Bacteria          | 1 |
|--------------|---------|----------|------------------|-----|---------------|-------------------|---|
| <u>Vigor</u> | r²<br>P |          | 0.8777<br>0.0000 |     | .4722<br>0755 | -0.4494<br>0.0928 |   |
| Hay Yield    | r²<br>P |          |                  |     | .6904<br>0044 | -0.3576<br>0.1907 |   |
| Oil Yield    | r²<br>P |          |                  |     |               | 0.2099<br>0.4528  |   |

Table 4. Comparisons among MIRC propagated entries by propagation method and parent plant source for 1997 oil yield (lbs/acre).

|          | Pare   |        |          |                          |  |
|----------|--------|--------|----------|--------------------------|--|
| Method   | Single | Random | means    |                          |  |
| Stem cut | 67.8   | 81.2   | 74.5     |                          |  |
| Nodal    | 73.2   | 77.4   | 75.3     |                          |  |
| Meristem | 62.2   | 59.7   | 61.0     |                          |  |
|          |        |        |          |                          |  |
| means    | 67.7   | 72.7   | LSD(0.10 | ) method=                |  |
|          |        |        |          | selection<br>interaction |  |

Table 5. Quality components of Black Mitcham propagation lines at Kalispell, MT (GC%).

| Propagation | Growth   | Total        | Total   | Total          | Vientho-     |                 |         |               |                 |
|-------------|----------|--------------|---------|----------------|--------------|-----------------|---------|---------------|-----------------|
| Source      | Stage    | <u>Heads</u> | Ketones | <u>Alcohol</u> | <u>furan</u> | <u>Menthone</u> | Menthol | <b>Esters</b> | <u>Pulegone</u> |
| 4494        |          | %            | %       | %              | %            | %               | %       | %             | %               |
| MIRC-1      | late bud | 10.2         | 25.3    | 49.0           | 1.6          | 22.9            | 38.7    | 4.6           | 0.3             |
| MIRC-2      | full bud | 11.0         | 25.6    | 49.0           | 1.7          | 23.3            | 38.7    | 4.5           | 0.3             |
| MIRC-3      | full bud | 11.0         | 24.2    | 49.7           | 1.1          | 21.9            | 39.7    | 4.4           | 0.2             |
| MIRC-4      | full bud | 10.9         | 23.2    | 49.7           | 1.8          | 21.0            | 39.5    | 4.3           | 0.3             |
| MIRC-5      | full bud | 9.8          | 26.0    | 49.4           | 1.5          | 23.6            | 39.2    | 4.5           | 0.3             |
| MIRC-6      | full bud | 11.0         | 23.5    | 50.0           | 1.8          | 21.3            | 39.7    | 4.6           | 0.3             |
| MIRC-7      | full bud | 10.3         | 26.3    | 48.0           | 1.6          | 23.9            | 37.8    | 4.5           | 0.3             |
| Lake-96     | full bud | 11.0         | 24.7    | 48.9           | 1.2          | 22.3            | 38.7    | 4.5           | 0.2             |
| Lake-94     | full bud | 10.5         | 23.2    | 49.9           | 2.2          | 21.0            | 39.6    | 4.5           | 0.4             |
| Roberts-94  | full bud | 11.6         | 23.3    | 50.4           | 1.7          | 21.2            | 39.9    | 4.6           | 0.3             |
| R-5 field   | full bud | 11.2         | 22.8    | 50.8           | 1.9          | 20.7            | 40.4    | 4.3           | 0.3             |
| R-7 field   | full bud | 10.5         | 23.6    | 50.5           | 1.8          | 21.3            | 40.6    | 4.1           | 0.3             |
| Montana-1   | full bud | 11.4         | 22.0    | 50.2           | 1.8          | 19.9            | 39.7    | 4.7           | 0.4             |
| Montana-2   | full bud | 11.8         | 22.1    | 50.7           | 1.9          | 20.1            | 40.1    | 4.7           | 0.3             |
| Idaho       | full bud | 11.1         | 23.1    | 49.9           | 1.8          | 20.8            | 39.6    | 4.5           | 0.3             |
|             |          |              |         |                |              | 7.70            | Mais    | 0.514         |                 |
| mean        |          | 10.9         | 23.9    | 49.7           | 1.7          | 21.7            | 39.5    | 4.5           | 0.3             |
| LSD(0.10)   |          | 0.6          | 2.1     | NS             | 0.3          | 2.0             | NS      | NS            | 0.1             |
| CV(s/mean)x | 100      | 4.9          | 7.5     | 3.4            | 16.6         | 7.9             | 3.6     | 5.8           | 23.8            |
|             |          |              |         |                |              |                 |         |               |                 |

| MIRC-1 | stem cut, single parent                     |
|--------|---------------------------------------------|
| MIRC-2 | nodal culture, single parent                |
| MIRC-3 | meristem, random selection                  |
| MIRC-4 | nodal, random selection                     |
| MIRC-5 | meristem, single parent                     |
| MIRC-6 | stem cut, random selection                  |
| MIRC-7 | stem cut from tissue culture, single parent |
|        |                                             |

Oil analyses by A. M. Todd, Company.

TITLE: Stolon Vigor Study

PERSONNEL: Leon E. Welty, Professor of Agronomy, MSU, Kalispell, MT

Louise Strang, Research Specialist, MSU, Kalispell, MT

Cropping system in 1995 had no effect on stand vigor, hay or oil yield in 1997. Differences due to stolon source did carry through, however. As in 1996, stands derived from Idaho grown roots were more vigorous than those from Montana, with the eastern Montana source more vigorous than the western Montana source (Table 1). There was no vigor difference between the Idaho field cut at 20% bloom and that cut at 90% bloom in 1997. The superior vigor of the Idaho mint was reflected in higher dry matter production. The Montana-East mint produced slightly less hay than the Montana-West source (Table 2a). Over the 2-year period, mint grown from the Idaho roots produced 14% more dry matter than the Montana roots (Table 2b).

In spite of differences in dry matter production, there were **no differences** among stolon sources in **1997 oil yields** (Table 3a). Variation in oil production due to stolon source in 1996 was reflected in the total yields for the duration of the study (Table 3b). We have evidence now that peppermint root source and cropping history can affect oil production the first year after planting, but "stolon vigor" does not necessarily determine future oil yield potential.

Previous crop had no effect on oil chemistry in 1997. There were no differences in total alcohol content (mean = 45.4%), menthol (mean = 35.8%), or esters (mean = 4.3%). Oil of mint grown from Idaho stolons differed from mint grown from Montana stolons in total heads, ketones, and menthone levels (Table 4). As in 1996, oil from the Montana-East source had lower menthofuran and pulegone levels than the Montana-West source.

Table 1. Spring regrowth vigor ratings (0-5 = poor-high) of Black Mitcham peppermint stands in 1997.

## Stolon Source

| Previous Crop | Ida | aho 20 | )% | Idaho 9 | 0% | Montana- | E Montana-W |  |
|---------------|-----|--------|----|---------|----|----------|-------------|--|
| Wheat         |     | 5.0    |    | 5.0     |    | 3.8      | 3.3         |  |
| Barley        |     | 4.5    |    | 4.8     |    | 4.0      | 3.3         |  |
| Fallow        |     | 4.8    |    | 4.5     |    | 3.8      | 2.5         |  |
| mean          |     | 4.8    |    | 4.8     |    | 3.8      | 3.0         |  |

LSD(0.10): Previous Crop - NS Stolon Source = .4

Interaction - NS

Table 2a. Dry matter yields (tons/acre) of Black Mitcham peppermint in 1997.

| Previous Crop | St        | olon Source |           |           |      |
|---------------|-----------|-------------|-----------|-----------|------|
|               | Idaho 20% | Idaho 90%   | Montana-E | Montana-W | mean |
| wheat         | 5.88      | 6.35        | 5.69      | 5.78      | 5.92 |
| barley        | 6.26      | 6.38        | 5.65      | 6.05      | 6.08 |
| fallow        | 6.38      | 6.23        | 5.90      | 6.20      | 6.17 |
| mean          | 6.17      | 6.32        | 5.74      | 6.01      |      |
|               |           |             |           |           |      |

LSD(0.10): Previous Crop - NS

Stolon Source = 0.38

Table 2b. Total dry matter yields (tons/acre) of Black Mitcham peppermint from 1996-1997.

## Stolon Source

| Previous Crop | Idaho 20% | Idaho 90% | Montana-E | Montana-W | mean |
|---------------|-----------|-----------|-----------|-----------|------|
| wheat         | 9.60      | 10.10     | 8.89      | 8.55      | 9.29 |
| barley        | 10.43     | 10.40     | 9.28      | 9.00      | 9.78 |
| fallow        | 10.32     | 9.95      | 9.10      | 8.53      | 9.47 |
| mean          | 10.12     | 10.15     | 9.09      | 8.69      |      |

LSD(0.10): Previous Crop - NS Stolon Source = 0.44 Interaction - NS

Table 3a. Oil yield (lbs/acre) of Black Mitcham peppermint in 1997.

## Stolon Source

| Previous Crop Idaho 20% Idaho 90% Montana-E Montana-W i | mean |
|---------------------------------------------------------|------|
| wheat 64.1 72.6 71.1 70.6                               | 69.6 |
| barley 64.5 67.0 64.5 65.5                              | 65.3 |
| fallow 72.6 65.0 67.9 71.2                              | 69.2 |
| mean 67.1 68.2 67.8 69.1                                |      |

LSD(0.10): Previous Crop - NS Stolon Source - NS Interaction - NS

Table 3b. Total oil yield (lbs/acre) of Black Mitcham peppermint from 1996-1997.

| Previous Crop |           | Stolon Source |           |           |       |  |  |  |  |  |
|---------------|-----------|---------------|-----------|-----------|-------|--|--|--|--|--|
| IN Receipt Us | Idaho 20% | Idaho 90%     | Montana-E | Montana-W | mean  |  |  |  |  |  |
| wheat         | 146.4     | 148.1         | 141.1     | 134.9     | 142.6 |  |  |  |  |  |
| barley        | 145.3     | 147.3         | 144.1     | 133.4     | 142.5 |  |  |  |  |  |
| fallow        | 155.5     | 136.4         | 138.7     | 129.2     | 140.0 |  |  |  |  |  |
| mean          | 149.1     | 143.9         | 141.3     | 132.5     |       |  |  |  |  |  |

LSD(0.10): stolon source = 5.8; previous crop, interaction - NS

Table 4. Levels of major quality constituents of Black Mitcham peppermint oil in 1997

| Table 4. Levels of major quality | uality constitu | uents of Blac   | k Mitcham pe | eppermint oil | in1997. |
|----------------------------------|-----------------|-----------------|--------------|---------------|---------|
| Menthol (GC%)                    |                 | Stolon          | Source       |               |         |
| Previous Crop                    | Idaho 20%       |                 | Montana-E    | Montana-W     | mean    |
| wheat                            | 36.4            | 35.9            | 37.6         | 36.9          | 36.7    |
| barley                           | 36.3            | 36.0            | 36.6         | 36.6          | 36.4    |
| fallow                           | 36.0            | 36.1            | 27.5         | 37.2          | 34.2    |
| mean                             | 36.2            | 36.0            | 33.9         | 36.9          |         |
| LSD(0.10): Previous Crop,        | stolon source   | ce, interaction | n-NS         |               |         |
| Menthone (GC%)                   | St              | olon Source     |              |               |         |
| Previous Crop                    | Idaho 20%       | Idaho 90%       | Montana-E    | Montana-W     | mean    |
| wheat                            | 27.9            | 28.3            | 25.4         | 26.9          | 27.1    |
| barley                           | 27.9            | 28.8            | 27.0         | 26.8          | 27.6    |
| fallow                           | 27.9            | 28.4            | 26.3         | 25.9          | 27.1    |
| mean                             | 27.9            | 28.5            | 26.2         | 26.5          |         |
| LSD(0.10): stolon source =       | = 1.1; previou  | is crop, intera | action - NS  |               |         |
| Menthofuran (GC%)                | Sto             | olon Source     |              |               |         |
| Previous Crop                    | Idaho 20%       | Idaho 90%       | Montana-E    | Montana-W     | mean    |
| wheat                            | 1.7             | 1.7             | 1.0          | 1.6           | 1.5     |
| barley                           | 1.6             | 1.6             | D 1.1 0      | 1.6           | 1.5     |
| fallow                           | 1.6             | 1.7             | 1.2          | 1.6           | 1.5     |
| mean                             | 1.6             | 1.7             | 1.1          | 1.6           |         |
| LSD(0.10): stolon source =       | .1; previous    | crop, interac   | ction - NS   |               |         |
| Pulegone (GC%)                   |                 | Stolon          | Source       |               |         |
| Previous Crop                    | Idaho 20%       | Idaho 90%       | Montana-E    | Montana-W     | mean    |
| wheat                            | 0.25            | 0.24            | 0.17         | 0.25          | 0.23    |
| barley                           | 0.24            | 0.20            | 0.16         | 0.22          | 0.21    |
| fallow                           | 0.24            | 0.24            | 0.19         | 0.24          | 0.23    |

0.23

0.17

0.24

LSD(0.10): stolon source = .02; previous crop, interaction - NS

0.24

mean

TITLE: Peppermint Fall Harvest Management Trial

PERSONNEL: Leon E. Welty, Professor of Agronomy, MSU, Kalispell, MT

Louise Strang, Research Specialist, MSU, Kalispell, MT

The mint was at the mid-bud stage on the first harvest date and was mature (post-bloom) by the last harvest on Sept. 29. The first frost (32° F) did not occur until after the final harvest. The frost-free period was 140 days in 1997, compared to a 48-year average of 114 days. There were 1597 growing degree days (GDD) for mint in 1997 compared to 1526 GDD in 1996. Stolon mass declined over the 1996-97 winter (Figure 1).

Dry matter yield decreased 24% between the first and second harvests dates (Table 1). It remained at this level until 9/19 when it decreased another 26%. The mint was totally lodged by 9/10, and leaf drop and senescence accelerated as the material lay on the ground. There was no increase is dry matter yield between the bud and mid bloom stages as in 1996 (Figure 2). Oil yield followed a similar pattern as the season progressed, with the first harvest having the highest yield and a significant drop occurring after the fifth harvest (Table1). This represented a 36% loss of oil when harvest was delayed from Sept. 10 to Sept.19. In 1996 oil yield increased during August then decreased significantly during the first two weeks in September (Figure 3). There was no direct correlation between spring stolon mass and summer yields (Figures 1&2).

Levels of the oil quality components corresponded with the stage of maturity of the mint at time of harvest. Total ketones and menthone decreased as the mint progressed from bud to full bloom (Table 2). Total alcohol and menthol continued to increase through the last harvest, as did % esters. Menthofuran increased until 9/19 (late bloom) after which it declined slightly as the flowers disappeared (Table 2). Menthofuran levels for prime quality Montana peppermint usually range from 1-4%. Except for the first harvest, before flowering commenced, MF levels exceeded 4% in 1997. Desirable oil contains 45% menthol. Menthol in 1997 did not reach this level until the 9/19 harvest (Table 2). Oil yield remained high from 8/1 to 9/10. The 9/10 harvest yielded oil with 44% menthol but with over 10% menthofuran. The first two harvest dates, where the oil had the most acceptable MF, only contained 37% menthol. It is not possible to find a harvest timing in 1997 which maximizes both oil yield and quality.

Table 1. Hay and oil yields of Black Mitcham peppermint harvested from 8/1 to 9/29 in 1997.

|                |                       |        |          | 1997  | 1996-97 |
|----------------|-----------------------|--------|----------|-------|---------|
| <b>HARVEST</b> | <b>GROWTH</b>         |        | HAY      | OIL   | TOTAL   |
| DATE           | STAGE                 | LODGIN | IG YIELD | YIELD | OIL     |
|                |                       | %      | t/a      | lbs/a | lbs/a   |
| 8/1            | late bud              | 90     | 5.66     | 71.3  | 119.6   |
| 8/12           | 1 <sup>st</sup> bloom | 91     | 4.30     | 60.4  | 120.2   |
| 8/22           | midbloom              | 95     | 4.23     | 65.6  | 140.1   |
| 8/30           | late bloom            | 93     | 4.35     | 59.9  | 134.8   |
| 9/10           | late bloom            | 100    | 4.02     | 63.8  | 126.2   |
| 9/19           | late bloom            | 100    | 2.99     | 40.8  | 103.6   |
| 9/29           | mature                | 100    | 2.74     | 22.1  | 78.2    |
|                |                       |        |          |       |         |
| MEAN           |                       |        | 4.04     | 54.8  | 117.5   |
| LSD(0.10)      |                       |        | 0.83     | 13.0  | 16.2    |
|                |                       |        |          |       |         |

Table 2. Quality components (GC%) of Black Mitcham peppermint harvested on different dates in 1997.

| Harvest     | Growth     | Total        | Total   | Total N | Mentho- |          |         |        |                 |
|-------------|------------|--------------|---------|---------|---------|----------|---------|--------|-----------------|
| <u>Date</u> | Stage      | <u>Heads</u> | Ketones | Alcohol | furan M | Menthone | Menthol | Esters | <u>Pulegone</u> |
| 8/1         | bud        | 10.2         | 30.8    | 47.3    | 2.1     | 28.3     | 37.2    | 4.1    | 0.3             |
| 8/12        | full bud   | 11.1         | 27.9    | 46.7    | 4.7     | 25.5     | 36.8    | 4.0    | 1.1             |
| 8/22        | midbloom   | 10.9         | 22.7    | 49.7    | 7.4     | 20.7     | 39.3    | 4.5    | 1.2             |
| 8/30        | full bloom | 11.6         | 16.9    | 55.2    | 7.7     | 15.1     | 43.2    | 5.8    | 1.1             |
| 9/10        | full bloom | 10.6         | 14.4    | 56.9    | 10.3    | 12.9     | 44.0    | 7.0    | 0.8             |
| 9/19        | late bloom | 9.9          | 14.5    | 57.8    | 10.9    | 13.2     | 44.5    | 7.9    | 0.4             |
| 9/29        | mature     | 10.0         | 13.5    | 60.7    | 10.3    | 12.3     | 46.6    | 8.7    | 0.3             |
| Mean        |            | 10.6         | 20.1    | 53.5    | 7.6     | 18.3     | 41.7    | 6.0    | 0.7             |
| LSD(0.10)   |            | 0.4          | 1.2     | 1.3     | 0.6     | 1.2      | 1.1     | 0.4    | 0.1             |
|             |            |              |         |         |         |          |         |        |                 |

Figure 1. Total dry weight of stolons dug from a one-foot square area from each plot on 10/21/96 and 4/16/97.



Figure 2. Dry matter yield of mint harvested on 7 dates in 1996 & 1997.



Figure 3. Oil yield (lbs/acre) of mint harvested on 7 dates in 1996 & 1997.



TITLE:

Spearmint Cultivar/Propagation Trial

PERSONNEL:

Leon E. Welty, Professor of Agronomy, MSU, Kalispell, MT

Louise Strang, Research Specialist, MSU, Kalispell, MT

The stem-cut propagated spearmint was planted 9 days later than the tissue culture propagated mint, which could account for the lower yields for this method in the first year. Scotch 770 produced significantly less dry matter but more oil than the other cultivars (Tables1&2). The interaction effect between cultivar and propagation source was significant. Stem-cut derived Scotch 770 produced more hay and oil than stem-cut Native and N-83-5. Meristem and nodal derived Scotch 770, however, produced less hay the other cultivars propagated by these methods (Table 1). In this establishment year, Scotch 770 is exhibiting the lower vigor / higher oil yield trait observed in comparisons of other mint cultivar/propagation types (e.g. stem-cut vs. nodal Black Mitcham, Scotch vs. Native in 1997). Because of differences in planting date, we are unable to compare propagation sources this year.

The oil quality analyses revealed variation in oil chemistry among the 3 cultivars (Table 3). Scotch 770 was significantly higher in carvone, limonene, and octanol and lower in pinenes and cineole than Native and N-83-5.

Table 1. Hay yields (tons/acre) of spearmint cultivars of 3 propagation types.

|            | Stem cut   | Meristem | Nodal | means        |           |
|------------|------------|----------|-------|--------------|-----------|
|            | Sterri Cut | Mensiern | Noual | IIIcalis     |           |
| Native     | 2.75       | 4.19     | 3.92  | 3.62         |           |
| N-83-5     | 2.88       | 3.51     | 4.28  | 3.55         |           |
| Scotch 770 | 3.14       | 3.38     | 2.73  | 3.08         |           |
|            |            |          |       |              | LSD(0.10) |
| Means      | 2.92       | 3.69     | 3.64  | cultivar:    | 0.19      |
|            |            |          |       | propagation: | 0.16      |
|            |            |          |       | interaction: | 0.79      |
|            |            |          |       |              |           |

Table 2. Oil yield (lbs/acre) of spearmint cultivars of 3 propagation types.

64.6

2.2

2.8

| Table 2 | Oil vielo | (lbs/acre) | of s | pearmint | cultivars | of | 3 pro | pagation | types. |
|---------|-----------|------------|------|----------|-----------|----|-------|----------|--------|
|---------|-----------|------------|------|----------|-----------|----|-------|----------|--------|

| Table 2. On yield (186) | ,        | Meristem | Nodal | means       |           |   |
|-------------------------|----------|----------|-------|-------------|-----------|---|
|                         | Stem cut | Mensiem  |       |             |           |   |
| Native                  | 26.2     | 34.3     | 39.4  | 33.3        |           |   |
| N-83-5                  | 31.5     | 32.1     | 38.0  | 33.8        |           |   |
| Scotch 770              | 43.2     | 46.6     | 43.5  | 44.5        |           |   |
|                         |          |          |       |             | LSD(0.10) | ) |
| means                   | 33.6     | 37.7     | 40.3  | cultiva     | ar: 5.5   |   |
|                         |          |          |       | propagation | n: 3.9    |   |
|                         |          |          |       | interaction | n: 7.8    |   |

Planting Dates:

meristem & nodal - 5/20/97

1.3

0.1

7.9

stem cut - 5/29/97

Table 3. Quality components of 3 spearmint cultivars and 3 propagation types.

| Established in 1997  |        |          |          |          |         |         |          |         |
|----------------------|--------|----------|----------|----------|---------|---------|----------|---------|
| Latabilarica il 1007 |        |          |          |          |         |         | Dihydro- |         |
| Cultivar             | Stage* | A:Pinene | B:Pinene | Limonene | Cineole | Octanol | carvone  | Carvone |
|                      |        |          |          |          |         |         |          |         |
| Stem tip Native      | mb     | 1.2      | 1.8      | 10.3     | 2.4     | 1.3     | 1.7      | 65.7    |
| Stem tip N-83-5      | mb     | 1.4      | 1.9      | 10.8     | 2.6     | 1.2     | 0.7      | 63.6    |
| Stem tip Scotch 770  | fb     | 1.1      | 1.6      | 18.1     | 1.5     | 2.8     | 0.6      | 66.6    |
| Meristem Native      | mb     | 1.3      | 1.9      | 12.1     | 2.3     | 1.1     | 1.7      | 62.0    |
| Meristem N-83-5      | mb     | 1.4      | 2.0      | 12.0     | 2.2     | 1.0     | 0.7      | 61.2    |
| Meristem Scotch 770  | mb     | 1.1      | 1.6      | 17.4     | 1.2     | 2.6     | 0.9      | 67.6    |
| Nodal Native         | mb     | 1.3      | 1.8      | 11.9     | 2.0     | 1.1     | 0.7      | 64.9    |
| Nodal N-83-5         | mb     | 1.4      | 2.0      | 11.8     | 2.5     | 1.1     | 0.7      | 61.5    |
| Nodal Scotch 770     | mb     | 1.0      | 1.5      | 17.7     | 1.3     | 2.7     | 0.9      | 68.1    |

1.8

0.2

7.2

13.6

1.3

7.8

2.0

0.2

9.8

1.7

0.1

7.2

1.0

0.2

15.6

Analysis by A. M. Todd

mean

LSD(0.10)

CV(s/mean)x100

<sup>\*</sup> mb = midbud; fb = full bud

TITLE:

Stolon Production Trial

PERSONNEL:

Leon E. Welty, Professor of Agronomy, MSU, Kalispell, MT Louise Strang, Research Specialist, MSU, Kalispell, MT

All peppermint at the NWARC survived the 1996-97 winter well. In this trial, stolons from the harvested flat culture mint at Sonstelie Farms and the NWARC harvested flat culture showed some stand loss compared to the Sonstelie non-harvested and the NWARC hill culture mint (Table 1). Spring vigor ratings and mid-summer plant height of mint from the Sonstelie non-harvested (both flat and hill culture) and the NWARC hill culture stolon sources were significantly greater than mint from the other 3 sources (Table 1). Harvesting the mint affected stolon growth potential of the Sonstelie source, while hilling increased the potential of the NWARC mint. This study indicates that hilling non-harvested mint results in a better stolon source for peppermint establishment than stolons from a harvested field or an non-harvested field with no hilling.

Table 1. 1997 stand establishment of peppermint from 1996 stolon sources.

| Stolon Source  Sonstelie-Flat-Harvested Sonstelie-Flat-No Harvest Sonstelie-Hill-No Harvest NWARC-Hill-No Harvest NWARC-Flat-Harvested Idaho-Harvested | Row<br><u>Cover</u><br>%<br>92<br>99<br>98<br>96<br>89<br>96 | Vigor<br>(0-5)<br>2.5<br>4.0<br>4.5<br>4.0<br>2.8<br>3.0 | Stolon<br><u>Spread</u><br>(0-5)<br>0.0<br>0.8<br>0.5<br>0.5<br>1.0<br>0.3 | Height inches 33 37 38 37 34 32 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------|
| Mean                                                                                                                                                   | 95                                                           | 3.5                                                      | 0.5                                                                        | 35                              |
| LSD(0.10)                                                                                                                                              | 4                                                            | 0.6                                                      | 0.5                                                                        | 2                               |

TITLE:

Peppermint Rhizome Production Trial

PERSONNEL:

Leon E. Welty, Professor of Agronomy, MSU, Kalispell, MT Louise M. Strang, Research Specialist, MSU, Kalispell, MT

Gail Sharp, Research Aide, MSU, Kalispell, MT Dale Sonstelie, Producer, Flathead County, MT Phil Clarke, Producer, Flathead County, MT Myron Mast, Producer, Flathead County, MT

Black Mitcham rhizomes/stolons derived from *in vitro* nodal propagation (from 1995 nuclear plants - Lake 94 source), generation #1, were dug in May of 1997 from the Myron Mast farm and replanted in 12 X 20 foot replicated plots at the Northwestern Agricultural Research Center. The following cultural treatments were imposed:

| <u>Trt</u> | <u>Culture</u>  | Operation Desiration                                                                                    | Hay<br>Harvest |
|------------|-----------------|---------------------------------------------------------------------------------------------------------|----------------|
| 1          | Flat            | No hilling a 6 staups took earth too black                                                              | None           |
| 2          | Flat            | Cultivate between rows 7/1, 7/16                                                                        | 9/24           |
| 3          | Disk Hill       | 2 coverage on 8/6, 2/3 on 9/2*<br>Stolons covered on 9/17 and 10/8                                      | None           |
| 4          | Flat            | No hilling                                                                                              | 8/25           |
| 5          | Shank/Disk Hill | 1/4 shank on 7/1, 7/16, and 8/1<br>1/3 disk on 8/15, 2 disk on 9/2*<br>Stolons covered on 9/17 and 10/8 | None           |
| 6          | Disk Hill       | 2 coverage on 7/1                                                                                       | None           |
| 7          | Disk Hill       | 2 coverage on 8/6, 2/3 on 9/2*<br>Stolons covered on 9/17                                               | None           |
| 8          | Disk Hill       | 2 coverage on 8/6, 2/3 on 9/2*<br>Stolons covered on 10/8                                               | None           |

<sup>\*</sup> Preceded by rototilling

In spring of 1998, rhizomes/stolons will be dug from a three-foot square area from each plot, cleaned and separated into white and green material, and weighed. In addition, sufficient stolons will be dug and replanted into replicated plots (4 rows, 22 inches apart, and 20 feet in length). Rhizomes/stolons of the same generation will be obtained from Idaho and Oregon (if available) and planted with the above treatments. Vigor, stolon spread, and hay and oil yields will be obtained in 1998.

In fall of 1997, rhizomes/stolons were dug, separated and weighed as described above, and subjected to cold/biofreezer tests. Rhizomes were subjected to the following temperatures for two-hour periods, removed from the freezer, and planted in trays in the lab: (1) 36 degrees F, (2) 20 degrees F, (3) 10 degrees F, and (4) 0 degrees F. Twenty, two-inch rhizome segments used for each treatment were wrapped in moist cheese cloth and aluminum foil. Treatments were placed in the freezer for fourteen hours at 36 degrees F to condition the rhizomes. The temperature was then reduced four degrees F per hour until the desired temperature was achieved. Stolons were held at the desired temperature for two hours, removed, and planted. After two weeks in the lab at 65 degrees F, percentage survival was determined.

Stolon yield per three foot square area was greatest for Flat/Harvest 9/24, Shank/Disk Hill, and Disk Hilling once on July 1 (Table 1). Weight of stolon segments was greatest for Disk Hilling once on July 1. Responses to cold treatments were variable. Mean survival was lowest for Disk treatment #8 (Table 1), primarily because of poor survival at 10 degrees F (Figure 1).

Table 1. Percentage survival and stolon weight and yield of cold treated rhizomes.

| inaga ona :<br><u>Irt</u> | Mean<br>Survival<br>(%) | Stolon Weight<br>2" segments<br>(gms) | Stolon Yield<br>3 sq ft<br>(gms) |
|---------------------------|-------------------------|---------------------------------------|----------------------------------|
| TM1 local                 | 80                      | 21.8                                  | 326                              |
| 2                         | 83                      | 24.6                                  | 579                              |
| 3                         | 78                      | 23.2                                  | 257                              |
| 4                         | 86                      | 25.3                                  | 416                              |
| 5                         | 83                      | 23.9                                  | 611                              |
| 6                         | 87                      | 29.6                                  | 575                              |
| 7                         | 88                      | 21.6                                  | 365                              |
| 8                         | 67                      | 22.5                                  | 271                              |
| LSD(0.05)                 | 19                      | 3.6                                   | 313                              |

Figure 1. Effects of Hilling Procedures on Cold Tolerance of Mint Peppermint Rhizome Production Trial - Kalispell, MT



TITLE: Effect of freezing on survival of peppermint and spearmint

rhizomes/stolons.

PERSONNEL: Leon E. Welty, Professor of Agronomy, MSU, Kalispell, MT

Louise Strang, Research Specialist, MSU, Kalispell, MT Gail Sharp, Research Assistant, MSU, Kalispell, MT

Stolons/rhizomes from 11 mint lines were sampled from an established nursery at the NWARC in fall of 1997. The stolons were cleaned and stored at 40°F until testing. Ten, two-inch stolon pieces for each of four cold treatments were selected from each mint line. Each group of 10 was wrapped in moist cheesecloth and aluminum foil and placed in a biofreezer at 40°F for 12 to 16 hours. After this conditioning period, stolons for the 40° treatment were removed, and the freezer temperature was reduced 4°F/ hour to 20° and held for two hours. Stolons for the 20° treatment were removed and the freezer cooled to 10°. The 10° stolons were removed after 2 hours, and then the temperature reduced to 0° for the remaining stolons. The stolons were planted in the lab at 65°F the following day, and number of stolons producing new shoots recorded for each cold treatment within each stolon source.

Data from this preliminary study are summarized in Table 1 and Figure 1. No stolons subjected to 0°F survived. All stolons subjected to a 20° minimum survived. The only differential performance among cultivar/propagation lines was at the 10° treatment. The peppermints had more live stolons after the 10° treatment than the spearmints, except for T-84-5. Murray Mitcham and Black Mitcham – meristem derived survived the 10° treatment better than Roberts Mitcham and the non-meristem Blacks. Meristem Scotch survived best of the spearmints tested.

We must emphasize the preliminary nature of this data. Only two replicates of each mint line were tested. Before being able to calculate the LT50 (the temperature at which 50% survival occurs), we must submit the various lines to series of temperatures within the 0-10<sup>0</sup> and 10-20<sup>0</sup> ranges and develop freezing tolerance response curves for different mint germplasm sources. We have established 24 other mint lines at the NWARC for testing beginning in fall of 1998.

Table 1. Percent Survival of Cold Treated Stolons

|                 |           | Temperatu | re (degrees F | E) o foetic |
|-----------------|-----------|-----------|---------------|-------------|
| Cultivar        | 0         | 10        | 20            | 40          |
| BM Mirc         | 0         | 75        | 100           | 100         |
| BM Nodal        | 0         | 70        | 100           | 100         |
| BM Meristem     | 0         | 95        | 95            | 100         |
| Murray Mitcham  | 0         | 100       | 100           | 100         |
| Roberts Mitcham | 0         | 70        | 100           | 100         |
| M-83-7          | 0         | 80        | 95            | 100         |
| T-84-5          | 0         | 45        | 100           | 100         |
| Native Stem     | 0         | 30        | 100           | 100         |
| Native Meristem | 0         | 15        | 100           | 100         |
| Scotch Stem     | 0         | 35        | 100           | 100         |
| Scotch Meristem | 0         | 55        | 100           | 100         |
|                 | LSD(0.10) | 16        |               |             |

Figure 1. Effect of temperature on survival of mint stolons.



LSD = 16.04

TITLE:

Effect of freezing on survival of peppermint and spearmint

rhizomes/stolons.

PERSONNEL:

Leon E. Welty, Professor of Agronomy, MSU, Kalispell, MT Louise Strang, Research Specialist, MSU, Kalispell, MT

Montana Mint Committee

Twenty-four mint species/cultivars/propagation types were established in 2-row plots in a replicated complete block design with 4 replicates, in spring of 1997 (Table 1). Stolons/rhizomes from each plot will be dug in fall of 1998 and subjected to different cold temperatures in the biofreezer as in the preliminary freezing survival test conducted in 1997. Temperatures within the 0-10° and 10-20° ranges will be included and response curves of each mint line to cold temperatures will be developed. This will allow us to estimate the critical temperature at which 50% survival can be expected for each mint line.

Table 1. Mint lines to be tested for cold tolerance in 1998.

|    |               |                  | Propagation |                          |                 |
|----|---------------|------------------|-------------|--------------------------|-----------------|
| ID | Species       | Cultivar         | Method      | Source                   | Propagator      |
| 1  | piperita      | Black Mitcham    | stem-cut    | MIRC                     | Summit          |
| 2  | piperita      | Black Mitcham    | meristem    | MIRC                     | Summit          |
| 3  | piperita      | Black Mitcham    | meristem    | MIRC                     | Starkel         |
| 4  | piperita      | Black Mitcham    | nodal       | MIRC-92                  | Lake            |
| 5  | piperita      | Murray Mitcham   | stem-cut    | MIRC                     | Summit          |
| 6  | piperita      | Todd's Mitcham   | stem-cut    | MIRC                     | Summit          |
| 7  | piperita      | Roberts Mitcham  | stem-cut    | MIRC                     | Summit          |
| 8  | piperita      | M-83-7           | stem-cut    | MIRC                     | Summit          |
| 9  | piperita      | Black Mitcham    | nodal       | McClelland               | Lake            |
| 10 | piperita      | Black Mitcham    | nodal       | English 1                | Lake            |
| 11 | piperita      | Black Mitcham    | nodal       | English 2                | Lake            |
| 12 | spicata       | Native spearmint | stem-cut    | MIRC                     | Summit          |
| 13 | spicata       | N-83-5           | stem-cut    | MIRC                     | Summit          |
| 14 | spicata       | Native spearmint | meristem    | MIRC                     | Starkel         |
| 15 | cardiaca      | Scotch           | stem-cut    | MIRC                     | Summit          |
| 16 | cardiaca      | Scotch 213       | stem-cut    | MIRC                     | Summit          |
| 17 | cardiaca      | Scotch 227       | stem-cut    | MIRC                     | Summit          |
| 18 | cardiaca      | Scotch 770       | stem-cut    | MIRC                     | Summit          |
| 19 | cardiaca      | Scotch 770       | meristem    | MIRC                     | Starkel<br>Lake |
| 20 | Iongifolia    |                  | nodal       | NCGR                     | Lake            |
| 21 | suaveolens    | rotundifolia     | nodal       | NCGR<br>McClellend       | Lake            |
| 22 | piperita      | Black Mitcham    | nodal       | McClelland<br>McClelland | Lake            |
| 23 | piperita      | Black Mitcham    | nodal       | I.P.Callison             | Lake            |
| 24 | Alaska/Arctic |                  | nodal       | I.P. Callison            | Lake            |

TITLE:

Effect of Fall Fertilization on Winter Survival of Peppermint

PERSONNEL:

Leon E. Welty, Professor of Agronomy, MSU, Kalispell, MT Louise Strang, Research Specialist, MSU, Kalispell, MT

Four nitrogen fertilizer treatments were applied to an established peppermint stand in 3 replicates:

100 lbs N/A after harvest (8/21/96)

100 lbs N/A on 9/15/96

100 lbs N/A + 30 lbs Sulfur/a on 8/21

100 lbs N/A + 30 lbs S/a + 2 lbs Boron/a on 8/21

Check - 0 N

Four P+K fertilizer treatments, with N constant, were applied to an adjacent area of the same field in 3 replicates:

104 lbs P<sub>2</sub>O<sub>5</sub> /a + 120 lbs K<sub>2</sub>O /a on 8/21/96

208 lbs P<sub>2</sub>O<sub>5</sub> /a + 240 lbs K<sub>2</sub>O /a on 8/21/96

104 lbs P<sub>2</sub>O<sub>5</sub> /a + 120 lbs K<sub>2</sub>O /a on 10/1/96

208 lbs P<sub>2</sub>O<sub>5</sub> /a + 240 lbs K<sub>2</sub>O /a on 10/1/96

Check - no P & K

No differences in stand survival or vigor were observed on 5/15/97; therefore, the study was terminated.

YEAR/PROJECT: 1997 / 758

TITLE:

Peppermint Fluffing/Tedding

PERSONNEL:

Leon E. Welty, Professor of Agronomy, MSU, Kalispell, MT

On three separate occasions in 1997, we borrowed a tedder from Tom Sands and used it in mint production fields at the Northwestern Agricultural Research Center. We fluffed several windrows for each harvest of the double cut field and several windrows in the meristem field. The mint from each treatment was chopped and distilled by Fishers. Procedures for each fluffing are included in Tables 1, 2, and 3.

For the first harvest of the double cut field (Table 1), fluffing increased windrow dry matter percentage and resulted in more oil per tub than non-fluffed mint which would indicate that more dry matter was chopped into fluffed tubs.

For the second harvest of the double cut field, additional parameters were measured, i.e. tub weight, chopper distance covered, break time, and oil yield per acre (Table 2). Fluffing slightly increased windrow dry matter but decreased oil yields, particularly when fluffing occurred three days after swathing.

We also fluffed windrows on the single cut meristem field in early August. Tub weights were less for fluffed mint as compared to non-fluffed mint (Table 3). Break time increased with non-fluffed mint indicating that moisture percentage was higher. It took more field area to fill tubs from fluffed mint as compared to non-fluffed mint. Fluffing reduced oil yield/acre, particularly when the operation was completed the day prior to chopping.

Fluffing reduced windrow moisture and may allow chopping a day earlier as compared to not fluffing. However, fluffing also reduced oil yield. It was evident from the mint smell during fluffing that oil was being lost. However, this loss must be assessed against other factors, such as imminent rainstorms, etc.

Table 1. Effect of fluffing on dry matter percentage for first harvest of Black Mitcham nodal peppermint in 1997.

| <u>Date</u> | Non-fluff | Fluff |
|-------------|-----------|-------|
| 7/12/97     | 26        | 30    |
| 7/13/97     | 27        | 28    |
| 7/14/97     | 26        | 32    |

Mint swathed evening of 7/7.
Received 0.35" rain 7/8 and 7/9.
Fluffed on afternoon of 7/11.
Distilled on 7/16.
Yield = 59.8 lbs oil/a.
2 fluff tubs = 41 and 47 lbs oil.
Non-fluff tub = 35 lbs oil.

Table 2. Effect of fluffing on distillation and oil parameters for second harvest of Black Mitcham nodal peppermint in 1997.

| 0.11              |             |             | 2          |             | Area    |
|-------------------|-------------|-------------|------------|-------------|---------|
| Oil               | DM<br>Yield | Tub wt.     | Break Time | Oil/tub     | Chopped |
| Treatment (lb/a)  | <u>(%)</u>  | <u>(lb)</u> | (min)      | <u>(lb)</u> | (acre)  |
| Fluff 9/10*<br>52 | 29          | 12960       | 47         | 55          | 1.05    |
| Fluff 9/11*<br>43 | 28          | 12865       | 49         | 45          | 1.04    |
| No Fluff<br>54    | 27          | 13610       | 47         | 55          | 1.02    |

<sup>\*</sup> Fluffed at 10:00 a.m. Swath date = 9/8/97 p.m. Distill date = 9/14/97 p.m. Rainfall = Trace on 9/11/97

Table 3. Effect of fluffing on distillation and oil parameters for Black Mitcham meristem peppermint in 1997.

| <u>Treatment</u>       | Tub wt.<br>(lbs) | Break<br>Time<br>(min) | Oil/tub<br>(lbs) | Area<br>Chopped<br>(acre) | Oil<br>Yield<br>(lbs/a) |
|------------------------|------------------|------------------------|------------------|---------------------------|-------------------------|
| Fluff 8/4 at 2:30 p.m. | 8020             | 30                     | 52               | 0.61                      | 85                      |
| Fluff 8/5 at 9:00 a.m. | 8045             | 28                     | 49               | 0.61                      | 81                      |
| Fluff 8/6 at 9:00 a.m. | 8045             | 30                     | 50               | 0.63                      | 79                      |
| No Fluff               | 8570             | 34                     | 53               | 0.59                      | 89                      |

Swath on August 3 from 1-4:00 p.m. Harvest on August 7 from 12-2:00 p.m. Received 0.36" precipitation on August 4 in p.m.