Northwestern Agricultural Research Center Field Day

July 18, 2019

11:00 am	Registration and Introductions 11:30 Scott Buxbaum – NWARC Farmer Advisory Chair 11:35 Dr. Jessica Torrion – MSU NWARC Superintendent 11:40 Dr. Darrin Boss – MSU Research Center Department Head 11:50 Dr. Sreekala Bajwa – MSU Vice President and Dean, College of Agriculture
12:00 pm	Lunch Andy Lybeck – CHS and Market update Bob Konen – Columbia River Basin Update
1:00 pm	Field Tours
Stop #1:	Corn Planting Date
Stop #2:	Alfalfa dormancy and Moisture Availability
Stop #3:	Alfalfa Dormancy and Levels of P & K & Moisture
Stop #4:	Spring Wheat Breeding Program Dr. Luther Talbert & Mrs. Brittney Brewer-Jones – MSU Plant Science and Plant Pathology Tryg Koch – Producer
Stop #5:	Annual Cereal Forages
Stop #6:	Winter Wheat Breeding Program Update
Stop #7:	Barley Breeding Program Update Dr. Jamie Sherman – MSU Plant Science and Plant Pathology Markus Braaten – Yara International

3:30 pm Refreshments

Northwestern Agricultural Research Center

Thank you to our sponsors:

Northwestern Agricultural Research Center Staff

Left to right: Elliot Sanford, Mark Byers, Jessica Torrion, Maria Bay, Dove Carlin, Jordan Penney, Amanda Shine, Thomas Fritz, Sage Rasmussen

Advisory Committee

Flathead County

Markus Braaten, Tryg Koch, Andy Lybeck, Pat McGlynn

Lake County

Dan Barz, Scott Buxbaum, Bridgett Lake-Cheff, Ken McAlpin, Jack Stivers

Sanders County

Juli Thurston

Corn Planting Date

Jordan Penney and Jessica A. Torrion

When planting corn, the rule of thumb is to plant when there is a 48-hour (2-days) window with soil temperature that does not drop much below 50°F (Elmore et al., 2018). After this window, if the temperature drops, the chilling injury to a germinating seed is close to zero. This lowered temperature however delays emergence, which exposes untreated seeds to soil-borne pathogens on cold and wet soil.

Hourly soil temperature at 1.5 soil depth

Figure 1. Hourly soil temperature at 1.5 soil depth and respective corn planting & emergence dates, NWARC, Kalispell, MT.

Table 1. Detailed Agronomic Management Information.

Soil: Creston silt loam	Soil analysis: 144-10-250 (lbs NO ₃ -N, P, K)			
	Fertilizer applied: 130-50-20 (lbs N, P205, K20)			
Relative Maturity: 75 and 80 days				
Planted: 1 st PD- April 25, 2019	Herbicide: Stinger- June 5, 2019			
2 nd PD- May 6, 2019	Roundup- June 10, 2019			
3 rd PD- May 23, 2019	Seed Treatment: both varieties were pre-treated			
Emerged: 1 st PD- May 13, 2019				
2 nd PD- May 23, 2019				
3 rd PD- June 1, 2019				

Useful reading material:

Elmore, R., H. Yang, and P. Grassini. Cold soil temperature and corn planting windows. Univ. of Nebraska CropWatch. https://cropwatch.unl.edu/2018/cold-soil-temperature-and-corn-planting-windows

Rainfed

50ET

100ET

Alfalfa Dormancy and Moisture Availability

Table 1. Yields	Year and	Yield per Cut (10% FLWR)		Total Yield	Water Pro	oductivity
and water	Treatment	1 st (7/25)	2 nd (9/26)		Irrigation	Total
productivity.	2018 (1st year)		Tons/Acre-		Tons/inch	
Different	Rainfed	1.0 b	0.5 c	1.5 c	-	0.25
letter	50ET	1.2 ab (+1.3")	1.4 b (+3.7")	2.6 b (+5.0")	0.22	0.23
assignment	100ET	1.4 a (+2.6")	1.8 a (+7.3")	3.2 a (+10.0")	0.17	0.20
denotes data	Mean	1.8	1.2	2.4	0.19	0.22
are						
statistically	2019 (2 nd year)	1 st (6/17)				
different	Rainfed	2.6 b			-	0.48
	50ET	3.7 a (+ 1.2")			0.92	0.56
	100ET	3.9 a (+ 2.4")			0.54	0.50

Jessica A. Torrion, Mike Ottman, Isaya Kisseka, Gerrit Hoogenboom, and Kenneth J. Boote

2018 Notes: Available water in the soil (top 3-ft): 3 inches ; 2018: Total Rainfall from Emergence to Final Cut: 3.2 inches (3.0 inches were received from May 30-Jul 3, 2018)

Table 2. 2018 variety yield			Rainfed	50ET	100ET	
performance with moisture.	Cultivar	Fall dormancy	Total Yield Tons/Acre			
·	Maxi Graze	2 (very dormant)	1.5	2.7	3.3	
	FSG229CR	2 (very dormant)	1.6	2.5	3.4	
	Rugged	3 (dormant)	1.5	2.6	3.2	
	Big Sky	3 (dormant)	1.6	2.4	3.1	
	Cisco II	6 (semi-dormant)	1.5	2.7	3.4	
	Hi-Gest 660	6 (semi-dormant)	1.4	2.4	3.0	
	Mean		1.5	2.6	3.2	
	CV		0.05	0.05	0.05	
	LSD		ns	ns	ns	
	Pr > F		0.9501	0.1207	0.0541	
	Bercent State - 7 Gar - 7 Gar - 7 Gar - 7 Cord - 7	c d	Percent Protein 81 81	a - [] [a	

2018 Second Cutting's Relative Feed Value, Percent Sugar, and Protein. Different letter assignment means data are statistically different from each other.

Rainfed

50ET

100ET

Rainfed

50ET

100ET

Funded by Montana Fertilizer Advisory Committee

Phosphorus and Potassium Fertilization of Dormant to Semi-Dormant Alfalfa

Amanda Shine, Thomas Fritz, Jessica Torrion, Maryse Bourgault, and Emily Meccage

There are 2.8 million acres planted with hay in Montana. Alfalfa makes up 72% of total hay production and is valued at \$478 million dollars. Alfalfa uses a large amount (luxurious consumption) of potassium (K). Alfalfa uses 50-60 lbs K_2O per ton of hay. This nutrient, along with phosphorus (P), is needed for root development, which is essential to alfalfa persistence.

Our goal with this project is to document yield, quality, and persistence of dormant to less-dormant alfalfa when P and K fertilizers are applied at or below optimum levels. This experiment is conducted across three environments: NWARC rainfed, NWARC irrigated, and NARC (Havre, MT) rainfed.

Table 1. Agronomic Management Information

Soil: Flathead fine sandy loam Spring Soil analysis: 22-15-99 (NO ₃ -N, P, and K respectively)	Seed Treatment: Apron XL & pre-treated Inoculant: PreVail (Verdesian)
Fertilizer applied: Pre-plant, incorporated, and packed	Herbicide: Raptor- June 18, 2019
Emerged: May 29, 2019	

Table 2. Fertilizer Rates and Treatment Description

Fertilizer Rates	Description		
0P/0K	Control		
0P/1K	0 P ₂ O ₅ / 170 lbs K ₂ 0		
0P/.5K	0 lbs P ₂ O ₅ / 85 lbs K ₂ 0		
1P/1K	40 lbs P ₂ O ₅ / 170 lbs K ₂ 0		
1P/.5K	40 lbs P ₂ O ₅ / 85 lbs K ₂ 0		

Table 3. Alfalfa Varieties and Fall Dormancy (FD) Ratings

FD	Varieties		
FD 2 (very dormant)	Maxi-Graze		
FD 3 (dormant)	Rugged		
FD 4 (dormant)	Alphatron		
FD 5 (moderately dormant)	Saltiva		
FD 6 (semi-dormant)	Cisco II		
FD 7 (semi-dormant)	Magna		

Annual Cereal Forage Testing Montana State University

Patrick M. Carr, Phil Bruckner, Peggy Lamb, John Miller, and Zach Miller

The MSU Central Agricultural Research Center coordinates fall- and spring-seeded forage trials each year at research centers across the state. In 2018, those centers included the Northern Agric. Res. Ctr. near Havre, the Western Agric. Res. Ctr. near Corvallis, the Northern Triangle Agric. Res. Ctr. near Conrad, the Arthur H. Post research farm outside of Bozeman, and the Central Agric. Res. Ctr. near Moccasin. MSU plant breeders Phil Bruckner (winter wheat) and Jamie Sherman (barley) uses data from thee trials to help select for varieties suited for forage production within their respective programs. A summary of plant height and forage yield (tons of dry matter per acre) for a few of the entries in both trials is provided in the tables below.

MISU 2018 Winter cereal forage trial - forage data											
CULTIVAR	CROP	– – – – PLANT HEIGHT – – – –				– – – – FORAGE YIELD – – – –					
		BOZ	CON	COR	HAV	MOC	BOZ	CON/2	COR	HAV	MOC
				in				(to	ns DM/	ac)	
	· · · ·	1					1				
Willow Creek	Wheat	58	48	42	35	45	6.8	9.0	2.6	3.2	2.2
Ray (MTF1432)	Wheat	45	33	32	27	34	5.1	8.7	2.3	2.8	2.8
Flex 719	Triticale	61	45	48	40	41	7.9	8.2	2.8	3.0	2.6
Trical 102	Triticale	63	47	49	39	44	7.7	7.2	3.9	3.3	2.6
WCF 1060	Triticale	68	47	49	41	51	8.0	8.9	2.4	3.5	3.0
EXPERIMENTAL MEANS		60	45	44	38	44	7.1	8.7	2.8	3.0	2.7
LSD (0.05)		5.7	3.5	5.3	2.6	3.2	1.8	NS	NS	0.4	NS
C.V.: (S / MEAN)*100		6.8	5.7	8	4.8	5.2	17.4	18.9	25.5	8.5	16.3
P-VALUE (Entries)		<0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	0.4	0.17	< 0.0001	0.338

MSU 2018 winter cereal forage trial - forage data

/1 BOZ = Bozeman, CON = Conrad, COR = Corvallis, HAV = Havre, MOC = Moccasin

/2 Conrad yields reported on a wet weight basis

2018 spring cereal forage trial

	_	CON	HAV	MOC	CON	HAV	MOC
CULTIVAR	CROP						
Haxby	Barley		18	40	4.1	1.1	2.9
Haybet	Barley		20	51	3.5	1.5	2.9
Hays	Barley		19	42	3.3	1.3	2.9
Lavina	Barley		20	45	2.9	1.3	2.6
Lucille	Emmer		27	59	2.9	1.3	2.8
Vida	HRSW		22	46	2.6	1.1	2.3
Otana	Oat		28	53		1.8	3.0
Gazelle	S. rye		40	72	2.5	1.4	2.8
Pronghorn	S. triticale		33	62	2.7	2.0	2.6
Tritical 141-2	S. triticale		36	68	3.3	1.5	2.8
EXPERIMENTAL MEANS			26	54	3.1	1.4	2.8
LSD (0.05)			2.2	2	0.5	0.2	0.3
C.V.: (S / MEAN)*100			5.8	3.1	11.6	8.0	7.8
P-VALUE (Entries)			<.0001	0.001	< 0.0001	<.0001	0.001

MAES Winter Wheat

Northwestern Agricultural Research Center (NWARC) at Kalispell is an important winter wheat evaluation site for the MAES Winter Wheat Cultivar Development program. Historically, the Montana Intrastate winter wheat trial, which contains currently grown proprietary and public cultivars as well as candidate **experimental** lines, has been grown at NWARC. The trial contains 49 entries in three replications. Since 1990, the winter wheat Intrastate trial has been grown here in Kalispell 27 times, averaging 94 bushels/acre [range 47-144 bu/acre]. Kalispell is generally the highest yielding site in our trial and generally has higher levels of stripe rust, which makes it a useful site in developing stripe rust-resistant winter wheat cultivars.

Last year the Winter Wheat Intrastate yield trial at NWARC averaged 85 bushels/acre, varying from 125 bu/acre for a LimaGrain experimental line to 26 bu/acre for stripe rust susceptible cultivar Bearpaw. Over the last three years the trial was successfully grown [2017 trial lost due to flooding /waterlogged conditions] the highest yielding varieties were Loma (120 bu/a), Warhorse (117 bu/a), WB4623CLP (116 bu/a), Northern (114 bu/a), Judee (113 bu/a) and SY Clearstone 2CL (113 bu/a). All these cultivars have excellent resistant to stripe rust.

Foundation seed of two new MAES-developed winter wheat cultivars is currently being increased for release this fall to Montana Seed Growers. New winter wheat cultivars include:

Bobcat – solid stem, semi-dwarf hard red winter wheat with resistance to wheat stem sawfly. Bobcat has improved yield potential compared to other solid stem lines at Conrad, Havre, and other wheat stem sawfly infested locations.

Flathead – hollow stem, semi-dwarf hard red winter wheat with resistance to stripe rust and early heading date. This cultivar was developed in cooperation with NWARC following multiple cycles of phenotypic selection for stripe rust resistance at Creston.

Research projects in the near future:

-incorporation of a new effective gene [Wsm2] for wheat streak mosaic virus resistance

-development of additional winter wheat annual forage cultivars besides Ray and Willow Creek