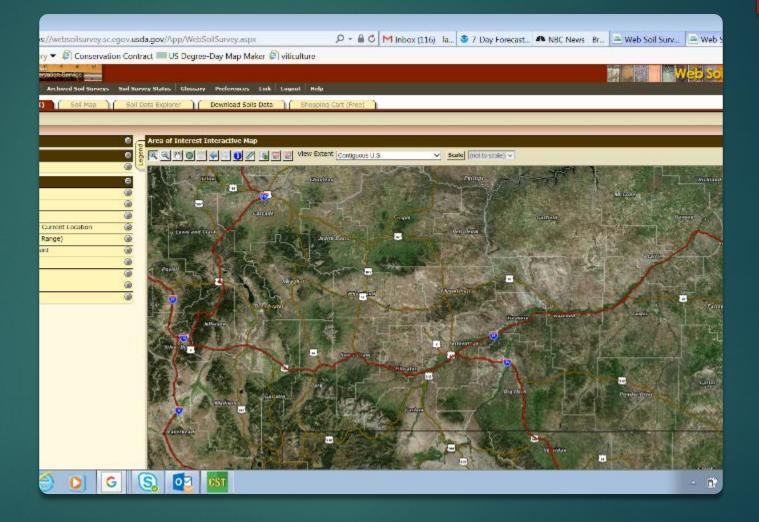
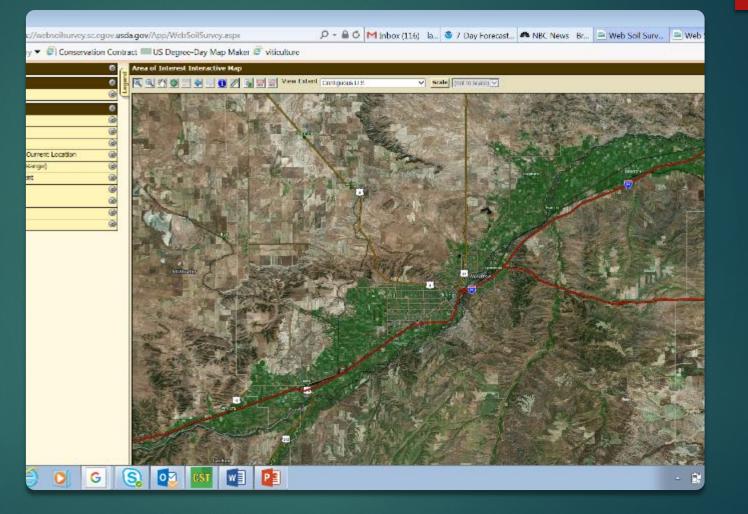

Irrigation Water Management for Montana Fruit Production (IN A SEMI-ARID CLIMATE)

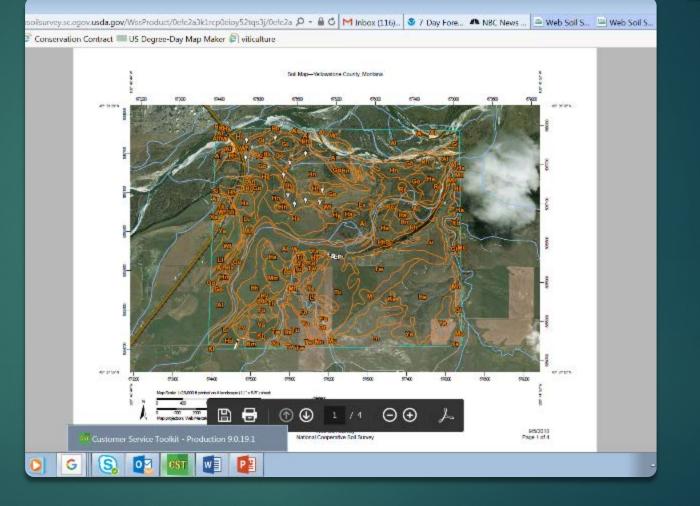

SOILS

Start with a soils inventory - Web Soil Survey Estimate soil available water holding capacity (AWC) Sandy/gravelly loam vs Clay loam Wide Range AWC - 2 inches/5 feet vs 8 inches/5 feet



Web Soil Survey Home Page

Use + to narrow search Draw AOI on map



Narrow Search, Create AOI, Go to Soil Мар above tool bar

Soil Map

Multiple soil types from clay to fine sandy loams

bsailsurvey.st.egov.usda.gav/WssProduct/Ocho2a3k1repOciay52tqs3j/Ocho2a 🔎 🗧 🙆 M Inbox (116)... 🧕 7 Day Fore... 🛎 NBC News ... 🚊 Web Soll S... 🖹 Web Soll S...

🦉 Conservation Contract 💷 US Degree-Day Map Maker 🦉 viticulture

Son Map-Pellowsfore County, Montana Map Unit Legend Percent of AO Map Unit Symbol Map Unit Name Acres in AOL 112.0 17.75 Involve, Invol. Inter-0.9% logical lands, surveyed 80 initial land, and 28.7 0.4% 0.0% Agrees learning fire scand, 4 in 7 present slapes. 10 Riversity stay issue, O in 1 present stages. 18.0 0.5% And Collins: American lay learner, 110-4 percent steppes 38.92 1.8% Merberg toan, 210 1 percent slepts 48.9 125 On. Nething Isan, S in Spread slopes 2.4% 14% Oki, Redwold, 2 in Warmership 12.0 slapon Hat Have can been, O to 1 proved stepses 202.7 8.0% Have see ofly stay team, the 1 percent stopes 18.1 0.05 Hoverson-Hysican Isana, 8 to 1 percent alcose 121.7 2.05 Howerson loan, gravely variant, 0 to 1 percent slopes 565 126.4 10.2% 0.850 Hity gravely land i la 28.7 0.95 Nation-Loure licens, 3 to 2 percent signers 0.8 33.6 Instan-Learni sity day Isano, E to 2 parcent slepes Kalsanaliy size learn, 1 is 4 proved slopes. 25.5 0.9% 11.6 0.0% **MAR** Enternand Hanger silly day Jacob, Dia Typesand slaper Cylin silly elay, Chin T present slapos 8.1 e arc 18.62 0.0% Lal Lander Look, 7 to 35 preset steps Larm gravity loan, 15 to 25 percent alopes 14% 42.9 Dense sing, Win Wipresent slapes 1.9% 410 Los. Laboration saling stag. B in 1 present stagers. 14.1 0.5% Conversion Review Web Roll Renary Rolling Comparative Roll Renary DRATH Rep 2 of 4

Soil Types in the AOI

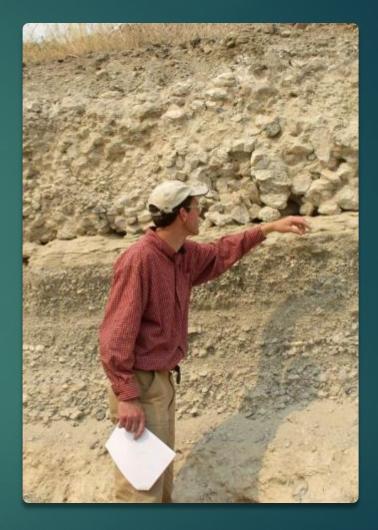
0 6 😪 🔯 💵 📳

Soil Report for Wf Wanetta clay loam, 0-1% slopes

-----Landform: Terraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium Typical profile Ap - 0 to 8 inches: clay loam Bt - 8 to 17 inches: clay loam Bk - 17 to 26 inches: loam 2C - 26 to 60 inches: very gravelly loamy sand Properties and gualities Slope: 0 to 1 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Well drained Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum in profile: 15 percent lightly saline (0.0 Salinit (1) 1 / 2 $\Theta \oplus$ to Available water storage in profile: Low (about 5.6 inches)

spilsurvey.sc.egov.usda.gov/WssProduct/Ochc2a3k1rcpOchy52tqs3j/Ochc2a 🔎 🗧 🖄 M Inbox (116)... 🕏 7 Day Fore... 🧥 NBC News ... 📄 Web Soil S... 🖳 Web Soil S.

) G 🔇 🔯 🔯 🖉 👔

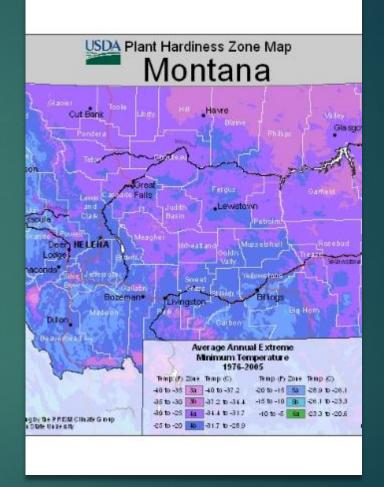

Conservation Contract 💷 US Degree-Day Map Maker 🖉 viticulture

Soil Water

Field Capacity- the water in soil that is held up in the soil profile against the force of gravity- gravitational water

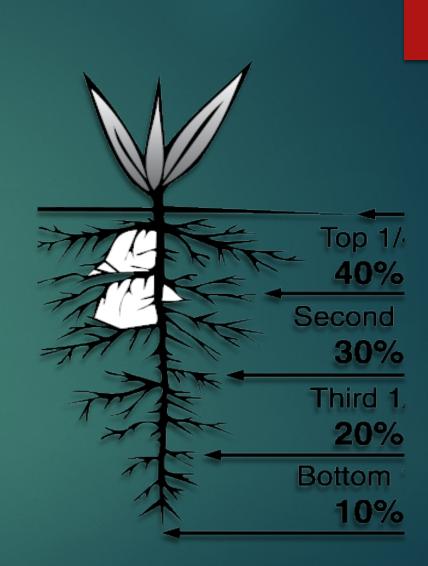
Available water- That between field capacity and the wilting point.

Wilting Point- unavailable water- Water held so tightly the surface tension is too great for plant roots to draw water.


Other Factors for Site Suitability

Growing Degree Days (GDD)

Site aspect


Air drainage, frost susceptibility

USDA Plant Hardiness Zones

Plant Water Use by Rooting Depth

70% of plant available water is in the top half of the rooting depth.

Vineyard/Orchard Irrigation Systems

The Most Common Systems are micro-sprinkler and Drip

Drip w/ 2gph red Rain Bird emitters

Soil Moisture Monitoring

Installing Watermark / Gypsum Block soil moisture sensors

Save dug soil on Canvas

Dig a narrow sensor hole with a tile spade shove and place soil on canvas the way it came out

Replace soil the same way it came out using shovel handle to pack tightly

Installing Sensor

Place sensor on end of ³/₄" PVC and hold against the side of hole. Hand pack around the sensor as you fill in the hole to a 1' depth, continue packing carefully w/handle

2' depth sensor shown below

Fill Back in Order

Fill to the one foot depth and repeat for the 2nd sensor at 1' depth

1' depth installation shown below

Measuring Soil Moisture

Soil moisture gypsum block readingswhat do they mean? 0-8 saturation, 80-100 wilting point???, 150-200 bone dry ???

Calibration – Use moisture readings plus visual vine condition to estimate wilting point threshold.

The Watermark guide estimates 50% soil water depletion at 80, based on heavier soils. Flathead gravelly loam soils have much lower readings for 50%, it's why vineyard calibration is needed.

Other soil moisture sensoring equipment- tensiometers, neutron probes, Spectrum tech sensors, etc.

Irrigation Scheduling

- Vine moisture needs- established vines can use between 4 and 6 gallons of water per day during peak use. Mature fruit trees can use up to 45 gallons/day
- Evapotranspiration- vines, fruit, grass, etc. can use between .15" on cloudy days to .3" on hot days.
- Soil available water holding capacity- You can bank several days of water on higher water holding soils such as loams without much gravel/rocks. Sandy loam/gravelly soils need lighter, more frequent irrigations.

Grape Water Use by Stage of Development

Stage of Development

- Bud break to flowering
- Flowering to fruit set
- Fruit set to veraison
- Veraison to harvest
- Harvest to leaf fall

Fraction of Annual H20 Use

- ▶ 5%
- ▶ 15%
- ▶ 60%
- ▶ 20%
- ▶ 3-5%

Irrigation of Newly Established Vineyards and Orchards

GOAL First Two Years- To develop a good, deep root system for optimum long term production

#1- weed/grass control

#2- early deep watering depending on winter moisture, read sensors

#3- mild to moderate, occasional shallow soil water stress during the 2^{nd} half of the growing season

#4- Allow most all shoots to grow for maximum leaf area 1st year to develop scaffold root system

#5- 2nd year, Allow most shoots to grow while pruning to favor the training of predominant shoots to establish fruiting cordons

#6-Pick all grape bunches off for two years for maximum root development

Record keeping/ IWM calibration

Calibrate sensor readings to soil water and fruit conditions

- Keep at least bi-weekly records of soil moisture content, use data logger, etc. for continuous readings if feasible
- Record fruit growth stages along with soil moisture monitoring
- Record rainfall events- first .1" of rainfall will not effect soil moisturethe 1' sensor will usually not show most rain events(unless the soil water is near field capacity)
- Use data collected to refine a comprehensive Irrigation Water Management system to fit each location